+ All Categories
Home > Technology > Smahtrforfhrwinterans2nov10

Smahtrforfhrwinterans2nov10

Date post: 28-Nov-2014
Category:
Upload: srgreene
View: 398 times
Download: 0 times
Share this document with a friend
Description:
SmAHTR for 2010 ANS Winter Meeting, November 2010
21
SmAHTR – the Small Modular Advanced High Temperature Reactor Presented to ANS Winter Meeting Las Vegas, Nevada November 7-11, 2010 By Sherrell Greene Director, Research Reactors Development Programs Oak Ridge National Laboratory [email protected] , 865.574.0626
Transcript
Page 1: Smahtrforfhrwinterans2nov10

SmAHTR – the Small Modular Advanced High Temperature Reactor

Presented to ANS Winter Meeting Las Vegas, Nevada November 7-11, 2010

By Sherrell Greene Director, Research Reactors Development Programs Oak Ridge National Laboratory [email protected], 865.574.0626

Page 2: Smahtrforfhrwinterans2nov10

2 Managed by UT-Battelle for the U.S. Department of Energy

S. R. Greene, 11 Nov 10

Presentation overview

• SmAHTR design objectives • Preliminary SmAHTR concept • SmAHTR concept optimization and design trades • Principal SmAHTR development challenges

SmAHTR development is a team effort: S. R. Greene J. C. Gehin D. E. Holcomb J. J. Carbajo D. Ilas V. K. Varma A.  T. Cisneros* W. R. Corwin D. F. Wilson A. L. Qualls G. L. Yoder E. C. Bradley D. A. Clayton G. F. Flanagan M. S. Cetiner J. D. Hunn P. J. Pappano G. L. Bell F. J. Peretz

* UC–Berkeley

Page 3: Smahtrforfhrwinterans2nov10

3 Managed by UT-Battelle for the U.S. Department of Energy

S. R. Greene, 11 Nov 10

SmAHTR is the product of ORNL’s investigation of the Fluoride salt-cooled High-temperature Reactor (FHR) design space

• Reactor power level • Physical size • System complexity • Operating temperature •  Fuel and core geometry • Materials • Economics • Safety

Page 4: Smahtrforfhrwinterans2nov10

4 Managed by UT-Battelle for the U.S. Department of Energy

S. R. Greene, 11 Nov 10

SmAHTR design objectives target both electricity and process heat production

•  Initial concept operating temperature of 700 ºC with future evolution path to 850 ºC and 1000 ºC

•  Thermal size matched to early process heat markets •  Integral, compact system architectures • Passive decay heat removal •  Truck transportable • Multi-reactor systems

Page 5: Smahtrforfhrwinterans2nov10

5 Managed by UT-Battelle for the U.S. Department of Energy

S. R. Greene, 11 Nov 10

SmAHTR is an “entry-level” very-high-temperature reactor (VHTR)

Parameter   Value  

Power  (MWt  /  MWe)   125  /  50+  

Primary  Coolant   LiF-­‐BeF2  Primary  Pressure  (atm)   ~1  

Core  Inlet  Temperature  (ºC)   650  

Core  Outlet  Temperature  (ºC)   700  

Core  coolant  flow  rate  (kg/s)   1020  

OperaJonal  Heat  Removal   3  –  50%  loops  

Passive  Decay  Heat  Removal   3  –  50%  loops  

Power  Conversion   Brayton  

Reactor  Vessel  PenetraJons   None  

Overall System Parameters

Page 6: Smahtrforfhrwinterans2nov10

6 Managed by UT-Battelle for the U.S. Department of Energy

S. R. Greene, 11 Nov 10

SmAHTR is small…

AHTR SmAHTR

Small Large

Page 7: Smahtrforfhrwinterans2nov10

7 Managed by UT-Battelle for the U.S. Department of Energy

S. R. Greene, 11 Nov 10

SmAHTR is a cartridge-core, integral-primary-system FHR

Downcomer Skirt

(1 of 3) (1 of 3)

Page 8: Smahtrforfhrwinterans2nov10

8 Managed by UT-Battelle for the U.S. Department of Energy

S. R. Greene, 11 Nov 10

SmAHTR primary system mechanical design enables rapid component servicing

DRACS removal

IHX removal Reflector Removal

Core Removal

Note: downcomer skirt not shown

Page 9: Smahtrforfhrwinterans2nov10

9 Managed by UT-Battelle for the U.S. Department of Energy

S. R. Greene, 11 Nov 10

Solid cylindrical compact stringers

Four fuel assembly concepts are under consideration (3 fixed core and pebble-bed)

Annular cylindrical compact stringers

•  Cylindrical fuel assembly O.D. = 34 cm •  Plate fuel assembly O.D. = 43 cm

Hex-plate fuel assemblies

Pebble Bed

Page 10: Smahtrforfhrwinterans2nov10

10 Managed by UT-Battelle for the U.S. Department of Energy

S. R. Greene, 11 Nov 10

Cylindrical annular compacts are current SmAHTR reference fuel concept

SmAHTR  Fuel  /  Core  Parameter   Op6on  1  Op6on  2  

(Reference)   Op6on  3  

Fuel  Assembly  Design  

Solid  Cylindrical  Compact  Stringers  in  Hex  Graphite  

Blocks  

Annular  Cylindrical  Compact  Stringers  In  Hex  Graphite  

Blocks  

Flat  Fuel  Plates  in  Hex  ConfiguraJon  

UCO  fuel  kernel  diameter  (microns)   425   500   500  

Number  fuel  columns  or  assemblies   19   19   19  

Number  fuel  pins  /  plates  per  column  or  fuel  element  

72   15   12  

Number  graphite  pins    or  plates  per    column  or  fuel  element  

19   4   9  

IniJal  Fissile  Mass  (kg)   195   357   443  

Total  Heavy  Metal  (kg)   987   1806   2240  

Enrichment   19.75%   19.75%   19.75%  

Avg.  Power  Density  (MW/m3)   9.4     9.4   9.4  

Refueling  Interval  (yr)   2.5     4.0   3.5  

Page 11: Smahtrforfhrwinterans2nov10

11 Managed by UT-Battelle for the U.S. Department of Energy

S. R. Greene, 11 Nov 10

SmAHTR employs a two-out-of-three approach for operational and decay heat removal

Page 12: Smahtrforfhrwinterans2nov10

12 Managed by UT-Battelle for the U.S. Department of Energy

S. R. Greene, 11 Nov 10

Three identical in-vessel primary heat exchangers remove operational heat

Parameter   Value  

Number  of  Primary  Heat  Exchangers  (PHX)   3  

Number  PHX  needed  for  full  power  opera6on   2  

PHX  Design  Concept   Single-­‐pass,  tube-­‐in-­‐shell  

Primary  Coolant   LiF-­‐BeF2  

Primary  Inlet  Temperature  (ºC)   700  

Primary  Outlet  Temperature  (ºC)   650  

Primary  flow  rate  (kg/s)   350  (each)  

Secondary  Coolant   LiF-­‐NaF-­‐KF  

Secondary  Inlet  Temperature  (ºC)   582  

Primary  Outlet  Temperature  (ºC)   610  

Secondary  flow  rate  (kg/s)   800  (each)  

Intermediate Heat Transport Loop Parameters

PHX

Page 13: Smahtrforfhrwinterans2nov10

13 Managed by UT-Battelle for the U.S. Department of Energy

S. R. Greene, 11 Nov 10

In-­‐vessel  DRACS  HX  Parameter   Value  

Number  DRACS  in-­‐vessel  heat  exchangers   3  

Number  DRACS  loops  needed  for  full  power  opera6on  

2  

DRACS  Salt-­‐to-­‐Salt  Design  Concept   Single-­‐pass,  tube-­‐in-­‐shell  

Primary  Coolant   LiF-­‐BeF2  

Secondary  Coolant   LiF-­‐NaF-­‐KF  

In-vessel Passive Decay Heat Removal System Parameters

PHX

Three identical in-vessel heat exchangers remove post-scram decay heat

Page 14: Smahtrforfhrwinterans2nov10

14 Managed by UT-Battelle for the U.S. Department of Energy

S. R. Greene, 11 Nov 10

SmAHTR DRACS utilizes salt-to-air, natural convection heat rejection

Ex-­‐vessel  DRACS  HX  Parameter   Value  

Number  DRACS   3  

Number  DRACS  needed  for  full  power  opera6ons  

2  

DRACS  Salt-­‐to-­‐Air  Design  Concept   Ver6cal  finned  tube  radiator  

Primary  Coolant   LiF-­‐NaF-­‐KF  

Air  Flow  Area  (m2)   4  

In-­‐vessel  HX  –  to  –  air  HX  riser  height  (m)   8  

Total  chimney  height  (m)   12  

Ex-vessel Passive Decay Heat Removal System Parameters

In-vessel DRACS

HX

Salt-to-Air

Radiator FLiNaK

Air

FLiBe

~

Page 15: Smahtrforfhrwinterans2nov10

15 Managed by UT-Battelle for the U.S. Department of Energy

S. R. Greene, 11 Nov 10

SmAHTR is good match with Brayton power conversion technologies

• Options –  Standard closed –  Supercritical closed –  Open air (similar to ANP & HTRE)

•  Issues to consider –  Physical size & weight –  Multi-unit clustering –  Heat exchanger pressure differentials –  Efficiency and scalability to higher temperatures –  Tritium leakage –  Compatibility with dry heat rejection

•  Trade study underway

Page 16: Smahtrforfhrwinterans2nov10

16 Managed by UT-Battelle for the U.S. Department of Energy

S. R. Greene, 11 Nov 10

SmAHTR thermal energy storage “salt vault” enables clustering of multiple reactors

•  Liquid salt vault acts as thermal battery

• Salt vault buffers –  reactors from load –  reactors from each other

• Salt selection and salt vault size can be optimized for differing applications –  125 MWt-hr storage @ 500 –

600 ºC requires ~ 13 meter cubic salt tank

Page 17: Smahtrforfhrwinterans2nov10

17 Managed by UT-Battelle for the U.S. Department of Energy

S. R. Greene, 11 Nov 10

1178°C

650°C 700°C

Peak center-line fuel temperatures during normal operations are acceptable

Page 18: Smahtrforfhrwinterans2nov10

18 Managed by UT-Battelle for the U.S. Department of Energy

S. R. Greene, 11 Nov 10

Peak fuel temperatures for Alpha Transient (20 s pump coast-down with 10 s scram delay) only increase ~50 ºC

Page 19: Smahtrforfhrwinterans2nov10

19 Managed by UT-Battelle for the U.S. Department of Energy

S. R. Greene, 11 Nov 10

727°C

712°C

Two DRACS loops limit coolant temperature rise to less than 30ºC

Page 20: Smahtrforfhrwinterans2nov10

20 Managed by UT-Battelle for the U.S. Department of Energy

S. R. Greene, 11 Nov 10

A SmAHTR materials technology evolution strategy is in development

System Element @ 700 ºC @ 850 ºC @ 1000 ºC Graphite Internals Toyo Tanso IG110 or 430 Toyo Tanso IG110 or 430 Toyo Tanso IG110 or 430

Reactor Vessel Hastelloy-N • Ni-weld overlay on 800H • Insulated low-alloy steel • New Ni-based alloy

• Interior-insulated low-alloy steel

Core barrel & other internals

Hastelloy-N • C-C composite • New Ni-based alloy

• C-C composite • SiC-SiC composite • New refractory metal

Control rods and internal drives

• C-C composites • Hastelloy-N • Nb-1Zr

• C-C composites • Nb-1Zr

• C-C composites • Nb-1Zr

PHX & DRACS Hastelloy-N • New Ni-based alloy • Double-sided Ni cladding on 617 or 230

• C-C composite • SiC-SiC composite • Monolithic SiC

Secondary (salt-to-gas) HX

Coaxial extruded 800H tubes with Ni-based layer

• New Ni-based alloy • Coaxial extruded 800H tubes with Ni-based layer

?

Page 21: Smahtrforfhrwinterans2nov10

21 Managed by UT-Battelle for the U.S. Department of Energy

S. R. Greene, 11 Nov 10

Summary •  SmAHTR is an “entry-level” VHTR concept

–  explores the small modular FHR design space •  SmAHTR design objectives target :

–  process heat production and electricity generation –  ease of transport and deployment –  long-term evolvability to higher efficiency electric generation and

higher temperature process heat applications •  Present concept demonstrates feasibility and promise •  Present concept is not optimized

–  Fuel / core geometry (fixed, pebble-bed, etc.) –  Power density –  Mechanical design –  Salt vault –  Conduct of operations


Recommended