+ All Categories
Home > Documents > SPIE 2010 Spectral Element Presentation

SPIE 2010 Spectral Element Presentation

Date post: 06-Apr-2018
Category:
Upload: ramy
View: 224 times
Download: 0 times
Share this document with a friend

of 34

Transcript
  • 8/3/2019 SPIE 2010 Spectral Element Presentation

    1/34

    A time domain spectral elementmodel for piezoelectric

    excitation of Lamb waves in isotropic plates

    Ramy Mohamed & Patrice Masson

    GAUS, Department of Mechanical EngineeringUniversit de Sherbrooke

    Sherbrooke, QC, J1K 2R1, Canada.

    March, 10, 2010

    Patrice Masson (Universit de Sherbrooke) SEM of PZT excitation of Lamb Waves SPIE/Smart Materials & NDE 1 / 25

    http://goforward/http://find/http://goback/
  • 8/3/2019 SPIE 2010 Spectral Element Presentation

    2/34

    Outline

    Outline

    1 IntroductionNumerical SimulationPrevious Work

    2 Model DevelopmentFormulationSEM Discretization

    3 ResultsTime Domain ResultsReSTFT Representation

    Patrice Masson (Universit de Sherbrooke) SEM of PZT excitation of Lamb Waves SPIE/Smart Materials & NDE 2 / 25

    http://goforward/http://find/http://goback/
  • 8/3/2019 SPIE 2010 Spectral Element Presentation

    3/34

    Introduction

    Motivation

    Optimization of the PZT actuators and sensors, placement andconfiguration, for SHM/NDE purposes:

    Accurate simulation of wave propagation in complex geometrystructures, and boundary conditions.

    Accurate representation of dynamic coupling between theactuators/sensors and inspected structure.

    Optimization is -in general- an iterative process. Effectiveness in

    terms of computational cost and time, is a major requirement.

    Patrice Masson (Universit de Sherbrooke) SEM of PZT excitation of Lamb Waves SPIE/Smart Materials & NDE 3 / 25

    http://goforward/http://find/http://goback/
  • 8/3/2019 SPIE 2010 Spectral Element Presentation

    4/34

    Introduction

    Motivation

    Optimization of the PZT actuators and sensors, placement andconfiguration, for SHM/NDE purposes:

    Accurate simulation of wave propagation in complex geometrystructures, and boundary conditions.

    Accurate representation of dynamic coupling between theactuators/sensors and inspected structure.

    Optimization is -in general- an iterative process. Effectiveness in

    terms of computational cost and time, is a major requirement.

    Patrice Masson (Universit de Sherbrooke) SEM of PZT excitation of Lamb Waves SPIE/Smart Materials & NDE 3 / 25

    I d i

    http://goforward/http://find/http://goback/
  • 8/3/2019 SPIE 2010 Spectral Element Presentation

    5/34

    Introduction

    Motivation

    Optimization of the PZT actuators and sensors, placement andconfiguration, for SHM/NDE purposes:

    Accurate simulation of wave propagation in complex geometry

    structures, and boundary conditions.

    Accurate representation of dynamic coupling between theactuators/sensors and inspected structure.

    Optimization is -in general- an iterative process. Effectiveness in

    terms of computational cost and time, is a major requirement.

    Patrice Masson (Universit de Sherbrooke) SEM of PZT excitation of Lamb Waves SPIE/Smart Materials & NDE 3 / 25

    I t d ti

    http://goforward/http://find/http://goback/
  • 8/3/2019 SPIE 2010 Spectral Element Presentation

    6/34

    Introduction

    Motivation

    Optimization of the PZT actuators and sensors, placement andconfiguration, for SHM/NDE purposes:

    Accurate simulation of wave propagation in complex geometry

    structures, and boundary conditions.

    Accurate representation of dynamic coupling between theactuators/sensors and inspected structure.

    Optimization is -in general- an iterative process. Effectiveness in

    terms of computational cost and time, is a major requirement.

    Patrice Masson (Universit de Sherbrooke) SEM of PZT excitation of Lamb Waves SPIE/Smart Materials & NDE 3 / 25

    Introduction Numerical Simulation

    http://goforward/http://find/http://goback/
  • 8/3/2019 SPIE 2010 Spectral Element Presentation

    7/34

    Introduction Numerical Simulation

    ChallengesNumerical Dispersion

    2D Elastic Wave

    P Relative error in P-wavephase velocity.

    S Relative error in S-wavephase velocity.

    n Number of grid points.

    Wavelength. 20 10 5 4 3.3 2.85 2.5 2.2 210

    5

    0

    5

    10

    15

    20

    25

    n

    P,

    S

    Non Conforming FE

    Conforming FE

    Legendre SE

    SE- Seriani & Oliveira; Wave Motion, (45), 2008.

    FE- Zyserman et. al. Int. J. Numer. Meth. Engng, (85), 2003.

    Patrice Masson (Universit de Sherbrooke) SEM of PZT excitation of Lamb Waves SPIE/Smart Materials & NDE 4 / 25

    Introduction Numerical Simulation

    http://goforward/http://find/http://goback/
  • 8/3/2019 SPIE 2010 Spectral Element Presentation

    8/34

    Introduction Numerical Simulation

    FEM vs SEMComputational Efficiency

    Computational Cost

    C = n

    2

    r1.0

    tB

    n

    r

    the required number of

    grid points per wavelength for0.1 % disperison error.

    B is the average number of

    non-zero terms in a row in theproduct of matrices M1K.

    The same procedure as in Dauksher & Emery; Int

    J Numer Meth Engng (45), 1999.

    2 x 2 3 x 3 4 x 4 5 x 5 6 x 6 7 x 7 8 x 8 9 x 9 10 x 10

    0.1

    0.5

    1

    5.0

    10

    Element dimensions

    C/Cref

    SEMt

    tstable= 1

    SEMt

    tstable= 0.5

    FEMt

    tstable= 1

    FEMt

    tstable= 0.5Cref

    Patrice Masson (Universit de Sherbrooke) SEM of PZT excitation of Lamb Waves SPIE/Smart Materials & NDE 5 / 25

    Introduction Previous Work

    http://goback/http://find/http://goforward/http://find/http://goback/
  • 8/3/2019 SPIE 2010 Spectral Element Presentation

    9/34

    Introduction Previous Work

    SEMHistory

    Origin in CFD

    1 Patera, A. T.; J Comput Phys 54, (1984).

    2 Korczak, K. Z., and Patera, A. T.; J Comput Phys 62, (1986).

    Computational Seismology

    1 Seriani, G., and Priolo, E.; Finite Elements in Analysis and Design 16,(1994).

    2 Komatitsch, D., and Villote, J. P.; Bullet Seis Soc Amer 54, (1998).

    3 Komatitsch, D., and Tromp, J.; Geophys J Int 139, (1999).

    Patrice Masson (Universit de Sherbrooke) SEM of PZT excitation of Lamb Waves SPIE/Smart Materials & NDE 6 / 25

    Introduction Previous Work

    http://goforward/http://find/http://goback/
  • 8/3/2019 SPIE 2010 Spectral Element Presentation

    10/34

    Introduction Previous Work

    SEMLamb Wave

    LW Propagation

    1 Kudela, P., Krawczuka, M., and Ostachowicz, W.; J Sound Vibr 300,(2007).

    2 Kudela, P., Zak, A., Krawczuka, M., and Ostachowicz, W.; J SoundVibr 302, (2007).

    3 Peng, H., Meng, G., and Li, F.; J Sound Vibr 320, (2009).

    Patrice Masson (Universit de Sherbrooke) SEM of PZT excitation of Lamb Waves SPIE/Smart Materials & NDE 7 / 25

    Introduction Previous Work

    http://goforward/http://find/http://goback/
  • 8/3/2019 SPIE 2010 Spectral Element Presentation

    11/34

    SEMLamb Wave

    LW Propagation

    Coupling Platewith

    Actuator(s)

    Coupling Platewith Sensor(s)

    1 Kim, Y., Ha, S., and Chang, F. K.; AIAA Journal 46(3), (2008).

    2 Ha, S., and Chang, F. K.; Smart Mater Struct 19, (2010).

    Patrice Masson (Universit de Sherbrooke) SEM of PZT excitation of Lamb Waves SPIE/Smart Materials & NDE 7 / 25

    Model Development Formulation

    http://goforward/http://find/http://goback/
  • 8/3/2019 SPIE 2010 Spectral Element Presentation

    12/34

    p

    Strong FormDomain Decomposition

    s

    p

    g

    e

    x3

    x

    where:

    p piezoceramic domain.

    s plate domain.

    g dynamic coupling interface.

    e electroded boundary.

    Patrice Masson (Universit de Sherbrooke) SEM of PZT excitation of Lamb Waves SPIE/Smart Materials & NDE 8 / 25

    Model Development Formulation

    http://goforward/http://find/http://goback/
  • 8/3/2019 SPIE 2010 Spectral Element Presentation

    13/34

    Strong FormConstitutive Equations

    PiezoceramicT = cES eTE

    D = e S + SE

    PlateT = cS

    where:

    T Mechanical stress tensor. S Infinitesimal strain tensor.cE Elasticity tensor of the piezoceramic. e Tensor of piezoelectric stress constants.c Elasticity tensor of the plate. D Electrical displacement vector.S Dielectric permittivity tensor. E Electric field vector.

    Patrice Masson (Universit de Sherbrooke) SEM of PZT excitation of Lamb Waves SPIE/Smart Materials & NDE 9 / 25

    Model Development Formulation

    http://goforward/http://find/http://goback/
  • 8/3/2019 SPIE 2010 Spectral Element Presentation

    14/34

    Strong FormGoverning Equations

    Momentum conservation PZT

    BT

    cEBup + e

    T

    = pup x p

    Charge conservation PZT

    T

    eBup S

    = 0 x p

    Momentum conservation Plate

    BT

    csBus = sus x s

    Differential Operators

    B =

    x1 0

    0 x3x3 x1

    , =

    x1x3

    Patrice Masson (Universit de Sherbrooke) SEM of PZT excitation of Lamb Waves SPIE/Smart Materials & NDE 10 / 25

    Model Development Formulation

    http://goforward/http://find/http://goback/
  • 8/3/2019 SPIE 2010 Spectral Element Presentation

    15/34

    Strong FormAssumptions & Boundary Conditions

    p

    g

    e

    s

    The structure material s was modeled as purely elastic.

    Traction and displacement continuity corresponding (i. e. idealbonding) at the interface g.

    Traction free external boundaries.Isolated non-electroded electrical boundaries.

    Uniform excitation voltage distribution on the electroded boundary.

    Zero initial conditions.

    Patrice Masson (Universit de Sherbrooke) SEM of PZT excitation of Lamb Waves SPIE/Smart Materials & NDE 11 / 25

    Model Development Formulation

    http://goforward/http://find/http://goback/
  • 8/3/2019 SPIE 2010 Spectral Element Presentation

    16/34

    Strong FormAssumptions & Boundary Conditions

    s

    p

    e

    g

    The structure material s was modeled as purely elastic.

    Traction and displacement continuity corresponding (i. e. idealbonding) at the interface g.

    Traction free external boundaries.Isolated non-electroded electrical boundaries.

    Uniform excitation voltage distribution on the electroded boundary.

    Zero initial conditions.

    Patrice Masson (Universit de Sherbrooke) SEM of PZT excitation of Lamb Waves SPIE/Smart Materials & NDE 11 / 25

    Model Development Formulation

    http://goforward/http://find/http://goback/
  • 8/3/2019 SPIE 2010 Spectral Element Presentation

    17/34

    Strong FormAssumptions & Boundary Conditions

    s

    p

    g

    e

    The structure material s was modeled as purely elastic.

    Traction and displacement continuity corresponding (i. e. idealbonding) at the interface g.

    Traction free external boundaries.Isolated non-electroded electrical boundaries.

    Uniform excitation voltage distribution on the electroded boundary.

    Zero initial conditions.

    Patrice Masson (Universit de Sherbrooke) SEM of PZT excitation of Lamb Waves SPIE/Smart Materials & NDE 11 / 25

    Model Development Formulation

    http://goforward/http://find/http://goback/
  • 8/3/2019 SPIE 2010 Spectral Element Presentation

    18/34

    Strong FormAssumptions & Boundary Conditions

    s

    p

    g

    e

    The structure material s was modeled as purely elastic.

    Traction and displacement continuity corresponding (i. e. idealbonding) at the interface g.

    Traction free external boundaries.Isolated non-electroded electrical boundaries.

    Uniform excitation voltage distribution on the electroded boundary.

    Zero initial conditions.

    Patrice Masson (Universit de Sherbrooke) SEM of PZT excitation of Lamb Waves SPIE/Smart Materials & NDE 11 / 25

    Model Development Formulation

    http://goforward/http://find/http://goback/
  • 8/3/2019 SPIE 2010 Spectral Element Presentation

    19/34

    Strong FormAssumptions & Boundary Conditions

    s

    p

    g

    e

    The structure material s was modeled as purely elastic.

    Traction and displacement continuity corresponding (i. e. idealbonding) at the interface g.

    Traction free external boundaries.Isolated non-electroded electrical boundaries.

    Uniform excitation voltage distribution on the electroded boundary.

    Zero initial conditions.

    Patrice Masson (Universit de Sherbrooke) SEM of PZT excitation of Lamb Waves SPIE/Smart Materials & NDE 11 / 25

    Model Development Formulation

    http://goforward/http://find/http://goback/
  • 8/3/2019 SPIE 2010 Spectral Element Presentation

    20/34

    Strong FormAssumptions & Boundary Conditions

    s

    p

    The structure material s was modeled as purely elastic.

    Traction and displacement continuity corresponding (i. e. idealbonding) at the interface g.

    Traction free external boundaries.Isolated non-electroded electrical boundaries.

    Uniform excitation voltage distribution on the electroded boundary.

    Zero initial conditions.

    Patrice Masson (Universit de Sherbrooke) SEM of PZT excitation of Lamb Waves SPIE/Smart Materials & NDE 11 / 25

    Model Development SEM Discretization

    http://goforward/http://find/http://goback/
  • 8/3/2019 SPIE 2010 Spectral Element Presentation

    21/34

    SEM2D Shape Functions

    The 2D shape functions is the tensor product of the 1D Lagrange polynomials. Thedisplacement ueN|e and electric potential

    e

    N|e :

    ueN

    (, ) =N

    m=0

    Nn=0

    uemn(lNm () l

    Nn ()) = Lu

    e

    eN

    (, ) =N

    m=0

    Nn=0

    emn

    (lNm

    () lNn

    ()) = Le

    Corner function Boundary function Interior function

    Patrice Masson (Universit de Sherbrooke) SEM of PZT excitation of Lamb Waves SPIE/Smart Materials & NDE 12 / 25

    Model Development SEM Discretization

    http://goforward/http://find/http://goback/
  • 8/3/2019 SPIE 2010 Spectral Element Presentation

    22/34

    Spatial Integration SchemeLGL Numerical Integration

    Finite Element (p=6)Gauss Quadrature

    x quadrature node, collocation node.

    Legendre Spectral ElementLGL Quadrature

    quadrature nodes is the collocation nodes.

    Patrice Masson (Universit de Sherbrooke) SEM of PZT excitation of Lamb Waves SPIE/Smart Materials & NDE 13 / 25

    Model Development SEM Discretization

    http://goforward/http://find/http://goback/
  • 8/3/2019 SPIE 2010 Spectral Element Presentation

    23/34

    Matrix EquationsStrong Coupling

    Semidiscrete EquationsM 0

    0 0

    u

    +

    Kuu Ku

    KTu K

    u

    =

    0

    fe

    Condensed Form

    Mu +

    KuuKuK1K

    T

    u

    u = K1 fe MU + KU = F

    Time Integration

    MUn+1 + (1 + )KUn+1 KUn = F(tn+)

    Time step limited by CFL condition

    Patrice Masson (Universit de Sherbrooke) SEM of PZT excitation of Lamb Waves SPIE/Smart Materials & NDE 14 / 25

    Model Development SEM Discretization

    http://goforward/http://find/http://goback/
  • 8/3/2019 SPIE 2010 Spectral Element Presentation

    24/34

    Matrix Equations

    Iterative weak coupling per time step implemented by Kim, Y.,

    Ha, S., and Chang, F. K.; AIAA Journal 46(3), (2008)

    Ku K = Pin p

    Mu = FextFint

    in s+p

    @ tn1u @ tn1

    (u,) @ tn

    One step simultaneous solution based on strong coupling in

    condensed form used in the present study

    MU + KU = Fin s+p

    Patrice Masson (Universit de Sherbrooke) SEM of PZT excitation of Lamb Waves SPIE/Smart Materials & NDE 15 / 25

    Results Time Domain Results

    http://goforward/http://find/http://goback/
  • 8/3/2019 SPIE 2010 Spectral Element Presentation

    25/34

    Experimental Setup

    Notched rectangular aluminum plate 1.54 mm thick, 700 mm long and 70 mm wide.

    Excitation signal 3.5 tone burst modulated by a Hanning window.

    3 patches of BM 500 PZT (Sensor Technology Ltd.), 0.5 mm thick, 7 mm wide.

    Excitation voltage amplitude 10 V.

    70

    Sensor 2Sensor 1Actuator

    330210

    1.54

    700

    0.8

    0.8

    all dimensions in mm

    Patrice Masson (Universit de Sherbrooke) SEM of PZT excitation of Lamb Waves SPIE/Smart Materials & NDE 16 / 25

    Results Time Domain Results

    http://goback/http://find/http://goforward/http://find/http://goback/
  • 8/3/2019 SPIE 2010 Spectral Element Presentation

    26/34

    Simulation ResultsNodal Forces Excitation

    S0 simulated interaction with the notch

    0 50 100 150 200 250 300 350 400

    0

    100

    200

    300

    400

    500

    600

    700

    Time (s)

    Position

    in

    x1

    direction

    (mm

    )

    Transmitted S0

    Converted A0Incident S0

    Reflected S0

    Patrice Masson (Universit de Sherbrooke) SEM of PZT excitation of Lamb Waves SPIE/Smart Materials & NDE 17 / 25

    Results Time Domain Results

    http://goforward/http://find/http://goback/
  • 8/3/2019 SPIE 2010 Spectral Element Presentation

    27/34

    Simulation ResultsNodal Forces Excitation

    A0 simulated interaction with the notch

    0 50 100 150 200 250 300 350 400

    0

    100

    200

    300

    400

    500

    600

    700

    Time (s)

    Position

    in

    x1

    direction

    (mm)

    Converted S0

    Converted S0

    Reflected A0

    Incident A0

    Transmitted A0

    Patrice Masson (Universit de Sherbrooke) SEM of PZT excitation of Lamb Waves SPIE/Smart Materials & NDE 18 / 25

    Results Time Domain Results

    http://goforward/http://find/http://goback/
  • 8/3/2019 SPIE 2010 Spectral Element Presentation

    28/34

    Time TraceSensor 1 at 250 kHz

    Sensor response was approximated as proportional to the longitudinal strain

    55 60 65 70 75

    -1

    -0.8

    -0.6

    -0.4

    -0.2

    0

    0.2

    0.4

    0.6

    0.8

    1

    Time (s)

    NormalizedVoltage

    SEM

    Experimental

    80 90 100 110 120 130 140 150 160

    -1

    -0.8

    -0.6

    -0.4

    -0.2

    0

    0.2

    0.4

    0.6

    0.8

    1

    Time (s)

    NormalizedVoltage

    SEM

    Experimental

    Incident A0

    Reflected S0from incident S0

    Converted A0from incident S0

    Patrice Masson (Universit de Sherbrooke) SEM of PZT excitation of Lamb Waves SPIE/Smart Materials & NDE 19 / 25

    Results Time Domain Results

    http://find/http://goforward/http://find/http://goforward/http://goforward/http://find/http://goback/
  • 8/3/2019 SPIE 2010 Spectral Element Presentation

    29/34

    Time TraceSensor 1 at 450 kHz

    Sensor response was approximated as proportional to the longitudinal strain

    55 60 65 70 75

    -1

    -0.8

    -0.6

    -0.4

    -0.2

    0

    0.2

    0.4

    0.6

    0.8

    1

    Time (s)

    NormalizedVoltage

    90 100 110 120 130 140 150 160

    -1

    -0.8

    -0.6

    -0.4

    -0.2

    0

    0.2

    0.4

    0.6

    0.8

    1

    Time (s)

    NormalizedVoltage

    SEM

    Experimental

    Incident A0

    Converted A0

    Reflected S0

    Patrice Masson (Universit de Sherbrooke) SEM of PZT excitation of Lamb Waves SPIE/Smart Materials & NDE 20 / 25

    Results ReSTFT Representation

    S l d S l

    http://find/http://goforward/http://find/http://goforward/http://goforward/http://find/http://goback/
  • 8/3/2019 SPIE 2010 Spectral Element Presentation

    30/34

    Simulated SignalSensor 1 at 300 kHz

    Time (s)

    Frequency(MHz)

    0 50 100 150 200 250 300 350 400 450 500

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    4

    4.5

    5

    x 105

    0 50 100 150 200 250 300 350 400 450 500

    1

    0

    1

    A0

    S0

    Patrice Masson (Universit de Sherbrooke) SEM of PZT excitation of Lamb Waves SPIE/Smart Materials & NDE 21 / 25

    Results ReSTFT Representation

    E i l Si l

    http://goforward/http://find/http://goback/
  • 8/3/2019 SPIE 2010 Spectral Element Presentation

    31/34

    Experimental SignalSensor 1 at 300 kHz

    Time (s)

    Fre

    quency(MHz)

    0 50 100 150 200 250 300 350 400 450 500

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    4

    4.5

    5

    x 105

    0 50 100 150 200 250 300 350 400 450 500

    1

    0

    1

    S0A0

    Patrice Masson (Universit de Sherbrooke) SEM of PZT excitation of Lamb Waves SPIE/Smart Materials & NDE 22 / 25

    Results ReSTFT Representation

    R lt Vi li ti

    http://goforward/http://find/http://goback/
  • 8/3/2019 SPIE 2010 Spectral Element Presentation

    32/34

    Results Visualization

    Excitation Frequency 250 kHz

    3.5 cycles

    Patrice Masson (Universit de Sherbrooke) SEM of PZT excitation of Lamb Waves SPIE/Smart Materials & NDE 23 / 25

    Summary

    S

    http://goforward/http://find/http://goback/
  • 8/3/2019 SPIE 2010 Spectral Element Presentation

    33/34

    Summary

    The strong coupling condensed form formulation offers acomputational cost advantage. Enabling a fast implementation whenplugged into an iterative optimization process.

    Less numerical dispersion is achievable with slight increase incomputational requirements. Valuable when modeling complex

    geometry, material anisotropy, and heterogeneity.The simulation results agrees well with the experimentalmeasurements. Although no attempt to model the attenuation, or thebonding layer was made.

    Outlook

    Inclusion of material attenuation, and bonding layer.Modeling composite structures.Optimizing the actuator for selectivity, for different geometries.

    Patrice Masson (Universit de Sherbrooke) SEM of PZT excitation of Lamb Waves SPIE/Smart Materials & NDE 24 / 25

    Summary

    http://goforward/http://find/http://goback/
  • 8/3/2019 SPIE 2010 Spectral Element Presentation

    34/34

    Thank You

    Patrice Masson (Universit de Sherbrooke) SEM of PZT excitation of Lamb Waves SPIE/Smart Materials & NDE 25 / 25

    http://goforward/http://find/http://goback/

Recommended