+ All Categories
Home > Documents > Synthesis of ‘unfeasible’ zeolites...Synthesis of IPC-‐9 zeolite IPC-‐9P precursor was...

Synthesis of ‘unfeasible’ zeolites...Synthesis of IPC-‐9 zeolite IPC-‐9P precursor was...

Date post: 26-Feb-2020
Category:
Upload: others
View: 15 times
Download: 0 times
Share this document with a friend
19
NATURE CHEMISTRY | www.nature.com/naturechemistry 1 SUPPLEMENTARY INFORMATION DOI: 10.1038/NCHEM.2374 Michal Mazur, 1 Paul S. Wheatley, 2 Marta Navarro, 2 Wieslaw J.Roth, 1 Miroslav Položij, 3 Pavla Eliášová, 1 Petr Nachtigall, 3 Jiří Čejka 1 and Russell E. Morris 2 1 J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejškova 3, 182 23 Prague 8, Czech Republic 2 EaStCHEM School of Chemistry, University of St Andrews, St Andrews KY16 9ST, UK 3 Department of Physical and Macromolecular Chemistry, Faculty of Sciences, Charles University in Prague, Hlavova 8, 128 43 Prague 2, Czech Republic Supporting information Table of Contents 1. Synthesis 2 1.1 Synthesis of zeolite UTL and the layered precursor IPC1P 2 1.2 Synthesis of IPC9 2 1.3 Synthesis of IPC10 2 2. Characterization 3 2.1 Xray Diffraction 3 2.2 Adsorption isotherms 3 2.3 Structure determination of IPC9 3 2.4 Structure determination of IPC10 5 3. Computational Investigation 7 3.1 Models and Methods 7 3.2 Interaction of choline cation with negatively charged IPC1P surface 8 3.3 Interaction of IPC1P layers 9 4. The structure of IPC10 13 5. Assessing the Feasibility of IPC9 and IPC10 15 6. Incorporation of Al into IPC9 and IPC10 17 Synthesis of ‘unfeasible’ zeolites © 2015 Macmillan Publishers Limited. All rights reserved
Transcript
Page 1: Synthesis of ‘unfeasible’ zeolites...Synthesis of IPC-‐9 zeolite IPC-‐9P precursor was prepared by intercalation of choline hydroxide to IPC-‐1P layered zeolite. It was performed

NATURE CHEMISTRY | www.nature.com/naturechemistry 1

SUPPLEMENTARY INFORMATIONDOI: 10.1038/NCHEM.2374

  1  

Synthesis  of  ‘unfeasible’  zeolites  

Michal  Mazur,  1  Paul  S.  Wheatley,2  Marta  Navarro,2  Wieslaw  J.Roth,  1  Miroslav  Položij,3  Pavla  

Eliášová,1  Petr  Nachtigall,3  Jiří  Čejka1  and    Russell  E.  Morris2    

 

1J.  Heyrovský  Institute  of  Physical  Chemistry,  Academy  of  Sciences  of  the  Czech  Republic,  v.v.i.,  Dolejškova  3,  182  23  Prague  8,  Czech  Republic  

2EaStCHEM  School  of  Chemistry,  University  of  St  Andrews,  St  Andrews  KY16  9ST,  UK  

3Department  of  Physical  and  Macromolecular  Chemistry,  Faculty  of  Sciences,  Charles  

University  in  Prague,  Hlavova  8,  128  43  Prague  2,  Czech  Republic  

 

Supporting  information  

 

 

Table  of  Contents  

1.  Synthesis                         2  

  1.1  Synthesis  of  zeolite  UTL  and  the  layered  precursor  IPC-­‐1P           2     1.2  Synthesis  of  IPC-­‐9                     2     1.3  Synthesis  of  IPC-­‐10                     2    2.  Characterization                     3  

  2.1  X-­‐ray  Diffraction                     3     2.2  Adsorption  isotherms                 3     2.3  Structure  determination  of  IPC-­‐9               3     2.4  Structure  determination  of  IPC-­‐10               5  

3.  Computational  Investigation                   7     3.1  Models  and  Methods                 7     3.2  Interaction  of  choline  cation  with  negatively  charged  IPC-­‐1P  surface       8     3.3  Interaction  of  IPC-­‐1P  layers                 9    4.  The  structure  of  IPC-­‐10                   13                5.  Assessing  the  Feasibility  of  IPC-­‐9  and  IPC-­‐10               15  

6.  Incorporation  of  Al  into  IPC-­‐9  and  IPC-­‐10               17  

Synthesis of ‘unfeasible’ zeolites

© 2015 Macmillan Publishers Limited. All rights reserved

Page 2: Synthesis of ‘unfeasible’ zeolites...Synthesis of IPC-‐9 zeolite IPC-‐9P precursor was prepared by intercalation of choline hydroxide to IPC-‐1P layered zeolite. It was performed

NATURE CHEMISTRY | www.nature.com/naturechemistry 2

SUPPLEMENTARY INFORMATIONDOI: 10.1038/NCHEM.2374

  2  

 

 1.  Synthesis  1.1  Synthesis  of  zeolite  UTL  and  the  layered  precursor  IPC-­‐1P      A   reaction  mixture  with   following   ratio  was   used   to   prepare   parent  UTL   zeolite:   1.0SiO2:   0.5GeO2:  0.2ROH/Br:   37.5H2O,   where   ROH   is   the   SDA,   (6R,10S)-­‐6,10-­‐dimethyl-­‐5-­‐azoniaspiro[4,5]decane  hydroxide.  Al-­‐containing  UTL  zeolite  was  prepared  using  aluminum  hydroxide  as  a  source  of  Al.    The  ratio  used   in   the   reaction  mixture  was:  0.782SiO2:  0.4GeO2:  0.018AlO1.5:  0.5ROH/Br:  30H2O,.   In   the  standard  procedure  SDA   in  bromide  form  (46.70  g)  was  dissolved   in  the  distilled  water   (250  g)  and  stirred  with  resin  (Bio-­‐Rad  AG  1-­‐X8,  80  g)  for  4  h  to  exchange  it  to  hydroxide  form.  After  separation  of  resin,   the   crystalline   germanium   oxide   (19.38   g)   and   silicon   dioxide   (Cab-­‐O-­‐sil®  M5,   22.25   g)   was  introduced,  and  the  mixture  was  homogenized  for  30  min  at  room  temperature.  The  resulting  fluid  gel  was  charged  into  Teflon-­‐lined  autoclave  and  heated  at  175  oC  for  7  days  under  agitation  (25  rpm).  The  solid  product  was  recovered  by  filtration,  washed  with  distilled  water,  and  dried  at  60  oC.    To  remove  the  SDA,  the  as-­‐synthesized  zeolite  was  calcined  in  a  stream  of  air  at  550  oC  for  8  h  with  a  temperature  ramp  of  1  oC/min.    Calcined  UTL  was  hydrolyzed  in  0.1  M  HCl  with  w/w  ratio  of  1/200  at  95  oC  under  reflux,  for  16  h.  The  solid  product   (IPC-­‐1P)  was   isolated  by  filtration  and  centrifugation,  washed  with  water,  centrifuged  again,  and  dried  in  air.      1.2  Synthesis  of  IPC-­‐9  zeolite      IPC-­‐9P  precursor  was  prepared  by  intercalation  of  choline  hydroxide  to  IPC-­‐1P  layered  zeolite.  It  was  performed  in  two  ways:  by  direct  intercalation  and  by  de-­‐swelling  method.    Direct   intercalation   was   performed   using   50%   water   solution   of   choline   hydroxide.   The   choline  hydroxide  was  prepared  by   ion-­‐exchange  of   choline   chloride  50%  water   solution  using  Ambersep®  900  resin  (100  g  of  resin  per  100  g  of  solution).  Then,  1  g  of  zeolite  precursor  IPC-­‐1P  was  mixed  with  30   g   of   choline   hydroxide   solution   and   stirred   for   4   h   at   room   temperature.   Solid   IPC-­‐9P   was  centrifuged,  washed  with  water,  centrifuged  again,  and  dried  in  oven  at  60  oC.  De-­‐swelling  method  involves  exchange  of  intercalate  in  between  layers.  First  step  of  the  preparation  is   swelling   of   IPC-­‐1P   with   CTMA-­‐OH   25%   solution   with   w/w   ratio   of   1/30   for   16   h   at   room  temperature.   Solid   product   was   centrifuged,   washed   with   water   and   dried.   Next   step   is   choline-­‐assisted  de-­‐swelling  of  swollen  layered  precursor  (IPC-­‐1PSW).  A  0.62  g  of   IPC-­‐1PSW  was  introduced  into  choline  chloride   (16  g)  solution   in  absolute  ethanol   (40  g).  The  mixture  was  stirred   for  10  h  at  room   temperature,   zeolitic   powder   was   separate   by   centrifugation,   decanted,   washed   once   with  absolute  ethanol  (~15  ml)  and  centrifuged  again,  then  decanted  and  dried  in  oven  at  60  oC.  Repeating  of  the  de-­‐swelling  ensures  more  complete  exchange.  IPC-­‐9P  was  calcined  at  550  oC  for  8  h  with  temperature  ramp  of  2  o/min.  The  obtained  material  was  designated   as   IPC-­‐9.   To   get   the   IPC-­‐9   zeolite   with   aluminum   content   the   Al-­‐UTL   was   used   as   the  parent  material  and  the  same  procedure  followed.    1.3  Synthesis  of  IPC-­‐10  zeolite    

 

© 2015 Macmillan Publishers Limited. All rights reserved

Page 3: Synthesis of ‘unfeasible’ zeolites...Synthesis of IPC-‐9 zeolite IPC-‐9P precursor was prepared by intercalation of choline hydroxide to IPC-‐1P layered zeolite. It was performed

NATURE CHEMISTRY | www.nature.com/naturechemistry 3

SUPPLEMENTARY INFORMATIONDOI: 10.1038/NCHEM.2374

  3  

A   0.1   g   of   IPC-­‐9P   was   introduced   to   25   ml   Teflon-­‐lined   autoclave.   Then,   0.05   g   of  diethoxydimethylsilane  and  10  ml  of  1M  HNO3  was  added.  Autoclave  was  kept   in  the  oven  without  agitation  for  16  h  at  175  oC.  Product  was  filtered,  washed  with  water  (100  ml)  and  dried  in  oven  at  60  oC.  Final  step  was  calcination  at  550  oC  for  8  h  with  temperature  ramp  of  2  o/min.  Obtained  product  was  designated  as  IPC-­‐10.  The  IPC-­‐10  samples  containing  aluminum  had  been  prepared  using  Al-­‐UTL  as   parent   material   and   additionally   0.1   g   of   Al(NO3)3·∙9H2O   was   added   to   the   autoclave   in   the  synthesis  step.  

 

2.  Characterization  

2.1  X-­‐ray  Diffraction    The  crystallinity  of  samples  was  determined  by  powder  X-­‐ray  diffraction  on  a  Bruker  AXS  D8  Advance  Diffractometer  with  a  Vantec-­‐1  detector   in   the  Bragg-­‐Brentano  geometry  using  CuKα   radiation.  All  samples  were  ground  to  mitigate  the  effects  of  preferential  orientation  of  individual  crystals.      2.2  Transmission  Electron  Microscopy  High  resolution  transmission  electron  microscopy  (HRTEM)  was  carried  out  on  a  Jeol  JEM-­‐2011  electron  microscope  operating  at  an  accelerating  voltage  of  200  kV.  The  HRTEM  images  were  recorded  using  a  9  Gatan  794  CCD  camera.  The  camera  length,  sample  position  and  magnification  were  calibrated  using  standard  gold  film  methods.  

2.3  FT-­‐IR  spectroscopy  

Concentration  of   the  Lewis   (cL)  and  Brønsted   (cB)  acid  sites  was  determined  after  adsorption  of  d3-­‐acetonitrile   (ACN)   by   FT-­‐IR   spectroscopy   using   a   Nicolet   Protégé   460   Magna   with   a   transmission  MTC/A   detector.   The   zeolites  were   pressed   into   self-­‐supporting  wafers  with   a   density   of   8.0   –   12  mg·∙cm–2  and  activated  in  situ  at  T  =  450  °C  and  p  =  5·∙10–5  Torr  for  4  h.  D3-­‐acetonitrile  adsorption  was  carried  out  at  room  temperature  for  20  min  at  a  partial  pressure  of  3.5  Torr,  followed  by  desorption  for   20  min   at   the   same   temperature.   Before   adsorption   d3-­‐acetonitrile   was   degassed   by   freezing-­‐pump-­‐thaw  cycles.  Spectra  were  recorded  with  a   resolution  of  4  cm–1  by  collecting  128  scans   for  a  single  spectrum  at  room  temperature,  and  then  recalculated  using  a  wafer  density  of  10  mg·∙cm–2.  For  a   quantitative   characterization   of   acid   sites,   the   following   bands   and   absorption   coefficients  were  used:  d3-­‐acetonitrile  Brønsted  band  at  2296  cm-­‐1  ,  ε  =  2.05  cm·∙μmol-­‐1,  d3-­‐acetonitrile  strong  and  weak  Lewis   bands   at   2323   and   2310   cm-­‐1   respectively   ,   ε   =   3.60   cm·∙μmol-­‐1   [(See   B.   Gil,   S.I.   Zones,   S.J.  Hwang,  M.  Bejblová,  J.  Čejka,  Phys.  Chem.  C,  112  (2008)  2997  for  further  information).  

2.4  Structure  determination  of  IPC-­‐9  

The  structure  of   IPC-­‐9  was   identified  by  comparing   the  experimental  X-­‐ray  diffraction  pattern  with  that  predicted  from  computational  studies  REF  16.  The  unit  cell  for  the  material  was  confirmed  by  a  whole   pattern   Le   Bail   type   refinement   against   the   diffraction   data   and   the   atomic   positions  confirmed  by  a  Rietveld  refinement.  The  final  refinement  details  are  as  follows  and  the  final  structure  is   contained   in   the   attached   crystallographic   information   file.   The   final   refinement   included   soft  constraints  on  the  Si-­‐O,  Si-­‐Si  and  O-­‐O  distances  to  ensure  chemically  sensible  results.  Details  of  the  refinement  can  be  found  in  Table  S1  

© 2015 Macmillan Publishers Limited. All rights reserved

Page 4: Synthesis of ‘unfeasible’ zeolites...Synthesis of IPC-‐9 zeolite IPC-‐9P precursor was prepared by intercalation of choline hydroxide to IPC-‐1P layered zeolite. It was performed

NATURE CHEMISTRY | www.nature.com/naturechemistry 4

SUPPLEMENTARY INFORMATIONDOI: 10.1038/NCHEM.2374

  4  

 

Table  S1  Crystallographic  data  from  the  Rietveld  refinement  of  IPC-­‐9  

 

A   18.6695(20)  B   13.8984(15)  C   12.1020(30)  Β   102.409(34)  Space  Group   C  2/m  Geometric  Restraints    Si-­‐O   1.61(2)  O-­‐O   2.62(3)    Si-­‐Si   3.07(4)  RF2   0.0296  wRp   0.0315  Rp   0.0260    

 

 

Figure   S1.   Observed   (+),   calculated   (red   line)   and   difference   (blue   line)   for   the   Rietveld  refinement  of  IPC-­‐9  against  X-­‐ray  diffraction  data.  Calculated  reflection  positions  are  shown  as  pink  tick  marks  and  the  fitted  background  is  shown  as  a  green  line.  

 

0

10000

20000

30000

40000

50000

60000

70000

80000

10 15 20 25

Inte

nsity

IPC9C2M cycle 6369 Hist 1

diffObsCalc

bckgr

a"

b" c"

TEM"image"

© 2015 Macmillan Publishers Limited. All rights reserved

Page 5: Synthesis of ‘unfeasible’ zeolites...Synthesis of IPC-‐9 zeolite IPC-‐9P precursor was prepared by intercalation of choline hydroxide to IPC-‐1P layered zeolite. It was performed

NATURE CHEMISTRY | www.nature.com/naturechemistry 5

SUPPLEMENTARY INFORMATIONDOI: 10.1038/NCHEM.2374

  5  

 

Figure   S2   Transmission   electron   microscopy   image   of   IPC-­‐9,   showing   fringes   due   to   the  layered   arrangement   in   the   structure.   The   inset   shows   the   Fast   Fourier   Transform   of   the  image,  with  sharp  spots  consistent  with  the  ordered  nature  of  IPC-­‐9.  

 

Figure  S3  High  resolution  image  of  IPC-­‐9  viewed  parallel  to  the  10-­‐ring  channels.  The  image  clearly   shows   the   10-­‐ring   and   6-­‐ring   arrangements.   As   a   guide,   the   structural   model   is  overlaid  onto  a  portion  of  the  image.  

 

2.5  Structure  determination  of  IPC-­‐10  

The  structure  of  IPC-­‐10  was  identified  by  comparing  the  experimental  X-­‐ray  diffraction  pattern  with  that  predicted  from  computational  studies  (REF  17).  The  unit  cell  for  the  material  was  confirmed  by  a  whole   pattern   Le   Bail   type   refinement   against   the   diffraction   data   and   the   fit   to   the   diffraction  pattern   is   shown   in  Figure  S3.  As  discussed   in   the  main   text,   the   structure  of   IPC-­‐10   is   likely   to  be  disordered  as  there  are  two  ways  in  which  the  layers  can  be  linked  by  a  single  four  ring.  Transmission  electron  microscopy  confirms  that  this   is   likely  to  be  the  case  (Figure  S4).  The  disordered  nature  of  the  sample  prevents  a  high  quality  Rietveld  refinement  of  the  structure.  

2 nm

© 2015 Macmillan Publishers Limited. All rights reserved

Page 6: Synthesis of ‘unfeasible’ zeolites...Synthesis of IPC-‐9 zeolite IPC-‐9P precursor was prepared by intercalation of choline hydroxide to IPC-‐1P layered zeolite. It was performed

NATURE CHEMISTRY | www.nature.com/naturechemistry 6

SUPPLEMENTARY INFORMATIONDOI: 10.1038/NCHEM.2374

  6  

 

 

 

Table  S2  Crystallographic  data  from  the  Le  Bail  refinement  of  IPC-­‐10  

 

a   22.261(2)  b   13.852(2)  c   11.809(6)  α   87.22(5)  β   97.78(3)  γ   91.90(2)  Space  Group   P-­‐1  wRp   0.0287  Rp   0.0166    

 

 

Figure  S4  The  Le  Bail  fit  for  the  IPC-­‐10  model  to  the  diffraction  data  indicating  that  the  unit  cell  from  the  predicted  structure  is  correct.    

© 2015 Macmillan Publishers Limited. All rights reserved

Page 7: Synthesis of ‘unfeasible’ zeolites...Synthesis of IPC-‐9 zeolite IPC-‐9P precursor was prepared by intercalation of choline hydroxide to IPC-‐1P layered zeolite. It was performed

NATURE CHEMISTRY | www.nature.com/naturechemistry 7

SUPPLEMENTARY INFORMATIONDOI: 10.1038/NCHEM.2374

  7  

 

Figure   S5   Transmission   electron  microscopy   image   of   IPC-­‐10,   showing   fringes   due   to   the  layered   arrangement   in   the   structure.   The   inset   shows   the   Fast   Fourier   Transform   of   the  image,   with   significantly   diffuse   spots   consistent   with   the   disordered   nature   of   IPC-­‐10.  Further  details  are  given  in  section  4.  

 

3  .  Computational  investigation  

3.1  Models  and  Methods  

All   IPC-­‐10  and  IPC-­‐1P  structure  investigations  were  performed  within  a  periodic  model  with  relaxed  lattice  parameters;  in  the  case  of  IPC-­‐1P  the  model  consists  of  interacting  layers  that  were  treated  as  an   infinite   stack.   Unit   cell   (UC)   details   for   particular   systems   are   given   below.   Calculations   on   the  choline  cation  interaction  with  single  IPC-­‐1P  layer  were  performed  with  a  fixed  UC  shape  and  volume  using  the  monoclinic  UC  of  UTL  separated  by  vacuum  in  the  a  crystallographic  direction  (a  =  30  Å).  Calculations  with  IPC-­‐1P  layer  terminated  by  S4R  and  separated  by  vacuum  in  the  a  crystallographic  direction   were   performed   with   a   fixed   UC   shape   and   volume   and   parameters   a   =   35.000   Å,   b   =  13.931,  c  =  12.072  Å,  α  =  89.99,  β  =  81.47  and  γ  =  58.29  Å).  

All   force  field  calculations  were  performed  using  the  program  GULP1,   2.  Optimizations  of   the   IPC-­‐10  zeolite  structure  were  done  using  a  SLC  potential3  included  in  GULP  libraries.  To  study  the  IPC-­‐1P  and  SDA   interaction  a  modified  ClayFF   force-­‐field   introduced  by  Bushuev  and  Sastre4  was  used   (adding  parameters  for  quarternary  N  following  the  procedure  of  Bushuev  and  Sastre).  

DFT  calculations  were  performed  with  the  VASP  program  suite5,  6,  7,  8  using  the  projector  augmented  wave  approximation9  and  vdW-­‐DF2  non-­‐local  functional10,  11  for  all  calculations  on  layered  materials  and  the  PBE  exchange-­‐correlation  functional12  was  employed  for  calculations  on  3D  zeolites  (IPC-­‐10).  A  standard  PAW  approximation13  for  Si,  O,  C  N  and  H  with  ENMAX  values  of  245,  400,  400,  400  and  250  eV,   respectively,  was  used   together  with   the  plane  wave  basis   set  with   800  eV   kinetic   energy  cutoff   for   calculations   with   relaxed   lattice   parameters   and   400   eV   cutoff   for   calculations   with   a  constrained  unit  cell.  Brillouin-­‐zone  sampling  was  restricted  to  the  Γ  point.  

© 2015 Macmillan Publishers Limited. All rights reserved

Page 8: Synthesis of ‘unfeasible’ zeolites...Synthesis of IPC-‐9 zeolite IPC-‐9P precursor was prepared by intercalation of choline hydroxide to IPC-‐1P layered zeolite. It was performed

NATURE CHEMISTRY | www.nature.com/naturechemistry 8

SUPPLEMENTARY INFORMATIONDOI: 10.1038/NCHEM.2374

  8  

 

3.2  Interaction  of  choline  cation  with  negatively  charged  IPC-­‐1P  surface  

To   mimic   experimental   conditions   for   IPC-­‐1P   layers   intercalated   with   choline   (relatively   high   pH)  choline  was  assumed  to  be   in   the   form  of  cation  while   the   IPC-­‐1P  surface  was  partially   charged   to  maintain  electroneutrality14.  Preferential   interaction  sites  of  choline  cations  with  the  IPC-­‐1P  surface  were  investigated  first  using  a  periodic  model  containing  one  layer  of  IPC  in  UC  and  vacuum  (20  Å)  along  the  a  vector.  Some  of  the  surface  silanols  were  deprotonated  resulting   in  negatively  charged  silanolate  groups   in   the  UC  which  were   charge-­‐compensated  by  an  appropriate  number  of   choline  cations.  The  interaction  energy  of  choline  with  IPC-­‐1P  surface  was  defined  as  

  cholineOH  +  IPC-­‐1P  →  choline(+)/IPC-­‐1P(-­‐)  complex  +  H2O  .  

Adsorption  of  water  was  not  taken   into  account.  Considering   just  one  choline  cation   in  UC,  choline  cation  preferentially   interacts  with   IPC-­‐1P   layer   at   the  pocket   formed  between   two   surface   silanol  quadruplets  in  the  former  (in  parent  UTL)  12R  channel  (Figure  S6a).  Such  structure  allows  for  optimal  electrostatic   interaction  of  choline  OH-­‐group   located  between  surface  silanolate  and  silanol  groups  and   optimal   dispersion   interaction   between   choline   and   the   surface.   In   the   case   of   two   choline  cations  in  UC  the  cations  are  located  in  the  pockets  between  silanol  quadruplets  in  former  12R  and  14R  channels  (Figure  S6b).  Interaction  energies  calculated  at  the  vdW-­‐DF2  level  for  the  first  and  the  second  choline  molecules  were  168  and  201  kJ  mol-­‐1  (note  that  the  ionicity  of  the  system  increases  with  the  increasing  number  of  choline  cations).  A  strong  preference  of  choline  cation  for  interaction  side   in  between  two  silanol  quadruplets   is  apparent  from  Table  S3  that  reports  relative  energies  of  choline(+)/IPC-­‐1P(-­‐)  complex  for  single  choline  cation.    

Table  S3.  Relative  energies  of  choline  cation  interacting  with  IPC-­‐1P  surface  choline  position   Erela  

12R  channel  pocket   0  14R  channel  pocket   7.1  12R/14R  intersection    (along  12R  channel)   38.8  

12R/14R  intersection    (along  14R  channel)   30.4  a  In  kJ  mol-­‐1.  

 

Reliability   of   a   force-­‐field   was   also   tested   using   vdW-­‐DF2   results   as   the   reference;   however,   a  qualitative   disagreement   was   observed.   Therefore,   all   the   calculations   on   layer   interactions  described  below  were  carried  out  at  the  vdW-­‐DF2  level  of  theory.  

© 2015 Macmillan Publishers Limited. All rights reserved

Page 9: Synthesis of ‘unfeasible’ zeolites...Synthesis of IPC-‐9 zeolite IPC-‐9P precursor was prepared by intercalation of choline hydroxide to IPC-‐1P layered zeolite. It was performed

NATURE CHEMISTRY | www.nature.com/naturechemistry 9

SUPPLEMENTARY INFORMATIONDOI: 10.1038/NCHEM.2374

  9  

 

Figure  S6  IPC-­‐1P  single-­‐layer  interacting  with  one  (a)  and  two  (b)  choline  cations  in  the  energetically  most  preferable  positions:  a)  choline  cation  in  12R  “cup”,  b)  choline  cations  in  

12R  and  14R  “cups”  

 

3.3  Interaction  of  IPC-­‐1P  layers  

Structures   of   interacting   IPC-­‐1P   layers   (without   any   SDA   molecules   in   the   inter-­‐layer   space)   was  recently  investigated  by  Grajciar  et  al.15  using  a  two-­‐layer  periodic  model.  Their  main  results  can  be  summarized  as  follows:  (i)  the  interaction  between  layers  was  driven  by  the  formation  of  a  maximal  number   of   inter-­‐layer   hydrogen   bonds   (H-­‐bonds);   (ii)   inter-­‐layer   arrangements   forming   H-­‐bonds  networks   connecting   neighbouring   layers   with   or   without   inter-­‐layer   shift   (with   respect   to  connectivity  of  original  UTL  zeolite)  could  be   formed;   (iii)   the  arrangement  without   inter-­‐layer  shift  was  energetically  favourable;  (iv)  the  vdW-­‐DF2  exchange-­‐correlation  functional  was  found  to  provide  reliable  results.    

The  periodic  model  of  an  infinite  stack  of  IPC-­‐1P  layers  was  employed  herein  for  the  investigation  of  layer   interaction   without   and   with   SDA   in   interlayer   space.   Four   different   types   of   interlayer  arrangements  were   found  and  they  can  be  classified  based  on  the  shift  along  b  and  c   vectors  with  respect   to  parent  UTL   zeolite   (Table   S4).   Layer   arrangements   are  denoted  with   respect   to   channel  system   of   corresponding   zeolite   to   be   formed   upon   direct   condensation   of   layers   in   such  arrangement.   Structures   of   these   zeolites   including   channel   system   description   were   reported  recently16,   17.   Positive   and   negative   inter-­‐layer   shifts   along   b   and   c   vectors   led   to   inequivalent  structures;  only  energetically  more   favourable  arrangements  of  each   type  are   reported   in  Table  S4  and   these   structures   are   also   shown   in   Figure   S6,   including   choline   cation   positions.   Structural  parameters   of   interacting   IPC-­‐1P   layers   are   reported   in   Table   S5   upon   transformation   to   a   UC  consisting  of   two   ICP-­‐1P   layers.  All   structures   reported   in  Table  S5  are  provided  as  cif   files  and  the  most  favourable  arrangements  for  0,  2,  and  4  choline  cations  are  also  depicted  as  moving  objects  in  separate  gif  files.    

 

© 2015 Macmillan Publishers Limited. All rights reserved

Page 10: Synthesis of ‘unfeasible’ zeolites...Synthesis of IPC-‐9 zeolite IPC-‐9P precursor was prepared by intercalation of choline hydroxide to IPC-‐1P layered zeolite. It was performed

NATURE CHEMISTRY | www.nature.com/naturechemistry 10

SUPPLEMENTARY INFORMATIONDOI: 10.1038/NCHEM.2374

  10  

Table  S4.  Relative  energies  of  different  inter-­‐layer  arrangement  with  0,  2,  and  4  choline  cations  in  UC  calculated  at  the  vdW-­‐DF2  level  of  theory.  

Structure   Shift  along  b  

Shift  along  c  

Erelb  

Notation   Corresponding  zeolitea   0  chol+   2  chol+   4  chol+  

IPC-­‐1P-­‐10R/8R   -­‐D4R(C2/m)   no   no   0.0   103.0   164.7  IPC-­‐1P-­‐10R/7R   -­‐D4R(P1)   no   yes   24.8   21.5   0.0  IPC-­‐1P-­‐8R/8R   -­‐D4R(Pm)   yes   no   8.7   0.0   82.5  IPC-­‐1P-­‐8R/7R   -­‐D4R(Pm’)   yes   yes       58.3      a  Notation  for  hypothetical  zeolites  derived  from  UTL  as  described  in  Ref.  17.  b  In  kJ  mol-­‐1.    

 

In  agreement  with  previous  investigations15  the  IPC-­‐1P-­‐10R/8R  arrangement  was  found  energetically  the  most   favourable  when  no  SDA  cations  were  present   in   the   inter-­‐layer  space.  This  arrangement  corresponds   to   interlayer   connectivity   found   for   IPC-­‐4   (PCR)   and   IPC-­‐2   (OKO)   zeolites   reported  previously18   and   it   is   in   agreement   with   experimental   findings.   The   interaction   is   driven   by   the  formation  of  maximum  number  of   inter-­‐layer  hydrogen  bonds  (six)  between  silanol  quadruplets  on  adjacent   surfaces.   The   situation  was   completely   different  when   just   one   of   surface   silanols   in   the  quadruplet  was   deprotonated   (corresponding   to   higher   pH)   and   corresponding   number   of   choline  cations  (two  per  UC)  was  placed  into  the  inter-­‐layer  region.  Each  surface  silanol  quadruplet  bears  the  charge   -­‐1   (Si4(OH)3O-­‐)   and  due   to   the  electrostatic   interaction   it   is   energetically   favourable   to   shift  adjacent   layers   in  at   least  one   (b  or  c)  direction   (Table  S4).  The   favourable  arrangement   is   the  one  shifted  along  b  crystallographic  direction  (Figure  S6c).  All  choline  cations  were  found  to  be  located  in  the  pocket   in  former  12R  channel   (Figure  S7).  Note  that  the  unshifted  arrangement   is  energetically  the  least  favourable  one  and  that  even  the  structure  of  inter-­‐layer  arrangement  shifted  in  both  b  and  c  directions  was  found  in  the  case  of  two  choline  cations  per  UC  (and  not  in  other  investigated  cases).  In   case  of   four   choline   cations   in   the   inter-­‐layer   region   (requires  deprotonation  of   two  out  of   four  silanols  in  the  quadruplet,  Si4(OH)2(O-­‐)2)  half  of  the  choline  cations  stays  located  in  12R  pockets  while  the   other   cations   are   located   in   the   14R   pockets   (Figure   S7b).   However,   energetically   the   most  favourable   shift   is   now   along   the   c   vector   (Figure   S7)   leading   to   the   IPC-­‐1P-­‐10R/7R   arrangement  corresponding  to  UTL-­‐D4R(P1)  zeolite.    

 

 

 

                     

© 2015 Macmillan Publishers Limited. All rights reserved

Page 11: Synthesis of ‘unfeasible’ zeolites...Synthesis of IPC-‐9 zeolite IPC-‐9P precursor was prepared by intercalation of choline hydroxide to IPC-‐1P layered zeolite. It was performed

NATURE CHEMISTRY | www.nature.com/naturechemistry 11

SUPPLEMENTARY INFORMATIONDOI: 10.1038/NCHEM.2374

  11  

 Table  S5  Lattice  parameters  of  IPC-­‐1P  layers  with  different  interlayer  arrangements  and  0,  2  or  4  choline  cations  in  models  optimized  at  the  vdW-­‐DF2  level  of  theory.  

Cholines  per  layer   Structure   Erela  

UC  vectorsb     UC  anglesc  

a   B   c     α   β   γ  

0  chol+  IPC-­‐1P-­‐10R/8R   0.0   21.20   14.13   12.45     89.99   98.30   89.41  IPC-­‐1P-­‐10R/7R   24.8   20.13   14.04   12.53     89.89   84.33   73.38  IPC-­‐1P-­‐8R/8R   8.7   21.07   14.11   12.41     89.93   91.34   91.11  

2  chol+  IPC-­‐1P-­‐10R/8R   103.0   22.57   14.11   12.38     90.37   87.99   88.61  IPC-­‐1P-­‐10R/7R   21.5   22.65   14.14   12.46     90.09   79.30   85.30  IPC-­‐1P-­‐8R/8R   0.0   20.85   14.05   12.39     89.94   90.78   89.64  IPC-­‐1P-­‐8R/7R   58.3   22.11   13.92   12.09     90.24   104.57   93.38  

4  chol+  IPC-­‐1P-­‐10R/8R   164.7   28.23   13.87   12.36     90.20   90.67   79.13  IPC-­‐1P-­‐10R/7R   0.0   23.88   14.01   12.44     90.13   79.07   86.15  IPC-­‐1P-­‐8R/8R   82.5   26.01   13.87   12.19     90.31   76.60   90.22  

a  in  kJ  mol-­‐1.  b  in  Å.  c  in  degrees.    

© 2015 Macmillan Publishers Limited. All rights reserved

Page 12: Synthesis of ‘unfeasible’ zeolites...Synthesis of IPC-‐9 zeolite IPC-‐9P precursor was prepared by intercalation of choline hydroxide to IPC-‐1P layered zeolite. It was performed

NATURE CHEMISTRY | www.nature.com/naturechemistry 12

SUPPLEMENTARY INFORMATIONDOI: 10.1038/NCHEM.2374

  12  

 

Figure  S7  IPC-­‐1P  containing  0,  2  or  4  choline  cations  in  UC,  columns  denote  projection  along  c  and  b  crystallographic  directions.  a)   IPC-­‐1P-­‐10R/8R,  b)   IPC-­‐1P-­‐10R/7R,  c)   IPC-­‐1P-­‐8R/8R,  d)  IPC-­‐1P-­‐8R/7R  

© 2015 Macmillan Publishers Limited. All rights reserved

Page 13: Synthesis of ‘unfeasible’ zeolites...Synthesis of IPC-‐9 zeolite IPC-‐9P precursor was prepared by intercalation of choline hydroxide to IPC-‐1P layered zeolite. It was performed

NATURE CHEMISTRY | www.nature.com/naturechemistry 13

SUPPLEMENTARY INFORMATIONDOI: 10.1038/NCHEM.2374

  13  

4.  The  Structure  of  IPC-­‐10    

Structures  of   hypothetical   zeolites   that   can  be  obtained  by  ADOR  process   from  UTL  parent   zeolite  were  reported  recently17.  Based  on  a  good  agreement  between  proposed  structure  of  UTL-­‐D4R(P1)  zeolite   and   newly   synthesised   IPC-­‐9   it   is   reasonable   to   assume   that   also   IPC-­‐10   zeolite   should  correspond   to   the   UTL-­‐S4R(Pm)   zeolite   shifted   along   the   c   crystallographic   direction.   However,  significantly  worth  agreement  between  theoretical  and  experimental  powder  XRD   led  us   to   further  investigate  possible  structures  of  corresponding  UTL-­‐S4R  zeolites.  Since  the  original  work  by  Trachta  et   al.17  has  assumed   that  all   subsequent   layers  are   connected   in   the   same  way  we  have   lifted   this  constraint  and  calculated  possible  new  zeolite   structures.   In   the  UTL-­‐S4R(Pm)   zeolite   the  S4R   rings  between   IPC-­‐1P   layers   forms   5R   and   6R   with   upper   and   lower   IPC-­‐1P   layer   (view   along   b   vector,  Figure  S7),  respectively.  Thus  formed  9R  channels  along  b  are  stacked  on  top  of  each  other.  However,  without  a  need  for  additional   lateral  shift  of  adjacent   layers  the  S4R  can  be  alternatively  formed  as  depicted   in   the   lower   part   of   Figure   S8,   with   9R   channels   along   b   somewhat   shifted   in   adjacent  layers.   The   structure   of   such   zeolite   was   optimized   following   the   protocol   used   for   other   –S4R  zeolites  in  Ref.  17.  Resulting  structure  of  P-­‐1  symmetry  (provided  as  a  cif  file)  was  denoted  UTL-­‐S4R(P-­‐1)  and  it  was  found  2  kJ  mol-­‐1  (SiO2)-­‐1  energetically  below  UTL-­‐S4R(Pm),  still  about  6  kJ  mol-­‐1  (SiO2)-­‐1  above   the   most   stable   zeolite   of   UTL-­‐S4R   family   with   OKO   topology   (unshifted   layers).   Relative  energies  obtained  with  the  SLC  force-­‐field  were  in  very  good  agreement  with  DFT  ones.    

Relative   energies   of   UTL-­‐S4R(Pm)   and   UTL-­‐S4R(P-­‐1)   were   further   analysed   using   a   one-­‐layer   IPC-­‐1P+S4R  model  (Figure  S8).  While  each  layer  in  UTL-­‐S4R(Pm)  zeolite  is  the  same  (it  contains  one  S4R  connected   via   5R   and   one   via   6R,   denoted   5/6)   there   are   two   regularly   alternating   layers   in   UTL-­‐S4R(P-­‐1)   denoted   5/5   and   6/6.   As   it   is   apparent   from   Figure   S8   it   is   energetically   slightly   more  favourable  to  form  5/5  layers.  

 

Figure  S8  Comparison  of  UTL-­‐S4R(Pm)  and  UTL-­‐S4R(P-­‐1),  columns  denote  projection  along  c  and  b  crystallographic  directions  and  a  schematic  representation  of  both  structures.  

© 2015 Macmillan Publishers Limited. All rights reserved

Page 14: Synthesis of ‘unfeasible’ zeolites...Synthesis of IPC-‐9 zeolite IPC-‐9P precursor was prepared by intercalation of choline hydroxide to IPC-‐1P layered zeolite. It was performed

NATURE CHEMISTRY | www.nature.com/naturechemistry 14

SUPPLEMENTARY INFORMATIONDOI: 10.1038/NCHEM.2374

  14  

 

 

Figure   S9   Structures   and   relative   energies   of   IPC-­‐1P   layers   terminated   by   S4R   from   both  sides  with  different  S4R  types.  

 

Note  that  the  orientation  of  the  layers  is  geometrically  suitable  for  reassembly  to  form  fully  connected  zeolite  materials  –  i.e.  there  are  no  silanols  groups  in  the  material.  This  is  shown  diagrammatically  in  Figure  S10  

 

 

Figure  S10  The  orientation  of  the  layers  is  such  that  each  silanols  group  in  the  intermediate  structures  can  be  paired  up  with  another  silanol  group  so  that  condensation  between  the  two  groups  is  essentially  complete  leaving  no  uncondensed  silanols  in  the  final  structure.  The  figure  shows  views  in  two  directions  (parallel  to  the  10-­‐ring  channels  in  IPC-­‐9,  a  and  c)  and  parallel  to  the  7-­‐ring  directions  (b  and  d)    

© 2015 Macmillan Publishers Limited. All rights reserved

Page 15: Synthesis of ‘unfeasible’ zeolites...Synthesis of IPC-‐9 zeolite IPC-‐9P precursor was prepared by intercalation of choline hydroxide to IPC-‐1P layered zeolite. It was performed

NATURE CHEMISTRY | www.nature.com/naturechemistry 15

SUPPLEMENTARY INFORMATIONDOI: 10.1038/NCHEM.2374

  15  

5.  Assessing  the  Feasibility  of  IPC-­‐9  and  IPC-­‐10  

As  described  in  the  main  text  of  the  manuscript  there  have  been  several  attempts  to  rationalise  the  feasibility  of  zeolites  as  synthesis  targets.  The  first  target  is  the  feasibility  factor,  ϑ,  which  should  be  as  near  to  zero  as  possible.  This  is  essentially  a  measure  of  how  close  the  framework  energy  of  the  material,  calculated  using  SLC  force  field3  as  described  above,  lies  to  the  energy-­‐density  correlation.  For  IPC-­‐9  this  value  of  ϑ  is  1.7  and  for  IPC-­‐10  it  is  larger  still  at  4.9.    

The  Local  Interatomic  Distance  (LID)  criteria  were  developed  to  describe  the  local  distortions  from  idealized  tetrahedron  that  are  possible  in  feasible  zeolites.  All  of  these  five  criteria,  described  below,  are  met  by  all  previously  known  zeolite  materials.  Table  S6  and  S7  list  the  calculated  framework  energies  and  densities  (calculated  using  both  DFT  and  SLC  force  field)  together  with  the  values  of  ϑ  and  whether  the  LID  values  are  obeyed  or  not.  

 

Table  S6.  The  values  of  framework  energies  and  framework  densities  (calculated  using  both  DFT  and  SLC  force  field)  for  zeolites  IPC-­‐9  and  IPC-­‐10.  Also  listed  is  the  ϑ,  the  feasibility  factor  and  the  LID  criteria  (1  =  pass,  0  =  fail).  For  comparison  the  values  for  zeolites  with  the  OKO  and  PCR  topologies  are  also  listed.    

a  in  kJ  mol-­‐1,  b  in  10-­‐3  Å-­‐3  

 

Table  S7.  Average  T-­‐O,  O-­‐O  and  T-­‐T  distances  (<DTO>,  <DOO>  and  <DTT>  respectively.  

    PCR   OKO   IPC-­‐9   IPC-­‐10  <DTO>   1.5981   1.6022   1.6012   1.6054  σTO   0.0061   0.0080   0.0095   0.0134  RTO   0.0268   0.0406   0.0567   0.0687  <DOO>   2.6093   2.6156   2.6134   2.6199  ε<OO>   0.0002   0.0006   0.0010   0.0015  σOO   0.0333   0.0412   0.0495   0.0636  ROO   0.1688   0.2106   0.3089   0.3542  <DTT>   3.0926   3.0728   3.0784   3.0583  ε<TT>   0.0009   0.0003   0.0000   0.0007  σTT   0.0401   0.0590   0.0728   0.0801  RTT   0.1539   0.2297   0.3134   0.3498  All  values  in  Å  

 

 

Structure   Designation   FEDFTa   FEFFa   FDDFTb   FDFF

b   ϑ  LID  criteria  

1   2   3   4   5  UTL-­‐D4R(C2/m)   PCR   9.1   10.4   18.1   19.3   1.4   1   1   1   1   1  UTL-­‐S4R(C2)   OKO   11.2   13.8   17.0   17.8   0.5   1   1   1   1   1  UTL-­‐D4R(P1)   IPC-­‐9   12.5   14.0   18.7   19.8   1.7   0   1   1   0   1  UTL-­‐S4R(P-­‐1)   IPC-­‐10   16.8   20.1   18.0   18.8   4.9   0   1   0   0   1  

© 2015 Macmillan Publishers Limited. All rights reserved

Page 16: Synthesis of ‘unfeasible’ zeolites...Synthesis of IPC-‐9 zeolite IPC-‐9P precursor was prepared by intercalation of choline hydroxide to IPC-‐1P layered zeolite. It was performed

NATURE CHEMISTRY | www.nature.com/naturechemistry 16

SUPPLEMENTARY INFORMATIONDOI: 10.1038/NCHEM.2374

  16  

LID  Criterion  1.   ε<OO>  should  be  less  than  0.0009    

This  criterion  suggests  that  the  average  tetrahedron  should  be  very  close  to  an  idealized  tetrahedron,  by  saying  that  the  values  of  <DTO>  and  <DOO>  should  fit  the  correlation  described  by  the  equation    <DOO>    =  1.6284  x  <DTO>    -­‐  0.0071.  ε<OO>  is  a  measure  of  the  distance  away  from  this  correlation  and  for  all  previously  known  zeolites  this  value  was  less  that  0.0009.  For  both  IPC-­‐9  and  IPC-­‐10  this  criterion  is  not  met.  This  indicates  that  the  average  tetrahedron  in  both  these  structures  is  the  furthest  away  from  the  ideal  of  any  zeolites  so  far  prepared.  

LID  criterion  2.    ε<TT>  should  be  less  than  0.0046    

This  criterion  is  similar  to  criterion  1  except  that  it  is  the  correlation  between  <DTO>  and  <DTT>  that  is  tested,  with  the  regression  equation  for  the  correlation  being  <DTT>  =  -­‐4.8929  x  <DTO>  +  10.9128.  Once  again  all  previously  known  zeolites  give  values  that  lie  extremely  close  to  this  line,  giving  rise  to  the  criterion  that  ε<TT>  should  be  less  than  0.0046.  Both  IPC-­‐9  and  IPC-­‐10  obey  this  criterion.  This  says  that  the  T-­‐T  distances  and  T-­‐O-­‐T  angles  are  within  normal  parameters  for  a  zeolite.  

LID  criterion  3.    σTO  <  0.0196,  σOO  <  0.0588,    σTT  <  0.0889  

σTO,  σOO,    σTT  are  the  standard  deviation  values  for  the  averages  <DTO>,  <DOO>  and  <DTT>  respectively.  The  third  LID  criterion  states  that  these  standard  deviations  should  be  within  tight  limits,  meaning  that  local  distortions  of  the  structures  are  kept  to  a  minimum.  IPC-­‐9  actually  passes  this  criterion  but  IPC-­‐10  fails  the  test  on  σOO,  indicating  that,  as  for  LID  criterion  1,  it  is  the  tetrahedral  angles  in  this  material  that  show  a  larger  distortion  than  would  be  expected.  

LID  criterion  4.  RTO    <  0.0634,    ROO  <  0.2746,        RTT  <  0.3332  Å  

LID  criterion  number  4  deals  with  the  ranges  of  values  that  the  T-­‐O,  O-­‐O  and  T-­‐T  distances  can  adopt,  indicating  that  all  distances  should  lie  within  the  ranges  indicated.  Neither  IPC-­‐9  nor  IPC-­‐10  passes  this  test.  

LID  criterion  5.  For  conventional  zeolites  only,      1.5967  <  DTO  <  1.6076  Å  

The  final  criterion  is  for  so-­‐called  conventional  zeolites  only.  These  are  zeolites,  like  IPC-­‐9  and  IPC-­‐10,  whose  chemical  composition  is  based  on  silica,  aluminosilicate  and  aluminophosphate  (as  opposed  to  other  compositions  that  are  deemed  unconventional).  Both  IPC-­‐9  and  IPC-­‐10  meet  this  requirement.  

6.  Cif  files  for  the  structures  plus  moving  Gif  files  

Structures  of  interaction  IPC-­‐1P  layers  with  and  without  choline  cations  reported  in  Tables  S4  and  S5  of  this  Supporting  Information  are  provided  in  the  cif   format.  All  these  structures  were  obtained  at  the  DFT  level  and  they  can  be  found  in  "cif/IPC-­‐1P-­‐SDA"  subfolder  of  attached  zip  file.  In  addition,  the  most   stable   structures   of   interacting   IPC-­‐1P   layer   with   0,   2,   and   4   choline   cations   in   UC   are   also  provided  as  a  moving  gif  objects  (they  can  be  found  in  "cif/GIF  movie"  subfolder  of  attached  zip  file).    

The  structure  of  UTL-­‐S4R(P-­‐1)   zeolite  obtained  at   the  DFT  and  FF   levels  are  provided   in   form  of  cif  files   in   "cif/UTL-­‐S4R"   subfolder.   The   corresponding   predicted   structures   of   IPC-­‐9   (zeolite   UTL-­‐S4R(Pm))  were  reported  recently  in  Ref.  17.  

 

© 2015 Macmillan Publishers Limited. All rights reserved

Page 17: Synthesis of ‘unfeasible’ zeolites...Synthesis of IPC-‐9 zeolite IPC-‐9P precursor was prepared by intercalation of choline hydroxide to IPC-‐1P layered zeolite. It was performed

NATURE CHEMISTRY | www.nature.com/naturechemistry 17

SUPPLEMENTARY INFORMATIONDOI: 10.1038/NCHEM.2374

  17  

 

6.  Incorporation  of  Al  into  IPC-­‐9  and  IPC-­‐10  

The  most  common  way  in  which  activity  is  incorporated  into  zeolites  is  the  substitution  of  Al  for  Si,  which  produces  acid  sites  in  the  material.  As  we  have  published  previously18,  the  ADOR  process  can  be  slightly  modified  to  include  Al  in  the  parent  zeolite  (as  described  in  section  1  above).  The  same  approach  can  be  used  for  the  synthesis  of  Al-­‐IPC-­‐9  and  Al-­‐IPC-­‐10.  The  retention  of  Al  in  the  materials  throughout  the  assembly-­‐disassembly-­‐organisation  and  reassembly  processes  can  be  followed  using  27Al  NMR,  which  shows  that  even  though  in  the  original  parent  zeolite  there  is  both  octahedral  and  tetrahedral  aluminium,  after  the  disassembly  process  only  the  tetrahedral  Al  remains  (Figure  S11).  The  Al-­‐containing  materials  can  then  be  characterised  using  infra-­‐red  spectroscopy,  using  acetonitrile  as  a  probe  molecule  to  assess  the  nature  of  acid  sites  in  the  material.    

 

 

Figure  S11  Characterisation  of  Al-­‐containing  zeolites.  (a)  27Al  MAS  NMR  of  the  parent  Al-­‐UTL  material  (red  spectrum  (i)),  IPC-­‐1P  (green  spectrum  (ii)  and  IPC-­‐9  (black  spectrum  (iii)).  Note  that  the  spectra  here  are  not  quantitative  but  there  is  some  evidence  of  a  small  amount  of  dealumination,  especially  during  the  disassembly  (degermanation)  stage  completed  at  higher  temperatures.  Note  that  the  parent  zeolite  contained  some  extraframework  aluminium  that  is  not  present  after  the  hydrolysis  process.  (b)  and  (c)  IR  studies  on  Al-­‐IPC-­‐9  

(i)$$

(ii)$$

(iii)$$

a$

b$ c$

© 2015 Macmillan Publishers Limited. All rights reserved

Page 18: Synthesis of ‘unfeasible’ zeolites...Synthesis of IPC-‐9 zeolite IPC-‐9P precursor was prepared by intercalation of choline hydroxide to IPC-‐1P layered zeolite. It was performed

NATURE CHEMISTRY | www.nature.com/naturechemistry 18

SUPPLEMENTARY INFORMATIONDOI: 10.1038/NCHEM.2374

  18  

using  d3-­‐acetonitile  as  a  probe  molecule  shows  clear  evidence  of  acid  sites  present  in  the  material,  with  Bronsted  acid  sites  at  2296  cm-­‐1  (marked  B  in  panel  (c))  together  with  strong  and  weak  Lewis  acid  sites  (marked  L).  

A  preliminary  catalytic  experiment    (the  tetrahydropyranylation  of  alcohols)  was  performed  in  the  liquid  phase  under  atmospheric  pressure  at  room  temperature  (25  °C)  in  a  multi-­‐experiment  workstation  Star-­‐Fish  (Radleys  Discovery  Technologies).  Before  use,  the  catalyst  (100  mg)  was  activated  at  450  °C  for  90  min  at  a  rate  of  10  °C/min.  Methanol  (9  mmol),  mesitylene  (0.05  g;  internal  standard),  hexane  (10  ml,  solvent)  and  the  catalyst  (100  mg)  were  added  to  a  two-­‐necked  vessel  equipped  with  a  thermometer.  DHP  (15  mmol)  was  then  added  to  the  vessel.  Samples  of  the  reaction  mixture  were  taken  periodically  and  analyzed  by  using  Agilent  6850  GC  equipped  a  polar  DB-­‐WAX  column  (length  20  m,  diameter  0.180  mm,  and  film  thickness  0.3  μm)  and  flame  ionization  detector.  The  reaction  products  were  identified  by  using  Thermo  Finnigan  Focus  DSQ  II  Single  Quadrupole  GC/MS.  Al-­‐IPC-­‐9  showed  some  clear  activity  for  the  reaction  although  conversion  was  relatively  low  at  ~20%  after  300  minutes  reaction  time.    

References:  

1.   Gale  JD.  GULP:  A  computer  program  for  the  symmetry-­‐adapted  simulation  of  solids.  Journal  of  the  Chemical  Society,  Faraday  Transactions  1997,  93(4):  629-­‐637.  

2.   Gale  JD,  Rohl  AL.  The  general  utility  lattice  program  (GULP).  Molecular  Simulation  2003,  29(5):  291-­‐341.  

3.   Sanders  M,  Leslie  M,  Catlow  C.  Interatomic  potentials  for  SiO2.  J  Chem  Soc,  Chem  Commun  1984(19):  1271-­‐1273.  

4.   Bushuev  YG,  Sastre  G.  Atomistic  Simulation  of  Water  Intrusion–Extrusion  in  ITQ-­‐4  (IFR)  and  ZSM-­‐22  (TON):  The  Role  of  Silanol  Defects.  The  Journal  of  Physical  Chemistry  C  2011,  115(44):  21942-­‐21953.  

5.   Kresse  G.  Efficient  iterative  schemes  for  ab  initio  total-­‐energy  calculations  using  a  plane-­‐wave  basis  set.  Physical  Review  B  1996,  54:  11169-­‐11186.  

6.   Kresse  G,  Furthmüller  J.  Efficiency  of  ab-­‐initio  total  energy  calculations  for  metals  and  semiconductors  using  a  plane-­‐wave  basis  set.  Computational  Materials  Science  1996,  6:  15-­‐50.  

7.   Kresse  G,  Hafner  J.  Ab  initio  molecular-­‐dynamics  simulation  of  the  liquid-­‐metal–amorphous-­‐semiconductor  transition  in  germanium.  Physical  Review  B  1994,  49:  14251-­‐14269.  

8.   Kresse  G,  Hafner  J.  Ab  initio  molecular  dynamics  for  liquid  metals.  Physical  Review  B  1993,  47:  558-­‐561.  

9.   Blöchl  PE.  Projector  augmented-­‐wave  method.  Physical  Review  B  1994,  50:  17953-­‐17979.  

10.   Lee  K,  Murray  ÉD,  Kong  L,  Lundqvist  BI,  Langreth  DC.  Higher-­‐accuracy  van  der  Waals  density  functional.  Physical  Review  B  2010,  82:  81101-­‐81104.  

11.   Klimeš  J,  Bowler  DR,  Michaelides  A.  Van  der  Waals  density  functionals  applied  to  solids.  Physical  Review  B  2011,  83:  195131-­‐195142.  

© 2015 Macmillan Publishers Limited. All rights reserved

Page 19: Synthesis of ‘unfeasible’ zeolites...Synthesis of IPC-‐9 zeolite IPC-‐9P precursor was prepared by intercalation of choline hydroxide to IPC-‐1P layered zeolite. It was performed

NATURE CHEMISTRY | www.nature.com/naturechemistry 19

SUPPLEMENTARY INFORMATIONDOI: 10.1038/NCHEM.2374

  19  

12.   Perdew  JP,  Burke  K,  Ernzerhof  M.  Generalized  Gradient  Approximation  Made  Simple.  Physical  Review  Letters  1996,  77:  3865-­‐3868.  

13.   Kresse  G,  Joubert  D.  From  ultrasoft  pseudopotentials  to  the  projector  augmented-­‐wave  method.  Physical  Review  B  1999,  59:  1758-­‐1775.  

14.   Rimola  A,  Costa  D,  Sodupe  M,  Lambert  J-­‐F,  Ugliengo  P.  Silica  Surface  Features  and  Their  Role  in  the  Adsorption  of  Biomolecules:  Computational  Modeling  and  Experiments.  Chemical  Reviews  2013,  113(6):  4216-­‐4313.  

15.   Grajciar  L,  Bludský  O,  Roth  WJ,  Nachtigall  P.  Theoretical  investigation  of  layered  zeolite  frameworks:  Interaction  between  IPC-­‐1P  layers  derived  from  zeolite  UTL.  Catalysis  Today  2013,  204:  15-­‐21.  

16.   Trachta  M,  Bludský  O,  Čejka  J,  Morris  RE,  Nachtigall  P.  From  Double-­‐Four-­‐Ring  Germanosilicates  to  New  Zeolites:  In  Silico  Investigation.  ChemPhysChem  2014,  15(14):  2972-­‐2976.  

17.   Trachta  M,  Nachtigall  P,  Bludský  O.  The  ADOR  synthesis  of  new  zeolites:  In  silico  investigation.  Catalysis  Today  2014,  243(0):  32-­‐38.  

18.   Roth  WJ,  Nachtigall  P,  Morris  RE,  Wheatley  PS,  Seymour  VR,  Ashbrook  SE,  et  al.  A  family  of  zeolites  with  controlled  pore  size  prepared  using  a  top-­‐down  method.  Nature  chemistry  2013,  5:  628-­‐633.  

 

© 2015 Macmillan Publishers Limited. All rights reserved


Recommended