+ All Categories
Home > Documents > static-content.springer.com10.1007... · Web viewH aichen Gu · Yanan Chen · Donghui Yang ·...

static-content.springer.com10.1007... · Web viewH aichen Gu · Yanan Chen · Donghui Yang ·...

Date post: 03-May-2018
Category:
Upload: vutuyen
View: 216 times
Download: 3 times
Share this document with a friend
14
Hard Carbon Derived from Corn Straw Piths as Anode Materials for Sodium Ion Batteries Yuan-En Zhu· Haichen Gu· Yanan Chen· Donghui Yang· Jinping Wei*· Zhen Zhou* 1
Transcript

Hard Carbon Derived from Corn Straw Piths as

Anode Materials for Sodium Ion Batteries

Yuan-En Zhu· Haichen Gu· Yanan Chen· Donghui Yang· Jinping Wei*· Zhen Zhou*

Figure S1. The pore distribution of three samples.

1

Figure S2. C 1s spectra (a) of as-prepared samples and the corresponding fine spectra of HC1200 (b), HC1400 (c) HC1600 (d).

2

Figure S3. Discharge profiles of (a) HC1200, (b) HC1400, and (C) HC1600 at different current densities.

3

Figure S4. Equivalent circuit of EIS.

4

Table S1. Physical parameters for HC1200, HC1400 and HC1600.

Sample Temp. (°C) d002(Å) SBET(m2 g-1) ID/IG

HC1200 1200 4.04 24 0.87

HC1400 1400 3.93 25 0.94

HC1600 1600 3.74 10 0.96

5

Table S2. XPS surface concentration (in atomic percentages) of HC1200, HC1400 and HC1600.

Material C O N P S

HC1200 87.17 11.82 0.81 0.11 0.09

HC1400 88.5 7.52 2.22 0.11 0.33

HC1600 92.31 5.69 0 0 0

6

Table S3. Comparison of cyclability of hard carbon for sodium ion batteries.

Hard carbon Cyclability (mA h g-1) Ref.

HC1400 274 after 100 cycles (0.05 A h g-1)

206 after 700 cycles (0.2 A h g-1)

This work

P-CNFs 266 after 100 cycles (0.05 A h g-1)

140 after 1000 cycles (0.5 A h g-1)

[1]

BPPG-1100-A 298 after 300 cycles (0.1 A h g-1)

210 after 600 cycles (0.5 A h g-1)

[2]

CNFs 176 after 600 cycles (0.2 A h g-1) [3]

HCNP-1150 207 after 500 cycles (0.05 A h g-1) [4]

HCNEs 203 after 400 cycles (0.05 A h g-1) [5]

CMS 270 after 250 cycles (0.1 A h g-1) [6]

CPM-1100-A 255 after 200 cycles (0.1 A h g-1) [7]

HCT1300 305 after 100 cycles (0.03 A h g-1) [8]

HCS1600 290 after 100 cycles (0.03 A h g-1) [9]

PPAC371400 265 after 100 cycles (0.03 A h g-1) [10]

AC111400 226 after 150 cycles (0.03 A h g-1) [11]

TC1600 203 after 100 cycles (0.02 A g-1) [12]

PSOC-A 75 after 10000 cycles (3.2 A h g-1) [13]

References

1. Li W, Zeng L, Yang Z, Gu L, Wang J, Liu X, Cheng J, Yu Y (2014) Free-

Standing and Binder-Free Sodium-Ion Electrodes with Ultralong Cycle Life and

High Rate Performance Based on Porous Carbon Nanofibers. Nanoscale 6: 693-

698.

7

2. Lotfabad E, Ding J, Cui K, Kohandehghan A, Kalisvaart W, Hazelton M, Mitlin

D (2014) High-Density Sodium and Lithium Ion Battery Anodes from Banana

Peels. ACS Nano 8: 7115-7129.

3. Luo W, Schardt J, Bommier C, Wang B, Razink J, Simonsen J, Ji X (2013)

Carbon Nanofibers Derived from Cellulose Nanofibers as A Long-Life Anode

Material for Rechargeable Sodium-Ion Batteries. J Mater Chem A 1: 10662-

10666.

4. Xiao L, Cao Y, Henderson W, Sushko M, Shao Y, Xiao J, Wang W, Engelhard

M, Nie Z, Liu J (2016) Hard Carbon Nanoparticles as High-Capacity, High-

Stability Anodic Materials for Na-Ion Batteries. Nano Energy 19: 279-288.

5. Cao Y, Xiao L, Sushko M, Wang W, Schwenzer B, Xiao J, Nie Z, Saraf L,

Yang Z, Liu J (2012) Sodium Ion Insertion in Hollow Carbon Nanowires for

Battery Applications. Nano Lett 12: 3783-3787.

6. Zhang S, Lv W, Luo C, You C, Zhang J, Pan Z, Kang F, Yang Q (2016)

Commercial Carbon Molecular Sieves as A High Performance Anode for

Sodium-Ion Batteries. Energy Storage Mater 3: 18-23.

7. Ding J, Wang H, Li Z, Kohandehghan A, Cui K, Xu Z, Zahiri B, Tan X,

Lotfabad E, Olsen B, Mitlin D (2013) Carbon Nanosheet Frameworks Derived

from Peat Moss as High Performance Sodium Ion Battery Anodes. ACS Nano

7: 11004-11015.

8. Li Y, Hu Y, Titirici M, Chen L, Huang X (2016) Hard Carbon Microtubes

Made from Renewable Cotton as High-Performance Anode Material for

Sodium-Ion Batteries. Adv Energy Mater 6: 1600659.

9. Li Y, Xu S, Wu X, Yu J, Wang Y, Hu Y, Li H, Chen L, Huang X (2015)

Amorphous Monodispersed Hard Carbon Micro-Spherules Derived from

Biomass as A High Performance Negative Electrode Material for Sodium-Ion

Batteries. J Mater Chem A 3: 71-77.

8

10. Li Y, Mu L, Hu Y, Li H, Chen L, Huang X (2016) Pitch-Derived Amorphous

Carbon as High Performance Anode for Sodium-Ion Batteries. Energy Storage

Mater 2: 139-145.

11. Li Y, Hu Y, Li H, Chen L, Huang X (2016) A Superior Low-Cost Amorphous

Carbon Anode Made from Pitch and Lignin for Sodium-Ion Batteries. J Mater

Chem A 4: 96-104.

12. Li Y, Paranthaman M, Akato K, Naskar A, Levine A, Lee R, Kim S, Zhang J,

Dai S, Manthiram A (2016) Tire-Derived Carbon Composite Anodes for

Sodium-Ion Batteries. J Power Sources 316: 232-238.

13. Ding J, Wang H, Li Z, Cui K, Karpuzov D, Tan X, Kohandehghan A, Mitlin D

(2015) Peanut Shell Hybrid Sodium Ion Capacitor with Extreme Energy-Power

Rivals Lithium Ion Capacitors. Energy Environ Sci 8: 941-955.

9


Recommended