+ All Categories
Home > Documents > Techniques and Tools for Product-Specific Analysis Templates Towards Enhanced CAD-CAE...

Techniques and Tools for Product-Specific Analysis Templates Towards Enhanced CAD-CAE...

Date post: 30-Dec-2015
Category:
Upload: clementine-stephanie-cross
View: 216 times
Download: 3 times
Share this document with a friend
Popular Tags:
78
Techniques and Tools for Product-Specific Analysis Templates Towards Enhanced CAD-CAE Interoperability for Simulation-Based Design and Related Topics Russell S. Peak Senior Researcher Manufacturing Research Center Georgia Tech Seminar NIST Gaithersburg, Maryland October 9, 2001
Transcript
Page 1: Techniques and Tools for Product-Specific Analysis Templates Towards Enhanced CAD-CAE Interoperability for Simulation-Based Design and Related Topics Russell.

Techniques and Tools for Product-Specific Analysis TemplatesTowards Enhanced CAD-CAE Interoperability for Simulation-Based Design and Related Topics

Russell S. Peak

Senior Researcher

Manufacturing Research Center

Georgia Tech

SeminarNIST Gaithersburg, Maryland

October 9, 2001

Page 2: Techniques and Tools for Product-Specific Analysis Templates Towards Enhanced CAD-CAE Interoperability for Simulation-Based Design and Related Topics Russell.

2Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Techniques and Tools for Product-Specific Analysis Templates

Towards Enhanced CAD-CAE Interoperability for Simulation-Based Design and Related Topics

Design engineers are becoming increasingly aware of “analysis template” pockets that exist in their product domain. For example, tire-roadway analysis templates verify handling, durability, and slip requirements, and thermal resistance and interconnect reliability templates are common to electronic chip packages. Such templates may exist in the form of paper-based notes and design standards, as well as loosely structured spreadsheets and electronic workbooks. Often, however, they are not articulated in any persistent form. Some CAD/E software vendors are offering pre-packaged analysis template catalogs like the above; however, they are typically dependent on a specific toolset and do not present design-analysis idealization associativity to the user. Thus, it is difficult to adapt, extend, or transfer analysis template knowledge. Domain- and tool-independent techniques and related standards are needed. This seminar overviews emerging analysis template theory and methodology that addresses such issues. Patterns that naturally exist in between traditional CAD and CAE models are summarized, along with their embodiment in a knowledge representation known as constrained objects. Industrial applications from airframe structural analysis, circuit board thermomechanical analysis, and chip package thermal resistance analysis are given. This approach enhances knowledge capture, modularity, and reusability, as well as improves automation (e.g., decreasing total simulation cycle time by 75%). The object patterns also identify where best to apply technologies like STEP, XML, CORBA/SOAP, and web services. We believe further benefits are possible if these patterns are combined with other efforts to enable ubiquitous analysis template technology. See the following web document for summaries and pointers to the main techniques, software tools, and application domains in this X-analysis integration (XAI) work. Here X represents product life cycle stages like design, manufacture, and maintenance. Other pointers include Short Course slides and software tools. http://eislab.gatech.edu/research/XAI_Central.doc Russell S. Peak received all his degrees in the School of Mechanical Engineering at Georgia Tech. His industrial experience includes business telephone design at AT&T Bell Laboratories and analysis integration as a Visiting Researcher at the Hitachi Mechanical Engineering Research Laboratory in Japan. Dr. Peak is the developer of constrained objects (COBs), the multi-representation architecture (MRA) for analysis integration, and context-based analysis models (CBAMs) - a knowledge pattern that explicitly captures design-analysis associativity using object and constraint graph techniques. He is a member of ASME and the U. S. Association of Computational Mechanics, and he serves on the PDES Inc. Technical Advisory Committee.

Page 3: Techniques and Tools for Product-Specific Analysis Templates Towards Enhanced CAD-CAE Interoperability for Simulation-Based Design and Related Topics Russell.

3Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Nomenclature ABB-SMM transformation idealization relation between design and analysis attributes APM-ABB associativity linkage indicating usage of one or more i

ABB analysis building blockAMCOM U. S. Army Aviation and Missile CommandAPM analyzable product modelCAD computer aided designCAE computer aided engineeringCBAM context-based analysis modelCOB constrained objectCOI constrained object instanceCOS constrained object structureCORBA common ORB architectureDAI design-analysis integrationEIS engineering information systemsESB engineering service bureauFEA finite element analysisFTT fixed topology templateGUI graphical user interfaceIIOP Internet inter-ORB protocolMRA multi-representation architectureORB object request brokerOMG Object Management Group, www.omg.comPWA printed wiring assembly (a PWB populated with components)PWB printed wiring boardSBD simulation-based designSBE simulation-based engineeringSME small-to-medium sized enterprise (small business)SMM solution method modelProAM Product Data-Driven Analysis in a Missile Supply Chain (ProAM) project (AMCOM)PSI Product Simulation Integration project (Boeing)STEP Standard for the Exchange of Product Model Data (ISO 10303).VTMB variable topology multi-bodyXAI X-analysis integration (X= design, mfg., etc.)XCP XaiTools ChipPackage™

XFW XaiTools FrameWork™

XPWAB XaiTools PWA-B™

Page 4: Techniques and Tools for Product-Specific Analysis Templates Towards Enhanced CAD-CAE Interoperability for Simulation-Based Design and Related Topics Russell.

4Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Analysis Module Catalog:Chip Package Simulation

thermal, hydro(moisture), fluid dynamics(molding), mechanical and electrical behaviors PakSi-TM and PakSi-E tools

http://www.icepak.com/prod/paksi/ as of 10/2001 Chip package-specific behaviors:

thermal resistance, popcorning, die cracking, delaminating, warpage & coplanarity, solder joint fatigue, molding, parasitic parameters extraction, and signal integrity

Page 5: Techniques and Tools for Product-Specific Analysis Templates Towards Enhanced CAD-CAE Interoperability for Simulation-Based Design and Related Topics Russell.

5Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Analysis Module Catalog:Excavator/Loader Structural and Vibration & Noise Analysis

Infinik (Korea)http://www.infinik.com/solution/software.htm as of 10/2001 Optimal Mount Design of Cabin

– Objective: Mininize vibration and reaction force at cabin mounting points– Analysis Type: Modal, forced vibration,substructure technique

Structures using ANSYS – Analysis Objects: Boom, arm, upper frame, lower frame– Analysis Type: Static,model,fatigue,life analysis

Noise & Vibration

Page 7: Techniques and Tools for Product-Specific Analysis Templates Towards Enhanced CAD-CAE Interoperability for Simulation-Based Design and Related Topics Russell.

7Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Analysis Module Catalog:Tire-roadway interaction on full-vehicle performance

From http://www.adams.com/product/product_line/tire.pdf as of 6/20/2001

DifferentBehaviors

Diverse Design Data Fidelities

VariousEnvironment /

BoundaryConditionFidelities

Diverse Analysis Modules

Page 8: Techniques and Tools for Product-Specific Analysis Templates Towards Enhanced CAD-CAE Interoperability for Simulation-Based Design and Related Topics Russell.

8Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Analysis Template Methodology & X-Analysis Integration Objectives (X=Design, Mfg., etc.)

Goal:Improve engineering processes via analysis templates

with enhanced CAx-CAE interoperability Challenges:

– Idealizations– Diversity: Information, Behaviors, Disciplines, Fidelity, Feature Levels, CAD/CAE

Methods & Tools, …– Multi-Directional Associativity:

DesignAnalysis, Analysis Analysis Initial Focus:

Capture analysis template knowledge in modular form for regular design usage

One Approach: Multi-Representation Architecture (MRA)

using Constrained Objects (COBs)

Page 9: Techniques and Tools for Product-Specific Analysis Templates Towards Enhanced CAD-CAE Interoperability for Simulation-Based Design and Related Topics Russell.

9Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Multi-Fidelity Idealizations

inboard beam

Design Model (MCAD) Analysis Models (MCAE)

1D Beam/Stick Model

3D Continuum/Brick Model

flap support assembly

Behavior = Deformation

Page 10: Techniques and Tools for Product-Specific Analysis Templates Towards Enhanced CAD-CAE Interoperability for Simulation-Based Design and Related Topics Russell.

10Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

An Introduction to X-Analysis Integration (XAI) Short Course Outline - Highlights

Part 1: Constrained Objects (COBs) Primer– Nomenclature

Part 2: Multi-Representation Architecture (MRA) Primer – Analysis Integration Challenges – Overview of COB-based XAI– Ubiquitization Methodology

Part 3: Example Applications» Airframe Structural Analysis (Boeing)» Circuit Board Thermomechanical Analysis

(DoD: ProAM; JPL/NASA)» Chip Package Thermal Analysis (Shinko)

– Summary

Part 4: Advanced Topics & Current Research

Page 11: Techniques and Tools for Product-Specific Analysis Templates Towards Enhanced CAD-CAE Interoperability for Simulation-Based Design and Related Topics Russell.

11Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

COB Structure: Graphical Forms

Spring Primitive

v a r i a b l e s u b v a r i a b l es u b s y s t e m

e q u a l i t y r e l a t i o n

r e l a t i o n

s

a b

dc

a

b

d

c

e

a . das

r 1r 1 ( a , b , s . c )

e = f

s u b v a r i a b l e s . b

[ 1 . 2 ]

[ 1 . 1 ]o p t i o n 1 . 1

ff = s . d

o p t i o n 1 . 2

f = g

o p t i o n c a t e g o r y 1

gcbe

r 2

h o f c o b t y p e h

wL [ j : 1 , n ]

w j

a g g r e g a t e c . we l e m e n t w j

Basic Constraint Schematic-S Notation

L

L

Fk

u n d e fo rm e d le n g th ,

s p r in g c o n s ta n t, fo rc e ,

to ta l e lo n g a tio n ,

1x

Lle n g th ,0

2x

s ta rt,

e n d ,

oLLL

12 xxL

LkF

r1

r2

r3

c. Constraint Schematic-S

FF

k

L

deformed state

Lo

L

x2x1

a. Shape Schematic-S

LkFr

LLLr

xxLr

:

:

:

3

02

121

b. Relations-S

SpringElementary

LL

Fk

1x L

0

2x

d. Subsystem-S(for reuse by other COBs)

Page 12: Techniques and Tools for Product-Specific Analysis Templates Towards Enhanced CAD-CAE Interoperability for Simulation-Based Design and Related Topics Russell.

12Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

COB Structure: Lexical Form Spring Primitive

L

L

Fk

u n d e fo rm e d le n g th ,

s p r in g c o n s ta n t, fo rc e ,

to ta l e lo n g a tio n ,

1x

Lle n g th ,0

2x

s ta rt,

e n d ,

oLLL

12 xxL

LkF

r1

r2

r3

Constraint Schematic-S

Lexical COB Structure (COS)

COB spring SUBTYPE_OF abb; undeformed_length, L<sub>0</sub> : REAL; spring_constant, k : REAL; start, x<sub>1</sub> : REAL; end, x<sub>2</sub> : REAL; length, L : REAL; total_elongation, &Delta;L : REAL; force, F : REAL; RELATIONS r1 : "<length> == <end> - <start>"; r2 : "<total_elongation> == <length> - <undeformed_length>"; r3 : "<force> == <spring_constant> * <total_elongation>";END_COB;

Page 13: Techniques and Tools for Product-Specific Analysis Templates Towards Enhanced CAD-CAE Interoperability for Simulation-Based Design and Related Topics Russell.

13Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

200 lbs

30e6 psiResult b = 30e6 psi (output or intermediate variable)

Result c = 200 lbs (result of primary interest)

X

Relation r1 is suspended X r1

100 lbs Input a = 100 lbs

Equality relation is suspended

a

b

c

Example COB InstanceSpring Primitive

Constraint Schematic-I Lexical COB Instance (COI)

state 1.0 (unsolved):

INSTANCE_OF spring; undeformed_length : 20.0; spring_constant : 5.0; total_elongation : ?; force : 10.0;END_INSTANCE;

state 1.1 (solved):

INSTANCE_OF spring; undeformed_length : 20.0; spring_constant : 5.0; start : ?; end : ?; length : 22.0; total_elongation : 2.0; force : 10.0;END_INSTANCE;

Basic Constraint Schematic-I Notation

22 mm

10 N

2 mm

5 N/mm

20 mm

L

L

Fk

undeformed length,

spring constant, force,

total elongation,

1x

Llength,0

2x

start,

end,

oLLL

12 xxL

LkF

r1

r2

r3

example 1, state 1.1

Page 14: Techniques and Tools for Product-Specific Analysis Templates Towards Enhanced CAD-CAE Interoperability for Simulation-Based Design and Related Topics Russell.

14Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Traditional Mathematical RepresentationTwo Spring System

System Figure

P

k1 k2

2u1u

L10

k1

x12

F1

L1

L1

x11

F1

L20

k2

x22

F2

L2

L2

x21

F2

Free Body Diagrams

22223

202222

2122221

11113

101112

1112111

:

:

:

:

:

:

LkFr

LLLr

xxLr

LkFr

LLLr

xxLr

Variables and Relations

Boundary Conditions

Kinematic Relations

Constitutive Relations

1226

115

24

213

21122

111

:

:

:

:

:

0:

uLubc

Lubc

PFbc

FFbc

xxbc

xbc

Page 15: Techniques and Tools for Product-Specific Analysis Templates Towards Enhanced CAD-CAE Interoperability for Simulation-Based Design and Related Topics Russell.

15Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

spring2

spring1

Constraint Graph-STwo Spring System

P

k1 k2

2u1u

22223

202222

2122221

11113

101112

1112111

:

:

:

:

:

:

LkFr

LLLr

xxLr

LkFr

LLLr

xxLr

L10

k1

L1

L1

L20

k2

x21

x22

F2

L2

F1

x11

x12

u1 u2

P

1226

115

24

213

21122

111

:

:

:

:

:

0:

uLubc

Lubc

PFbc

FFbc

xxbc

xbc

L2

bc4

r12

r13

r22

r23

bc5bc6

bc3

r11r21

bc2

bc1

Page 16: Techniques and Tools for Product-Specific Analysis Templates Towards Enhanced CAD-CAE Interoperability for Simulation-Based Design and Related Topics Russell.

16Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

spring2

spring1

L10

k1

L1

L1

L20

k2

x21

x22

F2

L2

F1

x11

x12

u1 u2

P

L2

bc4

r12

r13

r22

r23

bc5bc6

bc3

r11r21

bc2

bc1

COB Representation Extended Constraint Graph-S: Two Spring System

Extended Constraint Graph-S

Constraint Graph-S

• Groups objects & relations into parent objects• Object-oriented vs. flattened

spring 2

L

Lundeformed length,

spring constant, k

Fforce,

total elongation,

1xLlength,

0

2x

start,

end,

oLLL

12 xxL

LkF

r1

r2

r3

spring 1two-spring system

deformation 1, u1

deformation 2, u2

force , P

L

Lundeformed length,

spring constant, k

Fforce,

total elongation,

1xLlength,

0

2x

start,

end,

oLLL

12 xxL

LkF

r1

r2

r3

partial(BC relations not included)

Page 17: Techniques and Tools for Product-Specific Analysis Templates Towards Enhanced CAD-CAE Interoperability for Simulation-Based Design and Related Topics Russell.

17Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

spring2

spring1

L10

k1

L1

L1

L20

k2

x21

x22

F2

L2

F1

x11

x12

u1 u2

P

L2

bc4

r12

r13

r22

r23

bc5bc6

bc3

r11r21

bc2

bc1

b c 1

s p r i n g 1

2u

s p r i n g 2

1u

P

S p r i n gE l e m e n t a r y

LL

Fk

1x L

0

2x

122 uLu

b c 2 b c 3

b c 4

b c 6

S p r i n gE l e m e n t a r y

LL

Fk

1x L

0

2x

b c 5

011 x

COB Representation Constraint Schematic-S: Two Spring System

Constraint Schematic-S

Constraint Graph-S

• Encapsulated form (hides details)

Page 18: Techniques and Tools for Product-Specific Analysis Templates Towards Enhanced CAD-CAE Interoperability for Simulation-Based Design and Related Topics Russell.

18Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

b c 1

s p r i n g 1

2u

s p r i n g 2

1u

P

S p r i n gE l e m e n t a r y

LL

Fk

1x L

0

2x

122 uLu

b c 2 b c 3

b c 4

b c 6

S p r i n gE l e m e n t a r y

LL

Fk

1x L

0

2x

b c 5

011 x

COB Constraint Schematic-STwo Spring System

22223

202222

2122221

11113

101112

1112111

:

:

:

:

:

:

LkFr

LLLr

xxLr

LkFr

LLLr

xxLr

P

k1 k2

u2u1

System-Level Relations(Boundary Conditions)

Analysis Primitiveswith

Encapsulated Relations

1226

115

24

213

21122

111

:

:

:

:

:

0:

uLubc

Lubc

PFbc

FFbc

xxbc

xbc

Page 19: Techniques and Tools for Product-Specific Analysis Templates Towards Enhanced CAD-CAE Interoperability for Simulation-Based Design and Related Topics Russell.

19Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

COBs as Building BlocksTwo Spring System

P

k1 k2

u2u1

Constraint Schematic-S

Lexical COB Structure (COS)

COB spring_system SUBTYPE_OF analysis_system; spring1 : spring; spring2 : spring; deformation1, u<sub>1</sub> : REAL; deformation2, u<sub>2</sub> : REAL; load, P : REAL; RELATIONS bc1 : "<spring1.start> == 0.0"; bc2 : "<spring1.end> == <spring2.start>"; bc3 : "<spring1.force> == <spring2.force>"; bc4 : "<spring2.force> == <load>"; bc5 : "<deformation1> == <spring1.total_elongation>"; bc6 : "<deformation2> == <spring2.total_elongation> + <deformation1>";END_COB;

b c 1

s p r i n g 1

2u

s p r i n g 2

1u

P

S p r i n gE l e m e n t a r y

LL

Fk

1x L

0

2x

122 uLu

b c 2 b c 3

b c 4

b c 6

S p r i n gE l e m e n t a r y

LL

Fk

1x L

0

2x

b c 5

011 x

Page 20: Techniques and Tools for Product-Specific Analysis Templates Towards Enhanced CAD-CAE Interoperability for Simulation-Based Design and Related Topics Russell.

20Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

state 1.0 (unsolved):INSTANCE_OF spring_system; spring1.undeformed_length : 8.0; spring1.spring_constant : 5.5; spring2.undeformed_length : 8.0; spring2.spring_constant : 6.0; load : 10.0; deformation2 : ?;END_INSTANCE;

state 1.1 (solved):INSTANCE_OF spring_system; spring1.undeformed_length : 8.0; spring1.spring_constant : 5.5; spring1.start : 0.0; spring1.end : 9.818; spring1.force : 10.0; spring1.total_elongation : 1.818; spring1.length : 9.818; spring2.undeformed_length : 8.0; spring2.spring_constant : 6.0; spring2.start : 9.818; spring2.force : 10.0; spring2.total_elongation : 1.667; spring2.length : 9.667; spring2.end : 19.48; load : 10.0; deformation1 : 1.818; deformation2 : 3.485;END_INSTANCE;

Analysis System InstanceTwo Spring System

Constraint Schematic-I Lexical COB Instance (COI)

b c 1

s p r i n g 1

2u

s p r i n g 2

1u

P

S p r i n gE l e m e n t a r y

LL

Fk

1x L

0

2x

122 uLu

b c 2 b c 3

b c 4

b c 6

S p r i n gE l e m e n t a r y

LL

Fk

1x L

0

2x

b c 5

011 x

1 . 8 1 8

1 0 . 0 6 . 0

8 . 0

5 . 5

8 . 0

3 . 4 8 5

9 . 8 1 8

1 0 . 0

1 0 . 0

9 . 8 1 8

1 . 6 6 7

9 . 6 6 7

1 9 . 4 8

1 . 8 1 8

9 . 8 1 8

example 2, state 1.1

Page 21: Techniques and Tools for Product-Specific Analysis Templates Towards Enhanced CAD-CAE Interoperability for Simulation-Based Design and Related Topics Russell.

21Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Spring Examples Implemented in XaiTools X-Analysis Integration

Toolkit

spring system: similar to state 1.1 (solved):

spring: state 1.1 (solved)

spring: state 5.1 (solved)

Page 22: Techniques and Tools for Product-Specific Analysis Templates Towards Enhanced CAD-CAE Interoperability for Simulation-Based Design and Related Topics Russell.

22Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Using Internet/Intranet-based Analysis SolversThick Client Architecture

Client PCs

XaiTools

Thick Client

Users

Internet

June’99-Present:EIS Lab - Regular internal use

U-Engineer.com - Demo usage: - US - Japan

Nov.’00-Present:Electronics Co. - Began production usage (dept. Intranet)

Future:Company Intranet and/or

U-Engineer.com(commercial) - Other solvers

Iona orbixdj

Mathematica

Ansys

Internet/Intranet

XaiTools AnsysSolver Server

XaiTools AnsysSolver Server

XaiTools Math.Solver Server

CORBA Daemon

XaiTools AnsysSolver Server

FEA Solvers

Math Solvers

CORBA Servers

CO

RB

A IIO

P..

.

Engineering Service BureauHost Machines

Page 23: Techniques and Tools for Product-Specific Analysis Templates Towards Enhanced CAD-CAE Interoperability for Simulation-Based Design and Related Topics Russell.

23Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Subsystem-S

Object Relationship Diagram-S

COB StructureDefinition Language

(COS)

I/O Table-S

Constraint Graph-S

Constraint Schematic-S

STEPExpress

Express-G

COB Modeling Languages & Views

COB InstanceDefinition Language

(COI)

Constraint Graph-I

Constraint Schematic-I

STEPPart 21

200 lbs

30e6 psi

100 lbs 20.2 in

R101

R101

100 lbs

30e6 psi 200 lbs

20.2 in

StructureLevel(Template)

InstanceLevel

Page 24: Techniques and Tools for Product-Specific Analysis Templates Towards Enhanced CAD-CAE Interoperability for Simulation-Based Design and Related Topics Russell.

24Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

COB Object Model View (EXPRESS-G)Spring Schema

Real

Real

Real

spring _system

spring_2

spring_1

load

deformation1

deformation2

Real

Real

Real

Real

Real

Real

Real

spring

undeformed _length

force

total _elongation

length

end0

start

spring _constant

P

k1 k2

u2u1

FF

k

L

deformed state

Lo

L

x2x1

Page 25: Techniques and Tools for Product-Specific Analysis Templates Towards Enhanced CAD-CAE Interoperability for Simulation-Based Design and Related Topics Russell.

25Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Constrained Objects (COBs)Representation Characteristics & Advantages

Overall characteristics– Declarative knowledge representation (non-causal)– Combining object & constraint graph techniques– COBs = (STEP EXPRESS subset) +

(constraint graph concepts & views)

Advantages over traditional analysis representations– Greater solution control– Richer semantics

(e.g., equations wrapped in engineering context)– Unified views of diverse capabilities (tool-independent)– Capture of reusable knowledge – Enhanced development of complex analysis models

Example Toolkit: XaiTools v0.5

Page 26: Techniques and Tools for Product-Specific Analysis Templates Towards Enhanced CAD-CAE Interoperability for Simulation-Based Design and Related Topics Russell.

26Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

An Introduction to X-Analysis Integration (XAI) Short Course Outline

Part 1: Constrained Objects (COBs) Primer– Nomenclature

Part 2: Multi-Representation Architecture (MRA) Primer – Analysis Integration Challenges – Overview of COB-based XAI– Ubiquitization Methodology

Part 3: Example Applications» Airframe Structural Analysis (Boeing)» Circuit Board Thermomechanical Analysis

(DoD: ProAM; JPL/NASA)» Chip Package Thermal Analysis (Shinko)

– Summary

Part 4: Advanced Topics & Current Research

Page 27: Techniques and Tools for Product-Specific Analysis Templates Towards Enhanced CAD-CAE Interoperability for Simulation-Based Design and Related Topics Russell.

27Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

X-Analysis Integration Techniquesfor CAD-CAE Interoperability

http://eislab.gatech.edu/tools/XaiTools/

a. Multi-Representation Architecture (MRA)

1 Solution Method Model

ABB SMM

2 Analysis Building Block

4 Context-Based Analysis Model3

SMMABB

APM ABB

CBAM

APM

Design Tools Solution Tools

Printed Wiring Assembly (PWA)

Solder Joint

Component

PWB

body3body2

body1

body4

T0

Printed Wiring Board (PWB)

SolderJoint

Component

AnalyzableProduct Model

b. Explicit Design-Analysis Associativity

c. Analysis Module Creation Methodology

I n f o r m a l A s s o c i a t i v i t y D i a g r a m

C o n s t r a i n e d O b j e c t - b a s e d A n a l y s i s M o d u l eC o n s t r a i n t S c h e m a t i c V i e w

P l a n e S t r a i n B o d i e s S y s t e m

P W A C o m p o n e n t O c c u r r e n c e

CL

1

m a t e r i a l ,E( , )g e o m e t r y

b o d y

p l a n e s t r a i n b o d y , i = 1 . . . 4P W B

S o l d e rJ o i n t

E p o x y

C o m p o n e n tb a s e : A l u m i n a

c o r e : F R 4

S o l d e r J o i n t P l a n e S t r a i n M o d e l

t o t a l h e i g h t , h

l i n e a r - e l a s t i c m o d e l

A P M A B B

3 A P M 4 C B A M

2 A B Bc

4b o d y 3b o d y

2b o d y

1h oT

p r i m a r y s t r u c t u r a l m a t e r i a l

ii

i

1 S M M

D e s i g n M o d e l A n a l y s i s M o d e l

A B B S M M

s o l d e rs o l d e r j o i n t

p w b

c o m p o n e n t

1 . 2 5

d e f o r m a t i o n m o d e l

t o t a l h e i g h t

d e t a i l e d s h a p e

r e c t a n g l e

[ 1 . 2 ]

[ 1 . 1 ]

a v e r a g e

[ 2 . 2 ]

[ 2 . 1 ]

cT c

T s

i n t e r - s o l d e r j o i n t d i s t a n c ea p p r o x i m a t e m a x i m u m

s j

L s

p r i m a r y s t r u c t u r a l m a t e r i a l

t o t a l t h i c k n e s s

l i n e a r - e l a s t i c m o d e l

P l a n e S t r a i n

g e o m e t r y m o d e l 3

a

s t r e s s - s t r a i nm o d e l 1

s t r e s s - s t r a i nm o d e l 2

s t r e s s - s t r a i nm o d e l 3

B o d i e s S y s t e m

x y , e x t r e m e , 3

T 2

L 1

T 1

T 0

L 2

h 1

h 2

T 3

T s j

h s

h c

L c

x y , e x t r e m e , s jb i l i n e a r - e l a s t o p l a s t i c m o d e l

l i n e a r - e l a s t i c m o d e l

p r i m a r y s t r u c t u r a l m a t e r i a l l i n e a r - e l a s t i c m o d e l

c o m p o n e n to c c u r r e n c e

s o l d e r j o i n ts h e a r s t r a i nr a n g e

[ 1 . 2 ]

[ 1 . 1 ]l e n g t h 2 +

3 A P M 2 A B B 4 C B A M

F i n e - G r a i n e d A s s o c i a t i v i t y

ProductModel Selected Module

Analysis Module Catalogs

MCAD

ECAD

Analysis Procedures

CommercialAnalysis Tools

Ansys

Abaqus

Solder Joint Deformation Model

Idealization/Defeaturization

CommercialDesign Tools

PWB

Solder Joint

Component

APM CBAM ABB SMM

Ubiquitous Analysis(Module Usage)

Ubiquitization(Module Creation)

CAE

Physical Behavior Research,Know-How, Design Handbooks, ...

Page 28: Techniques and Tools for Product-Specific Analysis Templates Towards Enhanced CAD-CAE Interoperability for Simulation-Based Design and Related Topics Russell.

28Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Multi-Representation Architecture for Design-Analysis Integration

1 Solution Method Model

ABB SMM

2 Analysis Building Block

4 Context-Based Analysis Model3

SMMABB

APM ABB

CBAM

APM

Design Tools Solution Tools

Printed Wiring Assembly (PWA)

Solder Joint

Component

PWB

body3body2

body1

body4

T0

Printed Wiring Board (PWB)

SolderJoint

Component

AnalyzableProduct Model

Page 29: Techniques and Tools for Product-Specific Analysis Templates Towards Enhanced CAD-CAE Interoperability for Simulation-Based Design and Related Topics Russell.

29Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Analysis Building Blocks (ABBs)

Analysis Primitives

Beam

q(x)

Distributed Load

RigidSupport

Cantilever Beam System

Analysis Systems- Primitive building blocks - Containers of ABB "assemblies"

Material Models

Specialized

General

- Predefined templates

- User-defined systemsAnalysis VariablesDiscrete Elements

Interconnections

Continua

Plane Strain BodyLinear-Elastic

BilinearPlastic Plate

Low CycleFatigue

N

Mass Spring Damper

x

y q(x)

Beam

Distributed Load

RigidSupport

No-Slipbody 1

body 2

Temperature,

Stress,

Strain,

T

Geometry

Object representation of product-independent analytical engineering concepts

Page 30: Techniques and Tools for Product-Specific Analysis Templates Towards Enhanced CAD-CAE Interoperability for Simulation-Based Design and Related Topics Russell.

30Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

COB-based Libraries ofAnalysis Building Blocks (ABBs)

Material Model ABB

Continuum ABBs

modularre-usage

E

O n e D L in e a rE la s t i c M o d e l

T

G

e

t

m a t e r i a l m o d e l

p o la r m o m e n t o f i n e r t i a , J

r a d iu s , r

u n d e f o r m e d l e n g t h , L o

t w i s t ,

t h e t a s t a r t , 1

t h e t a e n d , 2

r 1

12

r 3

0L

r

J

rT r

t o r q u e , T r

x

TT

G , r , , ,J

L o

y

m ateria l m odel

tem perature, T

reference tem perature, T o

force, F

area, A

undeform ed length, L o

to ta l e longation,L

length, L

start, x1

end, x2

E

O ne D LinearE lastic M odel

(no shear)

T

e

t

r1

12 xxL

r2

oLLL

r4

A

F

edb.r1

oTTT

r3

L

L

x

FF

E , A ,

LL o

T , ,

yL

Torsional Rod

Extensional Rod

temperature change,T

cte,

youngs modulus, E

stress,

shear modulus, G

poissons ratio,

shear stress, shear strain,

thermal strain, telastic strain, e

strain,

r2

r1)1(2

EG

r3

r4Tt

Ee

r5

G

te

1D Linear Elastic Model

Page 31: Techniques and Tools for Product-Specific Analysis Templates Towards Enhanced CAD-CAE Interoperability for Simulation-Based Design and Related Topics Russell.

31Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Multi-Representation Architecture for Design-Analysis Integration

1 Solution Method Model

ABB SMM

2 Analysis Building Block

4 Context-Based Analysis Model3

SMMABB

APM ABB

CBAM

APM

Design Tools Solution Tools

Printed Wiring Assembly (PWA)

Solder Joint

Component

PWB

body3body2

body1

body4

T0

Printed Wiring Board (PWB)

SolderJoint

Component

AnalyzableProduct Model

Page 32: Techniques and Tools for Product-Specific Analysis Templates Towards Enhanced CAD-CAE Interoperability for Simulation-Based Design and Related Topics Russell.

32Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Analyzable Product Models (APMs)

SolidModeler

MaterialsDatabase

FastenersDatabase

Design Applications Analysis Applications

FEA-BasedAnalysis

Formula-BasedAnalysis

Combineinformation

Add reusablemultifidelityidealizations

Analyzable Product Model(APM)

...Provide advanced access to design data needed by diverse analyses.

Support multidirectionality

Page 33: Techniques and Tools for Product-Specific Analysis Templates Towards Enhanced CAD-CAE Interoperability for Simulation-Based Design and Related Topics Russell.

33Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Flap Link Geometric Model

(with idealizations)

ts1

B

sleeve1

B ts2

ds2

ds1

sleeve2

L

tfb tw

wf

rf

f

Section B-B(at critical_cross_section)

shaft

Leff

s

tft

A, I, J

tapered I

htotaltf tw

wf

tfb tw

wf

f

tft

hw hw hw

basic I

htotalhtotal

tf

Multifidelity Idealizations

A, I, J A, I, J

rib1

Detailed Design

rib2

red = idealized parameter

28b

Page 34: Techniques and Tools for Product-Specific Analysis Templates Towards Enhanced CAD-CAE Interoperability for Simulation-Based Design and Related Topics Russell.

34Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Flap Linkage ExampleManufacturable Product Model (MPM) = Design

Description

Product Attribute

Ri Product Relation

ts1

A

Sleeve 1

A ts2

ds2

ds1

Sleeve 2

L

Shaft

b

h

t

b

h

t

sleeve_2

shaft

rib_1

material

flap_link

sleeve_1

rib_2

w

t

r

x

name

R3

R2

t2f

wf

tw

t1f

cross_section

w

t

r

x

R1

COB flap_link SUBTYPE_OF part; part_number : STRING; inter_axis_length, L : REAL; sleeve1 : sleeve; sleeve2 : sleeve; shaft : tapered_beam; rib1 : rib; rib2 : rib;RELATIONS PRODUCT_RELATIONS pr2 : "<inter_axis_length> == <sleeve2.origin.y> -

<sleeve1.origin.y>"; pr3 : "<rib1.height> == (<sleeve1.width> -

<shaft.cross_section.design.web_thickness>)/2"; pr4 : "<rib2.height> == (<sleeve2.width> -

<shaft.cross_section.design.web_thickness>)/2";...

END_COB;

Extended Constraint Graph

COB Structure (COS)

Page 35: Techniques and Tools for Product-Specific Analysis Templates Towards Enhanced CAD-CAE Interoperability for Simulation-Based Design and Related Topics Russell.

35Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Flap Linkage ExampleAnalyzable Product Model (APM) = MPM Subset +

Idealizations

flap_link

critical_section

critical_simple

t2f

wf

tw

hw

t1f

area

effective_length

critical_detailed

stress_strain_model linear_elastic

E

cte area

wf

tw

hw

tf

sleeve_1

b

h

t

b

h

t

sleeve_2

shaft

rib_1

material

rib_2

w

t

r

x

name

t2f

wf

tw

t1f

cross_section

w

t

r

x

R3

R2

R1

R8

R9

R10

6R

R7

R12

11R

1R

2

3

4

5

R

R

R

R

ts1

A

Sleeve 1

A ts2

ds2

ds1

Sleeve 2

L

Shaft

Leff

s

Product Attribute

Idealized Attribute

Ri Idealization Relation

Ri Product Relation

Extended Constraint Graph

Partial COB Structure (COS)

effective_length, Leff == inter_axis_length -

(sleeve1.hole.cross_section.radius + sleeve2.hole.cross_section.radius)

Page 36: Techniques and Tools for Product-Specific Analysis Templates Towards Enhanced CAD-CAE Interoperability for Simulation-Based Design and Related Topics Russell.

36Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Design Model

Idealized Model

Design-Idealization Relation

flap_linkflap_link

critical_section

critical_simple

t2f

wf

tw

hw

t1f

area

effective_length

critical_detailed

stress_strain_model linear_elastic

E

cte area

wf

tw

hw

tf

critical_section

critical_simple

t2f

wf

tw

hw

t1f

area

effective_length

critical_detailed

stress_strain_model linear_elastic

E

cte area

wf

tw

hw

tf

sleeve_1

b

h

t

b

h

t

sleeve_2

shaft

rib_1

material

rib_2

w

t

r

x

name

t2f

wf

tw

t1f

cross_section

w

t

r

x

sleeve_1

b

h

t

b

h

t

sleeve_2

shaft

rib_1

material

rib_2

w

t

r

x

name

t2f

wf

tw

t1f

cross_section

w

t

r

x

R3

R2

R1

R3

R2

R3

R2

R1R1

R8

R9

R10

6R

R7

R12

11R

1R

2

3

4

5

R

R

R

R

R8

R9

R10

R8

R9

R10

6R6R

R7R7

R12R12

11R11R

1R1R

2

3

4

5

R

R

R

R

2

3

4

5

R

R

R

R

2

3

4

5

R

R

R

R

Product Attribute

Idealized Attribute

Ri Idealization Relation

Ri Product Relation

Product AttributeProduct Attribute

Idealized AttributeIdealized Attribute

Ri Idealization RelationRi Idealization Relation

Ri Product RelationRi Product Relation

Extended Constraint Graph

Flap Link APMImplementation in CATIA v5

Page 37: Techniques and Tools for Product-Specific Analysis Templates Towards Enhanced CAD-CAE Interoperability for Simulation-Based Design and Related Topics Russell.

37Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Multi-Representation Architecture for Design-Analysis Integration

1 Solution Method Model

ABB SMM

2 Analysis Building Block

4 Context-Based Analysis Model3

SMMABB

APM ABB

CBAM

APM

Design Tools Solution Tools

Printed Wiring Assembly (PWA)

Solder Joint

Component

PWB

body3body2

body1

body4

T0

Printed Wiring Board (PWB)

SolderJoint

Component

AnalyzableProduct Model

Page 38: Techniques and Tools for Product-Specific Analysis Templates Towards Enhanced CAD-CAE Interoperability for Simulation-Based Design and Related Topics Russell.

38Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

COB-based Constraint Schematic for Multi-Fidelity CAD-CAE Interoperability

Flap Link Benchmark Example

Material Model ABB:

Continuum ABBs:

E

One D LinearElastic Model

T

G

e

t

material model

polar moment of inertia, J

radius, r

undeformed length, Lo

twist,

theta start, 1

theta end, 2

r1

12

r3

0L

r

J

rTr

torque, Tr

x

TT

G, r, , ,J

Lo

y

material model

temperature, T

reference temperature, To

force, F

area, A

undeformed length, Lo

total elongation,L

length, L

start, x1

end, x2

E

One D LinearElastic Model

(no shear)

T

e

t

r1

12 xxL

r2

oLLL

r4

A

F

edb.r1

oTTT

r3

L

L

x

FF

E, A,

LLo

T, ,

yL

Torsional Rod

Extensional Rod

temperature change,T

cte,

youngs modulus, E

stress,

shear modulus, G

poissons ratio,

shear stress, shear strain,

thermal strain, t

elastic strain, e

strain,

r2

r1)1(2

EG

r3

r4Tt

Ee

r5

G

te

1D Linear Elastic Model

material

effective length, Leff

linear elastic model

Lo

Extensional Rod(isothermal)

F

L

A

L

E

x2

x1

youngs modulus, E

cross section area, A

al1

al3

al2

linkage

mode: shaft tension

condition reaction

allowable stress

stress mos model

Margin of Safety(> case)

allowable

actual

MS

Analysis Modules of Diverse Behavior & Fidelity

(CBAMs) MCAD Tools

Materials LibrariesIn-House, ...

FEA Ansys

Abaqus*

CATIA Elfini*

MSC Nastran*

MSC Patran*

...

General MathMathematica

Matlab*

MathCAD*

...

Analyzable Product Model(APM)

Extension

Torsion

1D

1D

Analysis Building Blocks(ABBs)

CATIA, I-DEAS* Pro/E* , UG *, ...

Analysis Tools(via SMMs)

Design Tools

2D

flap_link

critical_section

critical_simple

t2f

wf

tw

hw

t1f

area

effective_length

critical_detailed

stress_strain_model linear_elastic

E

cte area

wf

tw

hw

tf

sleeve_1

b

h

t

b

h

t

sleeve_2

shaft

rib_1

material

rib_2

w

t

r

x

name

t2f

wf

tw

t1f

cross_section

w

t

r

x

R3

R2

R1

R8

R9

R10

6R

R7

R12

11R

1R

2

3

4

5

R

R

R

R

name

linear_elastic_model

wf

tw

tf

inter_axis_length

sleeve_2

shaft

material

linkage

sleeve_1

w

t

r

E

cross_section:basic

w

t

rL

ws1

ts1

rs2

ws2

ts2

rs2

wf

tw

tf

E

deformation model

x,max

ParameterizedFEA Model

stress mos model

Margin of Safety(> case)

allowable

actual

MS

ux mos model

Margin of Safety(> case)

allowable

actual

MS

mode: tensionux,max

Fcondition reaction

allowable inter axis length change

allowable stress

ts1

B

sleeve1

B ts2

ds2

ds1

sleeve2

L

shaft

Leff

s

rib1 rib2

material

effective length, Leff

deformation model

linear elastic model

Lo

Torsional Rod

G

J

r

2

1

shear modulus, G

cross section:effective ring polar moment of inertia, J

al1

al3

al2a

linkage

mode: shaft torsion

condition reactionT

outer radius, ro al2b

stress mos model

allowable stress

twist mos model

Margin of Safety(> case)

allowable

actual

MS

Margin of Safety(> case)

allowable

actual

MS

allowabletwist

Flap Link Extensional Model

Flap Link Plane Strain Model

Flap Link Torsional Model* = Item not yet available in toolkit (all others have working examples)

Parts LibrariesIn-House*, ...

LegendTool AssociativityObject Re-use

Page 39: Techniques and Tools for Product-Specific Analysis Templates Towards Enhanced CAD-CAE Interoperability for Simulation-Based Design and Related Topics Russell.

39Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

(1) Extension Analysisa. 1D Extensional Rod

1. Behavior: Shaft Tension

2. Conditions:

Flaps down : F =

3. Part Features: (idealized)

4. Analysis Calculations:

1020 HR Steel

E= 30e6 psi

Leff = 5.0 in

10000 lbs

AF

ELL eff

5. Conclusion:

A = 1.125 in2

allowable 18000 psi

1

allowableMS 1.025

(2) Torsion Analysis

Flap Link Analysis Documentation

b. 2D Plane Stress FEA...

m a t e r i a l

e f f e c t i v e l e n g t h , L e f f

d e f o r m a t i o n m o d e l

l i n e a r e l a s t i c m o d e l

L o

E x t e n s i o n a l R o d( i s o t h e r m a l )

F

L

A

L

E

x 2

x 1

y o u n g s m o d u l u s , E

c r o s s s e c t i o n a r e a , A

a l 1

a l 3

a l 2

l i n k a g e

m o d e : s h a f t t e n s i o n

c o n d i t i o n r e a c t i o n

a l l o w a b l e s t r e s s

y

xPP

E , A

LL e f f

,

Lt s 1

A

S l e e v e 1

A t s 2

d s 2

d s 1

S l e e v e 2

L

S h a f t

L e f f

s

s t r e s s m o s m o d e l

M a r g i n o f S a f e t y( > c a s e )

a l l o w a b l e

a c t u a l

M S

(1a) Analysis Template: Flap Link Extensional Model

APMABB

ABB

CBAM

SMM

Tutorial Example:Flap Link Analysis Template (CBAM)

* Boundary condition objects & pullable views are WIP concepts*

Solution Tool Interaction

Boundary Condition Objects(links to other analyses)*

CAD-CAEAssociativity (idealization usage)

Material Models

PullableViews*

Geometry

Page 40: Techniques and Tools for Product-Specific Analysis Templates Towards Enhanced CAD-CAE Interoperability for Simulation-Based Design and Related Topics Russell.

40Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

(1) Extension Analysisa. 1D Extensional Rod

1. Behavior: Shaft Tension

2. Conditions:

Flaps down : F =

3. Part Features: (idealized)

4. Analysis Calculations:

1020 HR Steel

E= 30e6 psi

Leff = 5.0 in

10000 lbs

AF

ELL eff

5. Conclusion:

A = 1.125 in2

allowable 18000 psi

1

allowableMS 1.025

(2) Torsion Analysis

Flap Link Analysis Documentation

b. 2D Plane Stress FEA...

Flap Linkage Extensional Model (CBAM)Example COB Instance

material

effective length, Leff

deformation model

linear elastic model

Lo

Extensional Rod(isothermal)

F

L

A

L

E

x2

x1

youngs modulus, E

shaftcritical_cross

_section

al1

al3

al2

linkage

mode: shaft tension

condition reaction

allowable stress

stress mos model

Margin of Safety(> case)

allowable

actual

MS

description

area, Abasic

example 1, state 1

steel

10000 lbs

flaps mid position

1.125 in2

18000 psi

30e6 psi

1.025

5.0 in

8888 psi

1.43e-3 inFlap Link #3

material

effective length, Leff

deformation model

linear elastic model

Lo

Extensional Rod(isothermal)

F

L

A

L

E

x2

x1

youngs modulus, E

shaftcritical_cross

_section

al1

al3

al2

linkage

mode: shaft tension

condition reaction

allowable stress

stress mos model

Margin of Safety(> case)

allowable

actual

MS

description

area, Abasic

material

effective length, Leff

deformation model

linear elastic model

Lo

Extensional Rod(isothermal)

F

L

A

L

E

x2

x1

Lo

Extensional Rod(isothermal)

F

L

A

L

E

x2

x1

youngs modulus, E

shaftcritical_cross

_section

al1

al3

al2

linkage

mode: shaft tension

condition reaction

allowable stress

stress mos model

Margin of Safety(> case)

allowable

actual

MS

Margin of Safety(> case)

allowable

actual

MS

description

area, Abasic

example 1, state 1

steel

10000 lbs

flaps mid position

1.125 in2

18000 psi

30e6 psi

1.025

5.0 in

8888 psi

1.43e-3 inFlap Link #3

Constraint Schematic Instance

Page 41: Techniques and Tools for Product-Specific Analysis Templates Towards Enhanced CAD-CAE Interoperability for Simulation-Based Design and Related Topics Russell.

41Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Flap Link Extensional Model (CBAM)Example COB Instance in XaiTools

Detailed CAD datafrom CATIA

Idealized analysis features in APM

Explicit multi-directional associativity between design & analysis

Modular generic analysis templates(ABBs)

Library data for materials

Focus Point ofCAD-CAE Integration

example 1, state 1

Page 42: Techniques and Tools for Product-Specific Analysis Templates Towards Enhanced CAD-CAE Interoperability for Simulation-Based Design and Related Topics Russell.

42Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

COB-based Constraint Schematic for Multi-Fidelity CAD-CAE Interoperability

Flap Link Benchmark Example

Material Model ABB:

Continuum ABBs:

E

One D LinearElastic Model

T

G

e

t

material model

polar moment of inertia, J

radius, r

undeformed length, Lo

twist,

theta start, 1

theta end, 2

r1

12

r3

0L

r

J

rTr

torque, Tr

x

TT

G, r, , ,J

Lo

y

material model

temperature, T

reference temperature, To

force, F

area, A

undeformed length, Lo

total elongation,L

length, L

start, x1

end, x2

E

One D LinearElastic Model

(no shear)

T

e

t

r1

12 xxL

r2

oLLL

r4

A

F

edb.r1

oTTT

r3

L

L

x

FF

E, A,

LLo

T, ,

yL

Torsional Rod

Extensional Rod

temperature change,T

cte,

youngs modulus, E

stress,

shear modulus, G

poissons ratio,

shear stress, shear strain,

thermal strain, t

elastic strain, e

strain,

r2

r1)1(2

EG

r3

r4Tt

Ee

r5

G

te

1D Linear Elastic Model

material

effective length, Leff

linear elastic model

Lo

Extensional Rod(isothermal)

F

L

A

L

E

x2

x1

youngs modulus, E

cross section area, A

al1

al3

al2

linkage

mode: shaft tension

condition reaction

allowable stress

stress mos model

Margin of Safety(> case)

allowable

actual

MS

Analysis Modules of Diverse Behavior & Fidelity

(CBAMs) MCAD Tools

Materials LibrariesIn-House, ...

FEA Ansys

Abaqus*

CATIA Elfini*

MSC Nastran*

MSC Patran*

...

General MathMathematica

Matlab*

MathCAD*

...

Analyzable Product Model(APM)

Extension

Torsion

1D

1D

Analysis Building Blocks(ABBs)

CATIA, I-DEAS* Pro/E* , UG *, ...

Analysis Tools(via SMMs)

Design Tools

2D

flap_link

critical_section

critical_simple

t2f

wf

tw

hw

t1f

area

effective_length

critical_detailed

stress_strain_model linear_elastic

E

cte area

wf

tw

hw

tf

sleeve_1

b

h

t

b

h

t

sleeve_2

shaft

rib_1

material

rib_2

w

t

r

x

name

t2f

wf

tw

t1f

cross_section

w

t

r

x

R3

R2

R1

R8

R9

R10

6R

R7

R12

11R

1R

2

3

4

5

R

R

R

R

name

linear_elastic_model

wf

tw

tf

inter_axis_length

sleeve_2

shaft

material

linkage

sleeve_1

w

t

r

E

cross_section:basic

w

t

rL

ws1

ts1

rs2

ws2

ts2

rs2

wf

tw

tf

E

deformation model

x,max

ParameterizedFEA Model

stress mos model

Margin of Safety(> case)

allowable

actual

MS

ux mos model

Margin of Safety(> case)

allowable

actual

MS

mode: tensionux,max

Fcondition reaction

allowable inter axis length change

allowable stress

ts1

B

sleeve1

B ts2

ds2

ds1

sleeve2

L

shaft

Leff

s

rib1 rib2

material

effective length, Leff

deformation model

linear elastic model

Lo

Torsional Rod

G

J

r

2

1

shear modulus, G

cross section:effective ring polar moment of inertia, J

al1

al3

al2a

linkage

mode: shaft torsion

condition reactionT

outer radius, ro al2b

stress mos model

allowable stress

twist mos model

Margin of Safety(> case)

allowable

actual

MS

Margin of Safety(> case)

allowable

actual

MS

allowabletwist

Flap Link Extensional Model

Flap Link Plane Strain Model

Flap Link Torsional Model* = Item not yet available in toolkit (all others have working examples)

Parts LibrariesIn-House*, ...

LegendTool AssociativityObject Re-use

Page 43: Techniques and Tools for Product-Specific Analysis Templates Towards Enhanced CAD-CAE Interoperability for Simulation-Based Design and Related Topics Russell.

43Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Flap Linkage Plane Stress Model(with FEA-based ABB system)

ts1

rs1

L

rs2

ts2tf

ws2ws1

wf

tw

F

L L

x

y

L C

Plane Stress Bodies

Higher fidelity version vs. Linkage Extensional Model

name

linear_elastic_model

wf

tw

tf

inter_axis_length

sleeve_2

shaft

material

linkage

sleeve_1

w

t

r

E

cross_section:basic

w

t

rL

ws1

ts1

rs2

ws2

ts2

rs2

wf

tw

tf

E

deformation model

x,max

ParameterizedFEA Model

stress mos model

Margin of Safety(> case)

allowable

actual

MS

ux mos model

Margin of Safety(> case)

allowable

actual

MS

mode: tensionux,max

Fcondition reaction

allowable inter axis length change

allowable stress

ABBSMM SMM Template

Page 44: Techniques and Tools for Product-Specific Analysis Templates Towards Enhanced CAD-CAE Interoperability for Simulation-Based Design and Related Topics Russell.

44Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Flap Linkage Torsional Model

m a t e r i a l

e f f e c t i v e l e n g t h , L e f f

d e f o r m a t i o n m o d e l

l i n e a r e l a s t i c m o d e l

L o

T o r s i o n a l R o d

G

J

r

2

1

s h e a r m o d u l u s , G

c r o s s s e c t i o n :e f f e c t i v e r i n g p o l a r m o m e n t o f i n e r t i a , J

a l 1

a l 3

a l 2 a

l i n k a g e

m o d e : s h a f t t o r s i o n

c o n d i t i o n r e a c t i o n

t s 1

A

S l e e v e 1

A t s 2

d s 2

d s 1

S l e e v e 2

L

S h a f t

L e f f

s

T

o u t e r r a d i u s , r o a l 2 b

s t r e s s m o s m o d e l

a l l o w a b l e s t r e s s

t w i s t m o s m o d e l

M a r g i n o f S a f e t y( > c a s e )

a l l o w a b l e

a c t u a l

M S

M a r g i n o f S a f e t y( > c a s e )

a l l o w a b l e

a c t u a l

M S

a l l o w a b l et w i s t

Diverse Mode (Behavior) vs. Linkage Extensional Model

Page 45: Techniques and Tools for Product-Specific Analysis Templates Towards Enhanced CAD-CAE Interoperability for Simulation-Based Design and Related Topics Russell.

45Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

An Introduction to X-Analysis Integration (XAI) Short Course Outline

Part 1: Constrained Objects (COBs) Primer– Nomenclature

Part 2: Multi-Representation Architecture (MRA) Primer – Analysis Integration Challenges – Overview of COB-based XAI– Ubiquitization Methodology

Part 3: Example Applications» Airframe Structural Analysis (Boeing)» Circuit Board Thermomechanical Analysis

(DoD: ProAM; JPL/NASA)» Chip Package Thermal Analysis (Shinko)

– Summary

Part 4: Advanced Topics & Current Research

Page 46: Techniques and Tools for Product-Specific Analysis Templates Towards Enhanced CAD-CAE Interoperability for Simulation-Based Design and Related Topics Russell.

46Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Airframe Structural AnalysisGIT Work in Boeing PSI Project

Current Situation: Limited Analysis Integration

Manually-MaintainedAssociativity

Error-Prone, Labor-Intensive,Little Knowledge Capture

flap support assembly inboard beam (a.k.a. “bike frame”)

bulkhead assembly attach point

diagonal braceattach point

AnalysisDocumentationDesign Objects

Page 47: Techniques and Tools for Product-Specific Analysis Templates Towards Enhanced CAD-CAE Interoperability for Simulation-Based Design and Related Topics Russell.

47Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Analysis Tools

0.4375 in

0.5240 in

0.0000 in

2.440 in

1.267 in

0.307 in

0.5 in

0.310 in

2.088 in

1.770 in

67000 psi

65000 psi

57000 psi

52000 psi

39000 psi

0.067 in/in

0.030 in/in

5960 Ibs

1

10000000 psi

9.17

5.11

9.77

rear spar fitting attach point

BLE7K18

2G7T12U (Detent 0, Fairing Condition 1)

L29 -300

Outboard TE Flap, Support No 2;Inboard Beam, 123L4567

Bulkhead Fitting Joint

Program

Part

Feature

Channel FittingStatic Strength Analysis

Template

1 of 1Dataset

strength model

r1

e

b

h

tb

te

Pu

Ftu

E

r2

r0

a

FtuLT

Fty

FtyLT

epuLT

tw

MSwall

epu

jm

MSepb

MSeps

Channel FittingStatic Strength Analysis

Fsu

IAS FunctionRef D6-81766

end pad

base

material

wall

analysis context

mode: (ultimate static strength)

condition:

heuristic: overall fitting factor, Jm

bolt

fitting

headradius, r1

hole radius, ro

width, b

eccentricity, e

thickness, teheight, h

radius, r2

thickness, tb

hole

thickness, twangled height, a

max allowable ultimate stress,

allowable ultimate long transverse stress,

max allowable yield stress,

max allowable long transverse stress,

max allowable shear stress,

plastic ultimate strain,

plastic ultimate strain long transverse,

young modulus of elasticity,

load, Pu

Ftu

Fty

FtyLT

Fsu

epu

epuLT

E

FtuLT

product structure (channel fitting joint)

Flexible High Diversity Design-Analysis Integration Phase 1 Airframe Examples:

“Bike Frame” / Flap Support Inboard Beam

Analysis Modules (CBAMs) of Diverse Feature:Mode, & Fidelity

Design Tools

Materials DBFEA

Elfini*MATDB-like

Analyzable Product Model

XaiTools

XaiTools

Fitting:Bending/Shear

3D

1.5D

Modular, ReusableTemplate Libraries

MCAD ToolsCATIA

Lug:Axial/Oblique; Ultimate/Shear

1.5D

Assembly:Ultimate/

FailSafe/Fatigue*

* = Item not yet available in toolkit (all others have working examples)

diagonal brace lug jointj = top

0.7500 in

0.35 in

0.7500 in

1.6000 in

2

0.7433

14.686 K

2.40

4.317 K

8.633 K

k = norm

Max. torque brake settingdetent 30, 2=3.5º

7050-T7452, MS 7-214

67 Ksi

L29 -300

Outboard TE Flap, Support No 2;Inboard Beam, 123L4567

Diagonal Brace Lug Joint

Program

Part

Feature

Lug JointAxial Ultimate Strength Model

Template

j = top lugk = normal diameter (1 of 4)

Dataset

material

deformation model

max allowable ultimate stress, FtuL

effective width, W

analysis context

objective

mode (ultimate static strength)

condition

estimated axial ultimate strength

Margin of Safety(> case)

allowable

actual

MS

normal diameter, Dnorm

thickness, t

edge margin, e

Plug joint

size,n

lugs

lugj hole

diameters

product structure (lug joint)

r1

n

P jointlug

L [ j:1,n ]

Plug

L [ k]Dk

oversize diameter, Dover

D

PaxuW

e

t

Ftuax

Kaxu

Lug Axial UltimateStrength Model

BDM 6630

Fasteners DB

FASTDB-like

General Math Mathematica

In-HouseCodes

Image API(CATGEO)

Page 48: Techniques and Tools for Product-Specific Analysis Templates Towards Enhanced CAD-CAE Interoperability for Simulation-Based Design and Related Topics Russell.

48Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Today’s Fitting Catalog Documentation from DM 6-81766 Design Manual

Channel Fitting End Pad Bending Analysis

AngleFitting

BathtubFitting

ChannelFitting

Categories of Idealized FittingsCalculation Steps

Page 49: Techniques and Tools for Product-Specific Analysis Templates Towards Enhanced CAD-CAE Interoperability for Simulation-Based Design and Related Topics Russell.

49Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Object-Oriented Hierarchy of Fitting ABBs

Fitting Casing Body

Channel Fitting Casing Body*

Bathtub Fitting Casing Body

Angle FittingCasing Body

Fitting System ABB

Fitting Wall ABBFitting End Pad ABB

Fitting Bolt Body*

Open Wall FittingCasing Body

Fitting End Pad Bending ABB Fitting End Pad

Shear ABB*

Open Wall Fitting End Pad Bending ABB

Channel FittingEnd Pad Bending ABB*

e

se

tr

Pf

02

3 )2( b 1 teKC

21

e

be

ht

PCf

21 1 KKC

),,,( 011 erRrfK

),(2 we ttfK

),,( 13 hbrfK

baR

2

dfRe

),min( wbwaw ttt

bolt

load

Fitting Washer Body

Specialized Analysis Body

P

ABB

Specialized Analysis System

washercasing

* = Working Examples

Page 50: Techniques and Tools for Product-Specific Analysis Templates Towards Enhanced CAD-CAE Interoperability for Simulation-Based Design and Related Topics Russell.

50Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

r1

sefactual shear stress,bolt.head.radius, r0

end_pad.thickness, te

load, P e

setr

Pf

02

Channel Fitting System ABBs

End Pad Bending Analysis

End Pad Shear Analysis

e n d _ p a d .e cce n tr ic ity , e

e n d _ p a d .w id th , b

b o lt.h o le .ra d iu s , r1

r2 r3

r1

h

r1

h

be n d _ p a d .h e ig h t, h3K

befa c tu a l b e n d in g s tre ss ,

ch a n n e l f itt in g fa c to r,

D M 6 -8 1 7 6 6 F ig u re 3 .3

b a se .th ickn e ss , tb

e n d _ p a d .th ickn e ss , te

lo a d , P

23 )2(e

bbeht

PteKf

0.1

0.2

0.3

0.41

1.5

2

2.5

3

0.4

0.6

0.8

1

0.1

0.2

0.3

0.4

Page 51: Techniques and Tools for Product-Specific Analysis Templates Towards Enhanced CAD-CAE Interoperability for Simulation-Based Design and Related Topics Russell.

51Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Bike Frame Bulkhead Fitting AnalysisCOB-based Analysis Template (CBAM) - Constraint Schematic

0.4375 in

0.5240 in

0.0000 in

2.440 in

1.267 in

0.307 in

0.5 in

0.310 in

2.088 in

1.770 in

67000 psi

65000 psi

57000 psi

52000 psi

39000 psi

0.067 in/in

0.030 in/in

5960 Ibs

1

10000000 psi

9.17

5.11

9.77

bulkhead fitting attach point

LE7K18

2G7T12U (Detent 0, Fairing Condition 1)

L29 -300

Outboard TE Flap, Support No 2;Inboard Beam, 123L4567

Bulkhead Fitting Joint

Program

Part

Feature

Channel FittingStatic Strength Analysis

Template

1 of 1Dataset

strength model

r1

e

b

h

tb

te

Pu

Ftu

E

r2

r0

a

FtuLT

Fty

FtyLT

epuLT

tw

MSwall

epu

jm

MSepb

MSeps

Channel FittingStatic Strength Analysis

Fsu

IAS FunctionRef DM 6-81766

end pad

base

material

wall

analysis context

mode: (ultimate static strength)

condition:

heuristic: overall fitting factor, Jm

bolt

fitting

headradius, r1

hole radius, ro

width, b

eccentricity, e

thickness, teheight, h

radius, r2

thickness, tb

hole

thickness, twangled height, a

max allowable ultimate stress,

allowable ultimate long transverse stress,

max allowable yield stress,

max allowable long transverse stress,

max allowable shear stress,

plastic ultimate strain,

plastic ultimate strain long transverse,

young modulus of elasticity,

load, Pu

Ftu

Fty

FtyLT

Fsu

epu

epuLT

E

FtuLT

product structure (channel fitting joint)

Page 52: Techniques and Tools for Product-Specific Analysis Templates Towards Enhanced CAD-CAE Interoperability for Simulation-Based Design and Related Topics Russell.

52Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Bike Frame Bulkhead Fitting AnalysisCOB-based Analysis Template (CBAM) - in XaiTools

Detailed CAD datafrom CATIA

Idealized analysis features in APM

Explicit multi-directional associativity between detailed CAD data & idealized analysis features

Modular generic analysis templates(ABBs)

Library data for materials & fasteners

Focus Point ofCAD-CAE Integration

Page 53: Techniques and Tools for Product-Specific Analysis Templates Towards Enhanced CAD-CAE Interoperability for Simulation-Based Design and Related Topics Russell.

53Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

An Introduction to X-Analysis Integration (XAI) Short Course Outline

Part 1: Constrained Objects (COBs) Primer– Nomenclature

Part 2: Multi-Representation Architecture (MRA) Primer – Analysis Integration Challenges – Overview of COB-based XAI

Part 3: Example Applications» Airframe Structural Analysis (Boeing)» Circuit Board Thermomechanical Analysis

(DoD: ProAM; JPL/NASA)» Chip Package Thermal Analysis (Shinko)

– Summary

Part 4: Advanced Topics & Current Research

Page 54: Techniques and Tools for Product-Specific Analysis Templates Towards Enhanced CAD-CAE Interoperability for Simulation-Based Design and Related Topics Russell.

54Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

ProAM Focus Highly Automated Internet-based Analysis Modules

World WideEnd UserAMCOM

Feedback,Products

AtlantaPhysical SimulationU-Engineer.com

Internet-basedEngineering Service

Bureau

Self-ServeResults

Response to RFP,Technical Feedback,Products

Missile Mfg.

Prime 1

TempePWB Fabricator

Life CycleNeeds

FrionaPWB Fabricator

SME 2

RockhillPWB Fabricator

SME 1 SME n

IdealizedProductData

ProAM Focus

RFP with Product Data (STEP, IPC, …)

Page 55: Techniques and Tools for Product-Specific Analysis Templates Towards Enhanced CAD-CAE Interoperability for Simulation-Based Design and Related Topics Russell.

55Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

ProAM Design-Analysis IntegrationElectronic Packaging Examples: PWA/B

Analysis Modules (CBAMs) of Diverse Mode & Fidelity

Design Tools

Laminates DB

FEA Ansys

General MathMathematica

Analyzable Product Model

XaiToolsPWA-B

XaiToolsPWA-B

Solder JointDeformation*

PTHDeformation & Fatigue**

1D,2D

1D,2D,3D

Modular, ReusableTemplate Libraries

ECAD Tools Mentor Graphics,

Accel*

temperature change,T

material model

temperature, T

reference temperature, To

cte,

youngs modulus, E

force, F

area, A stress,

undeformed length, Lo

strain,

total elongation,L

length, L

start, x1

end, x2

mv6

mv5

smv1

mv1mv4

E

One D LinearElastic Model(no shear)

T

e

t

thermal strain, t

elastic strain, e

mv3

mv2

x

FF

E, A,

LLo

T, ,

yL

r1

12 xxL

r2

oLLL

r4

A

F

sr1

oTTT

r3L

L

m a t e r i a l

e f f e c t i v e l e n g t h , L e f f

d e f o r m a t i o n m o d e l

l i n e a r e l a s t i c m o d e l

L o

T o r s i o n a l R o d

G

J

r

2

1

s h e a r m o d u l u s , G

c r o s s s e c t i o n :e f f e c t i v e r i n g p o l a r m o m e n t o f i n e r t i a , J

a l 1

a l 3

a l 2 a

l i n k a g e

m o d e : s h a f t t o r s i o n

c o n d i t i o n r e a c t i o n

t s 1

A

S l e e v e 1

A t s 2

d s 2

d s 1

S l e e v e 2

L

S h a f t

L e f f

s

T

o u t e r r a d i u s , r o a l 2 b

s t r e s s m o s m o d e l

a l l o w a b l e s t r e s s

t w i s t m o s m o d e l

M a r g i n o f S a f e t y( > c a s e )

a l l o w a b l e

a c t u a l

M S

M a r g i n o f S a f e t y( > c a s e )

a l l o w a b l e

a c t u a l

M S

a l l o w a b l et w i s t Analysis Tools

PWBWarpage

1D,2D

Materials DB

PWB Stackup ToolXaiTools PWA-B

STEP AP210‡ GenCAM**,

PDIF*

‡ AP210 DIS WD1.7 * = Item not yet available in toolkit (all others have working examples) ** = Item available via U-Engineer.com

Page 56: Techniques and Tools for Product-Specific Analysis Templates Towards Enhanced CAD-CAE Interoperability for Simulation-Based Design and Related Topics Russell.

STEP AP210 Models

Assembly Models

• User View• Design View• Component Placement• Material product• Complex Assemblies with Multiple Interconnect

Component / Part Models

• Analysis Support • Package• Material Product• Properties• “White Box”/ “Black Box”• Pin Mapping

Requirements Models• Design• Constraints• Interface• Allocation

Functional Models

• Functional Unit• Interface Declaration• Network Listing• Simulation Models• Signals

Interconnect Models

• User View• Design View• Bare Board Design• Layout templates• Layers

planarnon-planar

conductive non-conductive

Configuration Mgmt• Identification• Authority • Effectivity • Control• Net Change

GD & T Model

• Datum Reference Frame• Tolerances

R

Page 57: Techniques and Tools for Product-Specific Analysis Templates Towards Enhanced CAD-CAE Interoperability for Simulation-Based Design and Related Topics Russell.

57Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

ProAM Technical Team

Circuit Express

AtlantaECRC

GeorgiaTech

AMCOM

S3

Missile supply chain SME• PWB fabrication expertise• Tool usage & feedback Electronic commerce resource center

• Mgt., ESB, computing support

Research & development lab• Program management• Technical concepts• Tool implementation

Missile supply chain SME• PWB design & fabrication expertise• Tool usage & feedback

Missile system end-users• Supply chain context• Technical oversight

Page 58: Techniques and Tools for Product-Specific Analysis Templates Towards Enhanced CAD-CAE Interoperability for Simulation-Based Design and Related Topics Russell.

58Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Iterative Design & Analysis PWB Stackup Design & Warpage Analysis

AnalyzableProduct Model

PWB Stackup Design Tool

1 Oz. Cu

1 Oz. Cu

1 Oz. Cu

1 Oz. Cu

2 Oz. Cu

2 Oz. CuTetra GF

Tetra GF

3 x 1080

3 x 1080

2 x 2116

2D Plane Strain Model

b L T

t

2

Detailed FEA Check

bi i i

i

w y

t w

/ 2

1D Thermal Bending Model

LayupRe-design

PWB Warpage Modules

Quick Formula-based Check

(TIGER extensions)

Page 59: Techniques and Tools for Product-Specific Analysis Templates Towards Enhanced CAD-CAE Interoperability for Simulation-Based Design and Related Topics Russell.

59Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

total_thicknesspwa

layup layers[0]

layers[1]

layers[2]

TOTAL

CU1T

CU2T

POLYT

PREPREGT

TETRA1T

EXCU

ALPXCU

EXEPGL

ALPXEGL

TO

deformation model

ParameterizedFEA Model

ux mos model

Margin of Safety(> case)

allowable

actual

MS

UX

condition

UY

SX

associated_pwb

nominal_thickness

prepregs[0] nominal_thickness

top_copper_layer nominal_thickness

related_core nominal_thickness

prepregs[0] nominal_thicknesslayers[3]

primary_structure_material linear_elastic_model E

cte

primary_structure_material linear_elastic_model E

cte

reference temperature

temperatureDELTAT

APM ABB

SMM

PWB Warpage Modulesa.k.a. CBAMs: COB-based analysis templates

deformation model

Thermal Bending Beam

L

b

T

Treference

t

T

total diagonalassociated_pwb

total thickness

coefficient of thermal bending

al1

al2

al6

al3

t

TLb

2

warpage

wrapage mos model

allowable

MSactual

Marginof Safety

associated condition

al5

al4

temperature

reference temperature

pwa

APM

ABBPWB Thermal Bending Model

(1D formula-based CBAM)

PWB Plane Strain Model (2D FEA-based CBAM)

APM

Page 60: Techniques and Tools for Product-Specific Analysis Templates Towards Enhanced CAD-CAE Interoperability for Simulation-Based Design and Related Topics Russell.

60Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Original design:– Six layer board– Unsymmetrical layup– Severe warpage– Analysis predicted

thermal distortion Alternate design:

– Modeled construction variables

– Analysis predicted improved distortion

New capability aided design improvement

Example SME Usage

Page 61: Techniques and Tools for Product-Specific Analysis Templates Towards Enhanced CAD-CAE Interoperability for Simulation-Based Design and Related Topics Russell.

61Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

U-Engineer.comSelf-Serve Engineering Service Bureau

Lower cost, better quality, fewer delays in supply chain

Analysis Documentation Ready-to-Use Analysis Modules

Page 62: Techniques and Tools for Product-Specific Analysis Templates Towards Enhanced CAD-CAE Interoperability for Simulation-Based Design and Related Topics Russell.

62Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Phase 1 Accomplishments Conceptual architecture and roadmaps Repository/PDM methodology in Metaphase PWB stackup design tool extensions Next-generation XaiTools PWA-B

– Web-based mockup illustrating target extended capabilities AP210/STEP-based tool methodology Analysis module methodology & general-purpose

tools – XaiTools FrameWork v0.5

Page 63: Techniques and Tools for Product-Specific Analysis Templates Towards Enhanced CAD-CAE Interoperability for Simulation-Based Design and Related Topics Russell.

63Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Stackup Detailed Design: Build-Up Type

Page 64: Techniques and Tools for Product-Specific Analysis Templates Towards Enhanced CAD-CAE Interoperability for Simulation-Based Design and Related Topics Russell.

64Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Stackup Design: Updated Requirements Status

Page 65: Techniques and Tools for Product-Specific Analysis Templates Towards Enhanced CAD-CAE Interoperability for Simulation-Based Design and Related Topics Russell.

65Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

An Introduction to X-Analysis Integration (XAI) Short Course Outline

Part 1: Constrained Objects (COBs) Primer– Nomenclature

Part 2: Multi-Representation Architecture (MRA) Primer – Analysis Integration Challenges – Overview of COB-based XAI

Part 3: Example Applications» Airframe Structural Analysis (Boeing)» Circuit Board Thermomechanical Analysis

(DoD, JPL/NASA)» Chip Package Thermal Analysis (Shinko)

– Summary

Part 4: Advanced Topics & Current Research

Page 66: Techniques and Tools for Product-Specific Analysis Templates Towards Enhanced CAD-CAE Interoperability for Simulation-Based Design and Related Topics Russell.

66Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Chip Package Products Shinko

Plastic Ball Grid Array (PBGA) Packages

Quad Flat Packs (QFPs)

Page 67: Techniques and Tools for Product-Specific Analysis Templates Towards Enhanced CAD-CAE Interoperability for Simulation-Based Design and Related Topics Russell.

67Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Flexible High Diversity Design-Analysis Integration

Electronic Packaging Examples: Chip Packages/Mounting Shinko Electric Project: Phase 1 (completed 9/00)

EBGA, PBGA, QFP

CuGround

PKG

Chip

Analysis Modules (CBAMs) of Diverse Behavior & Fidelity

FEAAnsys

General MathMathematica

Analyzable Product Model

XaiTools

XaiToolsChipPackage

ThermalResistance

3D

Modular, ReusableTemplate Librariestemperature change,T

material model

temperature, T

reference temperature, To

cte,

youngs modulus, E

force, F

area, A stress,

undeformed length, Lo

strain,

total elongation,L

length, L

start, x1

end, x2

mv6

mv5

smv1

mv1mv4

E

One D LinearElastic Model(no shear)

T

e

t

thermal strain, t

elastic strain, e

mv3

mv2

x

FF

E, A,

LLo

T, ,

yL

r1

12 xxL

r2

oLLL

r4

A

F

sr1

oTTT

r3L

L

m a t e r i a l

e f f e c t i v e l e n g t h , L e f f

d e f o r m a t i o n m o d e l

l i n e a r e l a s t i c m o d e l

L o

T o r s i o n a l R o d

G

J

r

2

1

s h e a r m o d u l u s , G

c r o s s s e c t i o n :e f f e c t i v e r i n g p o l a r m o m e n t o f i n e r t i a , J

a l 1

a l 3

a l 2 a

l i n k a g e

m o d e : s h a f t t o r s i o n

c o n d i t i o n r e a c t i o n

t s 1

A

S l e e v e 1

A t s 2

d s 2

d s 1

S l e e v e 2

L

S h a f t

L e f f

s

T

o u t e r r a d i u s , r o a l 2 b

s t r e s s m o s m o d e l

a l l o w a b l e s t r e s s

t w i s t m o s m o d e l

M a r g i n o f S a f e t y( > c a s e )

a l l o w a b l e

a c t u a l

M S

M a r g i n o f S a f e t y( > c a s e )

a l l o w a b l e

a c t u a l

M S

a l l o w a b l et w i s t Analysis Tools

Design Tools

PWB DB

Materials DB*

Prelim/APM Design ToolXaiTools ChipPackage

ThermalStress

Basic3D**

** = Demonstration module

BasicDocumentation

AutomationAuthoringMS Excel

Page 68: Techniques and Tools for Product-Specific Analysis Templates Towards Enhanced CAD-CAE Interoperability for Simulation-Based Design and Related Topics Russell.

68Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Traditional VTMB FEA Model Creation

Manually Intensive: 6-12 hours

FEA Model Planning Sketches - EBGA 600 Chip Package

VTMB = variable topology multi-body

Page 69: Techniques and Tools for Product-Specific Analysis Templates Towards Enhanced CAD-CAE Interoperability for Simulation-Based Design and Related Topics Russell.

69Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

APM Design ToolPreliminary Design of Packages - PBGA Screens

APM = analyzable

product model

Page 70: Techniques and Tools for Product-Specific Analysis Templates Towards Enhanced CAD-CAE Interoperability for Simulation-Based Design and Related Topics Russell.

70Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Example Chip Package Idealizations (PBGA)

[ Outer Balls ] Average Thermal Conductivity

x 1

x 2

y 1y 2

% Ball Area = (Pi * (ball diameter / 2)^ 2) / (x2 * y2 - x1 * y1 )

Vertical Direction v: v = Vff+(1-Vf )m [W/mK]Horizontal Direction h: 1/h = Vf/f+(1-Vf )/m [W/mK]

Where: f: thermal conductivity of solder ball [W/mK] m: thermal conductivity of air [W/mK] Vf: volume ratio of solder ball

- =

V i a + A i r A i r V i a

R r

S R r n 2 2

E q u a t i o n f o r T o t a l S e c t i o n a l V i a A r e a

S : t o t a l s e c t i o n a r e a o f v i a sR : o u t e r r : i n n e r n : n u m b e r o f v i a

l x r y 2r : a radius of balll : a side length of squarex : number of ballsy : number of squares

l

l

r + r r =5 - 10 Balls

[ Inner Balls (Thermal Balls) ]

(Ball value in all directions)

Thermal Conductivity

Idealization for solder-joint/thermal ball

Idealization for thermal via

Courtesy of Shinko - see [Koo, 2000]

Page 71: Techniques and Tools for Product-Specific Analysis Templates Towards Enhanced CAD-CAE Interoperability for Simulation-Based Design and Related Topics Russell.

71Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Generic COB Browser with design and analysis objects

(attributes and relations)

CustomizedAnalysis Module Tool

with idealized package cross-section

COB-based Analysis TemplateTypical Input Objects for EBGA Thermal Resistance Module

COB = constrained

object

Page 72: Techniques and Tools for Product-Specific Analysis Templates Towards Enhanced CAD-CAE Interoperability for Simulation-Based Design and Related Topics Russell.

72Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

COB-based Analysis TemplateTypical Highly Automated Results

FEATemperature Distribution

Thermal Resistancevs.

Air Flow Velocity

Auto-CreatedFEA Inputs

(for Mesh Model)

Analysis Module Tool

COB = constrained

object

Page 73: Techniques and Tools for Product-Specific Analysis Templates Towards Enhanced CAD-CAE Interoperability for Simulation-Based Design and Related Topics Russell.

73Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Pilot & Initial Production Usage Results

Product Model-Driven Analysis

Analysis Model Creation ActivityWith TraditionalPractice

With VTMBMethodology* Example

Create initial FEA model (QFP cases) 8-12 hours 10-20 minutes QFP208PIN

Create initial FEA model (EBGA cases) 6-8 hours 10-20 minutes EBGA352PIN

Create initial FEA model (PBGA cases) 8-10 hours 10-20 minutes PBGA256PIN

Create variant - small topology change 0.3-6 hours (10-20 minutes) - Moderate dimension change

(e.g., EBGA 600 heat sink size variations)

Create variant - moderate topology change (6-8 hours)- (10-20 minutes) - Add more features

(e.g., increase number of EBGA steps)

Create variant - large topology change (6-8 hours)+ (10-20 minutes)-or N/A

Add new types of features

(e.g., add steps to EBGA outer edges)

Reduced FEA modeling time > 10:1 (days/hours minutes) Reduced simulation cycle > 75%

Enables greater analysis intensity Better designs Leverages XAI / CAD-CAE interoperability techniques

– Objects, Internet/web services, ubiquitization methodology, …

References[1] Shinko 5/00 (in Koo, 2000)[2] Shinko evaluation 10/12/00

VTMB = variable topology multi-body technique [Koo, 2000]

Page 74: Techniques and Tools for Product-Specific Analysis Templates Towards Enhanced CAD-CAE Interoperability for Simulation-Based Design and Related Topics Russell.

74Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Cost of Associativity Gaps

000,000,10$gap

$10 gaps000,000,1

gaps000,000,1analysis

variables 10

part

analyses 10parts 000,10

OOO

OOOO

e

setr

Pf

02

21

e

beht

PCf

),,( 13 hbrfK

Analysis Model(with Idealized Features)

Detailed Design Model

Channel Fitting Analysis

idealizations

No explicit

fine-grained

CAD-CAE

associativity

Categories of Gap Costs Associativity time & labor

– Manual maintenance– Little re-use– Lost knowledge

Inconsistencies Limited analysis usage

– Few iterations/part– Limited part coverage

“Wrong” values – Too conservative:

Extra costs, inefficiencies– Too loose:

Re-work, failures, law suits

Page 75: Techniques and Tools for Product-Specific Analysis Templates Towards Enhanced CAD-CAE Interoperability for Simulation-Based Design and Related Topics Russell.

75Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Summary Provides methodology for bridging associativity gap Multi-representation architecture (MRA)

& constrained objects (COBs):– Address fundamental issues

» Explicit CAD-CAE associativity: multi-fidelity, multi-directional, fine-grained

– Enable analysis template methodology Flexibility & broad application

Increase quality, reduce costs, decrease time (ex. 75%):» Capture engineering knowledge in a reusable form » Reduce information inconsistencies» Increase analysis intensity & effectiveness

Page 76: Techniques and Tools for Product-Specific Analysis Templates Towards Enhanced CAD-CAE Interoperability for Simulation-Based Design and Related Topics Russell.

76Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Product Enclosure

ExternallyVisible Connectors

Printed Circuit Assemblies

Die

Package

Packaged Part

InterconnectAssembly

Printed Circuit Substrate

Die

Adapted from Rockwell Collins Inc.

Today: - Monolithic software applications; Few interchangeable “parts” Next Steps: - Identify other formal patterns and use cases

(natural subsystems / levels of “packaging”)

- Define standard architectures and interfaces among subsystems

Towards Greater CAD-CAE Interoperability Target Analogy with Electronics Systems

Generic Geometric Modeling Tools,Math Tools, FEA Tools,

Requirements & Function Tools, … Product-SpecificSimulation-Based

Design Tools

Linkages to OtherLife Cycle Models

Extended MRA

SMMs

ABBs

CBAMs

APMs

Middleware

Page 77: Techniques and Tools for Product-Specific Analysis Templates Towards Enhanced CAD-CAE Interoperability for Simulation-Based Design and Related Topics Russell.

77Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Summary of Tools and Services offered via Georgia Tech Research Corp.

http://eislab.gatech.edu/

XaiTools FrameWork™

– General-purpose analysis integration toolkit Product-Specific Toolkits

– XaiTools PWA-B™

– XaiTools ChipPackage™

U-Engineer.com™

– Internet-based engineering service bureau (ESB)– Self-serve automated analysis modules Full-serve consulting

Research, Development, and Consulting– Analysis integration & optimization – Short courses– Product-specific analysis module catalogs – Internet/Intranet-based ESB development– Knowledge-based engineering & information technology

» PDM, STEP, GenCAM, XML, UML, Java, CORBA, Internet, …– CAD/CAE/CAM, parametric FEA, thermal & mechanical analysis

Page 78: Techniques and Tools for Product-Specific Analysis Templates Towards Enhanced CAD-CAE Interoperability for Simulation-Based Design and Related Topics Russell.

78Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

For Further Information ...

EIS Lab web site: http://eislab.gatech.edu/– Publications, project overviews, tools, etc.– See: X-Analysis Integration (XAI) Central

http://eislab.gatech.edu/research/XAI_Central.doc

XaiTools™ home page: http://eislab.gatech.edu/tools/XaiTools/

Pilot commercial ESB: http://www.u-engineer.com/– Internet-based self-serve analysis– Analysis module catalog for electronic packaging– Highly automated front-ends to general FEA & math tools


Recommended