+ All Categories
Home > Documents > Synthesis and Amylin Receptor Activity of Glycomimetics of ... · Synthesis and Amylin Receptor...

Synthesis and Amylin Receptor Activity of Glycomimetics of ... · Synthesis and Amylin Receptor...

Date post: 23-Oct-2020
Category:
Upload: others
View: 2 times
Download: 0 times
Share this document with a friend
20
Synthesis and Amylin Receptor Activity of Glycomimetics of Pramlintide using Click Chemistry Lauren R. Yule, a,b,c Rebekah L. Bower, a Harveen Kaur, b,c Renata Kowalczyk, a,b,c Debbie L. Hay, a,c Margaret A. Brimble. *a,b,c a The School of Biological Sciences, University of Auckland, 3 Symonds St, Auckland 1010, New Zealand. E-mail: [email protected] b The School of Chemical Sciences, University of Auckland, 23 Symonds St, Auckland 1010, New Zealand. E-mail: [email protected] c Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag 92019, Auckland 1010, New Zealand. 1. Materials All reagents were purchased as reagent grade and used without further purification. O-(6-Chlorobenzotriazol-1-yl)- N,N,N',N'-tetramethyluronium hexafluorophosphate (HCTU), O-(7-azabenzotriazol-1-yl)-N,N,N',N'-tetramethyluronium hexafluorophosphate (HATU), N-(9-fluorenylmethoxycarbonyloxy) succinimide (FmocOSu), 4-[(R,S)-α-[1-(9H-fluoren-9-yl)]- methoxycarbonylamino]-2,4-dimethoxy]phenoxyacetic acid (Fmoc-Rink amide linker) 19 and Fmoc-amino acids were purchased from GL Biochem (Shanghai, China). Fmoc-amino acids were supplied with the following side-chain protection: Fmoc-Tyr(tBu)-OH, Fmoc-Thr(tBu)-OH, Fmoc-Ser(tBu)-OH, Fmoc-Asn(Trt)-OH, Fmoc-His(Trt)-OH, Fmoc-Arg(Pbf)-OH, Fmoc- Gln(Trt)-OH, Fmoc-Cys(Trt)-OH, Fmoc-Lys(Boc)-OH. Fmoc-Ser(tBu)-Ser(Ψ Me,Me pro)-OH 21 was purchased from Aapptec (Louisville, Kentucky). N,N-Diisopropylethylamine (iPr 2 NEt), 2,4,6-collidine, piperidine, N,N’-diisopropylcarbodiimide (DIC), 3,6-dioxa-1,8-octane-dithiol (DODT), triisopropylsilane (iPr 3 SiH), 1-methyl-2-pyrrolidinone (NMP), 6-chloro-1-hydroxybenzotriazole (6-Cl-HOBt), ninhydrin, phenol, potassium cyanide (KCN), methanol (MeOH), ethanol (EtOH), diethyl ether (Et 2 O), hydrazine hydrate (NH 2 NH 2 ·1.5 H 2 O), and copper(II) sulphate pentahydrate (CuSO 4 ·5 H 2 O) were purchased from Sigma-Aldrich (St. Louis, Missouri). Dichloromethane (CH 2 Cl 2 ), disodium hydrogen phosphate (Na 2 HPO 4 ), magnesium sulphate (MgSO 4 ), sodium bicarbonate (NaHCO 3 ), sodium carbonate (Na 2 CO 3 ), ethyl acetate (EtOAc) and hexane were purchased from ECP limited (Auckland, New Zealand). Hydrochloric acid (HCl), sodium hydroxide (NaOH), N,N-dimethylformamide (DMF) (synthesis grade), and acetonitrile (MeCN), were purchased from Scharlau (Barcelona, Spain). Dimethyl sulfoxide (DMSO) was purchased from Romil Limited (Cambridge, United Kingdom). Tris(2-carboxethyl)-phosphine hydrochloride (TCEP·HCl) and L- propargylglycine (L-Pra) were purchased from AK Scientific (Union City, California). Tetrahydrofuran (THF) was purchased from Avantor Performance Materials (Centre Valley, Pennsylvania). Guanidinium chloride (Gu·HCl) was purchased from MP Biomedicals (Santa Ana, California). Trifluoroacetic acid (TFA) was purchased from Halocarbon (River Edge, New Jersey). Aminomethyl polystyrene resin 18 (AMPS) 1 and Fmoc-propargylglycine 20 (Fmoc-L-Pra-OH) 2 were synthesised following literature procedures. 2-acetamido-2-deoxy-β-D-glucopyranosyl azide (β-GlcNAcN 3 ) 22 and N 4 -(2-Acetamido-3,4,6-tri-O- acetyl-2-deoxy-β-D-glucopyranosyl)-N 2 -(9-fluorenylmethylcarbonyl)asparagine (Fmoc-Asn(GlcNAc(OAc) 3 )-OH) 23 3 were supplied from Professor Antony Fairbanks from the University of Canterbury, New Zealand. Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2016
Transcript
  • Synthesis and Amylin Receptor Activity of Glycomimetics of Pramlintide using Click

    Chemistry

    LaurenR.Yule,a,b,cRebekahL.Bower,aHarveenKaur,b,cRenataKowalczyk,a,b,cDebbieL.Hay,a,cMargaretA.Brimble.*a,b,c

    aThe School of Biological Sciences, University of Auckland, 3 Symonds St, Auckland 1010, New Zealand. E-mail:

    [email protected]

    bThe School of Chemical Sciences, University of Auckland, 23 Symonds St, Auckland 1010, New Zealand. E-mail:

    [email protected]

    cMaurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag 92019, Auckland 1010, New

    Zealand.

    1.Materials

    All reagents were purchased as reagent grade and used without further purification. O-(6-Chlorobenzotriazol-1-yl)-

    N,N,N',N'-tetramethyluronium hexafluorophosphate (HCTU), O-(7-azabenzotriazol-1-yl)-N,N,N',N'-tetramethyluronium

    hexafluorophosphate(HATU),N-(9-fluorenylmethoxycarbonyloxy)succinimide(FmocOSu),4-[(R,S)-α-[1-(9H-fluoren-9-yl)]-

    methoxycarbonylamino]-2,4-dimethoxy]phenoxyacetic acid (Fmoc-Rink amide linker) 19 and Fmoc-amino acids were

    purchasedfromGLBiochem(Shanghai,China).Fmoc-aminoacidsweresuppliedwiththefollowingside-chainprotection:

    Fmoc-Tyr(tBu)-OH,Fmoc-Thr(tBu)-OH,Fmoc-Ser(tBu)-OH,Fmoc-Asn(Trt)-OH,Fmoc-His(Trt)-OH,Fmoc-Arg(Pbf)-OH,Fmoc-

    Gln(Trt)-OH,Fmoc-Cys(Trt)-OH,Fmoc-Lys(Boc)-OH.

    Fmoc-Ser(tBu)-Ser(ΨMe,Mepro)-OH 21 was purchased from Aapptec (Louisville, Kentucky). N,N-Diisopropylethylamine

    (iPr2NEt), 2,4,6-collidine, piperidine, N,N’-diisopropylcarbodiimide (DIC), 3,6-dioxa-1,8-octane-dithiol (DODT),

    triisopropylsilane (iPr3SiH), 1-methyl-2-pyrrolidinone (NMP), 6-chloro-1-hydroxybenzotriazole (6-Cl-HOBt), ninhydrin,

    phenol,potassiumcyanide(KCN),methanol(MeOH),ethanol(EtOH),diethylether(Et2O),hydrazinehydrate(NH2NH2·1.5

    H2O), and copper(II) sulphate pentahydrate (CuSO4·5 H2O) were purchased from Sigma-Aldrich (St. Louis, Missouri).

    Dichloromethane (CH2Cl2), disodiumhydrogenphosphate (Na2HPO4),magnesium sulphate (MgSO4), sodiumbicarbonate

    (NaHCO3),sodiumcarbonate(Na2CO3),ethylacetate(EtOAc)andhexanewerepurchasedfromECPlimited(Auckland,New

    Zealand). Hydrochloric acid (HCl), sodium hydroxide (NaOH), N,N-dimethylformamide (DMF) (synthesis grade), and

    acetonitrile (MeCN),were purchased from Scharlau (Barcelona, Spain). Dimethyl sulfoxide (DMSO)was purchased from

    Romil Limited (Cambridge, United Kingdom). Tris(2-carboxethyl)-phosphine hydrochloride (TCEP·HCl) and L-

    propargylglycine(L-Pra)werepurchasedfromAKScientific (UnionCity,California).Tetrahydrofuran(THF)waspurchased

    fromAvantorPerformanceMaterials(CentreValley,Pennsylvania).Guanidiniumchloride(Gu·HCl)waspurchasedfromMP

    Biomedicals(SantaAna,California).Trifluoroaceticacid(TFA)waspurchasedfromHalocarbon(RiverEdge,NewJersey).

    Aminomethyl polystyrene resin 18 (AMPS)1 and Fmoc-propargylglycine20 (Fmoc-L-Pra-OH)2were synthesised following

    literature procedures. 2-acetamido-2-deoxy-β-D-glucopyranosyl azide (β-GlcNAcN3) 22 and N4-(2-Acetamido-3,4,6-tri-O-

    acetyl-2-deoxy-β-D-glucopyranosyl)-N2-(9-fluorenylmethylcarbonyl)asparagine (Fmoc-Asn(GlcNAc(OAc)3)-OH) 233 were

    suppliedfromProfessorAntonyFairbanksfromtheUniversityofCanterbury,NewZealand.

    Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry.This journal is © The Royal Society of Chemistry 2016

  • 2.Generalprocedureforpeptidesynthesis

    Peptides were synthesised by automated 9-fluorenylmethoxycarbonyl solid phase peptide synthesis (Fmoc-SPPS) using

    eitheramicrowaveenhancedBiotage®initiator+alstraoraroomtemperature(rt)TributeTMpeptidesynthesiserona0.1

    mmolscale.

    Using the TributeTM peptide synthesiser, all amino acid couplings were performed as single coupling cycles. Protected

    aminoacidswere incorporatedusingFmoc-AA-OH (5.0eq.,0.5M),HCTU (4.5eq.,0.45M)and iPr2NEt (10eq.,2M) in

    DMF,for45min.Fmoc-[Asn[GlcNAc(OAc)3]-OH23(2eq.),Fmoc-L-Pra-OH20(2eq.)andFmoc-Ser(tBu)-Ser(ΨMe,Mepro)-OH

    (2eq.)21werecoupledfor1.5hatroomtemperatureinthepresenceofHATU(1.9eq.)andcollidine(6eq.)inDMF.The

    Fmocgroupwasremovedusing20%piperidineinDMF(2x5min).

    UsingtheBiotage®initiator+alstrapeptidesynthesiser,allaminoacidcouplingswereperformedassinglecouplingcycles,

    with theexceptionof Fmoc-Arg(Pbf)-OH, Fmoc-His(Trt)-OHand Fmoc-Cys(Trt)-OHwhere adoubling coupling cycle was

    performed. Protected amino acids were incorporated using Fmoc-AA-OH (5.0 eq., 0.2M), HCTU (4.5 eq., 0.23M) and

    iPr2NEt(10eq.,2M)inDMF,for5minatamaximumtemperatureof75°Candat25W,exceptFmoc-Arg(Pbf)-OHwhich

    wascoupledfor25minatrtfollowedbyasecondcouplingfor3minatamaximumtemperatureof72°Candat25W,and

    Fmoc-His(Trt)-OHandFmoc-Cys(Trt)-OHwhichwerecoupledfor10minatrtfollowedbyasecondcouplingfor5minata

    maximumtemperatureof47°Candat25W.Fmoc-Pra-OH20(2eq.),andFmoc-Ser(tBu)-Ser(ΨMe,Mepro)-OH(2eq.)21and

    Fmoc-Asn[GlcNAc(OAc)3]-OH233(2eq.)werecoupledfor15minatamaximumtemperatureof75°Candat25Winthe

    presenceofHATU(1.9eq.)andcollidine(6eq.).TheFmocgroupwasremovedusing20%piperidineinDMF(2x3minata

    maximumtemperatureof70°Candat62W).

    Peptides were cleaved from the resin by treatment with trifluoroacetic acid/triisopropylsilane/water/3,6-dioxa-1,8-

    octanedithiol (TFA/TIS/H2O/DODT) (v/v/v/v; 94/1/2.5/2.5) for 2.5 h at rt The crude peptides were precipitated and

    trituratedwithcolddiethylether(40mL),isolated(centrifugation),anddissolvedinMeCN/H2O(1:1)containing0.1%TFA

    andlyophilised.

    3.Generalprocedureforpurificationandanalysis

    Analytical reversephasehigh-performance liquid chromatography (RP-HPLC)wasperformedon aDionexultimate3000

    usingthefollowingcolumns:VydacDiphenyl300Å,3µm,4.6mmx250mm,AgilentZorbax300SB-C3,3.0mmx150mm;

    3.5µm,AgilentZorbax300SB-C3,4.6mmx150mm;5µm.Analytical liquid-chromatography-massspectrometry(LCMS)

    wasperformedonanAgilentTechnologies1120CompactLCconnectedtoaHPSeries1100MSDspectrometerusingan

    Agilent Zorbax 300SB-C3, 3.0mm x 150mm; 3.5 µm column. Semi-preparative reverse phase high-performance liquid

    chromatography (RP-HPLC) was performed using either a Waters 600E System with a Waters 2487 dual wavelength

    absorbancedetectororaDionexUltimate3000usingthefollowingcolumns:PhenomenexGeminiC18110Å,10.0mmx

    250mm; 5 µm (5mL/min) or Vydac Diphenyl 300 Å, 10.0mm x 250mm; 5 µm (5mL/min). A linear gradient of 0.1%

    trifluoroaceticacid/water (A)and0.1%trifluoroaceticacid/acetonitrile (B)wasusedwithdetectionat210nm.Gradient

    systemsused for semi-preparativeRP-HPLCwereadjustedaccording to theelutionandpeakprofilesobtained fromthe

    analyticalRP-HPLCchromatograms,andarespecifiedintheexperimentalproceduressection.

  • 4.Generalprocedurefordisulfidebondformation(Cys-2/Cys-7)forpramlintide1andanalogues5-7

    Thefinalpeptideconcentrationusedforeachdisulfidebondformationreactionwas3mMinamixtureofGu·HCl (6M)

    andNa2HPO4buffer(adjustedtothefinalconcentrationof0.2M).Themixturewasthenagitatedatrtfor2h.Thecrude

    productwaslyophilisedandpurifiedbyRP-HPLCusingconditionsasspecifiedingeneralproceduressection3.

    5.GeneralprocedureforCu(I)mediatedazide-alkynecycloaddition“click”reactionwithsimultaneousdisulfidebondformation(Cys-2/Cys-7)foranalogues2-4and10-11

    Thefinalpeptideconcentrationusedforeach“click”reactionwas3mMinasolutionofGu·HCl(6M)andNa2HPO4buffer

    (adjustedtothefinalconcentrationof0.2M).ThefinalconcentrationsofTCEP·HClandCuSO4·5H2Owereadjustedto20

    mM.

    0.5MStock solutionsofTCEP·HClandCuSO4·5H2Owereprepared.100µlof the0.5Mstock solutionofTCEP·HClwas

    basifiedtopH7usingsolidNaOH.Therequiredvolumeof0.5MCuSO4·5H2O(6.7eq.)wasaddedtotherequiredvolume

    of0.5M,pH7TCEP·HCl(6.7eq.),mixed,andshakenfor1minuntilablueprecipitateformed.Partialdisappearanceofthe

    blue precipitate was observed over the next 2-3min. The peptide containing a propargylglycine residue (1.0 eq.) was

    dissolved in thedeoxygenated (Ar,30min)buffer solutionofGu·HClandNa2HPO4. ThecloudymixtureofCuSO4·5H2O/

    TCEP·HClwasthenaddedtothepeptidesolutionportion-wisetofurthersolubilisetheprecipitate.Themixturewasthen

    incubated for30minat 60 °Cafterwhich timea clear, faintblue solutionwasobtained.GlcNAcN322 (6 eq.)was then

    addedtothemixtureandthesolutionwaspurgedwithAr,whichwasthensubjectedtomicrowaveirradiationfor2hat60

    °Cand20WandthereactionprogresswasmonitoredbyRP-HPLC.Thecrudeproductwasdiluted(H2O,1mL),acidifiedto

    pH1(TFA),lyophilised,andpurifiedbyRP-HPLCusingconditionsasspecifiedingeneralproceduressection3.

    6.Generalprocedureforacetateremovalwithsimultaneousdisulfidebondformation(Cys-2/Cys-7)foranalogues8-13

    Thecrudeacetateprotectedglycopeptidewasdissolvedin5%NH2NH2·1.5H2OinDMSOtoreachafinalconcentrationof3

    mg/ml.Themixturewasagitatedatrtfor3handDMSOwasremovedbyRP-HPLCusinganisocraticmethodof80%Bfor

    15 minutes. The crude peptide was then lyophilised, and purified by RP-HPLC using conditions specified in general

    procedures3.

    7.Generalprocedureformeasuringtheagonisteffectofpramlintide1andpramlintideanalogues2-13attheAMY1(a)receptor

    Pramlintide1 andglycopeptides2-13werescreenedat theAMY1(a) receptor.Pramlintide1was includedasacontrol in

    each experiment. Cos 7 cells were transiently transfected with the necessary receptor components, and cyclic AMP

    productionwasmeasuredaccordingtoourpublishedmethods.4,5,6ThehCT(a)constructusedwastheinsertnegativehCT(a)

    receptorwithleucineatthepolymorphicaminoacidposition447andanN-terminalhemagglutinintaginpcDNA3.1vector

    (fromProfessorPatrickSexton,MonashInstituteofPharmaceuticalSciences,Monash,Australia).HumanRAMP1withan

    N-terminalmyctaginapcDNA3vectorwasused(fromStevenFoord,GlaxoSmithKline).Peptides1-13wereweighedout

    andstocksolutionsmadeat1mMor10mM(dilutedinsterilewater),onthebasisofpeptideweight.80%peptidecontent

    wasassumedandtakenintoaccountinthesecalculations.AllpeptidestocksolutionswerestoredinsiliconisedorLobind

    (Eppendorf,Hamburg,Germany)microcentrifugetubesat-30°Cin2-6μLaliquotstominimisefreeze-thawcycles.

  • SynthesisofPramlintide1

    AutomatedFmoc-SPPSusingTributeTMrtpeptidesynthesiserwasusedforthesynthesisofthelinearpramlintide14,which

    wasfollowedbyresincleavageusingtheconditionsoutlinedingeneralprocedure2toaffordcrudereduced14asawhite

    solid (172mg,19%yieldbasedon43%puritybyLCMS), (FigureS1). Thecrude linearpeptide14 (9.62mg,2.43×10-3

    mmol)was dissolved in amixture of 6MGu·HCl (0.81mL) andNa2HPO4 (20mg, 0.16mmol) to form a disulfide bond

    betweenCys-2andCys-7accordingtogeneralprocedure4(FigureS2)toaffordcrudepramlintide1.

    The crude pramlintide 1 was purified by semi-preparative RP-HPLC using Dionex Ultimate 3000 on a Vydac Diphenyl

    column,usingagradientof0%Bto13%Bover13min(ca.1%B/min)then13%Bto60%Bover313min(ca.0.15%B/min).

    Fractionswerecollectedat0.5minintervalsandanalysedbyESI-MSandRP-HPLC.Fractionsidentifiedwiththecorrectm/z

    werecombinedandlyophilisedtoaffordthetitlecompound1asawhiteamorphoussolid(2.75mg,67%yield,96%purity);

    Rt30.06min;m/z(ESI-MS)987.7([M+4H]4+requires988.4),FigureS3.

    FigureS1LCMSprofileof crude linearpramlintide14 (ca 43%asanalysedbypeakareaofRP-HPLCat214nm); lineargradientof5%Bto65%Bover20min(ca.3%B/min)at40°C,0.3mL/min.

    FigureS2LCMSprofileofcrudepramlintide1; lineargradientof5%Bto65%Bover20min, (ca.3%B/min)at40°C,0.3

    mL/min.

  • FigureS3LCMSprofileofpurepramlintide1(97%);lineargradientof5%Bto65%Bover60min,(ca.1%B/min)at40°C,

    0.3mL/min.

    Synthesisofpramlintideanalogue2

    AutomatedFmoc-SPPSusingTributeTMrtpeptidesynthesiserwasusedforthesynthesisofreducedpramlintideprecursor

    15,whichwas followedby resin cleavageusing the conditionsoutlined in generalprocedure2 toafford crude reduced

    pramlintideanalogue15asawhitesolid(170mg,29%yieldbasedon68%puritybyLCMS)(FigureS4).Thecrudelinear

    peptide15(20mg,4.7×10-3mmol)underwentaCu(I)mediatedcycloadditionreactionandsimultaneousdisulfidebond

    formation(betweenCys-2andCys-7)withGlcNAcN322(7.45mg,3.1×10-2mmol)accordingtogeneralprocedure5(Figure

    S5).Thisreactionwascarriedoutusing0.5MTCEP·HCl(68µL,3.4×10-2mmol,pH7),0.5MCuSO4·5H2O(68µL,3.4×10-2

    mmol)andNa2HPO4(48.3mg,0.34mmol)in6MGu·HCl(1.56mL)toaffordcrudepramlintideanalogue2.

    The crudepramlintide analogue2waspurifiedby semi-preparativeRP-HPLCusingDionexUltimate3000onaDiphenyl

    Vydac column, using a gradient of 0%B to 13%B over 13 min (ca. 1%B/min) then 13%B to 60%B over 313 min (ca.

    0.15%B/min).Thisaffordedthetitlecompound2asawhiteamorphoussolid(3.3mg,23%yield,95%purity);Rt15.23min;

    m/z(ESI-MS)1045.0([M+4H]4+requires1045.1),FigureS6.

  • FigureS4LCMSprofileofcrudelinearpramlintideanalogue15(ca68%asanalysedbypeakareaofRP-HPLCat214nm);lineargradientof5%Bto65%Bover20min,(ca.3%B/min)at40°C,0.3mL/min.

    FigureS5:LCMSprofileofcrudepramlintideanalogue2;lineargradientof5%Bto65%Bover20min,(ca.3%B/min)at40°C,0.3mL/min.

    FigureS6:LCMSprofileofpurepramlintideanalogue2(95%);lineargradientof5%Bto65%Bover20min,(ca.3%B/min)at40°C,0.3mL/min.

    Synthesisofpramlintideanalogue3

  • AutomatedFmoc-SPPSusingTributeTMrtpeptidesynthesiserwasusedforthesynthesisofreducedpramlintideprecursor

    16whichwas followedby resin cleavage using the conditions outlined in general procedure 2 to afford crude reduced

    pramlintideanalogue16asawhitesolid(222mg,30%yieldbasedon53%puritybyLCMS)(FigureS7).Thecrudelinear

    peptide16(20mg,4.7×10-3mmol)underwentaCu(I)mediatedcycloadditionreactionandsimultaneousdisulfidebond

    formation(betweenCys-2andCys-7)withGlcNAcN322(7.45mg,3.1×10-2mmol)accordingtogeneralprocedure5(Figure

    S8).Thisreactionwascarriedoutusing0.5MTCEP·HCl(68µL,3.4×10-2mmol,pH7),0.5MCuSO4·5H2O(68µL,3.4×10-2

    mmol)andNa2HPO4(48.3mg,0.34mmol)in6MGu·HCl(1.56mL)toaffordcrudepramlintideanalogue3.

    The crudepramlintide analogue3waspurifiedby semi-preparativeRP-HPLCusingDionexUltimate3000onaDiphenyl

    Vydac column, using a gradient of 0%B to 13%B over 13 min (ca. 1%B/min) then 13%B to 60%B over 313 min (ca.

    0.15%B/min).Thisaffordedthetitlecompound3asawhiteamorphoussolid(1.1mg,10%yield,97%purity);Rt39.88min;

    m/z(ESI-MS)1045.1([M+4H]4+requires1045.1),FigureS9.

    FigureS7LCMSprofileofcrudelinearpramlintideanalogue16(ca53%asanalysedbypeakareaofRP-HPLCat214nm);

    lineargradientof5%Bto65%Bover20min,(ca.3%B/min)at40°C,0.3mL/min.

    FigureS8LCMSprofileofcrudepramlintideanalogue3;lineargradientof5%Bto65%Bover20min,(ca.3%B/min)at40°C,0.3mL/min.

  • FigureS9:AnalyticalRP-HPLCandESI-MSprofileofpurepramlintideanalogue3 (97%); lineargradientof5%Bto65%B

    over60min(ca.1%B/min)at40°C,1mL/min.

    Synthesisofpramlintideanalogue4

    AutomatedFmoc-SPPSusingTributeTMrtpeptidesynthesiserwasusedforthesynthesisoflinearpramlintideanalogue17

    which was followed by resin cleavage using the conditions outlined in general procedure 2 to afford crude linear

    pramlintide17asawhitesolid(156mg,19%yieldbasedon48%puritybyLCMS)(FigureS10).Thecrudelinearpeptide17

    (20mg,5.1×10-3mmol)underwentaCu(I)mediatedcycloadditionreactionandsimultaneousdisulfidebondformation

    (betweenCys-2andCys-7)withGlcNAcN322(7.55mg,3.1×10-2mmol)accordingtogeneralprocedure5(FigureS11).This

    reactionwascarriedoutusing0.5MTCEP·HCl(136µL,6.8×10-2mmol,pH7),0.5MCuSO4·5H2O(136µL,6.8×10-2mmol)

    andNa2HPO4(48.3mg,0.34mmol)in6MGu·HCl(1.43mL)toaffordthecrudepramlintideanalogue4.

    The crudepramlintide analogue4waspurifiedby semi-preparativeRP-HPLCusingDionexUltimate3000onaDiphenyl

    Vydac column, using a gradient of 0%B to 13%B over 13 min (ca. 1%B/min) then 13%B to 60%B over 313 min (ca.

    0.15%B/min).Thisaffordedthetitlecompound4asawhiteamorphoussolid(2.6mg,24%yield,96%purity);Rt15.32min;

    m/z(ESI-MS)1101.8([M+4H]4+requires1101.8),FigureS12.

  • FigureS10LCMSprofileofcrudelinearpramlintideanalogue17(ca48%asanalysedbypeakareaofRP-HPLCat214nm);lineargradientof5%Bto65%Bover20min,(ca.3%B/min)at40°C,0.3mL/min.

    FigureS11:LCMSprofileofcrudepramlintideanalogue4;lineargradientof5%Bto65%Bover20min,(ca.3%B/min)at40°C,0.3mL/min.

    FigureS12LCMSprofileofpurepramlintideanalogue4(98%);lineargradientof5%Bto65%Bover20min,(ca.3%B/min)at40°C,0.3mL/min.

    Synthesisofpramlintideanalogue5

  • Thecrudelinearpeptide15(seesynthesisofpramlintideanalogue2,FigS4)(20mg,4.7×10-3mmol)wasdissolvedina

    solutionof 6MGu·HCl (1.56mL) andNa2HPO4 (44mg, 0.31mmol), to forma disulfidebondbetweenCys-2 andCys-7

    accordingtogeneralprocedure4toaffordcrudepramlintideanalogue5(FigureS13).

    The crudepramlintide analogue5waspurifiedby semi-preparativeRP-HPLCusingDionexUltimate3000onaDiphenyl

    Vydac column using a gradient of 0%B to 14%B over 14 min (ca. 1%B/min) then 14%B to 60%B over 307 min (ca.

    0.15%B/min).Fractionswerecollectedat0.5minintervalsandanalysedbyESI-MSandRP-HPLC.Fractionswiththecorrect

    m/zwerecombinedand lyophilised toafford thetitlecompound5asawhiteamorphoussolid (3.6mg,26%yield,99%

    purity);Rt16.28min;m/z(ESI-MS)983.5([M+4H]4+requires983.6),FigureS14.

    FigureS13LCMSprofileofcrudepramlintideanalogue5;lineargradientof5%Bto65%Bover20min,(ca.3%B/min)at40°C,0.3mL/min.

    FigureS14:LCMSprofileofpurepramlintideanalogue5(98%);lineargradientof5%Bto65%Bover20min,(ca.3%B/min)at40°C,0.3mL/min.

    Synthesisofpramlintideanalogue6

    Thecrudelinearpeptide16(seesynthesisofpramlintideanalogue3,FigS7)(20mg,4.7×10-3mmol)wasdissolvedina

    solutionof 6MGu·HCl (1.56mL) andNa2HPO4 (44mg, 0.31mmol), to forma disulfidebondbetweenCys-2 andCys-7

    accordingtogeneralprocedure4toaffordcrudepramlintideanalogue6(FigureS15).

    Thecrudepramlintideanalogue6waspurifiedbysemi-preparativeRP-HPLCusingWaters600ESystemonaGeminiC18

    column,usingagradientof0%Bto20%Bover20min(ca.1%B/min)then20%Bto60%Bover267min(ca.0.15%B/min).

  • Thisaffordedthetitlecompound6asawhiteamorphoussolid(3.5mg,33%yield,96%purity);Rt16.10min;m/z(ESI-MS)

    983.5([M+4H]4+requires983.6),FigureS16.

    FigureS15LCMSprofileofcrudepramlintideanalogue6;lineargradientof5%Bto65%Bover20min,(ca.3%B/min)at40

    °C,0.3mL/min.

    FigureS16LCMSprofileofpurepramlintideanalogue6(96%);lineargradientof5%Bto65%Bover20min,(ca.3%B/min)

    at40°C,0.3mL/min.

    Synthesisofpramlintideanalogue7

    Thecrudelinearpeptide17(seesynthesisofpramlintideanalogue4,FigS10)(20mg,5.1×10-3mmol)wasdissolvedina

    solutionof 6MGu·HCl (1.70mL) andNa2HPO4 (48mg, 0.34mmol), to forma disulfidebondbetweenCys-2 andCys-7

    accordingtogeneralprocedure4toaffordcrudepramlintideanalogue7(FigureS17).

    Thecrudepramlintideanalogue7waspurifiedbysemi-preparativeRP-HPLCusingDionexUltimate3000onaGeminiC18

    column,usingagradientof0%Bto23%Bover23min(ca.1%B/min)then23%Bto60%Bover247min(ca.0.15%B/min).

    Thisaffordedthetitlecompound7asawhiteamorphoussolid(6.90mg,8%yield,99%purity);Rt34.97min;m/z(ESI-MS)

    978.5([M+4H]4+requires978.9),FigureS18.

  • FigureS17LCMSprofileofcrudepramlintideanalogue7;lineargradientof5%Bto65%Bover20min,(ca.3%B/min)at40°C,0.3mL/min.

    FigureS18:AnalyticalRP-HPLCandESI-MSprofileofpurepramlintideanalogue7(99%);5%Bto65%Bover60min(ca.1%B/min)at40°C,1mL/min.

    Synthesisofpramlintideanalogue8

    AutomatedFmoc-SPPSusingTributeTMrtpeptidesynthesiserwasusedforthesynthesisofthecrudereducedandacetate

    protectedpramlintideanalogue24whichwas followedbyresincleavageusingtheconditionsasoutlined in thegeneral

    procedure2toaffordcrudereducedandacetateprotectedpramlintide24asawhitesolid(186mg,45%yieldbasedon

    45%puritybyLCMS)(FigureS19).Acetateprotectinggroupswereremovedfrompeptide24 (30mg,7.22×10-3mmol)

    along with simultaneous disulfide bond formation between Cys-2 and Cys-7 using conditions described in general

    procedure6usingNH2NH2·1.5H2O(0.5mL)inDMSO(9.5mL),toaffordcrudepramlintideanalogue8(FigureS20).

    Thecrudepramlintideanalogue8waspurifiedbysemi-preparativeRP-HPLCusingDionexUltimate3000onaGeminiC18

    column,usingagradientof0%Bto25%Bover25min(ca.1%B/min)then25%Bto60%Bover233min(ca.0.15%B/min).

    Thisaffordedthetitlecompound8asawhiteamorphoussolid(5.5mg,42%yield,99%purity);Rt30.17min;m/z(ESI-MS)

    1038.9([M+4H]4+requires1039.1),FigureS21.

  • FigureS19:LCMSprofileofcrudelinearandacetateprotectedpramlintideanalogue24(ca45%asanalysedbypeakarea

    ofRP-HPLCat214nm);lineargradientof5%Bto65%Bover20min,(ca.3%B/min)at40°C,0.3mL/min.

    FigureS20:LCMSprofileofcrudepramlintideanalogue8;lineargradientof5%Bto65%Bover20min,(ca.3%B/min)at40

    °C,0.3mL/min.

    FigureS21:LCMSprofileofpurepramlintideanalogue8(98%);lineargradientof5%Bto65%Bover60min,(ca.1%B/min)

    at40°C,0.3mL/min.

    Synthesisofpramlintideanalogue9

  • AutomatedFmoc-SPPSusingBiotage®microwaveenhancedpeptide synthesiserwasused for the synthesisof thecrude

    reducedandacetateprotectedpramlintide25whichwas followedby resincleavageusing theconditionsasoutlined in

    generalprocedure2 toafford crude reducedandacetateprotectedpramlintide25asawhite solid (256mg,23%yield

    basedon41%purityoffullyacetateprotectedproductbyLCMS)(FigureS22).Acetateprotectinggroupswereremoved

    frompeptide25 (32mg,7.34×10-3mmol)alongwith simultaneousdisulfidebond formationbetweenCys-2andCys-7

    using conditions described in general procedure 6 using NH2NH2·1.5 H2O (0.5 mL) in DMSO (9.5 mL) to afford crude

    pramlintideanalogue9(FigureS23).

    Thecrudepramlintideanalogue9waspurifiedbysemi-preparativeRP-HPLCusingDionexUltimate3000onaGeminiC18

    column,usingagradientof0%Bto25%Bover25min(ca.1%B/min)then25%Bto60%Bover233min(ca.0.15%B/min).

    Thisaffordedthetitlecompound9asawhiteamorphoussolid(4.5mg,36%yield,98%purity);Rt29.80min;m/z(ESI-MS)

    1089.8([M+4H]4+requires1089.8),FigureS24.

    FigureS22:LCMSprofileofcrudelinearandacetateprotectedpramlintideanalogue25; lineargradientof5%Bto65%B

    over20min,(ca.3%B/min)at40°C,0.3mL/min.

  • FigureS23:LCMSprofileofcrudepramlintideanalogue9;lineargradientof5%Bto65%Bover20min,(ca.3%B/min)at40

    °C,0.3mL/min.

    FigureS24:LCMSprofileofpurepramlintideanalogue9(98%);lineargradientof5%Bto65%Bover60min,(ca.1%B/min)

    at40°C,0.3mL/min.

    Synthesisofpramlintideanalogue10

    Crudepramlintide12(20mg,4.8×10-3mmol)underwentaCu(I)mediatedcycloadditionreaction(betweenCys-2andCys-

    7)withGlcNAcN322 (7.15mg,2.9×10-2mmol)accordingtogeneralprocedure5(FigureS25).Thisreactionwascarried

    outusing0.5MTCEP·HCl(64µL,3.2×10-2mmol),0.5MCuSO4·5H2O(64µL,3.2×10-2mmol)andNa2HPO4(45.7mg,0.32

    mmol)in6MGu·HCl(1.48mL)toaffordcrudepramlintideanalogue10.

    Thecrudepeptide10wasthenpurifiedbysemi-preparativeRP-HPLCusingDionexUltimate3000onaGeminiC18column,

    using a gradient of 0%B to 15%B over 15min (ca.1%B/min) then 15%B to 60%B over 300min (ca.0.15%B/min). This

    afforded the title compound10 asawhiteamorphoussolid (2.8mg,25%yield,99%purity).Rt38.43min;m/z (ESI-MS)

    1095.8([M+4H]4+requires1095.8),FigureS26.

  • FigureS25:LCMSprofileofcrudepramlintideanalogue10;lineargradientof5%Bto65%Bover20min,(ca.3%B/min)at

    40°C,0.3mL/min.

    FigureS26:AnalyticalRP-HPLCandESI-MSprofileofpurepramlintideanalogue10(96%);5%Bto65%Bover63min(ca.

    1%B/min)at40°C,1mL/min.

    Synthesisofpramlintideanalogue11

    Crudepramlintideanalogue13(20mg,4.8×10-3mmol)underwentaCu(I)mediatedcycloadditionreaction(betweenCys-

    2andCys-7)withGlcNAcN322(7.15mg,2.9×10-2mmol)accordingtogeneralprocedure5(FigureS27).Thisreactionwas

    carriedoutusing0.5MTCEP·HCl(64µL,3.2×10-2mmol),0.5MCuSO4·5H2O(64µL,3.2×10-2mmol)andNa2HPO4(45.7

    mg,0.32mmol)in6MGu·HCl(1.48mL)toaffordcrudepramlintideanalogue11.

    The crude pramlintide analogue 11 was then purified by semi-preparative RP-HPLC using Dionex Ultimate 3000 on a

    GeminiC18 column,usingagradientof0%B to15%Bover15min (ca.1%B/min) then15%B to60%Bover300min (ca.

    0.15%B/min).Thisafforded the title compound11 asawhiteamorphoussolid (3.1mg,28%yield,99%purity).Rt26.52

    min;m/z(ESI-MS)1095.8[M+4H]4+([M+4H]4+requires1096.0),FigureS28.

  • FigureS27:LCMSprofileofcrudepramlintideanalogue11;lineargradientof5%Bto65%Bover20min,(ca.3%B/min)at

    40°C,0.3mL/min.

    FigureS28:AnalyticalRP-HPLCandESI-MSprofileofpurepramlintideanalogue11(99%);5%Bto65%Bover63min(ca.

    1%B/min)at40°C,1mL/min,usingAgilentZorbax300SB-C3,4.6mmx150mm,5µmcolumn.

    Synthesisofpramlintideanalogue12

    AutomatedFmoc-SPPSusingTributeTMrtpeptidesynthesiserwasusedforthesynthesisofthecrudereducedandacetate

    protectedpramlintide26whichwasfollowedbyresincleavageusingtheconditionsasoutlinedinthegeneralprocedure2

    toaffordcrudereducedandacetateprotectedpramlintide26asawhitesolid(220mg,27%yieldbasedon52%purityby

    LCMS) (Figure S 29). Acetate protecting groups were removed from peptide 26 (21 mg, 4.7 × 10-3 mmol) along with

    simultaneousdisulfidebondformationbetweenCys-2andCys-7usingconditionsdescribedingeneralprocedure6using

    NH2NH2·1.5H2O(0.88mL)inDMSO(16.7mL)toaffordcrudepramlintideanalogue12.

    Thecrudepramlintideanalogue12wasthenpurifiedbysemi-preparativeRP-HPLCusingDionexultimate3000onaGemini

    C18 column, using a gradient of 0%B to 15%B over 15 min (ca. 1%B/min) then 15%B to 60%B over 300 min (ca.

  • 0.15%B/min).Thisafforded the title compound12 asawhiteamorphoussolid (3.8mg,36%yield,99%purity).Rt32.82

    min;m/z(ESI-MS)1034.2([M+4H]4+requires1034.4),FigureS30.

    FigureS29:LCMSprofileofcrudepramlintideanalogue26(ca52%asanalysedbypeakareaofRP-HPLCat214nm);linear

    gradientof5%Bto65%Bover20min,(ca.3%B/min)at40°C,0.3mL/min.

    FigureS30:AnalyticalRP-HPLCandESI-MSprofileofpurepramlintideanalogue12(98%);5%Bto65%Bover60min(ca.

    1%B/min)at40°C,1mL/min.

    Synthesisofpramlintideanalogue13

    AutomatedFmoc-SPPSusingBiotage®microwaveenhancedpeptide synthesiserwasused for the synthesisof thecrude

    reducedandacetateprotectedpramlintide27whichwasfollowedbyresincleavageusingtheconditionsasoutlinedinthe

    generalprocedure2toaffordcrudereducedandacetateprotectedpramlintide27(240mg,30%yieldbasedon41%purity

    offullyacetateprotectedproductbyLCMS)(FigureS31).Acetateprotectinggroupswereremovedfrompeptide27(22

    mg, 4.9 × 10-3 mmol) along with simultaneous disulfide bond formation between Cys-2 and Cys-7 using conditions

  • describedingeneralprocedure6usingNH2NH2·1.5H2O(0.88mL)inDMSO(16.7mL)toaffordcrudepramlintideanalogue

    13(FigureS32).

    The crude pramlintide analogue 13 was then purified by semi-preparative RP-HPLC using Dionex Ultimate 3000 on a

    GeminiC18 column,usingagradientof0%B to15%Bover15min (ca.1%B/min) then15%B to60%Bover300min (ca.

    0.15%B/min).Thisafforded the title compound13 asawhiteamorphoussolid (4.1mg,36%yield,99%purity).Rt31.68

    min;m/z(ESI-MS)1034.0([M+4H]4+requires1034.4),FigureS33.

    FigureS29:LCMSprofileofcrudepramlintideanalogue31;lineargradientof5%Bto65%Bover20min,(ca.3%B/min)at

    40°C,0.3mL/min.

    FigureS30:LCMSprofileofcrudepramlintideanalogue32;lineargradientof5%Bto65%Bover20min,(ca.3%B/min)at

    40°C,0.3mL/min.

    FigureS31:AnalyticalRP-HPLCandESI-MSprofileofpurepramlintideanalogue33(99%);5%Bto65%Bover63min(ca.

    1%B/min)at40°C,1mL/min.

  • References

    1. P.W.R.Harris,S.H.YangandM.A.Brimble,TetrahedronLett.,2011,52,6024-6026.2. K.J.Jensen,M.MeldalandK.Bock,J.Chem.Soc.,PerkinTrans.1,1993,2119-2129.3. T.Inazu,Synlett,1993,11,869-870.4. R.J.BaileyandD.L.Hay,Peptides,2006,27,1367-1375.5. J.J.Gingell,T.Qi,R.J.BaileyandD.L.Hay,Peptides,2010,31,1400-1404.6. J.J.Gingell,E.R.BurnsandD.L.Hay,Endocrinology,2014,155,21-26.


Recommended