+ All Categories
Home > Documents > Termination Dependence of Tetragonal CH3NH3PbI3 · 1 Supporting Information for: Termination...

Termination Dependence of Tetragonal CH3NH3PbI3 · 1 Supporting Information for: Termination...

Date post: 27-Oct-2019
Category:
Upload: others
View: 3 times
Download: 0 times
Share this document with a friend
12
1 Supporting Information for: Termination Dependence of Tetragonal CH 3 NH 3 PbI 3 Surfaces for Perovskite Solar Cells Jun Haruyama, †,‡ Keitaro Sodeyama, †,§ Liyuan Han, ∥,⊥ and Yoshitaka Tateyama *,†,§, †International Center for Materials Nanoarchitectonics (WPI-MANA) and ‡Global Research Center for Environmental and Energy Nanoscience (GREEN), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan §Elements strategy Initiative for Catalysts and Batteries, Kyoto University, Goryo-Ohara, Nishikyo-ku, Kyoto 615-8245, Japan Photovoltaic Materials Unit, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan PRESTO and CREST, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 333-0012, Japan Corresponding Author *[email protected]
Transcript
Page 1: Termination Dependence of Tetragonal CH3NH3PbI3 · 1 Supporting Information for: Termination Dependence of Tetragonal CH 3 NH 3 PbI 3 Surfaces for Perovskite Solar Cells Jun Haruyama,†,‡

1

Supporting Information for:

Termination Dependence of Tetragonal CH3NH3PbI3

Surfaces for Perovskite Solar Cells

Jun Haruyama,†,‡ Keitaro Sodeyama,†,§ Liyuan Han,∥,⊥ and Yoshitaka Tateyama*,†,§,⊥

†International Center for Materials Nanoarchitectonics (WPI-MANA) and ‡Global Research Center for Environmental and Energy Nanoscience (GREEN), National Institute

for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan

§Elements strategy Initiative for Catalysts and Batteries, Kyoto University, Goryo-Ohara, Nishikyo-ku, Kyoto 615-8245, Japan

∥Photovoltaic Materials Unit, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan

⊥PRESTO and CREST, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 333-0012, Japan

Corresponding Author

*[email protected]

Page 2: Termination Dependence of Tetragonal CH3NH3PbI3 · 1 Supporting Information for: Termination Dependence of Tetragonal CH 3 NH 3 PbI 3 Surfaces for Perovskite Solar Cells Jun Haruyama,†,‡

2

S1. Bulk Crystal

DFT calculations of the MAPbI3 bulk crystal were carried out with the tetragonal and orthorhombic phases.

Figure S1 shows the adopted simulation cells with the four units of MAPbI3 including 48 atoms for both

phases. The k-point sampling utilized a 4×4×4 k-point mesh. For the tetragonal phase, the initial atomic

positions of Pb and I as well as the cell parameters were set to the Kawamura’s data,S1 and MA molecules

were placed referring to the Mosconi’s configurations.S2 For the orthorhombic phase, the Baikie’s crystal

dataS3 were used for the initial atomic positions and cell parameters. The atomic positions and the cell

parameters were relaxed until the residual forces and stresses became less than 0.001 Ry/bohr and 0.5 kbar,

respectively. Table S1 gives the lattice constants and energy gaps obtained in our calculations, with the

experimental values. Our results are in good agreement with experiments and previous DFT calculations.S1-S6

Figure S2 shows PDOSs of the tetragonal and orthorhombic phases, where the cell parameters are set to the

experimental values and PBE functional is used.

 

 

Figure S1. The unit cells used for the bulk crystal calculations: (a) tetragonal and (b) orthorhombic phases of

MAPbI3. The [001] ([110]) direction of the tetragonal and the [010] ([101]) of the orthorhombic phases

correspond to the [001] ([100]) of the perovskite structure.

   

(b)

a

b

c

a

(a)

a

b

b

c

Page 3: Termination Dependence of Tetragonal CH3NH3PbI3 · 1 Supporting Information for: Termination Dependence of Tetragonal CH 3 NH 3 PbI 3 Surfaces for Perovskite Solar Cells Jun Haruyama,†,‡

3

Table S1. The cell parameters and the energy gaps of the bulk crystals of MAPbI3 in the present calculations

in comparison with the experimental data.

a [Å] b [Å] c [Å] Eg [eV]

tetragonal PBE 8.863 8.997 12.989 1.68 a, 1.64 b

rev-vdW-DF 8.819 8.809 12.846 1.59 a

experimentS1 8.8009 8.8009 12.6857 1.51S3, 1.57S4

orthorhombic PBE 9.196 12.855 8.620 1.80a, 1.70b

rev-vdW-DF 8.881 12.720 8.604 1.79 a

experimentS3 8.8362 12.5804 8.5551 1.68S5 a Calculated value with relaxed cell parameters. b Calculated value with cell parameters fixed at the experimental values.

Figure S2. PDOSs of (a) tetragonal and (b) orthorhombic phases of the MAPbI3 bulk crystal. Black, green,

red, orange, and blue lines represent PDOSs of total, I 5s, I 5p, Pb 6s, Pb 6p, respectively. The tops of the

valence bands are set to the energy origin.

(b) orthorhombic

-2 -1 0 1 2Energy [eV]

Den

sity

of s

tate

s

0

TotalI 5sI 5pPb 6sPb 6p

TotalI 5sI 5pPb 6sPb 6p

-3 3

(a) tetragonal

-2 -1 0 1 2Energy [eV]

Den

sity

of s

tate

s

0-3 3

Page 4: Termination Dependence of Tetragonal CH3NH3PbI3 · 1 Supporting Information for: Termination Dependence of Tetragonal CH 3 NH 3 PbI 3 Surfaces for Perovskite Solar Cells Jun Haruyama,†,‡

4

S2. Surface Terminations

The surface calculations were carried out with the surface slabs of the (110), (001), (100), and (101) faces

with 1×4×4, 4×6×1, 1×6×4, and 1×6×4 k-point meshes, respectively. Figure S3 shows the initial surface

structures. The cell parameters, the termination labels, the stoichiometric ratios, and the atom numbers of each

MAPbI3 surface slab are summarized in Table S2.

Figure S3. Initial surface structures of tetragonal MAPbI3: (a) (110), (b) (001), (c) (100), and (d) (101).

c

a

b

a

b

a

c

a

(a) (110) surface

-(PbI5)4 -(PbI6)4-(PbI5)3-(PbI5)2PbI3-(PbI5)2-PbI5PbI3

(b) (001) surface

b

c

a

c

-(PbI3)2 -(PbI5)2 -(PbI5)4 -(PbI6)2(PbI5)2 -(PbI6)4

(d) (101) surface

c

a

-PbI3 -(PbI3)2 -(PbI4)2 -(PbI5)2 -PbI6PbI5 -(PbI6)2

-(PbI5)2 -(PbI6)2 -(PbI2)2 -PbI4 -(PbI4)2

(c) (100) surface

Page 5: Termination Dependence of Tetragonal CH3NH3PbI3 · 1 Supporting Information for: Termination Dependence of Tetragonal CH 3 NH 3 PbI 3 Surfaces for Perovskite Solar Cells Jun Haruyama,†,‡

5

Table S2. The cell parameters, the termination labels, the composition ratios, the atom numbers, and the

grand potentials per area (Ω/S at Δµμ!"=0, Δµμ!=-1.19eV) of each MAPbI3 surface slab.

Cell parameters Termination label Composition ratio Atom number Ω/S [eV/nm2]

(110) -PbI5PbI3 (MAPbI3)16 192 0.92

b = 12.4464 Å -(PbI5)2 I4(MAPbI3)16 196 3.40

c = 12.6857 Å -(PbI5)2PbI3 Pb2I4(MAPbI3)16 198 1.61

-(PbI5)3 Pb2I8(MAPbI3)16 202 3.79

-(PbI5)4 Pb4I8(MAPbI3)16 204 1.25

-(PbI6)4 Pb4I16(MAPbI3)16 212 6.20

(001) -(PbI3)2 (MAPbI3)16 192 1.18

a = 17.6018 Å -(PbI5)2 I8(MAPbI3)16 200 6.30

b = 8.8009 Å -(PbI5)4 Pb4I8(MAPbI3)16 204 1.46

-(PbI6)2(PbI5)2 Pb4I12(MAPbI3)16 208 5.27

-(PbI6)4 Pb4I16(MAPbI3)16 212 7.55

(100) -(PbI5)2 (MAPbI3)10 120 0.74

b = 8.8009 Å -(PbI6)2 I4(MAPbI3)10 124 4.91

c = 12.6857 Å -(PbI2)2 Pb4I4(MAPbI3)10 128 3.31

-PbI4 Pb2I8(MAPbI3)10 130 5.17

-(PbI4)2 Pb4I8(MAPbI3)10 132 1.73

(101) -PbI3 (MAPbI3)16 192 0.93

b = 8.8009 Å -(PbI3)2 Pb2(MAPbI3)16 194 3.31

c = 15.4397 Å -(PbI4)2 Pb2I4(MAPbI3)16 198 1.30

∠ac=110.50° -(PbI5)2 Pb2I8(MAPbI3)16 202 4.67

-PbI6PbI5 Pb2I10(MAPbI3)16 204 5.88

-(PbI6)2 Pb2I12(MAPbI3)16 206 7.13

Page 6: Termination Dependence of Tetragonal CH3NH3PbI3 · 1 Supporting Information for: Termination Dependence of Tetragonal CH 3 NH 3 PbI 3 Surfaces for Perovskite Solar Cells Jun Haruyama,†,‡

6

Table S3. The total energies 𝐸!"! and heat of formations Δ𝐻!"#$ for various systems. The PBE and

rev-vdW-DF values are presented.

System 𝐸!"! (PBE) [Ry/formula] 𝐸!"! (rev-vdW-DF) [Ry/formula]

MAPbI3 (tetragonal phase) -363.105 -363.144

PbI2 (CdI2 structure, 2H typeS7,S8) -264.832 -264.825

MAI (solid phaseS9) -98.266 -98.315

Pb (metal, fcc latticeS10) -146.851 -146.890

I2 (molecule) -117.805 -117.729

C (graphite, AB stackS11) -11.954 -11.974

N2 (molecule) -40.382 -40.404

H2 (molecule) -2.332 -2.351

System Δ𝐻!"#$ (PBE) [eV] Δ𝐻!"#$ (vdW-DF) [eV]

MAPbI3 -5.49 -5.86

PbI2 -2.39 -2.80

MAI -2.33 -3.02

Page 7: Termination Dependence of Tetragonal CH3NH3PbI3 · 1 Supporting Information for: Termination Dependence of Tetragonal CH 3 NH 3 PbI 3 Surfaces for Perovskite Solar Cells Jun Haruyama,†,‡

7

Figure S4. Phase diagrams at different growth conditions using the rev-vdW-DF method: (a) (110), (b) (001),

(c) (100), and (d) (101) surfaces. The dark and light blue regions indicate the vacant and PbI2-rich flat

terminations, respectively. The red regions represent the thermodynamic equilibrium growth conditions.

-2 -1 0

-1

0

-0.5

-2 -1 0

-1

0

-0.5

(a) (110)

-(PbI5)4

-PbI5PbI3

-(PbI6)4-(PbI5)3

-(PbI5)2PbI3

-(PbI3)2

-(PbI5)4

-(PbI6)4

(b) (001)

-(PbI5)2

-PbI3

-(PbI4)2

-(PbI6)2

(d) (101)(c) (100)

-(PbI5)2

-(PbI4)2

-PbI4-(PbI6)2

Pb [eV] Pb [eV]

I[e

V]

I[e

V]

Page 8: Termination Dependence of Tetragonal CH3NH3PbI3 · 1 Supporting Information for: Termination Dependence of Tetragonal CH 3 NH 3 PbI 3 Surfaces for Perovskite Solar Cells Jun Haruyama,†,‡

8

Figure S5. Outermost Pb polyhedron structures: (a) (110) -PbI5PbI3, (b) (001) -(PbI3)2 terminations. The left

and right figures represent the initial and relax structures, respectively.

Figure S6. PDOSs of (a) (100) -(PbI5)2, (b) (100) -(PbI4)2, (c) (101) -PbI3, and (d) (101) -(PbI4)2 terminations.

(a) (110) -PbI5PbI3

(b) (001) -(PbI3)2

(b) TotalI 5sI 5pPb 6sPb 6p

-2 -1 0 1 2Energy [eV]

Den

sity

of s

tate

s

0-3 3

0

(a)

-2 -1 0 1 2Energy [eV]

-3 3

(d)(c)

Page 9: Termination Dependence of Tetragonal CH3NH3PbI3 · 1 Supporting Information for: Termination Dependence of Tetragonal CH 3 NH 3 PbI 3 Surfaces for Perovskite Solar Cells Jun Haruyama,†,‡

9

Figure S7. Charge distributions of LUMOs: (a) (110) without SOC, (b) (001) without SOC, (c) (110) with

SOC, and (d) (001) with SOC. The left and right figures correspond to the stable vacant and PbI2-rich flat

terminations, respectively.

(a) (110) without SOC (b) (001) without SOC

(c) (110) with SOC (d) (001) with SOC

Page 10: Termination Dependence of Tetragonal CH3NH3PbI3 · 1 Supporting Information for: Termination Dependence of Tetragonal CH 3 NH 3 PbI 3 Surfaces for Perovskite Solar Cells Jun Haruyama,†,‡

10

Figure S8. Relaxed (110) surface structures of (a) 5 Pb layer, (b) 7 Pb layer, and (c) 9 Pb layer slabs. The left

and right figures correspond to the stable vacant and PbI2-rich flat terminations, respectively.

Table S4. Slab size dependence of the (110) stable vacant and PbI2-rich flat terminations. The termination

labels, the numbers of the Pb layers, the composition ratios, the atom numbers, the grand potentials per area

(Ω/S at Δµμ!"=0, Δµμ!=-1.19eV), and the energy gaps are listed.

Termination Pb layers Composition ratio Atom number Ω/S [eV/nm2] 𝐸! [eV]

-PbI5PbI3 5 (MAPbI3)16 192 0.92 1.91

7 (MAPbI3)24 288 0.68 1.86

9 (MAPbI3)32 384 0.67 1.80

-(PbI5)4 5 Pb4I8(MAPbI3)16 204 1.25 1.63

7 Pb4I8(MAPbI3)24 300 1.05 1.57

9 Pb4I8(MAPbI3)32 396 1.03 1.58

b

a

(a) (b) (c)

Page 11: Termination Dependence of Tetragonal CH3NH3PbI3 · 1 Supporting Information for: Termination Dependence of Tetragonal CH 3 NH 3 PbI 3 Surfaces for Perovskite Solar Cells Jun Haruyama,†,‡

11

Figure S9. Charge distributions of (110) surface states: (a) stable vacant and (b) PbI2-rich flat terminations.

The surface states of the stable vacant termination are located 0.2eV below the HOMO level.

(a) stable vacant (b) PbI2-rich flat

Page 12: Termination Dependence of Tetragonal CH3NH3PbI3 · 1 Supporting Information for: Termination Dependence of Tetragonal CH 3 NH 3 PbI 3 Surfaces for Perovskite Solar Cells Jun Haruyama,†,‡

12

REFFERENCES

(S1) Kawamura, Y.; Mashiyama, H.; Hasebe, K. Structural Study on Cubic-Tetragonal Transition of

CH3NH3PbI3. J. Phys. Soc. Jpn. 2002, 71, 1694-1697.

(S2) Mosconi, E.; Amat, A.; Nazeeruddin, M. K.; Grätzel, M.; De Angelis, F. First-Principles Modeling of

Mixed Halide Organometal Perovskites for Photovoltaic Applications. J. Phys. Chem. C 2013, 117,

13902-13913.

(S3) Baikie, T.; Fang, Y.; Kadro, . M.; Schreyer, M.; Wei, F.; Mhaisalkar, S. G.; Grätzel, M.; White, T. J.

Synthesis and Crystal Chemistry of the Hybrid Perovskite (CH3NH3)PbI3 for Solid-State Sensitized Solar Cell

Applications. J. Mater. Chem. A 2013, 1, 5628-5641.

(S4) Qiu, J.; Qiu, Y.; Yan, K.; Zhong, M.; Mu, C.; Yan, H.; Yang, S. All-Solid-State Hybrid Solar Cells

Based on a New Organometal Halide Perovskite Sensitizer and One-Dimensional TiO2 Nanowire Arrays.

Nanoscale 2013, 5, 3245-3248.

(S5) Ishihara, T. Optical Properties of PbI-Based Perovskite Structures. J. Lumin. 1994, 60&61, 269-274.

(S6) Wang, Y.; Gould, T.; Dobson, J. F.; Zhang, H.; Yang, H.; Yao, X.; Zhao, H. Density Functional Theory

Analysis of Structural and Electronic Properties of Orthorhombic Perovskite CH3NH3PbI3. Phys. Chem. Chem.

Phys. 2014, 16, 1424-1429.

(S7) Mitchell, R. S. Structural Polytypism of Lead Iodide and Its Relationship to Screw Dislocations. Z.

Kristallogr. 1959, 111, 372-384.

(S8) Sears, W. M.; Klein, M. L.; Morrison, J. A. Polytypism and the Vibrational Properties of PbI2. Phys. Rev.

B 1979, 19, 2305-2313.

(S9) Hendricks, S. B. The Crystal Structures of the Monomethyl Ammonium Halides. Z. Kristallogr. 1928, 67,

106-118.

(S10) Tang, Y. -C.; Pauling, L. The Structure of Alloys of Lead and Thallium. Acta Crystallogr. 1952, 5,

39-44.

(S11) Zhao, Y. X.; Spain, I. L. X-ray Diffraction Data for Graphite to 20 GPa. Phys. Rev. B 1989, 40,

993-997.

 

 


Recommended