+ All Categories
Transcript
  • Synthesis and Amylin Receptor Activity of Glycomimetics of Pramlintide using Click

    Chemistry

    LaurenR.Yule,a,b,cRebekahL.Bower,aHarveenKaur,b,cRenataKowalczyk,a,b,cDebbieL.Hay,a,cMargaretA.Brimble.*a,b,c

    aThe School of Biological Sciences, University of Auckland, 3 Symonds St, Auckland 1010, New Zealand. E-mail:

    [email protected]

    bThe School of Chemical Sciences, University of Auckland, 23 Symonds St, Auckland 1010, New Zealand. E-mail:

    [email protected]

    cMaurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag 92019, Auckland 1010, New

    Zealand.

    1.Materials

    All reagents were purchased as reagent grade and used without further purification. O-(6-Chlorobenzotriazol-1-yl)-

    N,N,N',N'-tetramethyluronium hexafluorophosphate (HCTU), O-(7-azabenzotriazol-1-yl)-N,N,N',N'-tetramethyluronium

    hexafluorophosphate(HATU),N-(9-fluorenylmethoxycarbonyloxy)succinimide(FmocOSu),4-[(R,S)-α-[1-(9H-fluoren-9-yl)]-

    methoxycarbonylamino]-2,4-dimethoxy]phenoxyacetic acid (Fmoc-Rink amide linker) 19 and Fmoc-amino acids were

    purchasedfromGLBiochem(Shanghai,China).Fmoc-aminoacidsweresuppliedwiththefollowingside-chainprotection:

    Fmoc-Tyr(tBu)-OH,Fmoc-Thr(tBu)-OH,Fmoc-Ser(tBu)-OH,Fmoc-Asn(Trt)-OH,Fmoc-His(Trt)-OH,Fmoc-Arg(Pbf)-OH,Fmoc-

    Gln(Trt)-OH,Fmoc-Cys(Trt)-OH,Fmoc-Lys(Boc)-OH.

    Fmoc-Ser(tBu)-Ser(ΨMe,Mepro)-OH 21 was purchased from Aapptec (Louisville, Kentucky). N,N-Diisopropylethylamine

    (iPr2NEt), 2,4,6-collidine, piperidine, N,N’-diisopropylcarbodiimide (DIC), 3,6-dioxa-1,8-octane-dithiol (DODT),

    triisopropylsilane (iPr3SiH), 1-methyl-2-pyrrolidinone (NMP), 6-chloro-1-hydroxybenzotriazole (6-Cl-HOBt), ninhydrin,

    phenol,potassiumcyanide(KCN),methanol(MeOH),ethanol(EtOH),diethylether(Et2O),hydrazinehydrate(NH2NH2·1.5

    H2O), and copper(II) sulphate pentahydrate (CuSO4·5 H2O) were purchased from Sigma-Aldrich (St. Louis, Missouri).

    Dichloromethane (CH2Cl2), disodiumhydrogenphosphate (Na2HPO4),magnesium sulphate (MgSO4), sodiumbicarbonate

    (NaHCO3),sodiumcarbonate(Na2CO3),ethylacetate(EtOAc)andhexanewerepurchasedfromECPlimited(Auckland,New

    Zealand). Hydrochloric acid (HCl), sodium hydroxide (NaOH), N,N-dimethylformamide (DMF) (synthesis grade), and

    acetonitrile (MeCN),were purchased from Scharlau (Barcelona, Spain). Dimethyl sulfoxide (DMSO)was purchased from

    Romil Limited (Cambridge, United Kingdom). Tris(2-carboxethyl)-phosphine hydrochloride (TCEP·HCl) and L-

    propargylglycine(L-Pra)werepurchasedfromAKScientific (UnionCity,California).Tetrahydrofuran(THF)waspurchased

    fromAvantorPerformanceMaterials(CentreValley,Pennsylvania).Guanidiniumchloride(Gu·HCl)waspurchasedfromMP

    Biomedicals(SantaAna,California).Trifluoroaceticacid(TFA)waspurchasedfromHalocarbon(RiverEdge,NewJersey).

    Aminomethyl polystyrene resin 18 (AMPS)1 and Fmoc-propargylglycine20 (Fmoc-L-Pra-OH)2were synthesised following

    literature procedures. 2-acetamido-2-deoxy-β-D-glucopyranosyl azide (β-GlcNAcN3) 22 and N4-(2-Acetamido-3,4,6-tri-O-

    acetyl-2-deoxy-β-D-glucopyranosyl)-N2-(9-fluorenylmethylcarbonyl)asparagine (Fmoc-Asn(GlcNAc(OAc)3)-OH) 233 were

    suppliedfromProfessorAntonyFairbanksfromtheUniversityofCanterbury,NewZealand.

    Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry.This journal is © The Royal Society of Chemistry 2016

  • 2.Generalprocedureforpeptidesynthesis

    Peptides were synthesised by automated 9-fluorenylmethoxycarbonyl solid phase peptide synthesis (Fmoc-SPPS) using

    eitheramicrowaveenhancedBiotage®initiator+alstraoraroomtemperature(rt)TributeTMpeptidesynthesiserona0.1

    mmolscale.

    Using the TributeTM peptide synthesiser, all amino acid couplings were performed as single coupling cycles. Protected

    aminoacidswere incorporatedusingFmoc-AA-OH (5.0eq.,0.5M),HCTU (4.5eq.,0.45M)and iPr2NEt (10eq.,2M) in

    DMF,for45min.Fmoc-[Asn[GlcNAc(OAc)3]-OH23(2eq.),Fmoc-L-Pra-OH20(2eq.)andFmoc-Ser(tBu)-Ser(ΨMe,Mepro)-OH

    (2eq.)21werecoupledfor1.5hatroomtemperatureinthepresenceofHATU(1.9eq.)andcollidine(6eq.)inDMF.The

    Fmocgroupwasremovedusing20%piperidineinDMF(2x5min).

    UsingtheBiotage®initiator+alstrapeptidesynthesiser,allaminoacidcouplingswereperformedassinglecouplingcycles,

    with theexceptionof Fmoc-Arg(Pbf)-OH, Fmoc-His(Trt)-OHand Fmoc-Cys(Trt)-OHwhere adoubling coupling cycle was

    performed. Protected amino acids were incorporated using Fmoc-AA-OH (5.0 eq., 0.2M), HCTU (4.5 eq., 0.23M) and

    iPr2NEt(10eq.,2M)inDMF,for5minatamaximumtemperatureof75°Candat25W,exceptFmoc-Arg(Pbf)-OHwhich

    wascoupledfor25minatrtfollowedbyasecondcouplingfor3minatamaximumtemperatureof72°Candat25W,and

    Fmoc-His(Trt)-OHandFmoc-Cys(Trt)-OHwhichwerecoupledfor10minatrtfollowedbyasecondcouplingfor5minata

    maximumtemperatureof47°Candat25W.Fmoc-Pra-OH20(2eq.),andFmoc-Ser(tBu)-Ser(ΨMe,Mepro)-OH(2eq.)21and

    Fmoc-Asn[GlcNAc(OAc)3]-OH233(2eq.)werecoupledfor15minatamaximumtemperatureof75°Candat25Winthe

    presenceofHATU(1.9eq.)andcollidine(6eq.).TheFmocgroupwasremovedusing20%piperidineinDMF(2x3minata

    maximumtemperatureof70°Candat62W).

    Peptides were cleaved from the resin by treatment with trifluoroacetic acid/triisopropylsilane/water/3,6-dioxa-1,8-

    octanedithiol (TFA/TIS/H2O/DODT) (v/v/v/v; 94/1/2.5/2.5) for 2.5 h at rt The crude peptides were precipitated and

    trituratedwithcolddiethylether(40mL),isolated(centrifugation),anddissolvedinMeCN/H2O(1:1)containing0.1%TFA

    andlyophilised.

    3.Generalprocedureforpurificationandanalysis

    Analytical reversephasehigh-performance liquid chromatography (RP-HPLC)wasperformedon aDionexultimate3000

    usingthefollowingcolumns:VydacDiphenyl300Å,3µm,4.6mmx250mm,AgilentZorbax300SB-C3,3.0mmx150mm;

    3.5µm,AgilentZorbax300SB-C3,4.6mmx150mm;5µm.Analytical liquid-chromatography-massspectrometry(LCMS)

    wasperformedonanAgilentTechnologies1120CompactLCconnectedtoaHPSeries1100MSDspectrometerusingan

    Agilent Zorbax 300SB-C3, 3.0mm x 150mm; 3.5 µm column. Semi-preparative reverse phase high-performance liquid

    chromatography (RP-HPLC) was performed using either a Waters 600E System with a Waters 2487 dual wavelength

    absorbancedetectororaDionexUltimate3000usingthefollowingcolumns:PhenomenexGeminiC18110Å,10.0mmx

    250mm; 5 µm (5mL/min) or Vydac Diphenyl 300 Å, 10.0mm x 250mm; 5 µm (5mL/min). A linear gradient of 0.1%

    trifluoroaceticacid/water (A)and0.1%trifluoroaceticacid/acetonitrile (B)wasusedwithdetectionat210nm.Gradient

    systemsused for semi-preparativeRP-HPLCwereadjustedaccording to theelutionandpeakprofilesobtained fromthe

    analyticalRP-HPLCchromatograms,andarespecifiedintheexperimentalproceduressection.

  • 4.Generalprocedurefordisulfidebondformation(Cys-2/Cys-7)forpramlintide1andanalogues5-7

    Thefinalpeptideconcentrationusedforeachdisulfidebondformationreactionwas3mMinamixtureofGu·HCl (6M)

    andNa2HPO4buffer(adjustedtothefinalconcentrationof0.2M).Themixturewasthenagitatedatrtfor2h.Thecrude

    productwaslyophilisedandpurifiedbyRP-HPLCusingconditionsasspecifiedingeneralproceduressection3.

    5.GeneralprocedureforCu(I)mediatedazide-alkynecycloaddition“click”reactionwithsimultaneousdisulfidebondformation(Cys-2/Cys-7)foranalogues2-4and10-11

    Thefinalpeptideconcentrationusedforeach“click”reactionwas3mMinasolutionofGu·HCl(6M)andNa2HPO4buffer

    (adjustedtothefinalconcentrationof0.2M).ThefinalconcentrationsofTCEP·HClandCuSO4·5H2Owereadjustedto20

    mM.

    0.5MStock solutionsofTCEP·HClandCuSO4·5H2Owereprepared.100µlof the0.5Mstock solutionofTCEP·HClwas

    basifiedtopH7usingsolidNaOH.Therequiredvolumeof0.5MCuSO4·5H2O(6.7eq.)wasaddedtotherequiredvolume

    of0.5M,pH7TCEP·HCl(6.7eq.),mixed,andshakenfor1minuntilablueprecipitateformed.Partialdisappearanceofthe

    blue precipitate was observed over the next 2-3min. The peptide containing a propargylglycine residue (1.0 eq.) was

    dissolved in thedeoxygenated (Ar,30min)buffer solutionofGu·HClandNa2HPO4. ThecloudymixtureofCuSO4·5H2O/

    TCEP·HClwasthenaddedtothepeptidesolutionportion-wisetofurthersolubilisetheprecipitate.Themixturewasthen

    incubated for30minat 60 °Cafterwhich timea clear, faintblue solutionwasobtained.GlcNAcN322 (6 eq.)was then

    addedtothemixtureandthesolutionwaspurgedwithAr,whichwasthensubjectedtomicrowaveirradiationfor2hat60

    °Cand20WandthereactionprogresswasmonitoredbyRP-HPLC.Thecrudeproductwasdiluted(H2O,1mL),acidifiedto

    pH1(TFA),lyophilised,andpurifiedbyRP-HPLCusingconditionsasspecifiedingeneralproceduressection3.

    6.Generalprocedureforacetateremovalwithsimultaneousdisulfidebondformation(Cys-2/Cys-7)foranalogues8-13

    Thecrudeacetateprotectedglycopeptidewasdissolvedin5%NH2NH2·1.5H2OinDMSOtoreachafinalconcentrationof3

    mg/ml.Themixturewasagitatedatrtfor3handDMSOwasremovedbyRP-HPLCusinganisocraticmethodof80%Bfor

    15 minutes. The crude peptide was then lyophilised, and purified by RP-HPLC using conditions specified in general

    procedures3.

    7.Generalprocedureformeasuringtheagonisteffectofpramlintide1andpramlintideanalogues2-13attheAMY1(a)receptor

    Pramlintide1 andglycopeptides2-13werescreenedat theAMY1(a) receptor.Pramlintide1was includedasacontrol in

    each experiment. Cos 7 cells were transiently transfected with the necessary receptor components, and cyclic AMP

    productionwasmeasuredaccordingtoourpublishedmethods.4,5,6ThehCT(a)constructusedwastheinsertnegativehCT(a)

    receptorwithleucineatthepolymorphicaminoacidposition447andanN-terminalhemagglutinintaginpcDNA3.1vector

    (fromProfessorPatrickSexton,MonashInstituteofPharmaceuticalSciences,Monash,Australia).HumanRAMP1withan

    N-terminalmyctaginapcDNA3vectorwasused(fromStevenFoord,GlaxoSmithKline).Peptides1-13wereweighedout

    andstocksolutionsmadeat1mMor10mM(dilutedinsterilewater),onthebasisofpeptideweight.80%peptidecontent

    wasassumedandtakenintoaccountinthesecalculations.AllpeptidestocksolutionswerestoredinsiliconisedorLobind

    (Eppendorf,Hamburg,Germany)microcentrifugetubesat-30°Cin2-6μLaliquotstominimisefreeze-thawcycles.

  • SynthesisofPramlintide1

    AutomatedFmoc-SPPSusingTributeTMrtpeptidesynthesiserwasusedforthesynthesisofthelinearpramlintide14,which

    wasfollowedbyresincleavageusingtheconditionsoutlinedingeneralprocedure2toaffordcrudereduced14asawhite

    solid (172mg,19%yieldbasedon43%puritybyLCMS), (FigureS1). Thecrude linearpeptide14 (9.62mg,2.43×10-3

    mmol)was dissolved in amixture of 6MGu·HCl (0.81mL) andNa2HPO4 (20mg, 0.16mmol) to form a disulfide bond

    betweenCys-2andCys-7accordingtogeneralprocedure4(FigureS2)toaffordcrudepramlintide1.

    The crude pramlintide 1 was purified by semi-preparative RP-HPLC using Dionex Ultimate 3000 on a Vydac Diphenyl

    column,usingagradientof0%Bto13%Bover13min(ca.1%B/min)then13%Bto60%Bover313min(ca.0.15%B/min).

    Fractionswerecollectedat0.5minintervalsandanalysedbyESI-MSandRP-HPLC.Fractionsidentifiedwiththecorrectm/z

    werecombinedandlyophilisedtoaffordthetitlecompound1asawhiteamorphoussolid(2.75mg,67%yield,96%purity);

    Rt30.06min;m/z(ESI-MS)987.7([M+4H]4+requires988.4),FigureS3.

    FigureS1LCMSprofileof crude linearpramlintide14 (ca 43%asanalysedbypeakareaofRP-HPLCat214nm); lineargradientof5%Bto65%Bover20min(ca.3%B/min)at40°C,0.3mL/min.

    FigureS2LCMSprofileofcrudepramlintide1; lineargradientof5%Bto65%Bover20min, (ca.3%B/min)at40°C,0.3

    mL/min.

  • FigureS3LCMSprofileofpurepramlintide1(97%);lineargradientof5%Bto65%Bover60min,(ca.1%B/min)at40°C,

    0.3mL/min.

    Synthesisofpramlintideanalogue2

    AutomatedFmoc-SPPSusingTributeTMrtpeptidesynthesiserwasusedforthesynthesisofreducedpramlintideprecursor

    15,whichwas followedby resin cleavageusing the conditionsoutlined in generalprocedure2 toafford crude reduced

    pramlintideanalogue15asawhitesolid(170mg,29%yieldbasedon68%puritybyLCMS)(FigureS4).Thecrudelinear

    peptide15(20mg,4.7×10-3mmol)underwentaCu(I)mediatedcycloadditionreactionandsimultaneousdisulfidebond

    formation(betweenCys-2andCys-7)withGlcNAcN322(7.45mg,3.1×10-2mmol)accordingtogeneralprocedure5(Figure

    S5).Thisreactionwascarriedoutusing0.5MTCEP·HCl(68µL,3.4×10-2mmol,pH7),0.5MCuSO4·5H2O(68µL,3.4×10-2

    mmol)andNa2HPO4(48.3mg,0.34mmol)in6MGu·HCl(1.56mL)toaffordcrudepramlintideanalogue2.

    The crudepramlintide analogue2waspurifiedby semi-preparativeRP-HPLCusingDionexUltimate3000onaDiphenyl

    Vydac column, using a gradient of 0%B to 13%B over 13 min (ca. 1%B/min) then 13%B to 60%B over 313 min (ca.

    0.15%B/min).Thisaffordedthetitlecompound2asawhiteamorphoussolid(3.3mg,23%yield,95%purity);Rt15.23min;

    m/z(ESI-MS)1045.0([M+4H]4+requires1045.1),FigureS6.

  • FigureS4LCMSprofileofcrudelinearpramlintideanalogue15(ca68%asanalysedbypeakareaofRP-HPLCat214nm);lineargradientof5%Bto65%Bover20min,(ca.3%B/min)at40°C,0.3mL/min.

    FigureS5:LCMSprofileofcrudepramlintideanalogue2;lineargradientof5%Bto65%Bover20min,(ca.3%B/min)at40°C,0.3mL/min.

    FigureS6:LCMSprofileofpurepramlintideanalogue2(95%);lineargradientof5%Bto65%Bover20min,(ca.3%B/min)at40°C,0.3mL/min.

    Synthesisofpramlintideanalogue3

  • AutomatedFmoc-SPPSusingTributeTMrtpeptidesynthesiserwasusedforthesynthesisofreducedpramlintideprecursor

    16whichwas followedby resin cleavage using the conditions outlined in general procedure 2 to afford crude reduced

    pramlintideanalogue16asawhitesolid(222mg,30%yieldbasedon53%puritybyLCMS)(FigureS7).Thecrudelinear

    peptide16(20mg,4.7×10-3mmol)underwentaCu(I)mediatedcycloadditionreactionandsimultaneousdisulfidebond

    formation(betweenCys-2andCys-7)withGlcNAcN322(7.45mg,3.1×10-2mmol)accordingtogeneralprocedure5(Figure

    S8).Thisreactionwascarriedoutusing0.5MTCEP·HCl(68µL,3.4×10-2mmol,pH7),0.5MCuSO4·5H2O(68µL,3.4×10-2

    mmol)andNa2HPO4(48.3mg,0.34mmol)in6MGu·HCl(1.56mL)toaffordcrudepramlintideanalogue3.

    The crudepramlintide analogue3waspurifiedby semi-preparativeRP-HPLCusingDionexUltimate3000onaDiphenyl

    Vydac column, using a gradient of 0%B to 13%B over 13 min (ca. 1%B/min) then 13%B to 60%B over 313 min (ca.

    0.15%B/min).Thisaffordedthetitlecompound3asawhiteamorphoussolid(1.1mg,10%yield,97%purity);Rt39.88min;

    m/z(ESI-MS)1045.1([M+4H]4+requires1045.1),FigureS9.

    FigureS7LCMSprofileofcrudelinearpramlintideanalogue16(ca53%asanalysedbypeakareaofRP-HPLCat214nm);

    lineargradientof5%Bto65%Bover20min,(ca.3%B/min)at40°C,0.3mL/min.

    FigureS8LCMSprofileofcrudepramlintideanalogue3;lineargradientof5%Bto65%Bover20min,(ca.3%B/min)at40°C,0.3mL/min.

  • FigureS9:AnalyticalRP-HPLCandESI-MSprofileofpurepramlintideanalogue3 (97%); lineargradientof5%Bto65%B

    over60min(ca.1%B/min)at40°C,1mL/min.

    Synthesisofpramlintideanalogue4

    AutomatedFmoc-SPPSusingTributeTMrtpeptidesynthesiserwasusedforthesynthesisoflinearpramlintideanalogue17

    which was followed by resin cleavage using the conditions outlined in general procedure 2 to afford crude linear

    pramlintide17asawhitesolid(156mg,19%yieldbasedon48%puritybyLCMS)(FigureS10).Thecrudelinearpeptide17

    (20mg,5.1×10-3mmol)underwentaCu(I)mediatedcycloadditionreactionandsimultaneousdisulfidebondformation

    (betweenCys-2andCys-7)withGlcNAcN322(7.55mg,3.1×10-2mmol)accordingtogeneralprocedure5(FigureS11).This

    reactionwascarriedoutusing0.5MTCEP·HCl(136µL,6.8×10-2mmol,pH7),0.5MCuSO4·5H2O(136µL,6.8×10-2mmol)

    andNa2HPO4(48.3mg,0.34mmol)in6MGu·HCl(1.43mL)toaffordthecrudepramlintideanalogue4.

    The crudepramlintide analogue4waspurifiedby semi-preparativeRP-HPLCusingDionexUltimate3000onaDiphenyl

    Vydac column, using a gradient of 0%B to 13%B over 13 min (ca. 1%B/min) then 13%B to 60%B over 313 min (ca.

    0.15%B/min).Thisaffordedthetitlecompound4asawhiteamorphoussolid(2.6mg,24%yield,96%purity);Rt15.32min;

    m/z(ESI-MS)1101.8([M+4H]4+requires1101.8),FigureS12.

  • FigureS10LCMSprofileofcrudelinearpramlintideanalogue17(ca48%asanalysedbypeakareaofRP-HPLCat214nm);lineargradientof5%Bto65%Bover20min,(ca.3%B/min)at40°C,0.3mL/min.

    FigureS11:LCMSprofileofcrudepramlintideanalogue4;lineargradientof5%Bto65%Bover20min,(ca.3%B/min)at40°C,0.3mL/min.

    FigureS12LCMSprofileofpurepramlintideanalogue4(98%);lineargradientof5%Bto65%Bover20min,(ca.3%B/min)at40°C,0.3mL/min.

    Synthesisofpramlintideanalogue5

  • Thecrudelinearpeptide15(seesynthesisofpramlintideanalogue2,FigS4)(20mg,4.7×10-3mmol)wasdissolvedina

    solutionof 6MGu·HCl (1.56mL) andNa2HPO4 (44mg, 0.31mmol), to forma disulfidebondbetweenCys-2 andCys-7

    accordingtogeneralprocedure4toaffordcrudepramlintideanalogue5(FigureS13).

    The crudepramlintide analogue5waspurifiedby semi-preparativeRP-HPLCusingDionexUltimate3000onaDiphenyl

    Vydac column using a gradient of 0%B to 14%B over 14 min (ca. 1%B/min) then 14%B to 60%B over 307 min (ca.

    0.15%B/min).Fractionswerecollectedat0.5minintervalsandanalysedbyESI-MSandRP-HPLC.Fractionswiththecorrect

    m/zwerecombinedand lyophilised toafford thetitlecompound5asawhiteamorphoussolid (3.6mg,26%yield,99%

    purity);Rt16.28min;m/z(ESI-MS)983.5([M+4H]4+requires983.6),FigureS14.

    FigureS13LCMSprofileofcrudepramlintideanalogue5;lineargradientof5%Bto65%Bover20min,(ca.3%B/min)at40°C,0.3mL/min.

    FigureS14:LCMSprofileofpurepramlintideanalogue5(98%);lineargradientof5%Bto65%Bover20min,(ca.3%B/min)at40°C,0.3mL/min.

    Synthesisofpramlintideanalogue6

    Thecrudelinearpeptide16(seesynthesisofpramlintideanalogue3,FigS7)(20mg,4.7×10-3mmol)wasdissolvedina

    solutionof 6MGu·HCl (1.56mL) andNa2HPO4 (44mg, 0.31mmol), to forma disulfidebondbetweenCys-2 andCys-7

    accordingtogeneralprocedure4toaffordcrudepramlintideanalogue6(FigureS15).

    Thecrudepramlintideanalogue6waspurifiedbysemi-preparativeRP-HPLCusingWaters600ESystemonaGeminiC18

    column,usingagradientof0%Bto20%Bover20min(ca.1%B/min)then20%Bto60%Bover267min(ca.0.15%B/min).

  • Thisaffordedthetitlecompound6asawhiteamorphoussolid(3.5mg,33%yield,96%purity);Rt16.10min;m/z(ESI-MS)

    983.5([M+4H]4+requires983.6),FigureS16.

    FigureS15LCMSprofileofcrudepramlintideanalogue6;lineargradientof5%Bto65%Bover20min,(ca.3%B/min)at40

    °C,0.3mL/min.

    FigureS16LCMSprofileofpurepramlintideanalogue6(96%);lineargradientof5%Bto65%Bover20min,(ca.3%B/min)

    at40°C,0.3mL/min.

    Synthesisofpramlintideanalogue7

    Thecrudelinearpeptide17(seesynthesisofpramlintideanalogue4,FigS10)(20mg,5.1×10-3mmol)wasdissolvedina

    solutionof 6MGu·HCl (1.70mL) andNa2HPO4 (48mg, 0.34mmol), to forma disulfidebondbetweenCys-2 andCys-7

    accordingtogeneralprocedure4toaffordcrudepramlintideanalogue7(FigureS17).

    Thecrudepramlintideanalogue7waspurifiedbysemi-preparativeRP-HPLCusingDionexUltimate3000onaGeminiC18

    column,usingagradientof0%Bto23%Bover23min(ca.1%B/min)then23%Bto60%Bover247min(ca.0.15%B/min).

    Thisaffordedthetitlecompound7asawhiteamorphoussolid(6.90mg,8%yield,99%purity);Rt34.97min;m/z(ESI-MS)

    978.5([M+4H]4+requires978.9),FigureS18.

  • FigureS17LCMSprofileofcrudepramlintideanalogue7;lineargradientof5%Bto65%Bover20min,(ca.3%B/min)at40°C,0.3mL/min.

    FigureS18:AnalyticalRP-HPLCandESI-MSprofileofpurepramlintideanalogue7(99%);5%Bto65%Bover60min(ca.1%B/min)at40°C,1mL/min.

    Synthesisofpramlintideanalogue8

    AutomatedFmoc-SPPSusingTributeTMrtpeptidesynthesiserwasusedforthesynthesisofthecrudereducedandacetate

    protectedpramlintideanalogue24whichwas followedbyresincleavageusingtheconditionsasoutlined in thegeneral

    procedure2toaffordcrudereducedandacetateprotectedpramlintide24asawhitesolid(186mg,45%yieldbasedon

    45%puritybyLCMS)(FigureS19).Acetateprotectinggroupswereremovedfrompeptide24 (30mg,7.22×10-3mmol)

    along with simultaneous disulfide bond formation between Cys-2 and Cys-7 using conditions described in general

    procedure6usingNH2NH2·1.5H2O(0.5mL)inDMSO(9.5mL),toaffordcrudepramlintideanalogue8(FigureS20).

    Thecrudepramlintideanalogue8waspurifiedbysemi-preparativeRP-HPLCusingDionexUltimate3000onaGeminiC18

    column,usingagradientof0%Bto25%Bover25min(ca.1%B/min)then25%Bto60%Bover233min(ca.0.15%B/min).

    Thisaffordedthetitlecompound8asawhiteamorphoussolid(5.5mg,42%yield,99%purity);Rt30.17min;m/z(ESI-MS)

    1038.9([M+4H]4+requires1039.1),FigureS21.

  • FigureS19:LCMSprofileofcrudelinearandacetateprotectedpramlintideanalogue24(ca45%asanalysedbypeakarea

    ofRP-HPLCat214nm);lineargradientof5%Bto65%Bover20min,(ca.3%B/min)at40°C,0.3mL/min.

    FigureS20:LCMSprofileofcrudepramlintideanalogue8;lineargradientof5%Bto65%Bover20min,(ca.3%B/min)at40

    °C,0.3mL/min.

    FigureS21:LCMSprofileofpurepramlintideanalogue8(98%);lineargradientof5%Bto65%Bover60min,(ca.1%B/min)

    at40°C,0.3mL/min.

    Synthesisofpramlintideanalogue9

  • AutomatedFmoc-SPPSusingBiotage®microwaveenhancedpeptide synthesiserwasused for the synthesisof thecrude

    reducedandacetateprotectedpramlintide25whichwas followedby resincleavageusing theconditionsasoutlined in

    generalprocedure2 toafford crude reducedandacetateprotectedpramlintide25asawhite solid (256mg,23%yield

    basedon41%purityoffullyacetateprotectedproductbyLCMS)(FigureS22).Acetateprotectinggroupswereremoved

    frompeptide25 (32mg,7.34×10-3mmol)alongwith simultaneousdisulfidebond formationbetweenCys-2andCys-7

    using conditions described in general procedure 6 using NH2NH2·1.5 H2O (0.5 mL) in DMSO (9.5 mL) to afford crude

    pramlintideanalogue9(FigureS23).

    Thecrudepramlintideanalogue9waspurifiedbysemi-preparativeRP-HPLCusingDionexUltimate3000onaGeminiC18

    column,usingagradientof0%Bto25%Bover25min(ca.1%B/min)then25%Bto60%Bover233min(ca.0.15%B/min).

    Thisaffordedthetitlecompound9asawhiteamorphoussolid(4.5mg,36%yield,98%purity);Rt29.80min;m/z(ESI-MS)

    1089.8([M+4H]4+requires1089.8),FigureS24.

    FigureS22:LCMSprofileofcrudelinearandacetateprotectedpramlintideanalogue25; lineargradientof5%Bto65%B

    over20min,(ca.3%B/min)at40°C,0.3mL/min.

  • FigureS23:LCMSprofileofcrudepramlintideanalogue9;lineargradientof5%Bto65%Bover20min,(ca.3%B/min)at40

    °C,0.3mL/min.

    FigureS24:LCMSprofileofpurepramlintideanalogue9(98%);lineargradientof5%Bto65%Bover60min,(ca.1%B/min)

    at40°C,0.3mL/min.

    Synthesisofpramlintideanalogue10

    Crudepramlintide12(20mg,4.8×10-3mmol)underwentaCu(I)mediatedcycloadditionreaction(betweenCys-2andCys-

    7)withGlcNAcN322 (7.15mg,2.9×10-2mmol)accordingtogeneralprocedure5(FigureS25).Thisreactionwascarried

    outusing0.5MTCEP·HCl(64µL,3.2×10-2mmol),0.5MCuSO4·5H2O(64µL,3.2×10-2mmol)andNa2HPO4(45.7mg,0.32

    mmol)in6MGu·HCl(1.48mL)toaffordcrudepramlintideanalogue10.

    Thecrudepeptide10wasthenpurifiedbysemi-preparativeRP-HPLCusingDionexUltimate3000onaGeminiC18column,

    using a gradient of 0%B to 15%B over 15min (ca.1%B/min) then 15%B to 60%B over 300min (ca.0.15%B/min). This

    afforded the title compound10 asawhiteamorphoussolid (2.8mg,25%yield,99%purity).Rt38.43min;m/z (ESI-MS)

    1095.8([M+4H]4+requires1095.8),FigureS26.

  • FigureS25:LCMSprofileofcrudepramlintideanalogue10;lineargradientof5%Bto65%Bover20min,(ca.3%B/min)at

    40°C,0.3mL/min.

    FigureS26:AnalyticalRP-HPLCandESI-MSprofileofpurepramlintideanalogue10(96%);5%Bto65%Bover63min(ca.

    1%B/min)at40°C,1mL/min.

    Synthesisofpramlintideanalogue11

    Crudepramlintideanalogue13(20mg,4.8×10-3mmol)underwentaCu(I)mediatedcycloadditionreaction(betweenCys-

    2andCys-7)withGlcNAcN322(7.15mg,2.9×10-2mmol)accordingtogeneralprocedure5(FigureS27).Thisreactionwas

    carriedoutusing0.5MTCEP·HCl(64µL,3.2×10-2mmol),0.5MCuSO4·5H2O(64µL,3.2×10-2mmol)andNa2HPO4(45.7

    mg,0.32mmol)in6MGu·HCl(1.48mL)toaffordcrudepramlintideanalogue11.

    The crude pramlintide analogue 11 was then purified by semi-preparative RP-HPLC using Dionex Ultimate 3000 on a

    GeminiC18 column,usingagradientof0%B to15%Bover15min (ca.1%B/min) then15%B to60%Bover300min (ca.

    0.15%B/min).Thisafforded the title compound11 asawhiteamorphoussolid (3.1mg,28%yield,99%purity).Rt26.52

    min;m/z(ESI-MS)1095.8[M+4H]4+([M+4H]4+requires1096.0),FigureS28.

  • FigureS27:LCMSprofileofcrudepramlintideanalogue11;lineargradientof5%Bto65%Bover20min,(ca.3%B/min)at

    40°C,0.3mL/min.

    FigureS28:AnalyticalRP-HPLCandESI-MSprofileofpurepramlintideanalogue11(99%);5%Bto65%Bover63min(ca.

    1%B/min)at40°C,1mL/min,usingAgilentZorbax300SB-C3,4.6mmx150mm,5µmcolumn.

    Synthesisofpramlintideanalogue12

    AutomatedFmoc-SPPSusingTributeTMrtpeptidesynthesiserwasusedforthesynthesisofthecrudereducedandacetate

    protectedpramlintide26whichwasfollowedbyresincleavageusingtheconditionsasoutlinedinthegeneralprocedure2

    toaffordcrudereducedandacetateprotectedpramlintide26asawhitesolid(220mg,27%yieldbasedon52%purityby

    LCMS) (Figure S 29). Acetate protecting groups were removed from peptide 26 (21 mg, 4.7 × 10-3 mmol) along with

    simultaneousdisulfidebondformationbetweenCys-2andCys-7usingconditionsdescribedingeneralprocedure6using

    NH2NH2·1.5H2O(0.88mL)inDMSO(16.7mL)toaffordcrudepramlintideanalogue12.

    Thecrudepramlintideanalogue12wasthenpurifiedbysemi-preparativeRP-HPLCusingDionexultimate3000onaGemini

    C18 column, using a gradient of 0%B to 15%B over 15 min (ca. 1%B/min) then 15%B to 60%B over 300 min (ca.

  • 0.15%B/min).Thisafforded the title compound12 asawhiteamorphoussolid (3.8mg,36%yield,99%purity).Rt32.82

    min;m/z(ESI-MS)1034.2([M+4H]4+requires1034.4),FigureS30.

    FigureS29:LCMSprofileofcrudepramlintideanalogue26(ca52%asanalysedbypeakareaofRP-HPLCat214nm);linear

    gradientof5%Bto65%Bover20min,(ca.3%B/min)at40°C,0.3mL/min.

    FigureS30:AnalyticalRP-HPLCandESI-MSprofileofpurepramlintideanalogue12(98%);5%Bto65%Bover60min(ca.

    1%B/min)at40°C,1mL/min.

    Synthesisofpramlintideanalogue13

    AutomatedFmoc-SPPSusingBiotage®microwaveenhancedpeptide synthesiserwasused for the synthesisof thecrude

    reducedandacetateprotectedpramlintide27whichwasfollowedbyresincleavageusingtheconditionsasoutlinedinthe

    generalprocedure2toaffordcrudereducedandacetateprotectedpramlintide27(240mg,30%yieldbasedon41%purity

    offullyacetateprotectedproductbyLCMS)(FigureS31).Acetateprotectinggroupswereremovedfrompeptide27(22

    mg, 4.9 × 10-3 mmol) along with simultaneous disulfide bond formation between Cys-2 and Cys-7 using conditions

  • describedingeneralprocedure6usingNH2NH2·1.5H2O(0.88mL)inDMSO(16.7mL)toaffordcrudepramlintideanalogue

    13(FigureS32).

    The crude pramlintide analogue 13 was then purified by semi-preparative RP-HPLC using Dionex Ultimate 3000 on a

    GeminiC18 column,usingagradientof0%B to15%Bover15min (ca.1%B/min) then15%B to60%Bover300min (ca.

    0.15%B/min).Thisafforded the title compound13 asawhiteamorphoussolid (4.1mg,36%yield,99%purity).Rt31.68

    min;m/z(ESI-MS)1034.0([M+4H]4+requires1034.4),FigureS33.

    FigureS29:LCMSprofileofcrudepramlintideanalogue31;lineargradientof5%Bto65%Bover20min,(ca.3%B/min)at

    40°C,0.3mL/min.

    FigureS30:LCMSprofileofcrudepramlintideanalogue32;lineargradientof5%Bto65%Bover20min,(ca.3%B/min)at

    40°C,0.3mL/min.

    FigureS31:AnalyticalRP-HPLCandESI-MSprofileofpurepramlintideanalogue33(99%);5%Bto65%Bover63min(ca.

    1%B/min)at40°C,1mL/min.

  • References

    1. P.W.R.Harris,S.H.YangandM.A.Brimble,TetrahedronLett.,2011,52,6024-6026.2. K.J.Jensen,M.MeldalandK.Bock,J.Chem.Soc.,PerkinTrans.1,1993,2119-2129.3. T.Inazu,Synlett,1993,11,869-870.4. R.J.BaileyandD.L.Hay,Peptides,2006,27,1367-1375.5. J.J.Gingell,T.Qi,R.J.BaileyandD.L.Hay,Peptides,2010,31,1400-1404.6. J.J.Gingell,E.R.BurnsandD.L.Hay,Endocrinology,2014,155,21-26.


Top Related