+ All Categories
Home > Documents > Stats%Homework%Solutions - Personality...

Stats%Homework%Solutions - Personality...

Date post: 06-Apr-2018
Category:
Upload: hacong
View: 214 times
Download: 0 times
Share this document with a friend
34
Stats Homework Solutions PSYCH 205 9/30/2015
Transcript

Stats  Homework  Solutions

PSYCH  205  9/30/2015

#1:  Independent  Samples  t-­‐test

• An  investigator  believes  that  caffeine  facilitates  performance  on  a  simple  spelling  test.  Two  groups  of  subjects  are  given  either  200  mg  of  caffeine  or  a  placebo.   placebo caffeine

24 2425 2927 2626 2326 2522 2821 2722 2423 2725 2825 2725 26201  Method

Alternative  Method:    (Aron,  Aron,  &  Coups)

#1:  201  Method:  Independent  and  Dependent  t-­‐tests

Values  of  the  difference  scores  (D)    ΣD,  ΣD2    

SS  for  the  D  scores  

Sample  SD  for  the  D  scores,  and  the  

Estimated  standard  error  for  the  D  scores  

t  statistic

1−=nSSs

nss DM =

∑ ∑−=nD

DSS2

2 )(21

212

dfdfSSSSs p

+

+=

21

21 )(MMsMMt

−=

Step 1: Pooled variance

Step 2: Estimated Standard Error

Step 3: t- statistic

2

2

1

2

21

ns

nss p

MMp+=−

DM

DD

sMt µ−

=

Independent t Dependent t

Step  4:  Degrees  of  freedom,  rejection  region  (see  next  slide)

This  is  similar  to  the  t-­‐table  in  most  stats  textbooks  (Glenberg  &  Andrzejewski,  “Learning  from  Data,  3

rd  Ed.,”  p.  534;  

Aron,  Aron,  &  Coups  “Statistics  for  Psychology,  4

th  Ed.,”  p.  671)

Critical value for problem #1, 2.074, is circled for α = .05

and a two-tailed test.

#1:  201  Method,  continued

#1:  201  MethodGroup&1 df1&=&n1&,1&=&12&,&1&=&11placebo 3:&Subtract&the&mean 4:&Square&each&result&of&3

24 ,0.25 0.062525 0.75 0.562527 2.75 7.562526 1.75 3.062526 1.75 3.062522 ,2.25 5.062521 ,3.25 10.562522 ,2.25 5.062523 ,1.25 1.562525 0.75 0.562525 0.75 0.562525 0.75 0.5625291 1:&Sum 38.25

24.25 2:&Mean5:&Find&the&sum&of&squares&for&

group&1&(SS1)

Group&2 df2&=&n2&,1&=&12&,&1&=&11caffeine

24 ,2.166666667 4.69444429 2.833333333 8.02777826 ,0.166666667 0.02777823 ,3.166666667 10.0277825 ,1.166666667 1.36111128 1.833333333 3.36111127 0.833333333 0.69444424 ,2.166666667 4.69444427 0.833333333 0.69444428 1.833333333 3.36111127 0.833333333 0.69444426 ,0.166666667 0.027778314 Sum 37.66667 (SS2)

26.16667 Mean

21

212

dfdfSSSSs p

+

+=

Step  1:  Pooled  variance  

 

2

2

1

2

21

ns

nss p

MMp+=−

Step  2:  Estimated  Standard  Error

   

21

21 )(MMsMMt

−=Step  3:    

t-­‐  statistic

  df(tot)'='N'*'2'='24'*'2'='22Alpha'='.05,'2*tailed'test:Rejection't'is'+/*'2.074Reject'the'null'(*2.527'<'*2.074)

#1:  Alternative  Method

•      

#2:  Correlation• Another  investigator  believes  that  introversion/extraversion  has  a  linear  relationship  to  spelling  ability  and  reports  the  following  data:

Introversion Spelling.21 3114 3313 3913 2420 3521 3711 3615 2023 4612 3117 4426 44

#2:  201  Method:  Calculating  the  Pearson  Correlation  (r)

Where n = the number of cases ΣXY = the sum of X values x Y values ΣX = the sum of x values ΣY = the sum of Y values

To determine CV, find df = np- 2, then use the table on slide 9.

[ ][ ]2222 )()( YYnXXnYXXYnr

Σ−ΣΣ−Σ

ΣΣ−Σ=

#2:  201  MethodIntroversion*(X) Spelling*(Y) X*Y X^2 Y^2

21 31 651 441 96114 33 462 196 108913 39 507 169 152113 24 312 169 57620 35 700 400 122521 37 777 441 136911 36 396 121 129615 20 300 225 40023 46 1058 529 211612 31 372 144 96117 44 748 289 193626 44 1144 676 1936206 420 7427 3800 15386 Sums

nΣXY = 12(7427) = 89124 ΣXΣY = 206(420) = 86520 nΣ(X^2) = 12(3800) = 45600 (ΣX)^2 = (206)^2 = 42436 nΣ(Y^2) = 12(15386) = 184362 (ΣY)^2 = (420)^2 = 176400

[ ][ ]2222 )()( YYnXXnYXXYnr

Σ−ΣΣ−Σ

ΣΣ−Σ=

CV:  df  =  12  –  2  =  10  

Rejection  r:  

For  α  =  .05,  it’s  r  =  .5760  (see  next  slide).  

Fail  to  reject  the  null:  

.5102  <  .5760    

[ ][ ]17640018436242436456008652089124

−−

−=r

[ ][ ]5102.

53.51032604

823231642604

===r

This  is  similar  to  the  table  in  some  201  

textbooks  (Glenberg  &  Andrzejewski,  

“Learning  from  Data,”  p.  540)

#2:  201  Method,  continued

#2:  Alternative  Method•  

Introversion*(X) Dev.X Sq.Dev.X Spelling*(Y) Dev.Y Sq.Dev.Y Dev.X*Dev.Y21 3.833 14.6944 31 >4 16 >15.333333314 >3.17 10.0278 33 >2 4 6.33333333313 >4.17 17.3611 39 4 16 >16.666666713 >4.17 17.3611 24 >11 121 45.8333333320 2.833 8.02778 35 0 0 021 3.833 14.6944 37 2 4 7.66666666711 >6.17 38.0278 36 1 1 >6.1666666715 >2.17 4.69444 20 >15 225 32.523 5.833 34.0278 46 11 121 64.1666666712 >5.17 26.6944 31 >4 16 20.6666666717 >0.17 0.02778 44 9 81 >1.526 8.833 78.0278 44 9 81 79.5206 263.667 420 686 217 Sums

17.16666667 35 Means

#2:  Alternative  Method,  continued

•  

#3:  Two-­‐Way  ANOVA• Still  another  investigator  believes  that  spelling  performance  is  a  function  of  the  interaction  of  caffeine  and  time  of  day.  She  administers  0  or  200  mg  of  caffeine  to  subjects  at  9  am  and  9  pm.

9am 9am 9pm 9pm0&mg 200&mg 0&mg&&&& 200&mg26 27 28 2427 30 27 2325 28 25 2522 32 25 2127 25 31 2323 29 32 2121 31 25 2528 28 32 2121 28 26 2623 26 25 2220 29 27 2323 31 26 26

#3:  Alternative  Method  (for  2  x  2  ANOVA)*•  

#3:  Alternative  Method  (Ugly,  but  True)

• See  next  slide  for  means  used  here…

Morning'(9'am) Evening'(9'pm)0'mg X X3GM (X'3'GM)^2 X3M (X3M)^2 (Mr'3'GM)^2 (Mc'3'GM)^2 INT* INT^2 X X3GM (X'3'GM)^2 X3M (X3M)^2 (Mr'3'GM)^2 (Mc'3'GM)^2 INT* INT^2

26 0.188 0.0351563 2.167 4.69444 0.03515625 0.19140625 32.2 4.969 28 2.188 4.7851563 0.583 0.34028 0.03515625 0.19140625 2.23 4.96927 1.188 1.4101563 3.167 10.0278 0.03515625 0.19140625 32.2 4.969 27 1.188 1.4101563 30.42 0.17361 0.03515625 0.19140625 2.23 4.96925 30.813 0.6601563 1.167 1.36111 0.03515625 0.19140625 32.2 4.969 25 30.81 0.6601563 32.42 5.84028 0.03515625 0.19140625 2.23 4.96922 33.813 14.535156 31.83 3.36111 0.03515625 0.19140625 32.2 4.969 25 30.81 0.6601563 32.42 5.84028 0.03515625 0.19140625 2.23 4.96927 1.188 1.4101563 3.167 10.0278 0.03515625 0.19140625 32.2 4.969 31 5.188 26.910156 3.583 12.8403 0.03515625 0.19140625 2.23 4.96923 32.813 7.9101563 30.83 0.69444 0.03515625 0.19140625 32.2 4.969 32 6.188 38.285156 4.583 21.0069 0.03515625 0.19140625 2.23 4.96921 34.813 23.160156 32.83 8.02778 0.03515625 0.19140625 32.2 4.969 25 30.81 0.6601563 32.42 5.84028 0.03515625 0.19140625 2.23 4.96928 2.188 4.7851563 4.167 17.3611 0.03515625 0.19140625 32.2 4.969 32 6.188 38.285156 4.583 21.0069 0.03515625 0.19140625 2.23 4.96921 34.813 23.160156 32.83 8.02778 0.03515625 0.19140625 32.2 4.969 26 0.188 0.0351563 31.42 2.00694 0.03515625 0.19140625 2.23 4.96923 32.813 7.9101563 30.83 0.69444 0.03515625 0.19140625 32.2 4.969 25 30.81 0.6601563 32.42 5.84028 0.03515625 0.19140625 2.23 4.96920 35.813 33.785156 33.83 14.6944 0.03515625 0.19140625 32.2 4.969 27 1.188 1.4101563 30.42 0.17361 0.03515625 0.19140625 2.23 4.96923 32.813 7.9101563 30.83 0.69444 0.03515625 0.19140625 32.2 4.969 26 0.188 0.0351563 31.42 2.00694 0.03515625 0.19140625 2.23 4.969

Sums 286 126.67188 79.6667 0.421875 2.296875 59.63 329 113.79688 82.9167 0.421875 2.296875 59.63

200#mg X X'GM (X#'#GM)^2 X'M (X'M)^2 (Mr#'#GM)^2 (Mc#'#GM)^2 INT* INT^2 X X'GM (X#'#GM)^2 X'M (X'M)^2 (Mr#'#GM)^2 (Mc#'#GM)^2 INT* INT^227 1.188 1.4101563 '1.67 2.77778 0.03515625 0.19140625 2.23 4.969 24 '1.81 3.2851563 0.667 0.44444 0.03515625 0.19140625 '2.23 4.96930 4.188 17.535156 1.333 1.77778 0.03515625 0.19140625 2.23 4.969 23 '2.81 7.9101563 '0.33 0.11111 0.03515625 0.19140625 '2.23 4.96928 2.188 4.7851563 '0.67 0.44444 0.03515625 0.19140625 2.23 4.969 25 '0.81 0.6601563 1.667 2.77778 0.03515625 0.19140625 '2.23 4.96932 6.188 38.285156 3.333 11.1111 0.03515625 0.19140625 2.23 4.969 21 '4.81 23.160156 '2.33 5.44444 0.03515625 0.19140625 '2.23 4.96925 '0.813 0.6601563 '3.67 13.4444 0.03515625 0.19140625 2.23 4.969 23 '2.81 7.9101563 '0.33 0.11111 0.03515625 0.19140625 '2.23 4.96929 3.188 10.160156 0.333 0.11111 0.03515625 0.19140625 2.23 4.969 21 '4.81 23.160156 '2.33 5.44444 0.03515625 0.19140625 '2.23 4.96931 5.188 26.910156 2.333 5.44444 0.03515625 0.19140625 2.23 4.969 25 '0.81 0.6601563 1.667 2.77778 0.03515625 0.19140625 '2.23 4.96928 2.188 4.7851563 '0.67 0.44444 0.03515625 0.19140625 2.23 4.969 21 '4.81 23.160156 '2.33 5.44444 0.03515625 0.19140625 '2.23 4.96928 2.188 4.7851563 '0.67 0.44444 0.03515625 0.19140625 2.23 4.969 26 0.188 0.0351563 2.667 7.11111 0.03515625 0.19140625 '2.23 4.96926 0.188 0.0351563 '2.67 7.11111 0.03515625 0.19140625 2.23 4.969 22 '3.81 14.535156 '1.33 1.77778 0.03515625 0.19140625 '2.23 4.96929 3.188 10.160156 0.333 0.11111 0.03515625 0.19140625 2.23 4.969 23 '2.81 7.9101563 '0.33 0.11111 0.03515625 0.19140625 '2.23 4.96931 5.188 26.910156 2.333 5.44444 0.03515625 0.19140625 2.23 4.969 26 0.188 0.0351563 2.667 7.11111 0.03515625 0.19140625 '2.23 4.969

Sums 344 146.42188 48.6667 0.421875 2.296875 59.63 280 112.42188 38.6667 0.421875 2.296875 59.63

#3:  Alternative  Method•  

#3:  Sample  F  tableCritical Value for df (1,44) = 4.07 (approximately)

Note that you sometimes have to fudge a bit when estimating by hand—CV’s somewhere between 4.08 (df = 1, 40) and 4.00 (df = 1, 60) on this table.

#4:  Chi-­‐Square  Test

• Another  experimenter  wants  to  test  the  hypothesis  that  gender  is  related  to  interest  in  football.  100  subjects  (50  male  and  50  female)  are  asked  whether  or  not  they  watched  a  recent  football  game.  The  results  are:  

Watched(((( Did(not(watchMale 30 20Female 20 30

#4:  201  and  Alternative  Methods  (same)

•  

#4:  201  and  Alternative  Methods  (same)•   Watched(((( Did(not(watch Sums

Male O11(=(30 O12(=(20 R1(=(50Female O21(=(20 O22(=(30 R2(=(50Sums C1(=(50 C2(=(50 N(=(100

#4:  Reject  null  if  Chi-­‐Square  is  equal  to  or  greater  than  3.841.

Sample  Chi-­‐Square  Table

#5:  Another  Independent  t-­‐test…• A  professor  believes  that  taking  statistics  increases  one’s  ability  

to  reason  analytically.  To  test  this  hypothesis,  she  develops  a  test  of  reasoning  and  gives  it  to  two  sets  of  students,  those  who  have  just  started  a  statistics  course  and  those  who  have  just  finished  a  statistics  course.  The  results  are  shown  at  right.  

Problems  5  and  6  compare  independent  and  dependent  t-­‐tests.

before after12 1511 2315 1714 2211 1810 1711 2112 2118 1617 1713 2316 18

#5:  201  Method  Only

Step  4:  Rejection  region    

For  α  =  .05,  two-­‐tailed,  rejection  t  is  (again)  +/-­‐  2.074;  since  -­‐5.07  <  -­‐.2.074,  reject  null

before&(G1) dev sq&dev after&(G2) dev sq&dev12 21.333 1.7778 15 24 1611 22.333 5.4444 23 4 1615 1.6667 2.7778 17 22 414 0.6667 0.4444 22 3 911 22.333 5.4444 18 21 110 23.333 11.111 17 22 411 22.333 5.4444 21 2 412 21.333 1.7778 21 2 418 4.6667 21.778 16 23 917 3.6667 13.444 17 22 413 20.333 0.1111 23 4 1616 2.6667 7.1111 18 21 1160 76.667 228 88 Sums

13.3333333 19 Meansdf1&=&df2&=&11

Step  1:  Pooled  variance  

21

212

dfdfSSSSs p

+

+=  

Step  2:  Estimated  Standard  Error

2

2

1

2

21

ns

nss p

MMp+=−

 

Step  3:  t-­‐  statistic

21

21 )(MMsMMt

−=  

 

#6:  Dependent  Samples  t-­‐test• Another  professor  has  the  same  hypothesis,  but  decides  to  use  a  pre-­‐post  design.    That  is,  each  student  takes  the  reasoning  test  twice,  once  before  and  once  after  the  class.  Results  are  the  same  as  in  #5:   before after

12 1511 2315 1714 2211 1810 1711 2112 2118 1617 1713 2316 18

#6:  201  Method:  Independent  and  Dependent  t-­‐tests

Step  1:  Values  of  the  difference  scores  (D),    ΣD,  ΣD2    

Step  2:  SS  for  the  D  scores  

Step  3:  Sample  SD  for  the  D  scores  (s)  

Step  4:  Estimated  standard  error  for  the  D  scores  (SMD)  

                                         Step  5:                                              t  statistic

1−=nSSs

nss DM =

∑ ∑−=nD

DSS2

2 )(21

212

dfdfSSSSs p

+

+=

21

21 )(MMsMMt

−=

Pooled variance

Estimated Standard Error

t- statistic

2

2

1

2

21

ns

nss p

MMp+=−

DM

DD

sMt µ−

=

Independent t Dependent t

Step  6:  Degrees  of  freedom,  rejection  region

#6:  201  MethodStep  1:  Values  of  the  difference  scores  (D),    ΣD,  ΣD2  :  

Step  2:  SS  for  the  D  scores:

before after D D^212 15 3 911 23 12 14415 17 2 414 22 8 6411 18 7 4910 17 7 4911 21 10 10012 21 9 8118 16 42 417 17 0 013 23 10 10016 18 2 4

Sums 160 228 68 608Means 13.333 19 5.7 50.6667n<=<12 D<=<after<4<before.

∑ ∑−=nD

DSS2

2 )(  

Step  3:  Sample  SD  for  the  D  scores  (s)

1−=nSSs

 

Step  4:  Estimated  standard  error  for  the  D  scores  (SMD)

nss DM =  

Step  5:  t  statistic

DM

DD

sMt µ−

=  

Step  6:  Degrees  of  freedom,  rejection  regiondf#=#12#'#1#=#11For#p#<#.05#and#two#tails…t#>#2.201#ort#<#'2.201Since#4.363#>#2.201,#reject#null.

#6:  Alternative  MethodStep  1:  Slightly  different  way  of  finding  SS  =  222.67.  Step  2:  Modified  version  of  201  method,  step  3     Find  sample  variance  of  the  D  scores:  

Step  3:  Modified  version  of  201  method,  step  4     Find  estimated  variance  of  the  D  scores:    

Step  4:  Find  estimated  standard  deviation  of  the  D  scores  (result  same  as  in  201  method  Step  4):  

Step  5:  Find  t-­‐statistic  and  rejection  region  (same  as  in  201  method):     t  =  4.363     Rejection  t  is  2.201  for  p  =  .05,  non-­‐directional  test     4.363  >  2.201;  reject  the  null.

before after D D)*)M (D*M)^212 15 3 *2.7 7.1111111 23 12 6.33 40.111115 17 2 *3.7 13.444414 22 8 2.33 5.4444411 18 7 1.33 1.7777810 17 7 1.33 1.7777811 21 10 4.33 18.777812 21 9 3.33 11.111118 16 *2 *7.7 58.777817 17 0 *5.7 32.111113 23 10 4.33 18.777816 18 2 *3.7 13.4444

Sums 160 228 68 222.667Means M)= 5.667Difference)(D))=)after)*)before

 

 

 

#6:  Independent  v.  Dependent  t’s• Similarities  between  the  two  types:  

– Population  variance  is  unknown.  – Population  mean  is  unknown.  

• Use  in  different  situations:  – Independent:  Each  participant  has  one  score;  compare  mean  of  one  group’s  scores  w/that  of  another.  

– Dependent:  Each  participant  has  two  scores;  compare  the  pairs  of  scores  to  see  if  there’s  a  difference.    

• Advantages  of  dependent  t:  – Uses  same  subjects  in  all  treatment  conditions  

• No  risk  that  subjects  in  one  condition  are  substantially  different  from  subjects  in  another;  dependent  t  can  be  good  when  individual  differences  are  expected  to  be  substantial.  

– Often  more  powerful  than  independent  t  • Disadvantages  of  dependent  t:  

– Carryover  effects

#7a:  The  Normal  Distribution

If  a  test  is  normally  distributed  and  has  a  mean  of  100  and  a  standard  deviation  of  15,  then  what  percentage  of  students  would  you  expect  to  have  scores  of  100  or  greater?

SCORE

-4 -2 0 2 4

0.0

0.1

0.2

0.3

0.4

34%

14%

2%

Answer: 50%

Mean = 100

#7b:  Z-­‐scores  and  Z-­‐tests

• If  a  test  is  normally  distributed  and  has  a  mean  of  100  and  a  standard  deviation  of  15,  what  percentage  of  students  would  you  expect  to  have  scores  greater  than  115?  

                       …sometimes  given  as  

                                                                                                                                               …now  look  up  Z  =  1  on  a  Z  table                                                                                                                  (or  use  graphic  on  previous  slide)…  

                                                                                                       

σ

µ)( −= i

iXZ  

 

Sample  Z  table  

Be careful to read your Z table’s instructions; some give percent under curve to the left of the Z score (scores below) and others give percent to the right (scores above); this one gives scores BELOW, so… Proportion w/Z scores greater than Z = 1 is 1 - .8413 = .1587, or 15.87% (about 16%, as shown in Slide 29 graphic)

#8:  Probability

• If  you  flip  a  fair  coin  10  times,  how  often  would  you  expect  to  observe  at  least  8  heads?  

• This  is  not  the  kind  of  problem  that  most  introductory  psych  stats  courses  focus  on.  

• You  might  have  covered  this  type  of  problem  in  other  math  courses  (perhaps  long  ago).  

• Still  important,  though—this  kind  of  problem  tends  to  crop  up  on  standardized  tests.

#8:  Probability

• Denominator:  Total  number  of  possible  outcomes    of  10  fair  coin  flips    – You  can  express  these  as  length-­‐10  vectors;  e.g.  THTTHTHHTT  or  TTTTTTTTTT.  

• Numerator  =  Total  number  of  possible  outcomes  of  10  fair  coin  flips  with  8,  9,  or  10  heads.  – Easiest  to  deal  with  this  as  a  sum  w/three  terms.  

All  outcomes  of  interest  =  (Combos  w/10  heads)  +  (Combos  w/9  heads)  +  (Combos  w/8  heads)    – Combos  w/10  heads  =  1  (only  the  HHHHHHHHHH  combination  has  10  heads)  – Use  the  combination  formula  for  Combos  w/9  and  Combos  w/8  heads:  

– Combos  w/9  heads:    

– Combos  w/8  heads  =  45  (similar  calculation)  • Answer  to  #8:

 

 

 

 

If  you  flip  a  fair  coin  10  times,  how  often  would  you  expect  to  observe  at  least  8  heads?  

 

Guide  to  Bill’s  Solutions  • Detailed  Syllabus,  9/28:  “using  R  for  statistics”  pdf  

– 1:  Slides  25-­‐45;  solution  on  slide  34  (and  39)  – 2:  Slides  46-­‐49;  solution  on  slide  47  – 3:  Slides  50-­‐52;  solution  on  slide  52  

• Detailed  Syllabus,  9/30:  “stats  homework  solutions”  pdf    – 1:  Solution  on  p.6  (“df  =  21.999”  means  df  =  22)    – 2:  Solution  on  p.  12  – 3:  Solution  on  p.  14,  p.  15  (drug  =  row,  time  =  col)  – 4:  Solution  on  p.16  – 5:  Solution  on  p.17  (“df  =  21.896”  means  df  =  22)  – 6:  Solution  on  p.17  – 7:  Solution  on  p.18  – 8:  Solution  on  p.20  

• Moral  #1:  If  you  use  R,  there’s  much  less  math  that  you  have  to  do  by  hand…  

• Moral  #2:  Excel  junkies,  there’s  still  hope—if  you’re  careful.


Recommended