+ All Categories
Home > Documents > Syngas-based Annex concepts in comparison with CO2-based ...

Syngas-based Annex concepts in comparison with CO2-based ...

Date post: 22-Mar-2022
Category:
Upload: others
View: 12 times
Download: 0 times
Share this document with a friend
17
Syngas-based Annex concepts in comparison with CO 2 -based Power-to-X concepts within pulverized coal combustion power plants Dipl.-Ing. Christian Wolfersdorf Institute of Energy Process Engineering & Chemical Engineering 15th June 20, Cologne, Germany Background Process Description Modelling Results Cost Estimation Summary
Transcript

Syngas-based Annex concepts in comparison with CO2-based Power-to-X concepts within

pulverized coal combustion power plants

Dipl.-Ing. Christian Wolfersdorf Institute of Energy Process Engineering & Chemical Engineering 15th June 20, Cologne, Germany

Background Process Description

Modelling Results

Cost Estimation Summary

Pumped Hydro

Renewables

Oil

NG SC

NG CC

Hard Coal

Lignite

Nuclear

2

Electricity generation – Example Germany

Jürgensen et al., Biomass and Bioenergy, 2014, 66, 126-132

Sources:

→ Challenges:→ Flexibility improvement of fossil-fueled power plants→ Concepts for excess electricity storage in countries with high Renewables share

Installed capacity in GW(el,net) Electricity generation in TWh(el)

2000 0.13

2010 0.42

2020 1.1–13

Excess Electricity in TWh(el)

Energy concept of the Federal Government, Germany, 2010

Wünsch et al., Maßnahmen zur nachhaltigen Integration von Systemen zur gekoppelten Strom- und Wärmebereitstellung in das neue Energieversorgungssystem, Prognos AG, 2013

Background

Background

Flexibility and part load capability of existing fossil fueled power plants (significant remaining lifetime) are limited

Flexibility

PC Hard Coal

PC Lignite

CC Natural Gas

SC Natural Gas

Load gradients % PN / min 4 / 6 2.5 / 4 4 / 8 12 / 15

Intervall % PN 40-90 50-90 40-90 40-90

Minimal load % PN 25 / 20 50 / 40 40 / 30 40 / 20

Start-up time

Hot (< 8 h) h 2.5 / 2 4 / 2 1 / 0.5 < 0.1

Cold (> 48 h) h 5 / 4 8 / 6 3 / 2 < 0.1

Source: Feldmüller, Siemens Energy, Flexibility of today‘s power plants from perspective of manufacturers, Germany, 2013

Information: State of the Art / Optimization potential

→ Challenge for lignite-fired power plants:→ Reducing minimal load to avoid lifetime-consuming start-up, shutdown processes

8th International Freiberg Conference, 12 – 16 June 2016

Process description

4

Annex – Coal to Methanol

Coal preparation PCPP

Gasification Gas cleanup Synthesis &

product upgrading

Elektrolysis & gas storage

Excess Steam Pth Waste water Waste gases Carbonaceous

residues etc.

Electricity Pel Steam Pth

Flue gas

ASU

H2

O2

Further coal preparation

Lignite

Air WaterO2

MeOH

500 MW(th, LHV) 1,450 °C, 40 bar

ca. 2,260 MW(th, LHV)

PTX – CO2 to Methanol

Coal preparation PCPP

Methanol synthesis

Product upgrading

Steam Pth Waste water Waste gases etc.

Electricity Pel Steam Pth Flue gas

Flue gas

Electrolysis & gas storage

H2

CO2Post combustion capture unit

Lignite

Water

O2

MeOH

ca. 2,260 MW(th, LHV)

Flue gas

MEA

Clean gas

150 MW(el)

→ Flexibility improvement of lignite-fired power plant:→ Annex, PTX = power sink → Reduction of net power output, Electricity storage

→ Cost reduction by sharing infrastructure and auxiliary equipment

0 / 150 MW(el) / MAX

Process description

• Case study for different configurations with Methanol production,• Analysed with flow-sheet simulation tools (Aspen Plus) regarding:

− Power consumption, steam integration, flexibility improvements, part load operation of PCPP,− Efficiency, CO2 emissions, CAPEX, OPEX

5

Annex & PTX concept configuration

8th International Freiberg Conference, 12 – 16 June 2016

concepts loads for electricity prices (cases)

Unit Annex 1 Annex 2 PTX 2 Annex 3 Low price (LEP)² High price (HEP)³

Water Electrolysis - 150 MW(el) 150 MW(el) > 150 MW(el) Nominal load Minimal load

PCPP1 2,260 MW(th) 2,260 MW(th) 2,260 MW(th) 2,260 MW(th) Minimal load Nominal load

Gasifier1 500 MW(th) 500 MW(th) - 500 MW(th) Nominal load Nominal load

ASU x x - - Minimal load Nominal load

CO-Shift x x - - Nominal load Nominal load

Synthesis x x x x Nominal load Nominal load 1 LHV-based thermal power input; ²Reference: 6570 h/a; ³Reference: 2190 h/a

Modelling results

6

Efficiency and CO2 emission

𝜼𝜼𝑪𝑪𝑹𝑹,𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 = �̇�𝑨𝑪𝑪,𝑴𝑴𝑨𝑨𝑴𝑴𝑴𝑴

�̇�𝑨𝑪𝑪,𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪,𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨

PCPP

Annex unit

Pth,steam Pth,(el,aux)

Pth,MeOH

Pel,PCPPPth,Coal,PCPP

Pth,Coal,Annex

(Pel,ren,excess)

𝜼𝜼�𝒕𝒕𝒕𝒕 = 𝑷𝑷�𝒕𝒕𝒕𝒕,𝑴𝑴𝑨𝑨𝑴𝑴𝑴𝑴

𝑷𝑷�𝒕𝒕𝒕𝒕,𝒄𝒄𝑪𝑪𝑪𝑪𝑪𝑪,𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 + 𝑷𝑷�𝒕𝒕𝒕𝒕,𝑨𝑨𝑪𝑪,𝑪𝑪𝒂𝒂𝑨𝑨 − 𝑷𝑷�𝒕𝒕𝒕𝒕,𝒔𝒔𝒕𝒕𝑨𝑨𝑪𝑪𝒔𝒔

Annex 1 Annex 2 Annex 3 PTX 2

Electrolysis capacity in MW(el) - 150 780 150

Thermal Input Coal in MW(th) *1 500 500 500 -

Methanol Output in t/d 1200 1480 2740 270

Net Power Output (LEP) in % Reference PCPP Minimal load 50 % 46 32 -26 36

Thermal efficiency in % *² 56,6 45,2 33,7 20,4

Carbon retention MeOH in % 39,0*³ 48,0*³ 88,2*³ 92,0*4

CO2 emissions in g/kWh(th,MeOH) electricity from PCPP, 978 g/kWh(el) 443 617 930 1609

CO2 emissions in g/kWh(th,MeOH) renewable electricity, 53 g/kWh(el) 377 276 80 -156

*1 LHV-based*² Electrolyzer efficiency 67 % (LHV)*³ based on coal*4 based on CO2

Modelling results

7

Efficiency and CO2 emission

𝜼𝜼𝑪𝑪𝑹𝑹,𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 = �̇�𝑨𝑪𝑪,𝑴𝑴𝑨𝑨𝑴𝑴𝑴𝑴

�̇�𝑨𝑪𝑪,𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪,𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 𝜼𝜼𝑪𝑪𝑹𝑹,𝑷𝑷𝑷𝑷𝑷𝑷 =

�̇�𝑨𝑪𝑪,𝑴𝑴𝑨𝑨𝑴𝑴𝑴𝑴

�̇�𝑨𝑪𝑪,𝑪𝑪𝑴𝑴𝟐𝟐𝜼𝜼�𝒕𝒕𝒕𝒕 =

𝑷𝑷�𝒕𝒕𝒕𝒕,𝑴𝑴𝑨𝑨𝑴𝑴𝑴𝑴

𝑷𝑷�𝒕𝒕𝒕𝒕,𝒄𝒄𝑪𝑪𝑪𝑪𝑪𝑪,𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 + 𝑷𝑷�𝒕𝒕𝒕𝒕,𝑨𝑨𝑪𝑪,𝑪𝑪𝒂𝒂𝑨𝑨 − 𝑷𝑷�𝒕𝒕𝒕𝒕,𝒔𝒔𝒕𝒕𝑨𝑨𝑪𝑪𝒔𝒔

PCPP

Annex / PTX unit

Pth,steam Pth,(el,aux)

Pth,MeOH

Pel,PCPPPth,Coal,PCPP

Pth,Coal,Annex

(Pel,ren,excess)

𝑪𝑪𝑴𝑴 + 𝟐𝟐𝑴𝑴𝟐𝟐 ⇄ 𝑪𝑪𝑴𝑴𝟑𝟑𝑴𝑴𝑴𝑴

𝑪𝑪𝑴𝑴𝟐𝟐 + 𝟑𝟑𝑴𝑴𝟐𝟐 ⇄ 𝑪𝑪𝑴𝑴𝟑𝟑𝑴𝑴𝑴𝑴+ 𝑴𝑴𝟐𝟐𝑴𝑴

Annex 1 Annex 2 Annex 3 PTX 2

Electrolysis capacity in MW(el) - 150 780 150

Thermal Input Coal in MW(th) *1 500 500 500 -

Methanol Output in t/d 1200 1480 2740 270

Net Power Output (LEP) in % Reference PCPP Minimal load 50 % 46 32 -26 36

Thermal efficiency in % *² 56,6 45,2 33,7 20,4

Carbon retention MeOH in % 39,0*³ 48,0*³ 88,2*³ 92,0*4

CO2 emissions in g/kWh(th,MeOH) electricity from PCPP, 978 g/kWh(el) 443 617 930 1609

CO2 emissions in g/kWh(th,MeOH) renewable electricity, 53 g/kWh(el) 377 276 80 -156

*1 LHV-based*² Electrolyzer efficiency 67 % (LHV)*³ based on coal*4 based on CO2

54% 69%53%

26%53%

20% 28%

23%

15%

23%

24%

22%

57%

22%

70%

0

500

1.000

1.500

2.000

2.500

16%

80%

Cost estimation

8

Concept Methanol production in t/d Electrolysis capacity in MW(el) Full load hours Electrolysis in h/a

CTX1 1200

- 5830

Annex1 1200

- 5830

Annex2 1480 150

5830

Annex3 2740 780

5830

Annex2 1480 150

5830

PTX2 270 150

5830

PTX2 123 150

2660

Bar

e Er

ecte

d C

osts

(201

5)

in €

/kW

(th,M

eOH

)

Equipment Costs

8th International Freiberg Conference, 12 – 16 June 2016

Infrastructure and auxiliary equipment

Electrolysis unit and gas storage

Gas cleanup, synthesis and upgrading

Coal handling, gasification and ASU

-27 % +89 %

0

200

400

600

800

1.000

1.200

24 €/MWh(el)

19,6 €/MWh(el)

Cost estimation

9

Methanol price range 150-525 €/t

Concept Methanol production in t/d Electrolysis capacity in MW(el) Full load hours Electrolysis in h/a

Leve

lized

Met

hano

l cos

t (2

015)

in €

/t M

eOH

Source: Methanex, Methanol Prices, 2006-2016

Methanol Costs

CTX1 1200

- 5830

Annex1 1200

- 5830

Annex2 1480 150

5830

Annex3 2740 780

5830

Annex2 1480 150

5830

PTX2 270 150

5830

PTX2 123 150

2660

8th International Freiberg Conference, 12 – 16 June 2016

PTX2 270 150

5830

Electricity and fuel in €/t MeOH

CAPEX and other OPEX in €/t MeOH

0 €/MWh(el)

-18 %

70% 80% 90% 100% 110% 120% 130% 140%

Cost estimation

10

Methanol Costs – Sensitivity

(1 – availability) 11,3 %

construction time 3 years

interest rate 10 %

methanol capacity 268 t/d

electricity price LEP 23,86 €/MWh(el) HEP 34,86 €/MWh(el)

Parameter Reference value Reference PTX2

- 50 %

- 50 %

- 50 %

+ 50 %

- 50 %

+ 50 %

+ 50 %

+ 50 %

- 50 %

+ 50 %

Methanol cost (2015)

Summary

11 8th International Freiberg Conference, 12 – 16 June 2016

Annex and PTX concepts improve flexibility of electricity generation from lignite: • Power sink → net power output reduction from 50 % (PCPP) to 32 / 36 % (Annex 2 / PTX 2)

without lifetime-consuming start-up/Shut-down processes• Electrolysis unit needs high availability for cost reduction

Electrolysis capacity (Annex) ↑ • Power sink ↑, 𝜂𝜂𝐶𝐶𝐶𝐶 ↑• Specific CAPEX ↓• Total investment costs ↑• �̅�𝜂𝑡𝑡𝑡 ↓

Annex 2 (1480 t/d) ↔ PTX 2 (268 t/d) 150 MW(el) electrolysis unit • CAPEX → ± 0 % • OPEX ↓ - 45 %• Methanol costs ↓ - 20 %

Future investigations: • Different gasification technologies and synthesis concepts• Higher value chemical products (MTO, MTG, FT)• Dynamic modeling

Annex 1 ↔ CTX 1 (1200 t/d) without electrolysis unit • CAPEX ↓ - 27 %• OPEX ↓ - 8 %• Methanol costs ↓ - 18 %

Acknowledgement

12 8th International Freiberg Conference, 12 – 16 June 2016

Project HotVeGasII: Project number 0327773G • Participating companies

− EnBW Kraftwerke AG− RWE Power AG, Forschung und Entwicklung− Vattenfall Europe Generation AG− AIR LIQUIDE Forschung und Entwicklung GmbH− Siemens Fuel Gasification Technology GmbH & Co. KG

• Participating research partners:− TU München, Institute for Energy Systems− TU Bergakademie Freiberg, Institute of Energy Process Engineering and Chemical Engineering− Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research (IEK-2)− GTT-Technologies, Gesellschaft für Technische Thermochemie und –physik mbH

Project CODY: Project number 03ET7063 • Participating companies

− E.ON Technologies GmbH / Uniper Technologies GmbH− Linde AG (Linde Engineering)

• Participating research partners:− TU Bergakademie Freiberg, Institute of Energy Process Engineering and Chemical Engineering, altogether 5 chairs

The results presented in this presentation solely represent the authors view.

For enquiries or further questions, please contact:

Christian Wolfersdorf Email: [email protected] Phone: +49-(0)3731-394512Fax: +49-(0)3731-394555

Website: www.iec.tu-freiberg.de

13

THANK YOU FOR YOUR ATTENTION!

8th International Freiberg Conference, 12 – 16 June 2016

Backup

14

Coal Analysis

8th International Freiberg Conference, 12 – 16 June 2016

Ultimate analysis Heating Value analysis Ash wt.-% (dry) 10.769 HHV MJ/kg (dry) 23.691 Carbon wt.-% (dry) 60.000 Hydrogen wt.-% (dry) 4.396 Proximate analysis Nitrogen wt.-% (dry) 0.879 Moisture wt.-% 12.000 Chlorine wt.-% (dry) 0.022 Cfix wt.-% (dry) 38.242 Sulfur wt.-% (dry) 1.319 VM wt.-% (dry) 50.989 Oxygen wt.-% (dry) 22.615 Ash wt.-% (dry) 10.769 Sum wt.-% (dry) 100.000 Sum wt.-% (dry) 100.000

0 $/bbl

20 $/bbl

40 $/bbl

60 $/bbl

80 $/bbl

100 $/bbl

120 $/bbl

140 $/bbl

0 €/t MeOH

100 €/t MeOH

200 €/t MeOH

300 €/t MeOH

400 €/t MeOH

500 €/t MeOH

600 €/t MeOH

Jan-

02Ju

l-02

Jan-

03Ju

l-03

Jan-

04Ju

l-04

Jan-

05Ju

l-05

Jan-

06Ju

l-06

Jan-

07Ju

l-07

Jan-

08Ju

l-08

Jan-

09Ju

l-09

Jan-

10Ju

l-10

Jan-

11Ju

l-11

Jan-

12Ju

l-12

Jan-

13Ju

l-13

Jan-

14Ju

l-14

Jan-

15Ju

l-15

Jan-

16

Rohö

lpre

is B

rent

in $

/bbl

Met

hano

lpre

is (E

urop

a, M

etha

nex)

in €

/tBack-up

16

Electricity prices for „grey Methanol“ (power plant electricity)

17 8th International Freiberg Conference, 12 – 16 June 2016-10

0

10

20

30

40

50

60

0 50 100 150 200 250 300 350 400

Stro

mpr

eis

in €

/MW

h

Tag

geordnete Jahresganglinie der Strompreise 2014 (EEX Spot Auktion)

365257

niedriger Preis: Ø = 28,85 €/MWh

hoher Preis:Ø = 42,08 €/MWh

Electricity prices for „green Methanol“ (renewable electricity)

18 8th International Freiberg Conference, 12 – 16 June 2016-10

0

10

20

30

40

50

60

0 50 100 150 200 250 300 350 400

Stro

mpr

eis

in €

/MW

h

Tag

geordnete Jahresganglinie der Strompreise 2014 (EEX Spot Auktion)

365257

niedriger Preis: Ø = 23,73 €/MWh

hoher Preis: Ø = 37,46 €/MWh


Recommended