+ All Categories
Home > Documents > Supplementary Material 2 - Claude Bernard University Lyon...

Supplementary Material 2 - Claude Bernard University Lyon...

Date post: 24-May-2018
Category:
Upload: dangminh
View: 214 times
Download: 0 times
Share this document with a friend
11
Supplementary Material 1 2 Interseismic coupling, megathrust earthquakes and seismic swarms along the Chilean 3 subduction zone (38 -18 S) 4 1 GPS data set 5 We combined in a single data set the interseismic velocities published in Métois et al. [2013, 2014], 6 together with the recent bolivian velocities from Brooks et al. [2011] and older data sets from SAGA 7 [Khazaradze and Klotz, 2003], CAP [Brooks et al., 2003] and IPG teams [Ruegg et al., 2009] that 8 we rotated in the ITRF 2008 reference frame following the method described in Metois et al. [2012]. 9 Finally we rotated these velocities in the fixed South-America reference frame by applying the ab- 10 solute SOAM rotation pole determined by NNR-Nuvel1A. We added to this horizontal velocity-field 11 72 GPS vertical displacements used by Métois et al. [2014] for the central Chile area and 27 others 12 from Ruegg et al. [2009] already used by Metois et al. [2012], and included these 99 independent 13 observations in the inversion procedure with a decrease weight (see supplementary figure 1). 14 2 Models resolution 15 The main issue in retrieving the coupling coefficient in subduction zones with respect to continental 16 active faults is the lack of data in the vicinity of the trench, i.e. over the first kilometers depth of the 17 fault interface. Furthermore, we sample the deformation on the upper plate only. In order to assess the 18 resolution of our models, we follow Loveless and Meade [2011] and calculate the sensitivity of our 19 network to each unit slip dislocation on the plate interface, or the power P of the network to resolve this 20 unit slip (see supplementary figure 2). Our network in unable to resolve coupling on the first 10 km 21 depth of the interface, exept offshore the Tongoy peninsula where we should be able to discriminate 22 between full or null coupling even in the shallowest nodes. We show alternative models in wich the 23 shallowest part of the trench is forced to be fully creeping or fully locked in supplementary figure 24 8 that demonstrate that our network is not sensitive to coupling from the trench to 10 km depth. 25 Obviously, the resolution is low at the edges of the model and in the scarsely instrumented Taltal area 26 (25 -26 S). Overall, our network is sufficiently dense to resolve the coupling pattern between 10 and 27 45 km depth. 28 We also provide standard checkerboard tests in supplementary figure 3 that show the capability of 29 the network to capture large (50 x 50 km) and small (25 km x 25 km) scales in the coupling distri- 30 bution. While large scale variations of the coupling are well retrieved over almost all the subduction 31 plane, smaller variations are only captured by the network in the 10 to 45 km depth range. 32 1
Transcript

Supplementary Material1

2

Interseismic coupling, megathrust earthquakes and seismic swarms along the Chilean3

subduction zone (38◦-18◦S)4

1 GPS data set5

We combined in a single data set the interseismic velocities published in Métois et al. [2013, 2014],6

together with the recent bolivian velocities from Brooks et al. [2011] and older data sets from SAGA7

[Khazaradze and Klotz, 2003], CAP [Brooks et al., 2003] and IPG teams [Ruegg et al., 2009] that8

we rotated in the ITRF 2008 reference frame following the method described in Metois et al. [2012].9

Finally we rotated these velocities in the fixed South-America reference frame by applying the ab-10

solute SOAM rotation pole determined by NNR-Nuvel1A. We added to this horizontal velocity-field11

72 GPS vertical displacements used by Métois et al. [2014] for the central Chile area and 27 others12

from Ruegg et al. [2009] already used by Metois et al. [2012], and included these 99 independent13

observations in the inversion procedure with a decrease weight (see supplementary figure 1).14

2 Models resolution15

The main issue in retrieving the coupling coefficient in subduction zones with respect to continental16

active faults is the lack of data in the vicinity of the trench, i.e. over the first kilometers depth of the17

fault interface. Furthermore, we sample the deformation on the upper plate only. In order to assess the18

resolution of our models, we follow Loveless and Meade [2011] and calculate the sensitivity of our19

network to each unit slip dislocation on the plate interface, or the power P of the network to resolve this20

unit slip (see supplementary figure 2). Our network in unable to resolve coupling on the first 10 km21

depth of the interface, exept offshore the Tongoy peninsula where we should be able to discriminate22

between full or null coupling even in the shallowest nodes. We show alternative models in wich the23

shallowest part of the trench is forced to be fully creeping or fully locked in supplementary figure24

8 that demonstrate that our network is not sensitive to coupling from the trench to ∼10 km depth.25

Obviously, the resolution is low at the edges of the model and in the scarsely instrumented Taltal area26

(25◦-26◦S). Overall, our network is sufficiently dense to resolve the coupling pattern between 10 and27

45 km depth.28

We also provide standard checkerboard tests in supplementary figure 3 that show the capability of29

the network to capture large (50 x 50 km) and small (25 km x 25 km) scales in the coupling distri-30

bution. While large scale variations of the coupling are well retrieved over almost all the subduction31

plane, smaller variations are only captured by the network in the 10 to 45 km depth range.32

1

3 Sliver rotation33

Alternative models using different smoothing constrains and plates configuration are presented in34

supplementary figures 6 and 7. All of them present very similar along-trench variations in the coupling35

coefficient (supplementary fig.5) but often exhibits significant differences in the along-dip amount of36

coupling. We used coupling distributions that reproduce the data set with a lower than 2 nRMS to37

plot the average coupling lateral variations in figure 3B of the main text (red dashed lines). In the38

3-plate configuration, we inverted simultaneously for the coupling coefficient and the rotation pole of39

an Andean sliver.40

2

−74˚ −72˚ −70˚

−38˚

−36˚

−34˚

−32˚

−30˚

−28˚

−26˚

NAZCA

SOAM

permanent GPS stations

campaign GPS stations

"hinge line"

−5 0 5

mm/yrCopiapo

Vallenar

La Serena

Ovalle

Los Vilos

Valparaiso

Concepcion

Constitucion

Santiago

Fig.S 1: Combined vertical velocity field from continuous and campaign GPS measurements from [Ruegg

et al., 2009, Métois et al., 2014]. Dashed brow line : supposed position of the hinge line.

3

−36˚

−32˚

−28˚

−24˚

−20˚

15 k

m

45 k

m

82.5

km

−36˚

−32˚

−28˚

−24˚

−20˚

−1.5

−1.0

−0.5

0.0

log(P)

Fig.S 2: Sensitivity of horizontal data to unit coupling on the slab. Each element of the interface is colored by

the log of the sum of the displacements (P in mm/yr) at GPS stations (dots) due to unit slip on the nearest grid

node. Black crosses are slab nodes projection at surface.

4

−72˚ −68˚ −64˚

−36˚

−32˚

−28˚

−24˚

−20˚

−72˚ −68˚ −64˚

−36˚

−32˚

−28˚

−24˚

−20˚

−72˚ −68˚ −64˚

−36˚

−32˚

−28˚

−24˚

−20˚

−72˚ −68˚ −64˚

−36˚

−32˚

−28˚

−24˚

−20˚

0.0

0.5

1.0coupling

−72˚ −68˚ −64˚

−36˚

−32˚

−28˚

−24˚

−20˚

−72˚ −68˚ −64˚

−36˚

−32˚

−28˚

−24˚

−20˚

−72˚ −68˚ −64˚

−36˚

−32˚

−28˚

−24˚

−20˚

−72˚ −68˚ −64˚

−36˚

−32˚

−28˚

−24˚

−20˚

0.0

0.5

1.0coupling

−72˚ −68˚ −64˚

−36˚

−32˚

−28˚

−24˚

−20˚

−72˚ −68˚ −64˚

−36˚

−32˚

−28˚

−24˚

−20˚

−72˚ −68˚ −64˚

−36˚

−32˚

−28˚

−24˚

−20˚

−72˚ −68˚ −64˚

−36˚

−32˚

−28˚

−24˚

−20˚

0.0

0.5

1.0coupling

−72˚ −68˚ −64˚

−36˚

−32˚

−28˚

−24˚

−20˚

−72˚ −68˚ −64˚

−36˚

−32˚

−28˚

−24˚

−20˚

−72˚ −68˚ −64˚

−36˚

−32˚

−28˚

−24˚

−20˚

−72˚ −68˚ −64˚

−36˚

−32˚

−28˚

−24˚

−20˚

0.0

0.5

1.0coupling

Synthetic Retrieved

Fig.S 3: Checkerboard resolution tests. Left : synthetic checkerboard coupling distributions showing small

scale (top, 25 x 25 km) or large scale (bottom 50 x 50 km) checkers. Right : coupling distribution inverted

using the synthetic velocities.

5

−72˚ −68˚ −64˚

−36˚

−32˚

−28˚

−24˚

−20˚

−72˚ −68˚ −64˚

−36˚

−32˚

−28˚

−24˚

−20˚

−72˚ −68˚ −64˚

−36˚

−32˚

−28˚

−24˚

−20˚

−72˚ −68˚ −64˚

−36˚

−32˚

−28˚

−24˚

−20˚

0.0

0.5

1.0coupling

−72˚ −68˚ −64˚

−36˚

−32˚

−28˚

−24˚

−20˚

−72˚ −68˚ −64˚

−36˚

−32˚

−28˚

−24˚

−20˚

−72˚ −68˚ −64˚

−36˚

−32˚

−28˚

−24˚

−20˚

sm 0.1x0.5

nrms 1.64710mm/yr +−2

Fig.S 4: Best coupling model presented in figure 3 of the main text (left) and associated residuals (right)

color-coded depending on the original data-set.

0.0

0.4

0.8

0.0

0.4

0.8

-18 -20 -22 -24 -26 -28 -30 -32 -34 -36 -38

2-plate3-plate

latitude

avera

ge

coupling

unresolved

areas

Fig.S 5: Along-strike variations of the averaged coupling value on the first 60 km depth of the slab for 2-plate

(black curves) and 3-plate (red curves) models. Each curve corresponds to a distinct along-dip smoothing value.

Gray shaded areas are areas lacking resolution (see supplementary Figs.2 and 3). Overall, small scale variations

in the average coupling amount are very similar between 2- and 3-plate models. However, at larger scale, we

interpret the lower average coupling value observed North of 30◦S in the 3-plate models with respect to the

2-plate models as a consequence of the increasing Andean sliver motion going North. Therefore, we think this

change in average coupling is an artifact of our modeling trick to retrieve the Andes kinematics rather than a

real feature.

6

-729A -689A -649A

-369A

-329A

-289A

-249A

-209A

-729A -689A -649A

-369A

-329A

-289A

-249A

-209A

-729A -689A -649A

-369A

-329A

-289A

-249A

-209A

-729A -689A -649A

-369A

-329A

-289A

-249A

-209A

0.0

0.5

1.0coupling

-729A -689A -649A

-369A

-329A

-289A

-249A

-209A

sm 0.1x10nrms 2.046

-729A -689A -649A

-369A

-329A

-289A

-249A

-209A

-729A -689A -649A

-369A

-329A

-289A

-249A

-209A

-729A -689A -649A

-369A

-329A

-289A

-249A

-209A

-729A -689A -649A

-369A

-329A

-289A

-249A

-209A

0.0

0.5

1.0coupling

-729A -689A -649A

-369A

-329A

-289A

-249A

-209A

sm 0.1x1nrms 1.672

-729A -689A -649A

-369A

-329A

-289A

-249A

-209A

-729A -689A -649A

-369A

-329A

-289A

-249A

-209A

-729A -689A -649A

-369A

-329A

-289A

-249A

-209A

-729A -689A -649A

-369A

-329A

-289A

-249A

-209A

0.0

0.5

1.0coupling

-729A -689A -649A

-369A

-329A

-289A

-249A

-209A

sm 0.1x0.5nrms 1.647

-729A -689A -649A

-369A

-329A

-289A

-249A

-209A

-729A -689A -649A

-369A

-329A

-289A

-249A

-209A

-729A -689A -649A

-369A

-329A

-289A

-249A

-209A

-729A -689A -649A

-369A

-329A

-289A

-249A

-209A

0.0

0.5

1.0coupling

-729A -689A -649A

-369A

-329A

-289A

-249A

-209A

sm 0.1x0.1nrms 1.592

-729A -689A -649A

-369A

-329A

-289A

-249A

-209A

-729A -689A -649A

-369A

-329A

-289A

-249A

-209A

-729A -689A -649A

-369A

-329A

-289A

-249A

-209A

-729A -689A -649A

-369A

-329A

-289A

-249A

-209A

0.0

0.5

1.0coupling

-729A -689A -649A

-369A

-329A

-289A

-249A

-209A

sm 0.1x0.01nrms 1.590

Fig

.S6:

3-P

late

mod

el/

vary

ing

smooth

ing

valu

esC

ouplin

gpattern

sin

verted

usin

gdifferen

tin

itialsm

ooth

-

ing

valu

essim

ultan

eously

with

the

Andean

sliver

motio

n.

Couplin

gis

colo

rco

ded

asin

main

-text

Fig

ure

3.

The

smooth

ing

valu

ean

dth

enorm

alizedro

ot

mean

square

arein

dicated

inth

ebotto

mleft

corn

erof

eachplo

t.7

−72˚ −68˚ −64˚

−36˚

−32˚

−28˚

−24˚

−20˚

−72˚ −68˚ −64˚

−36˚

−32˚

−28˚

−24˚

−20˚

−72˚ −68˚ −64˚

−36˚

−32˚

−28˚

−24˚

−20˚

−72˚ −68˚ −64˚

−36˚

−32˚

−28˚

−24˚

−20˚

0.0

0.5

1.0coupling

−72˚ −68˚ −64˚

−36˚

−32˚

−28˚

−24˚

−20˚

sm 0.1x10nrms 2.782

−72˚ −68˚ −64˚

−36˚

−32˚

−28˚

−24˚

−20˚

−72˚ −68˚ −64˚

−36˚

−32˚

−28˚

−24˚

−20˚

−72˚ −68˚ −64˚

−36˚

−32˚

−28˚

−24˚

−20˚

−72˚ −68˚ −64˚

−36˚

−32˚

−28˚

−24˚

−20˚

0.0

0.5

1.0coupling

−72˚ −68˚ −64˚

−36˚

−32˚

−28˚

−24˚

−20˚

sm 0.1x1nrms 2.163

−72˚ −68˚ −64˚

−36˚

−32˚

−28˚

−24˚

−20˚

−72˚ −68˚ −64˚

−36˚

−32˚

−28˚

−24˚

−20˚

−72˚ −68˚ −64˚

−36˚

−32˚

−28˚

−24˚

−20˚

−72˚ −68˚ −64˚

−36˚

−32˚

−28˚

−24˚

−20˚

0.0

0.5

1.0coupling

−72˚ −68˚ −64˚

−36˚

−32˚

−28˚

−24˚

−20˚

sm 0.1x0.5nrms 2.087

−72˚ −68˚ −64˚

−36˚

−32˚

−28˚

−24˚

−20˚

−72˚ −68˚ −64˚

−36˚

−32˚

−28˚

−24˚

−20˚

−72˚ −68˚ −64˚

−36˚

−32˚

−28˚

−24˚

−20˚

−72˚ −68˚ −64˚

−36˚

−32˚

−28˚

−24˚

−20˚

0.0

0.5

1.0coupling

−72˚ −68˚ −64˚

−36˚

−32˚

−28˚

−24˚

−20˚

sm 0.1x0.1nrms 2.039

−72˚ −68˚ −64˚

−36˚

−32˚

−28˚

−24˚

−20˚

−72˚ −68˚ −64˚

−36˚

−32˚

−28˚

−24˚

−20˚

−72˚ −68˚ −64˚

−36˚

−32˚

−28˚

−24˚

−20˚

−72˚ −68˚ −64˚

−36˚

−32˚

−28˚

−24˚

−20˚

0.0

0.5

1.0coupling

−72˚ −68˚ −64˚

−36˚

−32˚

−28˚

−24˚

−20˚

sm 0.1x0.01nrms 2.031

Fig

.S7:

2-P

late

mod

el/

vary

ing

smooth

ing

valu

esS

ame

assu

pplem

entary

figure

6but

for

2-p

lateco

nfi

gu-

ration

models,

i.e.w

ithout

Andean

sliver

motio

n.

8

−72˚ −68˚ −64˚

−36˚

−32˚

−28˚

−24˚

−20˚

−72˚ −68˚ −64˚

−36˚

−32˚

−28˚

−24˚

−20˚

−72˚ −68˚ −64˚

−36˚

−32˚

−28˚

−24˚

−20˚

−72˚ −68˚ −64˚

−36˚

−32˚

−28˚

−24˚

−20˚

0.0

0.5

1.0coupling

−72˚ −68˚ −64˚

−36˚

−32˚

−28˚

−24˚

−20˚

Creep at trench

nrms 1.695

−72˚ −68˚ −64˚

−36˚

−32˚

−28˚

−24˚

−20˚

−72˚ −68˚ −64˚

−36˚

−32˚

−28˚

−24˚

−20˚

−72˚ −68˚ −64˚

−36˚

−32˚

−28˚

−24˚

−20˚

−72˚ −68˚ −64˚

−36˚

−32˚

−28˚

−24˚

−20˚

0.0

0.5

1.0coupling

−72˚ −68˚ −64˚

−36˚

−32˚

−28˚

−24˚

−20˚

creep to 15 km

nrms 2.423

−72˚ −68˚ −64˚

−36˚

−32˚

−28˚

−24˚

−20˚

−72˚ −68˚ −64˚

−36˚

−32˚

−28˚

−24˚

−20˚

−72˚ −68˚ −64˚

−36˚

−32˚

−28˚

−24˚

−20˚

−72˚ −68˚ −64˚

−36˚

−32˚

−28˚

−24˚

−20˚

0.0

0.5

1.0coupling

−72˚ −68˚ −64˚

−36˚

−32˚

−28˚

−24˚

−20˚

lock to trench

nrms 1.654

−72˚ −68˚ −64˚

−36˚

−32˚

−28˚

−24˚

−20˚

−72˚ −68˚ −64˚

−36˚

−32˚

−28˚

−24˚

−20˚

−72˚ −68˚ −64˚

−36˚

−32˚

−28˚

−24˚

−20˚

−72˚ −68˚ −64˚

−36˚

−32˚

−28˚

−24˚

−20˚

0.0

0.5

1.0coupling

−72˚ −68˚ −64˚

−36˚

−32˚

−28˚

−24˚

−20˚

lock to 15 km

nrms 2.436

Fig.S 8: 3-Plate models / varying constraints on shallow nodes. Same caption as supplementary figure 6 but

with 0% or 100% coupling imposed on the shallowest nodes (7.5 km depth) or down to 15 km depth.

9

0

10

20

30

40

50 EAST -5.11 mm

10

20

10

20

NORTH -0.01 mm

0

10

2008 2009

0

10

2008 2009

UP -0.34 mm

20102007

−73˚ −72˚ −71˚ −70˚ −69˚ −68˚

−31˚

−30˚

−29˚

−28˚

0.0

0.5

1.0coupling

BTON

Transient source

Mw ~ 6.5

duration 60 days

A

B

0

10

20

30

D (

km

)

0 100 200

max slip (mm)

5

10

0

10

20

30

0 100 200

0.1

0

10

20

30

0 100 200

max slip (mm)max slip (mm)

0.5

Mw7

6

5

East North Up

C

Fig.S 9: A- East, North and Up displacements of the continuous GPS station BTON (located in B) observed

(blue dots) and predicted (red line) by an elastic model in which interseismic coupling is equivalent to the one

presented in figure 3 of the main text, and a simulated slow slip event occur in 2008. Offsets produced by

such an event are indicated in the upper left corner of each plot. B- 50 cm contours of this simulated SSE

(blue lines) and network of continuous GPS stations (squares). Interseismic coupling is color coded. C- black

lines : contours for 5, 10, 0.1 and 0.5 mm offsets produced at BTON depending on the size (D) and maximum

amplitude of the SSE. SSE magnitude is color-coded. Blue-contoured dot: SSE model used for upper figures.

10

References41

B.A. Brooks, M. Bevis, R. Smalley Jr, E. Kendrick, R. Manceda, E. Lauría, R. Maturana, and42

M. Araujo. Crustal motion in the Southern Andes (26–36 S): Do the Andes behave like a mi-43

croplate? Geochemistry Geophysics Geosystems, 4(10):1085, 2003. ISSN 1525-2027.44

B.A. Brooks, M. Bevis, K. Whipple, J.R. Arrowsmith, J. Foster, T. Zapata, E. Kendrick, E. Minaya,45

A. Echalar, M. Blanco, et al. Orogenic-wedge deformation and potential for great earthquakes in46

the central andean backarc. Nature Geoscience, 4(6):380–383, 2011.47

G. Khazaradze and J. Klotz. Short-and long-term effects of GPS measured crustal deformation rates48

along the south central Andes. Journal of geophysical research, 108(B6):2289, 2003. ISSN 0148-49

0227.50

J.P. Loveless and B.J. Meade. Spatial correlation of interseismic coupling and coseismic rupture extent51

of the 2011 mw9.0 tohoku-oki earthquake. Geophys. Res. Lett, 38:L17306, 2011.52

M. Metois, A. Socquet, and C. Vigny. Interseismic coupling, segmentation and mechanical behavior53

of the central chile subduction zone. Journal of Geophysical Research, 117(B3), 2012.54

M. Métois, A. Socquet, C. Vigny, D. Carrizo, S. Peyrat, A. Delorme, E. Maureira, M-C. Valderas-55

Bermejo, and I. Ortega. Revisiting the north chile seismic gap segmentation using gps-derived56

interseismic coupling. Geophysical Journal International, 194(3):1283–1294, 2013.57

M Métois, C Vigny, A Socquet, A Delorme, S Morvan, I Ortega, and C-M Valderas-Bermejo. Gps-58

derived interseismic coupling on the subduction and seismic hazards in the atacama region, chile.59

Geophysical Journal International, 196(2):644–655, 2014.60

JC Ruegg, A. Rudloff, C. Vigny, R. Madariaga, JB De Chabalier, J. Campos, E. Kausel, S. Barrientos,61

and D. Dimitrov. Interseismic strain accumulation measured by GPS in the seismic gap between62

Constitución and Concepción in Chile. Physics of the Earth and planetary interiors, 175(1-2):63

78–85, 2009. ISSN 0031-9201.64

11


Recommended