+ All Categories
Home > Documents > Stanford UniversityCenter for Integrated Systemssmirc.stanford.edu/papers/CICC99s-hamid.pdfdie area...

Stanford UniversityCenter for Integrated Systemssmirc.stanford.edu/papers/CICC99s-hamid.pdfdie area...

Date post: 30-Apr-2018
Category:
Upload: ngokhanh
View: 215 times
Download: 2 times
Share this document with a friend
24
A 5GHz, 1mW CMOS Voltage–Controlled Differential Injection–Locked Frequency Divider Hamid R. Rategh, Hirad Samavati, Thomas H. Lee Center for Integrated Systems Stanford University
Transcript
Page 1: Stanford UniversityCenter for Integrated Systemssmirc.stanford.edu/papers/CICC99s-hamid.pdfdie area 0.186 mm 2 flip–flop–based divider 0.24 mCMOS (simulation) 7mW @ 5GHz 0.1

A 5GHz, 1mW CMOSVoltage–Controlled Differential

Injection–Locked Frequency Divider

Hamid R. Rategh, Hirad Samavati, Thomas H. Lee

Center for Integrated SystemsStanford University

Page 2: Stanford UniversityCenter for Integrated Systemssmirc.stanford.edu/papers/CICC99s-hamid.pdfdie area 0.186 mm 2 flip–flop–based divider 0.24 mCMOS (simulation) 7mW @ 5GHz 0.1

OUTLINE

� motivation

� injection–locked frequency dividers (ILFDs)

– mathematical model

– circuit implementation

– design issues

� optimal inductor design

� measurement results

� summary

� conclusion

Page 3: Stanford UniversityCenter for Integrated Systemssmirc.stanford.edu/papers/CICC99s-hamid.pdfdie area 0.186 mm 2 flip–flop–based divider 0.24 mCMOS (simulation) 7mW @ 5GHz 0.1

MOTIVATION

� wireless systems:

– are narrowband

– require frequency synthesizers

– require low power operation

� PLL–based frequency synthesizer require frequency dividers

� conventional dividers:

– wideband

– power hungry

VCO

M

PFD

Loop Filter

Channel Selection

foutf =M.frefref

Page 4: Stanford UniversityCenter for Integrated Systemssmirc.stanford.edu/papers/CICC99s-hamid.pdfdie area 0.186 mm 2 flip–flop–based divider 0.24 mCMOS (simulation) 7mW @ 5GHz 0.1

IDEA

� design a low–power and narrowband frequency divider

use resonators to trade off bandwidth for power

Page 5: Stanford UniversityCenter for Integrated Systemssmirc.stanford.edu/papers/CICC99s-hamid.pdfdie area 0.186 mm 2 flip–flop–based divider 0.24 mCMOS (simulation) 7mW @ 5GHz 0.1

INJECTION–LOCKED OSCILLATORS

� by impressing an oscillator with an external (incident) signal,frequency locking can be achieved

– first-harmonic injection locked oscillators (fi = fo)

– subharmonic injection locked oscillators (fi =

1Nfo)

– superharmonic injection locked oscillators (fi = N � fo)injection–locked frequency dividers (ILFDs)

Page 6: Stanford UniversityCenter for Integrated Systemssmirc.stanford.edu/papers/CICC99s-hamid.pdfdie area 0.186 mm 2 flip–flop–based divider 0.24 mCMOS (simulation) 7mW @ 5GHz 0.1

ILFD MODEL

f(x) VoVi Η(ω)u(t)e(t)

vo(t) = Vocos(!ot)

vi(t) = Vicos(!it+ �)

u(t) = f [e(t)] = f [vo(t) + vi(t)]

H(!) =

H0

1 + j2Q!�!r

!r

� oscillation condition should be satisfied in the presence of theincident signal.

Page 7: Stanford UniversityCenter for Integrated Systemssmirc.stanford.edu/papers/CICC99s-hamid.pdfdie area 0.186 mm 2 flip–flop–based divider 0.24 mCMOS (simulation) 7mW @ 5GHz 0.1

SIMPLIFIED PICTURE

f(e) = e2

iω iω2

iωi2

ωi2

ω

i2

ωi Η(ω)e uω

2,

,

3@

e = cos(!it) + cos(!i

2t)

u = [cos(!it) + cos(!i

2t)]2

u = 1 +1

2cos(2!it) +1

2cos(!it) + cos(3!i

2t) + cos(!i

2t)

Page 8: Stanford UniversityCenter for Integrated Systemssmirc.stanford.edu/papers/CICC99s-hamid.pdfdie area 0.186 mm 2 flip–flop–based divider 0.24 mCMOS (simulation) 7mW @ 5GHz 0.1

SPECIAL CASE (DIVIDE–BY–TWO)

f(e) = a0 + a1e+ a2e2 + a3e3

� phase condition:

j�!

!rj < jH0a2Vi

2Q

j ;

H0Q

=LQ!r

Q

= L!r

� gain condition:

H0(a1 +3

2a3V2

i + a2Vicos(�)) < 1

Page 9: Stanford UniversityCenter for Integrated Systemssmirc.stanford.edu/papers/CICC99s-hamid.pdfdie area 0.186 mm 2 flip–flop–based divider 0.24 mCMOS (simulation) 7mW @ 5GHz 0.1

VOLTAGE–CONTROLLED DIFFERENTIAL ILFD

R

VC

i

i

Vout

Vc

M1M2

M3 R1

Ibias

Vdd

- - ++

� 0.24�m CMOS

� Vdd=1.5V

� Ibias=300�A

� fo=2.25GHz

� fi=4.5GHz

Page 10: Stanford UniversityCenter for Integrated Systemssmirc.stanford.edu/papers/CICC99s-hamid.pdfdie area 0.186 mm 2 flip–flop–based divider 0.24 mCMOS (simulation) 7mW @ 5GHz 0.1

VARACTOR

-n -n +n+n

G

N-well

Sub

S/D

VFB VGS

G

S/D

+

-

C

� accumulation mode MOS capacitor

– large quality factor (> 60 @ 2.5GHz)

– flat–band voltage � zero volt

Page 11: Stanford UniversityCenter for Integrated Systemssmirc.stanford.edu/papers/CICC99s-hamid.pdfdie area 0.186 mm 2 flip–flop–based divider 0.24 mCMOS (simulation) 7mW @ 5GHz 0.1

INDUCTOR DESIGN

� maximum locking range ) maximize L

� minimum power consumption ) maximize LQ

Page 12: Stanford UniversityCenter for Integrated Systemssmirc.stanford.edu/papers/CICC99s-hamid.pdfdie area 0.186 mm 2 flip–flop–based divider 0.24 mCMOS (simulation) 7mW @ 5GHz 0.1

INDUCTOR DESIGN

Cox Cox

Csi

RsLs

Cs

Rsi Csi Rsi

Sub

w

s

OD

� design parameters:

– w: metal width

– s: metal spacing

– OD: outer dimension

– n: number of turns

Page 13: Stanford UniversityCenter for Integrated Systemssmirc.stanford.edu/papers/CICC99s-hamid.pdfdie area 0.186 mm 2 flip–flop–based divider 0.24 mCMOS (simulation) 7mW @ 5GHz 0.1

INDUCTOR DESIGN

� in planar spiral inductors maximizing L does not maximize LQ

+

maximize L for a given LQ

Page 14: Stanford UniversityCenter for Integrated Systemssmirc.stanford.edu/papers/CICC99s-hamid.pdfdie area 0.186 mm 2 flip–flop–based divider 0.24 mCMOS (simulation) 7mW @ 5GHz 0.1

MEASUREMENT (FREE–RUNNING OSCILLATION)

1 1.5 2 2.52180

2200

2220

2240

2260

2280

2300

2320

Control Voltage (V)

Out

put f

requ

ency

(M

Hz)

� 0.24�m CMOS

� Vdd=2.0V

� Ibias=600�A

� �f=110MHz

� �ffo

=5%

� �Vc=1.5V

Page 15: Stanford UniversityCenter for Integrated Systemssmirc.stanford.edu/papers/CICC99s-hamid.pdfdie area 0.186 mm 2 flip–flop–based divider 0.24 mCMOS (simulation) 7mW @ 5GHz 0.1

MEASUREMENTS (FREQUENCY RANGE)

3800 4000 4200 4400 4600 4800 5000

0.3

0.4

0.5

0.6

0.7

0.8

Incident frequency (MHz)

Inci

dent

am

plitu

de (

V)

Vc=0.0VVc=2.0V

� 0.24�m CMOS

� Vdd=1.5V

� Ibias=300�A

Page 16: Stanford UniversityCenter for Integrated Systemssmirc.stanford.edu/papers/CICC99s-hamid.pdfdie area 0.186 mm 2 flip–flop–based divider 0.24 mCMOS (simulation) 7mW @ 5GHz 0.1

TRACKING ILFD

12

Vc

VVi o

VCDILFDVCO

� locking range extension

Rategh et al., symposium on VLSI circuits, June 1999, session12.1

Page 17: Stanford UniversityCenter for Integrated Systemssmirc.stanford.edu/papers/CICC99s-hamid.pdfdie area 0.186 mm 2 flip–flop–based divider 0.24 mCMOS (simulation) 7mW @ 5GHz 0.1

MEASUREMENTS (LOCKING RANGE)

0.3 0.4 0.5 0.6 0.7 0.8200

300

400

500

600

700

800

900

1000

1100

1200

Incident amplitude (V)

Inpu

t ref

erre

d lo

ckin

g ra

nge

(MH

z)

Vc=0.0VVc=1.5VVc=2.0V� 0.24�m CMOS

� Vdd=1.5V

� fo=2.2GHz

� fi=4.4GHz

� �f=900MHz

� 20% @ 0.5V

Page 18: Stanford UniversityCenter for Integrated Systemssmirc.stanford.edu/papers/CICC99s-hamid.pdfdie area 0.186 mm 2 flip–flop–based divider 0.24 mCMOS (simulation) 7mW @ 5GHz 0.1

MEASUREMENTS (POWER CONSUMPTION)

0.3 0.4 0.5 0.6 0.7 0.8

0.7

0.8

0.9

1

1.1

1.2

1.3

Incident amplitude (V)

Pow

er (

mW

)

� 0.24�m CMOS

� Vdd=1.5V

� fo=2.2GHz

� fi=4.4GHz

� P=1.0mW @ 0.5V

Page 19: Stanford UniversityCenter for Integrated Systemssmirc.stanford.edu/papers/CICC99s-hamid.pdfdie area 0.186 mm 2 flip–flop–based divider 0.24 mCMOS (simulation) 7mW @ 5GHz 0.1

PHASE NOISE MEASUREMENT TEST SETUP

HP8563E50

On chip

ViVCDILFD

50

50

Vdd

Ext. Amp.

Page 20: Stanford UniversityCenter for Integrated Systemssmirc.stanford.edu/papers/CICC99s-hamid.pdfdie area 0.186 mm 2 flip–flop–based divider 0.24 mCMOS (simulation) 7mW @ 5GHz 0.1

MEASUREMENTS (PHASE NOISE)

101

102

103

−130

−120

−110

−100

−90

−80

−70

Offset frequency (kHz)

Pha

se n

oise

(dB

c/H

z)

HP83732B Free running Middle freqeuncyEdge frequency

� 0.24�m CMOS

� Vdd=1.5V

� fo=2.2GHz

� fi=4.4GHz

Page 21: Stanford UniversityCenter for Integrated Systemssmirc.stanford.edu/papers/CICC99s-hamid.pdfdie area 0.186 mm 2 flip–flop–based divider 0.24 mCMOS (simulation) 7mW @ 5GHz 0.1

CHIP MICROGRAPH

� 0.24�m CMOS

� area=0:186mm2

(345�m� 540�m)

Page 22: Stanford UniversityCenter for Integrated Systemssmirc.stanford.edu/papers/CICC99s-hamid.pdfdie area 0.186 mm 2 flip–flop–based divider 0.24 mCMOS (simulation) 7mW @ 5GHz 0.1

SUMMARY

maximum frequency of operation 5GHz

output frequency tuning 110MHz � 5%

input–referred locking range 450MHz � 10% @ 0.7mW

900MHz � 20% @ 1.0mW

technology 0.24�m CMOS

die area 0.186mm2

flip–flop–based divider

0.24�m CMOS (simulation) 7mW @ 5GHz

0.1�m CMOS 2.6mW @ 5GHz(Razavi et al., JSSC Vol. 30, No.2, pp 101–109, Feb. 1995)

Page 23: Stanford UniversityCenter for Integrated Systemssmirc.stanford.edu/papers/CICC99s-hamid.pdfdie area 0.186 mm 2 flip–flop–based divider 0.24 mCMOS (simulation) 7mW @ 5GHz 0.1

CONCLUSION

� injection–locked frequency dividers can be designed with:

– very large locking range

– very low power consumption

� spiral inductor design can be optimized to increase the ILFDlocking range

� varactors can be used to extend the ILFD locking range(tracking ILFD)

� voltage–controlled ILFDs are suitable for low–power andhigh–frequency wireless systems

Page 24: Stanford UniversityCenter for Integrated Systemssmirc.stanford.edu/papers/CICC99s-hamid.pdfdie area 0.186 mm 2 flip–flop–based divider 0.24 mCMOS (simulation) 7mW @ 5GHz 0.1

ACKNOWLEDGMENTS

M. Hershenson

S. Mohan

T. Soorapanth

National Semiconductor

Stanford Graduate Fellowship program


Recommended