+ All Categories
Home > Documents > The CMOS Inverter - Chalmers · 2016-09-08 · Important CMOS Inverter knowledge • First of all,...

The CMOS Inverter - Chalmers · 2016-09-08 · Important CMOS Inverter knowledge • First of all,...

Date post: 20-Mar-2020
Category:
Upload: others
View: 18 times
Download: 0 times
Share this document with a friend
46
The CMOS Inverter Lecture 3a Static properties (VTC and noise margins)
Transcript

The CMOS Inverter

Lecture 3a

Static properties

(VTC and noise margins)

Inputs

Why so much about inverters?

2016-09-06 MCC092 IC Design - Lecture 3: The Inverter 2

VDD

VSS

Y

nMOS pull-down network

pMOS pull-up

network IDSP

IDSN

The current that any CMOS logic gate can deliver or sink can be calculated from equivalent inverter!

Important CMOS Inverter knowledge

• First of all, of course the MOSFET schematic • But you will capture the inverter schematic in lab 1

MCC092 IC Design - Lecture 3: The Inverter 3

vdd!

gnd!

vdd!

2016-09-06

Don´t forget to tie the body to VDD and GND!

gnd!

The voltage characteristic (VTC) • VTC shows VOUT vs VIN in steady-state, i.e. quasi-static DC with

dVIN/dt=dVOUT /dt≈0!

MCC092 IC Design - Lecture 3: The Inverter 4

VIN

VOUT

PMOS

NMOS

• However, the PMOS has its ”origo” in (VDD, VDD) when connected to VDD as in the inverter

2016-09-06

VDD

VDD • NMOS works for positive gate and drain voltages

• PMOS works for negative gate and drain voltages

The voltage characteristic (VTC)

First task: to calculate the switching voltage VSW, i.e the input voltage that separates a ”one” and a ”zero”:

MCC092 IC Design - Lecture 3: The Inverter 5

VDD VSW VTN VDD+VTP 0 0

(VDD, VDD)

2016-09-06

Switching occurs in the green region where both MOSFETs are saturated!

1

NDD TP TN

P

sw

N

P

kV V V

kV

k

k

VDD

2 2

2 2

N PIN TN DD IN TP

k kV V V V V

Hence, let IDSN=ISDP

VOUT

VIN

VTC robustness

MCC092 IC Design - Lecture 3: The Inverter 5

It is good to have some feeling for what happens to the VTC . . . . . . for different √kN/kP

but how to interpret the Vsw equation?

P P

N N

k

k

Rewrite as

1

DD TP TNsw TN

N

P

V V VV V

k

k

1

NDD TP TN

P

sw

N

P

kV V V

kV

k

k

DD TP TNV V V

2016-09-06

The voltage characteristic (VTC)

MCC092 IC Design - Lecture 3: The Inverter

VDD VSW

What if we make n-channel MOSFET wider?

What happens to VTC? VDD

VTN VDD+VTP 0 0

2016-09-06 7

Decreases, see slide 5!

1

DD TP TN

N P

V V V

k k

DD TP TNV V V

VSW increases or decreases?

VOUT

VIN

The voltage characteristic (VTC)

MCC092 IC Design - Lecture 3: The Inverter

VDD

VOUT

VSW

Which VTC is NAND and which VTC is NOR?

VDD

VTN VDD+VTP 0 0

2016-09-06 8

VIN

NAND

NOR

The voltage characteristic (VTC)

MCC092 IC Design - Lecture 3: The Inverter

VDD VSW

Find VTC equations for blue regions where only one MOSFET is saturated!

VDD

VTN VDD+VTP 0 0

2 2N

OUT IN TP IN TN DD IN TP

P

kV V V V V V V V

k

2016-09-06 9

Only n-channel MOSFET saturated

p-channel MOSFET saturated

2 2P

OUT IN TN IN TN DD IN TP

N

kV V V V V V V V

k

OUT IN TPV V V

OUT IN TNV V V

Saturation conditions

VOUT

VIN

The voltage characteristic (VTC)

MCC092 IC Design - Lecture 3: The Inverter

VDD VSW

How about current flow?

No current flow in red regions!

”short-circuit” current ISC flows in blue/green regions

VDD

VTN VDD+VTP 0 0

2016-09-06 10

2

2

NSC IN TN

kI V V

2

2

PSC DD IN TP

kI V V V

n-channel MOSFET saturated

p-channel MOSFET saturated

VOUT

VIN

Valid ”0”

Valid ”1”

Noise Margins

2016-09-06 MCC092 IC Design - Lecture 3: The Inverter 11

VDD

VDD

0 0

VOH,min

VOL,max

VIH,min VIL,max

Even large variations in input signal . . . make only small variations in output signal

VIN

VOUT

Define noise margins NMH=VOH,min-VIH,min

NML=VIL,max-VOL,max

NOISE MARGIN

Valid ”0”

Valid ”1”

Noise Margins: how to define valid output regions?

2016-09-06 MCC092 IC Design - Lecture 3: The Inverter 12

VIN VDD

VOUT

VDD

0 0

Find points where slope AV = -1!

VIL,max VIH,min

Yields numbers for (VOH,min, VIL,max) and (VOL,max, VIH,min) so that values for NMH and NMH can be calculated!

VOH,min

VOL,max

Valid ”0”

Valid ”1”

Noise Margins – an example

2016-09-06 MCC092 IC Design - Lecture 3: The Inverter 13

VIN

VOUT

0 0

Find points where slope AV = -1!

1.2 V

1.06 V

0.12 V

1.2 V

0.7 V 0.5 V

Yields numbers for (VOH,min, VIL,max)=(1.06, 0.5) (VOL,max, VIH,min)=(0.12, 0.7) Hence NMH=1.06 – 0.7 = 0.36 V NML= 0.5 – 0.12 = 0.38 V

Noise margins – textbook illustration

2016-09-06 MCC092 IC Design - Lecture 3: The Inverter 14

NOISE MARGIN

Valid ”0”

Valid ”1”

2016-09-06 MCC092 IC Design - Lecture 3: The Inverter 15

Butterfly diagram

VIN VDD

VOUT

VDD

0 0

Find points where slope AV = -1!

VOH,min

VOL,max

Define noise margins NMH=VOH,min-VIH,min

NML=VIL,max-VOL,max

NMH

NML

VIH,min VIL,max

VIL,max

VIH,min

VIN VOUT

Noise Margins – skewed inverters

2016-09-06 MCC092 IC Design - Lecture 3: The Inverter 16

NMH

NML

NML NMH

Matching MOSFET current characteristics

• Match the corresponding p-channel and n-channel MOSFET curves to each other!

MCC092 IC Design - Lecture 3: The Inverter 17 2016-09-06

VOUT

IDS

Fig. 2.26. Graphical derivation of CMOS inverter DC characteristics

Matching MOSFET current characteristics

MCC092 IC Design - Lecture 3: The Inverter 18 2016-09-06

Fig. 2.26. Graphical derivation of CMOS inverter DC characteristics

IDS

VOUT

IDS

VOUT

IDS

VOUT

IDS

VOUT

IDS

VOUT

Match the corresponding p-channel and n-channel MOSFET curves to each other!

VIN

VOUT

2016-09-06 MCC092 IC Design - Lecture 3: The Inverter 19

Summary

• CMOS inverter – schematic

• Voltage transfer characteristics (VTC)

• How to calculate swiching voltage VSW

• Understand VSW dependence on kN/kP

• Understand switching current (ISC) flow

• Noise margins NMH and NMH

• Butterfly diagram

• Match current curves

Valid ”0”

Valid ”1”

2016-09-06 MCC092 IC Design - Lecture 3: The Inverter 20

Butterfly diagram - example

VIN VDD

VOUT

VDD

0

Calculate the noise margins from given values!

1.04 V

VOL,max

NMH

NML

VIH,min 0.48 V

VIL,max

0.72 V

VIN VOUT

0.18 V

Valid ”0”

Valid ”1”

2016-09-06 MCC092 IC Design - Lecture 3: The Inverter 21

Prelab 1

VIN VDD

VOUT

VDD

0

Prelab task: To calculate the noise margins from given equations assuming VTN=0.29 V and VTP=-0.27 V, and assuming kN=kP!

VOH,min

VOL,max

2. Please note noise margin formulas given in prelab 1: VOH,min=VDD-DV/8 VOL,max=DV/8 VIH,min=VSW-DV/8 VIL,max=VSW+DV/8

NMH

NML

VIH,min VIL,max

VIL,max

VIH,min

DV=VDD-VTN+VTP=1.2-0.27-0.29=0.64 V 1. kN=kP yields switching voltage VIN=Vsw=VTN+DV/2

Vsw

3. All values needed for our calculations involves

DV=VDD-VTN+VTP

0.29 V 0.27 V

No

t va

lid V

IN

Lecture 3b The CMOS Inverter

Dynamic properties

Definitions of rise and fall delays

2016-09-06 MCC092 IC Design - Lecture 3: The Inverter 23

• fall delay tpdf • rise delay tpdr

Delays are defined at the 50% level!

Definitions of rise and fall times

2016-09-06 MCC092 IC Design - Lecture 3: The Inverter 24

• fall time tf • rise time tr

Rise and fall times are defined between the 20% and 80% levels! Sometimes between 10% and 90% levels

Step-respons model

2016-09-06 MCC092 IC Design - Lecture 3: The Inverter 25

VDD

VSS

CL

VIN VOUT

Square wave approximation

ON

OFF

1. VIN=LOW

OFF

ON

2. VIN=HIGH

Step-response model: rise delay

2016-09-06 MCC092 IC Design - Lecture 3: The Inverter 26

VOUT

VDD

IDSAT,P

Equivalent circuit

Load capacitance is charged through

p-MOSFET

1. VIN=LOW Square wave approximation

CL

, ,

L OUTpdr

DSAT P DSAT P

C VQt

I I

DD

DVOUT=VDD/2

VDD VDD/2

IDS,P

VOUT

IDSAT,P

pMOS current flow

Step-response model: fall delay

2016-09-06 MCC092 IC Design - Lecture 3: The Inverter 27

VOUT

CL

VSS

IDSAT,N

Equivalent circuit

Load capacitance is discharged through

n-MOSFET

2. VIN=HIGH

VDD VDD/2

IDS,N

VOUT

nMOS current flow

IDSAT,N

Square wave approximation

, ,

L OUTpdr

DSAT N DSAT N

C VQt

I I

DD

DVOUT=VDD/2

The Inverter – an electrical model

2016-09-06 MCC092 IC Design - Lecture 3: The Inverter 28

Replace MOSFETs with their equivalent electrical circuits!

NMOS

2

2

NDSN IN TN

kI V V

VIN VOUT

VSS

CGN

CDN

VSS

IDSN

VDD

CGP

CDP

VDD

IDSP

2

2

NDSP IN DD TP

kI V V V

Inverter input capacitance: CG=CGN+CGP; MOSFET gate capacitances add! Inverter parasitic output capacitance: CD=CDN+CDP. Drain caps also add!

VIN VOUT

VSS

VDD

PMOS

2

2

NDSN IN TN

kI V V

2

2

NDSP IN DD TP

kI V V V

The Inverter – an electrical model

2016-09-06 MCC092 IC Design - Lecture 3: The Inverter 29

VIN VOUT

VSS

VDD

VIN VOUT

VSS

CG=CGN+CGP

VSS

VDD VDD

CD=CDN+CDP

Inverter input capacitance: CG=CGN+CGP; MOSFET gate capacitances add! Inverter parasitic output capacitance: CD=CDN+CDP. Drain caps also add!

Since VIN is either VDD or VSS (GND) we can modify schematic accordingly

2

,max2

NDSP DD TP

kI V V

2

,max2

NDSN DD TN

kI V V

IDSN

IDSP

IDSN,max

IDSP,max

IDSP,max= 300 uA/um

IDSN,max= 600 uA/um

Problem

2016-09-06 MCC092 IC Design - Lecture 3: The Inverter 30

2

,max2

NDSP DD TP

kI V V

If IDSN,max is 600 mA/um in the 65 nm CMOS process from STMicroelectronics, what would be the effective kprime (kN´=mCox)?

In this process VDD= 1.2 V, VTN= 0.29 V, Cox= 20 fF/mm2, and Leff= 60 nm.

2

,max2

NDSN DD TN

kI V V

Answer: kN´=87 mA/V2, kN´=42 mA/V2

Similarly, if IDSP,max is 300 mA/um in the 65 nm CMOS process from STMicroelectronics, what would be the effective kprime (kN´=mCox)?

In this process VDD= 1.2 V, VTN= -0.27 V, Cox= 20 fF/mm2, and Leff= 60 nm.

Ramp response

2016-09-06 MCC092 IC Design - Lecture 3: The Inverter 31

VIN

It is obvious that a ramp approximation would give a better model –

However, this is too complicated for simple analytical analysis

Spice simulations show – that for about equal input and output edge rates –

the ramp response delay is about 40% longer than the step response delay!

Ramp response

2016-09-06 MCC092 IC Design - Lecture 3: The Inverter 32

It is obvious that a ramp approximation would give a better model –

However, this is too complicated for simple analytical analysis

For a balanced design with approximately equal input and output edge rates – (i.e. equal rise and fall times)

Spice simulations show that the ramp response delay is about 40% longer than the step response delay!

/ 20.7 0.7L DD L DD DD

pd pd L

DSAT DSAT DSAT

C V C V Vt t C

I I I

Add 40% to step response delay and prefactor 0.5 becomes 0.7

DDeff

DSAT

VR

IDefining the effective resistance during charge/discharge as

our ramp response delay model becomes tpd=0.7ReffCL!

Effective resistances: 60 nm MOSFETs

2016-09-06 MCC092 IC Design - Lecture 3: The Inverter 33

RN,eff=VDD/IDSAT,max

RP,eff=VDD/IDSAT,max

RN,eff=2 kW.mm RP,eff=4 kW.mm

IDSAT,max =

600 mA/mm

VDD=1.2 V

N-channel device P-channel device

IDSAT,max =

300 mA/mm

VDD=1.2 V

IDS

VDS

IDS

VDS VDD VDD

Electrical ramp response model

2016-09-06 MCC092 IC Design - Lecture 3: The Inverter 34

Replace constant-current sources with effective resistances

VIN VOUT

VSS

VDD

VIN VOUT

VSS

CG

VSS

RN,eff

VDD VDD

RP,eff

RP,eff= 4 kW .mm

RN,eff= 2 kW .mm

CD

Ramp input – output response

2016-09-06 MCC092 IC Design - Lecture 3: The Inverter 35

Ramp input – output trace

2016-09-06 MCC092 IC Design - Lecture 3: The Inverter 36

Electrical ramp response model

2016-09-06 MCC092 IC Design - Lecture 3: The Inverter 37

Complicated to keep track of different rise and fall delays! Replace with average effective resistance!

VIN VOUT

VSS

VDD

VIN VOUT

VSS

CG

VSS

VDD VDD RP,eff= 4 kW .mm

RN,eff= 2 kW .mm

CD

RN,eff

RP,eff

Rave

VDD

, ,3 k

2

N eff P eff

ave

R RR mm

W

Redraw schematic!

2W´

VIN

Electrical ramp response model

2016-09-06 MCC092 IC Design - Lecture 3: The Inverter 38

Even better to resize p-channel device, i.e. to make it wider, so that RP,eff=RN,eff

VOUT

VSS

VDD

VIN VOUT

VSS

CG

VSS

CD

Rave

VDD

, ,2 k

2

N eff P eff

ave

R RR mm

W

Task: Calculate CG and CD!

Answer: Assuming L=60 nm and Cox=20 fF/mm2 we obtain CGN=1.2 fF and CGP=2.4 fF. Hence CG=3.6 fF. Concerning CD we assume CD=pCG=3.6 fF with p=1.

VDD

VSS

W=1 mm

W=2 mm

VOUT VIN

VIN

Electrical ramp response model

2016-09-06 MCC092 IC Design - Lecture 3: The Inverter 39

VOUT

VSS

VDD

VIN VOUT

VSS

CG

VSS

CD

Reff

VDD

, ,2 k

2

N eff P eff

eff

R RR mm

W

2W´

3.6 /GC fF mm

0.7 0.7 2 3.6 / 5eff GR C k m fF m ps m m W

In an ideal inverter the time constant tao is really a constant, and that is independent of W´

VIN

Electrical ramp response model

2016-09-06 MCC092 IC Design - Lecture 3: The Inverter 40

VOUT

VSS

VDD

VIN VOUT

VSS

CG

VSS

CD

Reff

VDD

, ,2 k

2

N eff P eff

eff

R RR mm

W

2W´

3.6 /GC fF mm

0.7 0.7 2 3.6 / 5eff GR C k m fF m ps m m W

In an ideal inverter the time constant tao is really a constant, and that is independent of W´

Inverter pair delay

2016-09-06 MCC092 IC Design - Lecture 3: The Inverter 41

CG

Reff

VDD

Left-hand inverter sees a capacitive load CG!

Inverter pair delay

2016-09-06 MCC092 IC Design - Lecture 3: The Inverter 42

CG

Reff

CD

VDD

Right-hand inverter sees a driver with internal source resistance Reff and a parasitic capacitance CD!

Inverter pair delay

2016-09-06 MCC092 IC Design - Lecture 3: The Inverter 43

CG

Reff

CD

VDD

The propagation delay becomes effective resistance times load cap!

0.7 0.7 1 5 ps 2 10 pseff D G eff GR C C R C p

RC-circuit with delay RCxln2=0.7RC

X1

X1

Inverter FO4 delay

2016-09-06 MCC092 IC Design - Lecture 3: The Inverter 44

CG

Reff

CD

VDD

X1 X1

The FO4 propagation delay becomes 0.7 4 0.7 4 5 ps 5 25 pseff D G eff GR C C R C p

X1

CG

CG

CG

X1

X1

Inverter FO4 delay

2016-09-06 MCC092 IC Design - Lecture 3: The Inverter 45

4CG

X1

The FO4 propagation delay becomes 0.7 4 0.7 4 5 ps 5 25 pseff D G eff GR C C R C p

X1

Reff

CD

VDD

Summary

• We defined rise and fall delays at the 50% level (VDD/2) • We defined rise and fall times between 20% and 80% levels • We calculated propagation delay in response to a square-wave input signal assuming

MOSFETs being saturated during delay • We improved the delay model by adding 40%

– assuming a ramp input signal and – assuming equal input and output edge rates

• We ”heard a bell ring” and replaced saturation current sources by effective resistances

• We made the p-channel MOSFET twice as wide to compensate for lower hole mobility (i.e. to compensate for kP´=kN´/2). – Both MOSFETs now have the same effective resistance of 2 kW.mm – However, p-channel device now has twice the input capacitance of the n-channel MOSFET

• We have obtained an electrical two-port model of the inverter for delay calculations – we know what this model looks like seen from the input port, and seen from the output port

• Finally, we calculated the FO4 delay, and we found the ReffCG product being independent of the inverter size (as long as we keep same ratio between WP and WN)

2016-09-06 MCC092 IC Design - Lecture 3: The Inverter 46


Recommended