+ All Categories
Home > Documents > Tema 2: Growth and cell division Paper asignado: MreB.pdf.

Tema 2: Growth and cell division Paper asignado: MreB.pdf.

Date post: 16-Dec-2015
Category:
Upload: felix-cole
View: 215 times
Download: 0 times
Share this document with a friend
Popular Tags:
28
Tema 2: Growth and cell division Paper asignado: MreB.pdf
Transcript
Page 1: Tema 2: Growth and cell division Paper asignado: MreB.pdf.

Tema 2: Growth and cell division

Paper asignado: MreB.pdf

Page 3: Tema 2: Growth and cell division Paper asignado: MreB.pdf.

I / Io=10xl

Beer-Lambert lawSi tomamos el logaritmo de:

Entonces

Log (Io / I)= -xl

Turbidity, absorbance, optical density

OD = A = xl

The amount of light scattered by a bacterial cell is proportional to its mass. Beer-Lambert law

I/Io=10xl

Turbidity

Page 4: Tema 2: Growth and cell division Paper asignado: MreB.pdf.

Turbidity

600nm

incidentlight detected

light

absorbancia a 600nmaumenta según aumenta el # de células

se miden lecturas de absorbancia a 600nm

Io I

X=cell density

Page 5: Tema 2: Growth and cell division Paper asignado: MreB.pdf.

Total cell counts

pozo central (0.02mm profundidad)• contiene una rejilla que se divide en cuadrantes microscópicos

Cámara de conteo Petroff-Hausser

cubre objetos

Limitations1) Are the cells dead or alive?2) Make right dilution (<106 cells/ml)

Page 6: Tema 2: Growth and cell division Paper asignado: MreB.pdf.

• varios cuadros se cuentan se promedian y se multiplica por 25 (# de cuadros en la rejilla)

• la cifra resultante es el # de células en un volumen que corresponde a las dimensiones de la rejilla: (1mm2 x 0.02mm) = 0.02mm3)

• resultados pueden ser expresados en # de células por ml (cm3)

12 + 16 + 20 + 18 +145

= 16

16 x 25 = 400

400 células/ 0.02 mm3

400 0.02 mm3

= x10mm3

2 x105 células /cm3 = 2 x105 células /ml

Total cell counts

25 cuadradossubdivididos en 16 unidades

pozo central (0.02mm profundidad)

Page 7: Tema 2: Growth and cell division Paper asignado: MreB.pdf.

Total cell counts

Electronic cell count

Chamber 1 Chamber 2

Measure electrical conductivity

Count of cells in the cultureand the size distribution of

the cells

Page 8: Tema 2: Growth and cell division Paper asignado: MreB.pdf.

Viable cell counts

Limitations1) must avoid clumps.2) Some bacteria platewith poor efficiency.3) It will always dependon the medium used.

Page 9: Tema 2: Growth and cell division Paper asignado: MreB.pdf.

Dry weight: Is the most direct way to measure growth

Drying oven3 -7 days

1-10ml Samplethru time

Culture

Results

Page 11: Tema 2: Growth and cell division Paper asignado: MreB.pdf.

Crecimiento Poblacional BacterianoEl ciclo de la curva de crecimiento

Fase Lag: periodo de aclimatación a condiciones de crecimiento, síntesisde RNA, duplicación DNA

Fase Exponencial: número de células se duplica a intérvalos regulares de tiempo, ocurre bajo condiciones idealesde crecimiento (ej .abundancia de nutrientes)

Fase Estacionaria: se agotan nutrientes,se acumulan desperdicios dañinos, procesos de división celular y muerte estan en balance

Fase de Muerte: las condicionesprevalecientes no pueden sostener más crecimiento y las células mueren

Page 12: Tema 2: Growth and cell division Paper asignado: MreB.pdf.

Adaptive responses to nutrient limitations

1) Starvation conditions2) Growth no growth3) Generation time days or months4) Depletion of an essential nutrient

Responses:1) PO4 may induce the high affinity i- PO4 uptake systems and/or enzymes that degrade o- PO4 (phosphatases).

Stationary phase Sporulate

Page 13: Tema 2: Growth and cell division Paper asignado: MreB.pdf.

Stationary phase

1) Changes is size 5-10 μm to 1-2 nm.2) Changes in morphology form rod-shape to coccoid-shape3) Changes in cell surface from hydrophilic to hydrophobic.4) Formation of fibrils and aggregates5) Changes in phospholipids from unsaturated to cyclopropane6) The metabolic rate slow down but increase turnover of protein and RNA.7) May synthesize 50 to 70 or more new proteins.8) Cells may become more resistant to environmental stress

Temperature, osmotic stress, high salt, ethanol, solvents, pH.

Page 14: Tema 2: Growth and cell division Paper asignado: MreB.pdf.

1

5

10

Rel

ativ

e am

ount

μ (doublings/ hour)

0.6 1.0 1.5 2.0 2.5

RNA

mass

protein

DNA

Figure 2.4

Page 15: Tema 2: Growth and cell division Paper asignado: MreB.pdf.

Faster growing cells

1) More RNA, more ribosomes (65% RNA)2) More DNA3) More mass

Why is that?

Page 16: Tema 2: Growth and cell division Paper asignado: MreB.pdf.

lactose

glucosegrowth

Time

Diauxic growth

Catabolite repression by glucose

1) Repression in synthesis of degrading enzymes for the 2nd compound 2) Inhibits the uptake of other sugars (Inducer exclusion)

[Sub

stra

te]

OD

Page 17: Tema 2: Growth and cell division Paper asignado: MreB.pdf.

Catabolite repression

In Rhizobium: It grows first in C-4 acids of the TCA cycle then in Glucose

In Pseudomonas aeruginosa: It grows first on organic acids then on carbohydrates

PEP

Glucose

Glucose-6-P

PTS (phosphotransferase) proteins

Adenylatecyclase

IIIGlc

Pyr

P O operon lactoseBlocked

Page 18: Tema 2: Growth and cell division Paper asignado: MreB.pdf.

PEP

PTS proteins

Adenylatecyclase

IIIGlc

Pyr

P O operon

ATPcAMP

lactose

Activated

CAP

No Glucose

P

PP

Page 19: Tema 2: Growth and cell division Paper asignado: MreB.pdf.

Growth yields

Y is the growth yield constant

Y= amount of dry weight of cells produced per weight of nutrient used.

This is determined when the limitation of the production of cells is controlled byThe quantity of a single nutrient that is the sole source of energy and carbon.

Y =weight dry cellweight of nutrient Ym =

weight dry cell (g)

moles of substrate

Molar growth yield constant

In aerobic bacteria

Y glucose = 0.5 Means that 50% of the glucose Cell mass

CO2 ????

Page 20: Tema 2: Growth and cell division Paper asignado: MreB.pdf.

In fermenting bacteria (glucose):

Streptococcus faecalis (actualmente Enterococcus faecalis)Ym = 22 but this organism it generates 2 ATP/ mole of glucose

How many cells per mole of ATP??

YATP = 22 / 2 = 11g cells per mole of ATP.

Zymomonas mobilis8.6g cells per mole of ATP.

Calculate its Ym ?This organism generates 1 ATP / mole of glucose.

Ym = 8.6g X 1 = 8.6

As an average you could expect that an organism fermenting glucose would form

10.5 g of cells per mole of ATP produced

Page 21: Tema 2: Growth and cell division Paper asignado: MreB.pdf.

Growth kinetics: exponential growth

x = x02y

x = anything that doubles each generation (cells, protein ,DNA)

x0 = starting value

y = number of generationslog

log x = log x0+ 0.301yg = generation time

g = t /y y = t /gWhere t is the time elapsed

log x = log x0+ 0.301tg

Page 22: Tema 2: Growth and cell division Paper asignado: MreB.pdf.

Slope = 0.301/g

log x0

time

log x = log x0+ 0.301tg

Y = b + mx

Log x

Page 23: Tema 2: Growth and cell division Paper asignado: MreB.pdf.

g (tiempo de generación):= t(Af)-t(Ai)

90-60=30 min

Matemática de crecimiento microbiano

k (logNf – log No) / t

k= instantaneous growth rate,número de generaciones por unidad de tiempo

No=número de células inicial

Nf = No=número de células final

30 60 90 120 150 180 210 240

min

log

bact

eria

l num

bers

/ml

log

Abs

orba

nce

550-

600n

m

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Page 24: Tema 2: Growth and cell division Paper asignado: MreB.pdf.

How g relates to k?

Slope = 0.301/g

log x0

time

log x = log x0+ 0.301tg

Y = b + mx

log x = kt/2.303 + log x0

slope

k/2.303 = 0.301/g k = 0.301/g (2.303) k = 0.693/g

Page 25: Tema 2: Growth and cell division Paper asignado: MreB.pdf.

Relationship between growth rate (k) and the nutrient concentration (S)

Natural environments nutrients[ ]

How is k affected by this fact?

K is limited by the rates of nutrient uptake

k max

k max

2

Ks [S]

k

kmax S

Ks + Sk =

Page 26: Tema 2: Growth and cell division Paper asignado: MreB.pdf.

Steady State Growth and Continuous Growth

Quimiostato: artefacto para regular el crecimiento de un cultivo durante un periodo prolongado. Se usa en aplicaciones industriales para la derivación de

productos de origen microbiano.

The chemostat relieves the insufficiency of nutrients, the accumulation of toxic substances, and the accumulation of excess cells in the culture, which are the parameters that initiate the stationary phase of the growth cycle. The bacterial culture can be grown and maintained at relatively constant conditions depending on the flow rate of the nutrients.

Page 27: Tema 2: Growth and cell division Paper asignado: MreB.pdf.

The chemostat: Equations

D

If a chemostat is operated at F = 10 ml/h and V= 1LWhat is the value of D.

D = 10 ml/h / (1000mL)D = 0.01h-1

Dx

Dx = rate of loss of cellsx = # of cells in the growth chamber

If you have 3.67 X 107, What is the value of Dx?

Dx = (0.01h-1) 3.67 X 107

Dx = 3.67 X 105 cells h-1

Dilution rate D = F / V

F= flow rateV= volume of medium in the growth chamber

Page 28: Tema 2: Growth and cell division Paper asignado: MreB.pdf.

Problem: How to choose the proper size inoculum.

You have a culture with a density of 108 cells/mL and you would likeTo subculture it so that 16 hr later the density is is 108 cells/mL again.

If g = 2 hr, what should x0 be?

x = x02y y = t /g

y = t /g = 16/2= 8

108= x028 x0= 3.9 X 105 cells/mL

C1V1= C2V2

108 (X) = 3.9 X 105 (1000)X = 3.9 mL


Recommended