+ All Categories
Home > Documents > Solar Thermal Energy Lecture 1

Solar Thermal Energy Lecture 1

Date post: 14-Apr-2018
Category:
Upload: asemota-oghogho
View: 222 times
Download: 0 times
Share this document with a friend

of 26

Transcript
  • 7/30/2019 Solar Thermal Energy Lecture 1

    1/26

    97Copyright Gang Chen,

    or 2.997 Direct Solar/Thermalto

    Electrical Energy Conversion

    Importance of Heat

    2.9

    MIT

    F

    Courtesy of Lawrence Livermore National Laboratory. Used with permission.

  • 7/30/2019 Solar Thermal Energy Lecture 1

    2/26

    yrightGa

    Direct Solar/Ther

    ergy ConversionGasoline100 kJ

    10kJ 30kJ 35kJ

    Parasiticheat losses Coolant Exhaust

    9kJ10kJ6kJ

    Exhaust

    .99

    hen,MI

    or2.

    o

    27

    Cop

    ngC

    T

    F997

    malt

    Elec

    tricalEn

    Vehicle Systems

    In US, transportation uses ~26% of total energy.

    Coolant

    Gasoline100kJ

    10kJ

    30kJ35kJ

    9kJ

    10kJ

    6kJ Auxiliary

    Driving

    Mechanical losses

    Parasiticheat losses Exhaust

    Photo from Wikimedia Commons,http://commons.wikimedia.org

    http://commons.wikimedia.org/http://commons.wikimedia.org/http://commons.wikimedia.org/http://commons.wikimedia.org/
  • 7/30/2019 Solar Thermal Energy Lecture 1

    3/26

    2.997

    Copyrigh

    tGangC

    hen,MIT

    For2.99

    7DirectSo

    lar/Th

    ermalto

    Elec

    tricalEn

    ergyC

    onve

    rsion

    Heating

    TE Recovery

    PVElectricity

    Oil or

    Natl Gas

    Entropy

    Thermal Power

    Electrical Power

    Heating

    TE Recovery

    PVElectricity

    Oil or

    Natl Gas

    Oil or

    Natl Gas

    Entropy

    Thermal Power

    Electrical Power

    Co-Generation in Residential Buildings

    In US, residential and

    commercial buildings

    consume ~35% energysupply

    Photo by bunchofpants on Flickr.

    Image removed due to copyright restrictions.Please see any photo of the Honda freewattMicro-CHP system, such as http://www.hondanews.

    com/thumbnails/2007/4/3/13644_preview.jpg

    Refrigeration &Refrigeration &AppliancesAppliances

    http://www.flickr.com/photos/bunchofpants/244046303/http://www.hondanews.com/thumbnails/2007/4/3/13644_preview.jpghttp://www.hondanews.com/thumbnails/2007/4/3/13644_preview.jpghttp://www.hondanews.com/thumbnails/2007/4/3/13644_preview.jpghttp://www.flickr.com/photos/bunchofpants/244046303/http://www.hondanews.com/thumbnails/2007/4/3/13644_preview.jpghttp://www.hondanews.com/thumbnails/2007/4/3/13644_preview.jpg
  • 7/30/2019 Solar Thermal Energy Lecture 1

    4/26

    2.99

    7Co

    pyright

    Gang

    Chen

    ,MIT

    For2. 99

    7DirectS

    olar/Therm

    alto

    Ele c

    tricalEnergy

    Conversion

    Industrial Waste Heat

    Fig. ES.1 in Hemrick, James G., et al. "Refractories for Industrial Processing:Opportunities for Improved Energy Efficiency." DOE-EERE Industrial TechnologiesProgram, January 2005.

    Photos byarbyreed and toennesen on Flickr.

    http://www1.eere.energy.gov/industry/imf/pdfs/refractoriesreportfinal.pdfhttp://www1.eere.energy.gov/industry/imf/pdfs/refractoriesreportfinal.pdfhttp://www1.eere.energy.gov/industry/imf/pdfs/refractoriesreportfinal.pdfhttp://www1.eere.energy.gov/industry/imf/pdfs/refractoriesreportfinal.pdfhttp://www1.eere.energy.gov/industry/imf/pdfs/refractoriesreportfinal.pdfhttp://www.flickr.com/photos/19779889@N00/3771842427/http://www.flickr.com/photos/19779889@N00/3771842427/http://www.flickr.com/photos/toennesen/1191861308/http://www1.eere.energy.gov/industry/imf/pdfs/refractoriesreportfinal.pdfhttp://www.flickr.com/photos/19779889@N00/3771842427/http://www.flickr.com/photos/toennesen/1191861308/http://www1.eere.energy.gov/industry/imf/pdfs/refractoriesreportfinal.pdf
  • 7/30/2019 Solar Thermal Energy Lecture 1

    5/26

    .

    ,MI

    2997

    Copyrigh

    tGangC

    hen T

    For2.99

    7DirectSo

    lar/Th

    ermalto

    Elec

    tricalEn

    ergyConve

    rsion

    Renewable Heat Sources

    Photos by Jon Sullivan at http://pdphoto.org/ and NASA.

    http://pdphoto.org/http://pdphoto.org/
  • 7/30/2019 Solar Thermal Energy Lecture 1

    6/26

    2.997

    gh

    tGangC

    hen,MIT

    For2.99

    7DSo

    lar/Th

    ermalto

    Elec

    tricalEn

    ergyConv

    ersion

    Solar Thermal

    http://www.treehugger.com/Solar-Thermal-Plant-photo.jpg

    http://media.photobucket.com/

    Images by Sandia National Laboratories and NREL.

    Photos of solar hot water tubes removed due to

    copyright restrictions. Please see, for example,

    http://image.made-in-china.com/2f0j00KeoavBGJycbN/

    rpyiUnpressurized-Solar-Water-Heater-VERIOUS-.jpg

    Co irect

    http://ns2.ugurpc.com/productsimages/solarevacuatedtube_202160.jpg

    http://ns2.ugurpc.com/productsimages/solarevacuatedtube_202160.jpghttp://ns2.ugurpc.com/productsimages/solarevacuatedtube_202160.jpghttp://www.treehugger.com/Solar-Thermal-Plant-photo.jpghttp://www.treehugger.com/Solar-Thermal-Plant-photo.jpghttp://media.photobucket.com/http://image.made-in-china.com/2f0j00KeoavBGJycbN/Unpressurized-Solar-Water-Heater-VERIOUS-.jpghttp://ns2.ugurpc.com/productsimages/solarevacuatedtube_202160.jpghttp://image.made-in-china.com/2f0j00KeoavBGJycbN/Unpressurized-Solar-Water-Heater-VERIOUS-.jpghttp://ns2.ugurpc.com/productsimages/solarevacuatedtube_202160.jpghttp://image.made-in-china.com/2f0j00KeoavBGJycbN/Unpressurized-Solar-Water-Heater-VERIOUS-.jpghttp://image.made-in-china.com/2f0j00KeoavBGJycbN/Unpressurized-Solar-Water-Heater-VERIOUS-.jpghttp://ns2.ugurpc.com/productsimages/solarevacuatedtube_202160.jpghttp://media.photobucket.com/http://www.treehugger.com/Solar-Thermal-Plant-photo.jpg
  • 7/30/2019 Solar Thermal Energy Lecture 1

    7/26

    2.997

    Copyrigh

    tGangC

    hen,MIT

    For2.99

    7DirectSo

    lar/Th

    ermalto

    Elec

    tricalEn

    ergyConv

    ersion

    Direct Energy Conversion

    COLD SIDE

    HOT SIDE

    Thermoelectrics

    Thermophotovoltaicshttps://reader009.{domain}/reader009/html5/0423/5add4

    Photovoltaicshttp://www.solareis.anl.gov/images/photos/Nrel_flatPV15539.jpg

    Image removed due to copyright restrictions.

    Please see http://web.archive.org/web/20071011185223/www.eneco.com/images/science-new.jpg

    Image by Nadine Y. Barclay, USAF. Courtesy of John Kassakian. Used with permission.

    http://web.archive.org/web/20071011185223/www.eneco.com/images/science-new.jpghttp://web.archive.org/web/20071011185223/www.eneco.com/images/science-new.jpghttp://web.archive.org/web/20071011185223/www.eneco.com/images/science-new.jpghttp://web.archive.org/web/20071011185223/www.eneco.com/images/science-new.jpghttp://web.archive.org/web/20071011185223/www.eneco.com/images/science-new.jpghttp://web.archive.org/web/20071011185223/www.eneco.com/images/science-new.jpghttp://web.archive.org/web/20071011185223/www.eneco.com/images/science-new.jpghttp://web.archive.org/web/20071011185223/www.eneco.com/images/science-new.jpghttp://web.archive.org/web/20071011185223/www.eneco.com/images/science-new.jpghttp://web.archive.org/web/20071011185223/www.eneco.com/images/science-new.jpghttp://web.archive.org/web/20071011185223/www.eneco.com/images/science-new.jpg
  • 7/30/2019 Solar Thermal Energy Lecture 1

    8/26

    2.997

    Copyrigh

    tGang

    Chen

    ,MIT

    For2.99

    7DirectSo

    lar/Th

    ermalto

    Elec

    tricalEn

    ergyConv

    ersion

    Solar Spectrum

    0 0.50

    200

    400

    600

    1800

    TerrestrialSolar

    Spectrum(W/m2

    m)

    AM1.5 Solar Spectrum

    Energy Usable for Silicon PV Cells

    Bandgap of Silicon(1.1 m)

    1600

    1400

    1200

    1000

    800

    1 1.5 2 2.5 3Wavelength (m)

  • 7/30/2019 Solar Thermal Energy Lecture 1

    9/26

    Driorgi

    Cyp

    nmsoiar

    C

    T/reh

    Ggna

    S nol

    t oCcgy

    eer

    a

    h

    h

    0

    2.997

    t

    en,MIT

    For2.99

    7

    re

    lto

    Elec

    tricalEn

    v0 2 4 6 8 10 12

    Irradiance

    From Emitter

    0 2 4 6 8 10 120

    00

    0.5

    1.0

    1.5

    SelectiveAbsorber

    Emitter

    TPV Cell

    Thermal Management

    0 0.5 1.0 1.5 2.0 2.5 3.00

    Optical Concentrator

    EmissivityA

    bsorptance

    Wavelength (m)Wavelength (m)

    Pow

    er(W/m2m

    )

    Power(W/m2m

    )

    (d)

    (b)

    Solar Thermophotovoltaics

    Theoretical maximum efficiency: 85.4%; comparable to that of inf inite

    number of multi-junction cells, but with only a single junction PV cell.

    Key Challenges: Selective surfaces absorbing solar radiation but re-

    emitting only in a narrow spectrum near the bandgap of photovoltaic

    cells, working at high temperatures.

    1500 SolarInsolation

    1000

    500

    Wavelength (m)(a)

    1.5E4 Absorber

    1.0E4

    5 10 151.5

    0.5E4 (c) Selective Emitter1.0

    0.5

  • 7/30/2019 Solar Thermal Energy Lecture 1

    10/26

    2.997

    Copyrig

    htGang

    Chen

    ,MIT

    For2.99

    7DirectSo

    lar/Th

    ermalto

    Elec

    tricalEn

    ergyConv

    ersion

    Solar Thermoelectrics

    0.0

    5.0

    10.0

    15.0

    20.0

    25.0

    30.0

    0.5 1.0 1.5 2.0 2.5

    EF

    FICIENCY(%

    )

    AVERAGE FIGURE OF MERIT ZT

    700 C

    400 C

    150 C200 C

    Tcold

    =30 C

    600 C500 C

    250 C

    Thot

    -Tcold

    (b)

    Low materials cost and low capital cost, potentially high efficiency. Key Challenges: Develop materials with high thermoelectric figure of

    merit; and selective surfaces that absorb solar radiation but do not

    re-radiative heat.

  • 7/30/2019 Solar Thermal Energy Lecture 1

    11/26

    2.997

    Copyrig

    htG

    angCh

    en,MIT

    For2.99

    7DirectSo

    lar/Th

    ermalto

    Elec

    tricalEn

    ergyConv

    ersion

    1st Law of Thermodynamics

    SystemQ W

    Environment

    Boundary

    WQdtdE

    WQdEWQEE

    &&==

    = 121212

    StateProperties:

    Process

    Independent

    Process

    Dependent

    Quantities

    ...Energy)(Internal +++= UPEKEE]m-J/Korkg,-[J/KHeatSpecific 3

    dTdu

    C=

    Closed System

    Open System

    Closed:

  • 7/30/2019 Solar Thermal Energy Lecture 1

    12/26

    2.997

    Copyrig

    htG

    angCh

    en,MIT

    For2.99

    7DirectSo

    lar/Th

    ermalto

    Elec

    tricalEn

    ergyConv

    ersion

    2nd Law of Thermodynamics

    )0(Sgen12 += genboundary

    ST

    QSS

    =0dS

    cc

    hh

    TQ

    TQ

    =0

    Entropy

    ChangeState

    Properties

    EntropyTransfer

    EntropyGeneration

    Heat Reservoir Th

    Heat Reservoir Tc

    W

    Qh

    Qc

    During a cycle:

    No entropy generation

    Maximum Efficiency

    (Carnot Efficiency)hc

    hch

    h T

    TQQQ

    QW

    === 1Th=223

    oC, Tc=23oC, =40%

    Th=5800 K, Tc=300 K, =95%Thermal power plant ~40%, IC engines ~25%

  • 7/30/2019 Solar Thermal Energy Lecture 1

    13/26

    2.997

    Copyrig

    htG

    angCh

    en,MIT

    For2.99

    7DirectSo

    lar/Th

    ermalto

    Elec

    tricalEn

    ergyConv

    ersion

    Microscopic Picture of Entropy

    = lnBkS=1

    P

    For Isolated Systems Microstate: a quantummechanically allowed state

    A total ofmicrostate Principle of equal probability:

    each microstate is equallypossible to be observed

    kB=1.38x10-23 J/K ---Boltzmann constant

    Boltzmann Principle

    Constant Temperature

    and Closed Systems)/()( TkE BAeEP =

    Constant Temperature

    But Open Systems

    ()(

    EAeEP =

    --- chemical potential (driving force for mass diffusion);average energy needed to move a particle in/out off a system

    Probability

    ) /(kBT)

  • 7/30/2019 Solar Thermal Energy Lecture 1

    14/26

    2.997

    Copyrig

    htG

    angCh

    en,MIT

    For2.99

    7DirectSo

    lar/Th

    ermalto

    Elec

    tricalEn

    ergyConv

    ersion

    Maxwell distribution

    A box of gas

    molecules

    ( )22y2x vvv2

    1zmE ++=( )

    ++

    = Tkm

    APB

    zx 2

    vvv

    exp)v,v,v(

    22

    y

    2

    x

    zy

    All Probability must normalize to one

    ( )

    ++

    =

    Tkm

    AB

    z2

    vvvexpdvdvdv1

    22

    y

    2

    x

    zyx2

    =A

    (

    )

    ++

    = Tkm

    TkmP B zBx 2 vvvexp2)v,v,v(22

    y

    2

    x

    2/3

    zyMaxwellDistribution

    3/ 2mkBT

  • 7/30/2019 Solar Thermal Energy Lecture 1

    15/26

    2.997

    Copyrig

    htG

    angCh

    en,MIT

    For2.99

    7DirectSo

    lar/Th

    ermalto

    Elec

    tricalEn

    ergyConv

    ersion

    One molecule

    =E

    ( ) ( )

    ++++=

    Tkm

    AmEB

    zz

    2

    vvvexpvvv

    2

    1dvdvdv

    22

    y

    2

    x22

    y

    2

    xzyx

    TkE B2

    3=Equipartition Principle: every quardratic term in microscopic

    energy contributes kBT/2.

    meV26/106.1

    105.14

    5.14300KJ/K1038.1

    19

    21-

    23

    =

    ===

    eVJJ

    TkB

    Oxygen Atom at 300 K

    How much

    Is kBT at room

    temperature

    1067.116

    300/1038.133kv

    27

    23

    B

    ==

    KJmT

    -2110 J

    K=220 m/s

    kg

  • 7/30/2019 Solar Thermal Energy Lecture 1

    16/26

    2.997

    Copyrig

    htG

    angCh

    en,MIT

    For2.99

    7DirectSo

    lar/Th

    ermalto

    Elec

    tricalEn

    ergyConv

    ersion

    Fermi-Dirac Distribution

    From quantum mechanics Energy levels are quantized Each quantum state can have

    maximum one electron

    Planck-Einstein Relation Planck constant h=6.6x10-34 Js,

    kh/p:Momentum

    :Energy

    h

    ====

    hE

    )2/( h=h Consider one quantum state with an energy E at constant

    temperature T. The state can have zero electron (n=0) or oneelectron (n=1). What is the average number of electrons if

    one does many observations?

    +

    ==

    = TkE

    TkAAe BBTkE

    nB

    exp1exp1

    )/()(

    1,0

    Average number of electrons in the state

    h

  • 7/30/2019 Solar Thermal Energy Lecture 1

    17/26

    ro97

    t

    2.9

    Copyrgi

    hG

    ang mCh

    en,MIT

    F2.99

    7DirectSo

    lar/Th

    er alto

    Elec

    tricalEn

    ergyConv

    ersion

    Fermi-Dirac Distribution

    1exp

    1)/()(

    1,0 +

    == =

    TkE

    AenfB

    TkEn

    B

    Average number of electrons in the state

    Fermi-Dirac

    Distribution

    0

    0.2

    0.4

    0.6

    0.8

    1

    -0.1 -0.05 0 0.05 0.1

    FERMI-D

    IRACDISTRIBUTION

    E- (eV)

    1000 K

    300 K100 K

    At T=0K, is calledFermi level, Ef

    F=1 for E

  • 7/30/2019 Solar Thermal Energy Lecture 1

    18/26

    2.997

    Copyrig

    htG

    angCh

    en,MIT

    For2.99

    7DirectSo

    lar/Th

    ermalto

    Elec

    tricalEn

    ergyConv

    ersion

    )

    Natural Frequency

    1 =2

    Energy of Mode E=n+1h n = 2Basic vibrational energy quanta his called a phonon

    Photons and Phonons

    From quantum mechanics

    EM waves are quantized, basicenergy quanta is called a photon

    Photon has momentum

    Planck-Einstein Relation Each quantum state of photon (an

    EM wave mode) can have only

    integral number of photons

    h/p:Momentum

    :Energy h==

    =hE

    2/(Js;106.6 34 hh == h

    One Photon

    Energy of a quantum state:

    2n

    1=

    += hnE

    Zero point energyClassical Oscillator

    M

    Spring

    MK

    =hk

    0,1,2...

    0,1,2...

  • 7/30/2019 Solar Thermal Energy Lecture 1

    19/26

    2.997

    Copyrig

    htG

    angCh

    en,MIT

    For2.99

    7DirectSo

    lar/Th

    ermalto

    Elec

    tricalEn

    ergyConv

    ersion

    Bose-Einstein Distribution

    0

    1

    2

    3

    4

    5

    0 0.1 0.2 0.3 0.4 0.5

    BOSE-EINSTEINDISTRIBUTIO

    N

    FREQUENCY (X1014 Hz)

    5000 K

    1000 K

    300 K

    100 K

    Consider one quantum statein thermal equilibrium

    )/()(

    )(TkE

    n BnAeEP =

    1exp

    1

    =

    TkEf

    B

    Average number of

    photons/phonons in one

    mode (quantum state)

    Usually =0

    Bose-Einstein Distribution

  • 7/30/2019 Solar Thermal Energy Lecture 1

    20/26

    2.997

    Copyrig

    htG

    angCh

    en,MIT

    For2.99

    7DirectSo

    lar/Th

    erma

    lto

    Elec

    tricalEn

    ergyConv

    ersion

    Heat Transfer Modes

    Heat Conduction

    Thot Tcold

    Fourier Law

    L

    [W]dxdTkAQ =&

    [ ]2W/mT)-k( == dxdT

    kq& Heat Flux

    Thermal

    Conductivity

    [W/m-K]Materials Property

    y

    x

    yy

    ux

    uy

    Ta

    uuu

    FluidFluidFluid

    TwT

    xx

    uy

    xx

    uyx

    uy

    TaTa

    w

    Convection

    Newtons law of cooling

    ( )aw TThAQ =&Convective Heat

    Transfer Coefficient

    [W/m2K]Flow dependent

    Natural Convection

    Forced Convection

    Thermal Radiation

    Thot Tcold

    Stefan-BoltzmannLaw for Blackbody

    4TAQ =&

    Stefan-Boltzmann Constant

    =5.67x10-8 W/m2K4 Heat transfer

    44

    coldhot TTAFQ = &Emissivity of

    two surfaces

    View factor

    F=1 for twoparallel plates

    Cross-

    Sectional

    Area

  • 7/30/2019 Solar Thermal Energy Lecture 1

    21/26

    2.997

    Copyrig

    htG

    angCh

    en,MIT

    For2.99

    7DirectSo

    lar/Th

    erma

    lto

    Elec

    tricalEn

    ergyConv

    ersion

    Heat Conduction

    Heat Conduction

    Thot

    Tcold

    L

    thcoldhotcoldhot

    RTTLTTkAQ ==&1D, no heat generation

    Thermal ResistancekAL

    Rth =

    10-2

    10-1

    100

    101

    102

    103

    104

    105

    101

    102

    103

    Thermalco

    nductivity(W/mK)

    Temperature (K)

    Quartz single

    crystal (// to c-axis)

    Water

    (saturated)

    Fused quartz

    Ice

    Steam

    (saturated)

    Stainless steel

    (type 304)

    Copper

    Silicon

    Diamond

    Air

    (1 atm)

    Helium

    (1 atm)

    Thot TcoldRth

    Convection hARth1

    =

    Q

    &

    CurrentHeat

  • 7/30/2019 Solar Thermal Energy Lecture 1

    22/26

    aG

    Cy7

    2.99 997

    opright

    ngCh

    en,MIT

    Fo cr2.

    Direc

    gSt o

    lar/Th

    erma

    lto

    Ele

    tricalEn

    eryConv

    ersion

    Heat Conduction: Kinetic Picture

    qx

    x

    Hot Cold

    xvx

    qx

    x

    Hot Cold

    xvx

    ( ) ( )vxxvxxx xx

    nEv2

    1nEv

    2

    1+ =

    dxdT

    k===

    )=

    dx

    dTC

    3

    vdx

    dT

    dT

    dU

    3

    v

    dx

    d(Env-vq

    2

    2

    xxx

    = v31

    CkThermal Conductivity

    Energy per particle: E [J] Number of particles per

    unit volume: n [1/m3]

    Average randomvelocity of particles v

    Average time betweencollision of two particles

    ---relaxation timeAverage distance

    travelled betweencollision =v---Meanfree path

    Volumetric specific heat

    [ ]KdTdUC 3mJ=cC =

    Density

    q

    Specific heat per unit mass

  • 7/30/2019 Solar Thermal Energy Lecture 1

    23/26

    922.97

    Copyrig

    htG

    angCh

    en,MIT

    For .99

    7DirectS

    olar/Therm

    alto

    Elec

    tricalEnergyConv

    ersion

    Thermal Radiaton: Plancks Law

    Inside the Cavity

    EM Wave InEquilibrium at

    Temperature T

    Perfectly

    Reflecting Wall

    at TFrequency Angular Frequency =2Wavelength

    Wavevector magnitude k=2/

    =cWavevectork=(kx,ky,kz)

    222

    zyx kkkcck ++==(k): Dispersion relation (linear)

    k

    xxx

    xx

    xxx

    Lnk

    nL2

    2

    ,...2,...,22,2

    ==

    Basic Relations

    How much energy in the cavity?

    ( )( )

    ( )TfL

    dk

    L

    dkL

    dk

    TfL

    dkL

    dkL

    dkTfU

    zz

    y

    yx

    xz

    zy

    yx

    xn n nx y z

    ,

    )/2()/2()/2(

    2

    ,)2/2()2/2()2/2(

    2

    ,2

    000

    1 1 1

    hh

    h

    =

    =

    =

    =

    ==

    Two polarization

  • 7/30/2019 Solar Thermal Energy Lecture 1

    24/26

    2.997

    Copyrig

    htG

    angCh

    en,MIT

    For2.99

    7DirectS

    olar/Therm

    alto

    Elec

    tricalEnergyConv

    ersion

    Thermal Radiaton: Plancks Law

    ( )( )( )

    ( )( ) ( )

    ( )

    dudDTf

    dcTf

    V

    UcdcTf

    VdkkTf

    VdkdkdkTf

    VU zyx

    ==

    =

    =

    ==

    0

    0

    32

    2

    0

    2

    0

    3

    2

    0

    3

    3

    ,

    ,

    4,8

    2

    4,8

    2

    ,8

    2

    hhhh

    h

    D()-density of states perunit volume per unit

    angular frequency interval

    Energy density per interval( ) ( ) ( )

    1exp

    1

    ,

    32

    3

    =

    =

    Tkc

    DTfu

    B

    hh

    hPlancks law

    Solid Angle

    dAp

    2R

    dAd p=whole space

    4

    Intensity: energy flux per unitsolid angle

    ( ) ( )44 23

    3

    ==c

    cuI

    h

    Per unit wavelength interval

    ( ) ( ) 45

    ==

    cddI

    I h

    Plancks law

    1h

    exp 1kBT

    1exp

    2hc

    1kBT

  • 7/30/2019 Solar Thermal Energy Lecture 1

    25/26

    t

    2.997

    C Dopyrig

    ht

    oGang

    Chen

    ,MIT

    For2.99

    7irecS

    lar/Therm

    alto

    Elec

    tricalEnergyConv

    ersion

    Thermal Radiaton: Plancks Law

    ( ) ( ) 1exp

    1

    4 22

    3

    =

    =

    TkcAIAQ

    B

    hh

    &

    Q&

    Total

    ( ) 40

    TAdQQ == &&10

    -1

    100

    101

    102

    103

    10

    0 2 4 6 8 10

    EMIS

    SIVEPOWER(W

    /cm

    2m

    )

    WAVELENGTH (m)

    5600 K

    2800 K

    1500 K

    800 K

    Emissive Power

    Wiens displacement law

    mK2898max =T

  • 7/30/2019 Solar Thermal Energy Lecture 1

    26/26

    MIT OpenCourseWare

    http://ocw.mit.edu

    2.997 Direct Solar/Thermal to Electrical Energy Conversion Technologies

    Fall 2009

    For information about citing these materials or our Terms of Use, visit:http://ocw.mit.edu/terms.

    http://ocw.mit.edu/http://ocw.mit.edu/termshttp://ocw.mit.edu/termshttp://ocw.mit.edu/termshttp://ocw.mit.edu/

Recommended