+ All Categories
Home > Documents > Status of the advanced LIGO laser O. Puncken, L. Winkelmann, C. Veltkamp, B. Schulz, S. Wagner, P....

Status of the advanced LIGO laser O. Puncken, L. Winkelmann, C. Veltkamp, B. Schulz, S. Wagner, P....

Date post: 28-Dec-2015
Category:
Upload: solomon-brown
View: 216 times
Download: 1 times
Share this document with a friend
32
Status of the advanced LIGO laser O. Puncken , L. Winkelmann, C. Veltkamp, B. Schulz, S. Wagner, P. Weßels, M. Frede, D. Kracht
Transcript
Page 1: Status of the advanced LIGO laser O. Puncken, L. Winkelmann, C. Veltkamp, B. Schulz, S. Wagner, P. Weßels, M. Frede, D. Kracht.

Status of the advanced LIGO laserO. Puncken, L. Winkelmann, C. Veltkamp,

B. Schulz, S. Wagner, P. Weßels, M. Frede, D. Kracht

Page 2: Status of the advanced LIGO laser O. Puncken, L. Winkelmann, C. Veltkamp, B. Schulz, S. Wagner, P. Weßels, M. Frede, D. Kracht.

Content

• Setup

• Status in October 2007• Current status• Characterization work

– Crystals– Mirrors– Diodes

• System improvement / outlook– Crystal cooling

Page 3: Status of the advanced LIGO laser O. Puncken, L. Winkelmann, C. Veltkamp, B. Schulz, S. Wagner, P. Weßels, M. Frede, D. Kracht.

Advanced LIGO PSL: high power laser

mediumpowerstage

highpowerstage

NPRO

referencecavity

AOM

pre-modecleaner

to interferometer

Page 4: Status of the advanced LIGO laser O. Puncken, L. Winkelmann, C. Veltkamp, B. Schulz, S. Wagner, P. Weßels, M. Frede, D. Kracht.

Setup

Page 5: Status of the advanced LIGO laser O. Puncken, L. Winkelmann, C. Veltkamp, B. Schulz, S. Wagner, P. Weßels, M. Frede, D. Kracht.

Setup

Page 6: Status of the advanced LIGO laser O. Puncken, L. Winkelmann, C. Veltkamp, B. Schulz, S. Wagner, P. Weßels, M. Frede, D. Kracht.

Adv. LIGO electronics

Page 7: Status of the advanced LIGO laser O. Puncken, L. Winkelmann, C. Veltkamp, B. Schulz, S. Wagner, P. Weßels, M. Frede, D. Kracht.

Start-up behavior

Complete system started and locked after 3 min !status 10/07

Page 8: Status of the advanced LIGO laser O. Puncken, L. Winkelmann, C. Veltkamp, B. Schulz, S. Wagner, P. Weßels, M. Frede, D. Kracht.

Beam quality

• Output power: 180.5 W

• 91.5% (~165 W) in TEM00

status 10/07

Page 9: Status of the advanced LIGO laser O. Puncken, L. Winkelmann, C. Veltkamp, B. Schulz, S. Wagner, P. Weßels, M. Frede, D. Kracht.

53h test run

Relock events

status 10/07

Page 10: Status of the advanced LIGO laser O. Puncken, L. Winkelmann, C. Veltkamp, B. Schulz, S. Wagner, P. Weßels, M. Frede, D. Kracht.

Current status

• ≈ 174 W at 4 x 185 W pump power

• 91 % in TEM00

• DC noise ≈ 5% (not changed)

• Typical relock time < 50 ms (not changed)

• Startup: complete system started after 3 min

Page 11: Status of the advanced LIGO laser O. Puncken, L. Winkelmann, C. Veltkamp, B. Schulz, S. Wagner, P. Weßels, M. Frede, D. Kracht.

Doping of the crystals

• Nd:YAG crystals, 40mm 0.1 at % doped region / 7mm undoped endcap– Doping specifications 0.1 at. % +/- 0.01 at. %

• Actual incoming from different vendors:– ~ 0.1 – 0.13 at %– Doping gradient over crystal length

different thermal optical effects !

Page 12: Status of the advanced LIGO laser O. Puncken, L. Winkelmann, C. Veltkamp, B. Schulz, S. Wagner, P. Weßels, M. Frede, D. Kracht.

Integrated fluorescence

Page 13: Status of the advanced LIGO laser O. Puncken, L. Winkelmann, C. Veltkamp, B. Schulz, S. Wagner, P. Weßels, M. Frede, D. Kracht.

Integrated fluorescence

Page 14: Status of the advanced LIGO laser O. Puncken, L. Winkelmann, C. Veltkamp, B. Schulz, S. Wagner, P. Weßels, M. Frede, D. Kracht.

Spot diameters from integrated fluorescence

Crystals are slightly different doped Characterization of the incoming crystals

Page 15: Status of the advanced LIGO laser O. Puncken, L. Winkelmann, C. Veltkamp, B. Schulz, S. Wagner, P. Weßels, M. Frede, D. Kracht.

Incoming inspection of the components

• Since small qualitative differences seem to have a big effect, this is the only way to guarantee the reproducibility of the system !

• Development of characterization facilities for– Crystals– Mirrors and lenses– Pump diodes

Page 16: Status of the advanced LIGO laser O. Puncken, L. Winkelmann, C. Veltkamp, B. Schulz, S. Wagner, P. Weßels, M. Frede, D. Kracht.

Crystal characterization

• so far: longitudinal measurement of the fluorescence • upcoming: transversal measurement of the absorption Direct measurement of the doping concentration Possibility of „scanning“ the crystal to find doping

gradients

Page 17: Status of the advanced LIGO laser O. Puncken, L. Winkelmann, C. Veltkamp, B. Schulz, S. Wagner, P. Weßels, M. Frede, D. Kracht.

Mirror characterisation

NPRO

/2 /4

/4

PBS

PBS

PD1

PD2

automated polarimeter polarization analysis software

Page 18: Status of the advanced LIGO laser O. Puncken, L. Winkelmann, C. Veltkamp, B. Schulz, S. Wagner, P. Weßels, M. Frede, D. Kracht.

Diode characterisation

• Automated test facility for measuring– Slope– Spectral FWHM at

different currents– Spectrum at different

currents– Peak wavelength– Threshold– Operating current for

45 W optical output

Page 19: Status of the advanced LIGO laser O. Puncken, L. Winkelmann, C. Veltkamp, B. Schulz, S. Wagner, P. Weßels, M. Frede, D. Kracht.

Content

• Setup• Status in October 2007• Status now• Characterization work

– Crystals– Mirrors– Diodes

• System improvement / outlook– Crystal cooling

Page 20: Status of the advanced LIGO laser O. Puncken, L. Winkelmann, C. Veltkamp, B. Schulz, S. Wagner, P. Weßels, M. Frede, D. Kracht.

Improvements: new pump chambers

• More homogeneous cooling at the crystal surface ?

• Higher cooling efficiency ?

• Less acoustic noise ?

Page 21: Status of the advanced LIGO laser O. Puncken, L. Winkelmann, C. Veltkamp, B. Schulz, S. Wagner, P. Weßels, M. Frede, D. Kracht.

Improvements: new pump chambers

Page 22: Status of the advanced LIGO laser O. Puncken, L. Winkelmann, C. Veltkamp, B. Schulz, S. Wagner, P. Weßels, M. Frede, D. Kracht.

Improvements: new pump chambers

• Calculated thermal lens for old chamber: 0.027 dpt/W• Calculated thermal lens for new chamber: 0.025 dpt/W

0 10 20 30 40 500

5000

10000

15000

20000

25000

old pump chamber new pump chamber

he

at

tra

ns

fer

co

eff

icie

nt

(W /

m2 K

)

Position (mm)

Page 23: Status of the advanced LIGO laser O. Puncken, L. Winkelmann, C. Veltkamp, B. Schulz, S. Wagner, P. Weßels, M. Frede, D. Kracht.

Test setup

Page 24: Status of the advanced LIGO laser O. Puncken, L. Winkelmann, C. Veltkamp, B. Schulz, S. Wagner, P. Weßels, M. Frede, D. Kracht.

Improvements: new pump chambers

Page 25: Status of the advanced LIGO laser O. Puncken, L. Winkelmann, C. Veltkamp, B. Schulz, S. Wagner, P. Weßels, M. Frede, D. Kracht.

Summary

• System runs with lower output power and more pump power than 6 month before

• Reason: probably lower doped crystals

• We have to take care that all incoming components are well characterized and of the same high quality

• Ideas on system improvement (pump chambers) are going to be checked

Page 26: Status of the advanced LIGO laser O. Puncken, L. Winkelmann, C. Veltkamp, B. Schulz, S. Wagner, P. Weßels, M. Frede, D. Kracht.

Thank you for your attention !

Page 27: Status of the advanced LIGO laser O. Puncken, L. Winkelmann, C. Veltkamp, B. Schulz, S. Wagner, P. Weßels, M. Frede, D. Kracht.

Improvements: non-conventional cut crystals

+ good birefringence compensation with quarz rotators(adv. LIGO laser: output power: 170 W cw, linear polarized; depolarized power: 1W)

- Additional components inside the resonator (Absorption/thermal effects/losses, spots)

- Sensitive adjustment0° 5° 7°

Page 28: Status of the advanced LIGO laser O. Puncken, L. Winkelmann, C. Veltkamp, B. Schulz, S. Wagner, P. Weßels, M. Frede, D. Kracht.

Improvement: non-conventional cut crystals

• Reduction of birefringence is possible by use of crystals, which are cut in [100]- or [110]-direction instead of [111]-direction1)

• Birefringence depends on the angle between crystal-axis and polarization-axis

0 30 60 90 120 150 180 210 240 270 300 330 3600,0

0,2

0,4

0,6

0,8

1,0

[111]-cut [110]-cut [100]-cut

bir

efri

ng

ence

par

amet

er

angular (degree)

1) I. Shoji et al: Appl. Phys. Lett., Vol. 80, No. 17, 29 April 2002

Page 29: Status of the advanced LIGO laser O. Puncken, L. Winkelmann, C. Veltkamp, B. Schulz, S. Wagner, P. Weßels, M. Frede, D. Kracht.

Improvements: pump combiners

• 7x200µm input : 1• up to 700 W input

power• transfer efficiency >

93%

Source: ITF

Page 30: Status of the advanced LIGO laser O. Puncken, L. Winkelmann, C. Veltkamp, B. Schulz, S. Wagner, P. Weßels, M. Frede, D. Kracht.

Integrated fluorescence

Page 31: Status of the advanced LIGO laser O. Puncken, L. Winkelmann, C. Veltkamp, B. Schulz, S. Wagner, P. Weßels, M. Frede, D. Kracht.

1 10 100 1000 10000 1000001E-7

1E-6

1E-5

1E-4

1E-3

0,01

8/07 3/08

RIN

(1

/Hz1/

2 )

Frequency (Hz)

RIN (unstabilized, locked laser)

Page 32: Status of the advanced LIGO laser O. Puncken, L. Winkelmann, C. Veltkamp, B. Schulz, S. Wagner, P. Weßels, M. Frede, D. Kracht.

Spots on surfaces and coatings

• Spots on coatings and optical components knocked out the system several times

Bring as few dust as possible to the laser table

Check quality of incoming components

ca. 150 µm


Recommended