+ All Categories
Home > Documents > Stochastic Differential Equations€¦ · Fourier transformation ei't ask ) +, isinlx) f:1R→1R f...

Stochastic Differential Equations€¦ · Fourier transformation ei't ask ) +, isinlx) f:1R→1R f...

Date post: 08-Feb-2021
Category:
Upload: others
View: 2 times
Download: 0 times
Share this document with a friend
23
Stochastic Di erential Equations SSES , Spring 2015 Radu Hubei
Transcript
  • Stochastic Differential Equations

    SSES, Spring 2015

    Radu Hubei

  • ⚫️

    ⚫️

    ⚫️

    Today

    Most of the material comes from Sigrist et al . ( 2015)

    I will not"

    present" the

    paper ,rather use it for some results .

    Overview :

    Briefintro to Fourier analysis

    PDES and Fourier functions

    SPDES and Fourier functions

    Conclusions

  • Fourier transformationei 't ask ) +, isinlx )

    f :1R→1R f EL ,( IR)

    { ( w ) = fµfln) tin " da → the Fourier transform of f fh=F( f)

    f In ) = zt ) { ( w ) eiwrdw → inverse Fourier transform f = F-'

    (F)112

    Basic properties

    Hfhlko £ IHH, (f*g)H=ffH-y)g1y)dy

    Ilw) is uniformly continuous on - a

  • Fourier series

    A periodic function f C ) flx )=f( xtzt )

    admits the series representation

    flx )= Azt ¥,

    aw as ( wx ) + bwsiwlwx )

    { cos ( nx ),

    sin ( nx ) } form a complete Ortho normal system

  • Discrete Fourier Transform

    given a sequence { fo , f , , . . . , fn , } its DFT is the sequence { To , ... ,fn . , }

    I u=m⇐ofi . exp ( - Ziti F- . k ) k=0 , I , . . . , ntThe inverse DFT fm=nt⇐o§a

    - exp ( Zti htm ) m= 0,1 , . . . , ni

    Notation wh=2t . F → frequency

    { 0 , 1 , 2 , . . . , nt ) ' 2¥ → set of frequenciesOr

    10,

    1

    , , . . . ,±z - i ,- he , . . . , -1 ] . 2¥ ( same sin and cos )

  • 🔴

    Real Fourier functions

    replace expfiwx ) with [ cos ( wx ) , sin ( wx ) ]

    In =m±}of... exp f- Ziti nfuik)becomes

    I =n¥of,i asfztmnh ) I=n¥of,isinf2Tm⇒lk 24The inverse is

    ht

    fm=tnI,

    I,u

    . cos ( zit . mw± ) + In . sin ( 2T .m÷ )

    compare with fmth "£o§a - exp ( Zti In .m )

  • Example real Fourier functions aslwix ) and sin ( wix )Wo W , Wz Wz

    §

    3is

    N

    Say flx ) = x 't sinhox ) observed at x⇐ho , Nt , In , . . . ,'¥ }

    .. .

    The DFT is found using the fft function ( most languages )

    n ^

    f ,µ fzn

    Ww Ww

  • ⚫️

    ⚫️

    ⚫️

    ⚫️

    ZD Fourier representations

    everything extends naturally to functions f=f( say )

    Given a ZD sequence ( Amw ) 0£ m< M 0 en < N

    the ZD DFT is defined as the sequence (Ak ,e ) OE k

  • Example teal as( kjs )=us( kijxtkwy ) and sin(kB)=sin( kjxtkuy )

    n

    :a

  • ⚫️

    ⚫️

    ⚫️

    ⚫️ 😊

    PDES and Fourier representations

    ¥÷= cheat b ¥ f=f( t , x ) + initial condition

    For a fixed t felt ,x ) = function of x

    = ÷€ A ,j . cos ( W ; x ) + Azj sin ( wjx )

    J L

    make these depend on t

    Model : flt ,x)=¥o9iH ) wslwix) + autttsinlwix )

    Solving the PDE above is now easy

  • It is !

    Ft = Z an'

    Has( win ) + au.

    '

    H sin ( wix )

    feta = Z a,i It ) wit sin ( wix )) tazilt ) wi as ( wi D

    Tah = E a ,i H ) w ,? f- us ( wi xD + an. It ) within lwix ))

    an !It ) = - to we qi It ) + cwiazitt 'au

    ! It ) = . bw,

    ? au . HI - cwi a ,iH

  • 😊

    " an " "

    Hateful,:HHFha 'iH= A ayt ) - aiH=exp( At ) ailo )

    (matrix exp)

    this can be solved

    easilyutility

    .mu#H:llY.itYLesson learned : we solved a PDE by solving a " much simpler " ODE .See Cressie & Wikle

    ,Sec

    .7.26 for more discussion on this topic .

  • Example0¥=c2£+b It b= 0.007 c= 0.03

    f1÷

    tt ,x)=

  • Two dimensional example

    z÷5H,s)=-µt95H,s

    ) +

    TEDSH,s) -

    TH,s) stay )

    µ=( µ , ,µ)T = velocity vector 5>0 ="

    sink"

    term ( damping )

    [ = ( EI,

    EY,) = diffusion matrix

    % = - µ , £ - µz9y+£( E" £+524 )+Fy( Eu Z +En5y ) - 59

    Model :JH ,s)=⇐&g.lt) exp (ikjts) K ;= ( th ; , kz ;)= spatial freq .

    or esths ) = ¥1,4 ,tHws( Kots)+%Hsinks)

  • Easily seen that the coefficients xjtt ) satisfy : ( complex version )

    gift ) =L ; - L ;H) he;= -iµK; -KYEK;- E

    µt4exp(IKB) =ink;explikots)9 . ETexplikots) = -KFEK; exp (ikjts)thusftp.T.TT- 5) [{44explikjs) = ¥dh;gHexp(iksts)= II

    ,diHuplil#

  • .

    Thus

    xjtt )=h ; . X ; It )

    The solution is a ;H= exp ( hjt ) g :( o)

    Real Fourier functions esths ) =÷},4,tHcos(KB)+%.Hsin( KB)Find derivatives : JH , D=hIz9sHcoslkBtastHsinCkIDFe5HD-EE9.HFfsinCkIsDth.HkY@slkY5DsyFesH.s) = . . .

  • It follows that dijtt ) and dutt ) must satisfy :

    gilt )=[k¥kj.E) x , ;H ) - (MTK; )x↳Hdzstt )= ( - k¥k; .f) %.Htfnk;)gottajH)= [ L , ;H) &zjH[Xjtt)=H ; a ;H ) -k¥kj . E -MTK ;As '= µtk; - k¥k;Z:t)=exp( Hjt )XoH)

    ( matrix exp )

  • ⚫️

    ⚫️

    ⚫️

    What did we learn

    Using Fourier functions PDE simplifies to ODE ( this case with exact sol )

    ODES are easier to discretize ( no need for CFL condition)

    Previous examp

    : ( tto ) = exp ( H ;D ) a ; It )or

    ...a

    ; ( tto ) = ( It H;D) djtt )

  • Example z÷5H,s)=-µTHH,s)+TEDSH,s) - SJH,s)E

    : := . leg( 99)

    ,

    µ=(0.2

    ,0.2 ) ,

    E=diag ( 0.001 , 0.001 )

  • Stochastic PDES

    ÷ 5ft ,s)= . MtHH ,s ) + TEDSH,s) - SJH,s) + EH ,s )

    EH ,S) = Gaussian process temporally white and spatially colored .

    Sigrist et al . consider the Matern spatial covariance structure

    Proposition ( Sigrist et al . ) If - Gaussian while noise

    5( o ,s)=I€ djlo ) exp ( i KYD Ett ,s) = ,÷} EH exp ( i KYDthe "

    §(t,s) =÷E, djtt) exp ( i KYS) with

    &jH= exp ( hit )g( o) + ftexp ( h ; H - D) Flu) du

  • ⚫️

    ⚫️

    What does that mean ?

    Easy to simulate ! Just propagate the coefficients d ; ( i ) via

    Xjttto ) = exp ( H; b) gtt ) + N ( 0 , § )§ = diag ( f ( k ;)

    1 - exPt2o( KEK +5 ))2k¥Emig ]

    Ready for Bayesian inference .

  • Simulations of SPDE

    while noise EHS)

    Matern EH ,s )

  • ⚫️

    ⚫️

    ⚫️

    ⚫️

    Discussion

    Fourier representations provide several advantages

    ( elegant solutions , computational efficiency )

    Method works nicely when there is a"

    model grid" (data on a grid)

    ( If not , use date augmentation , an incidence matrix , etc.)

    Suitable for Bayesian inference . Easy to incorporate Meas . error .

    Extensions ?


Recommended