+ All Categories
Home > Documents > The E SO Dis tant C luster S urvey

The E SO Dis tant C luster S urvey

Date post: 01-Jan-2016
Category:
Upload: shannon-brady
View: 22 times
Download: 0 times
Share this document with a friend
Description:
The E SO Dis tant C luster S urvey (EDisCS) Study evolution of cluster galaxies and clusters in 20 fields with clusters at z=0.4 – 1.0. - PowerPoint PPT Presentation
27
P.I. S. White ( MPA-Garching, D ) A. Aragón-Salamanca ( Nottingham, UK ) R. Bender ( Munich, D ) P. Best ( ROE, Scotland ) M. Bremer ( Bristol, UK ) S. Charlot ( MPA, D & IAP, F ) D. Clowe ( Bonn, D) J. Dalcanton ( U.Washington, USA ) B. Fort ( IAP, F ) P. Jablonka ( OPM, F ) G. Kauffmann ( MPA, D ) Y. Mellier ( IAP, F ) R. Pello ( OMP, F ) B. Poggianti ( Padova, I ) H. Rottgering ( Leiden, NL ) P. Schneider ( Bonn, D ) D. Zaritsky ( U. Arizona, USA ) M. Dantel ( OPM, F ) G. De Lucia ( MPA, D ) V. Desai ( U. Washington, USA ) C. Halliday ( Padova, I ) B. Milvang-Jensen ( MPE, D ) S. Poirier ( OPM, F ) G. Rudnick ( MPA, D ) R. Saglia ( Munich, D ) L. Simard ( U. Victoria, C ) J. Varela ( Padova, I) + B. Vulcani (Padova, I) The ESO Distant Cluster Survey (EDisCS) Study evolution of cluster galaxies and clusters in 20 fields with clusters at z=0.4 – 1.0 7 “ITALIANI”
Transcript
Page 1: The  E SO  Dis tant  C luster  S urvey

P.I. S. White ( MPA-Garching, D )A. Aragón-Salamanca ( Nottingham, UK )R. Bender ( Munich, D )P. Best ( ROE, Scotland )M. Bremer ( Bristol, UK )S. Charlot ( MPA, D & IAP, F )D. Clowe ( Bonn, D)J. Dalcanton ( U.Washington, USA )B. Fort ( IAP, F )P. Jablonka ( OPM, F )G. Kauffmann ( MPA, D )Y. Mellier ( IAP, F )R. Pello ( OMP, F )B. Poggianti ( Padova, I )

H. Rottgering ( Leiden, NL )P. Schneider ( Bonn, D )D. Zaritsky ( U. Arizona, USA )M. Dantel ( OPM, F )G. De Lucia ( MPA, D )V. Desai ( U. Washington, USA )C. Halliday ( Padova, I )B. Milvang-Jensen ( MPE, D )S. Poirier ( OPM, F )G. Rudnick ( MPA, D )R. Saglia ( Munich, D )L. Simard ( U. Victoria, C )J. Varela ( Padova, I)+ B. Vulcani (Padova, I)+ J. Fritz (Padova, I)

The ESO Distant Cluster Survey (EDisCS)

Study evolution of cluster galaxies and clusters in 20 fields with clusters at z=0.4 – 1.0

7 “ITALIANI”

Page 2: The  E SO  Dis tant  C luster  S urvey

• Deep imaging: VRIJK at z~0.8, BVIJK at z~0.5 (11n FORS2/VLT + 20n SOFI/NTT)

• HST/ACS imaging for 10 most distant clusters (80 orbits)

• Spectroscopy: at least 4 FORS2 masks at long exposure to get spectra to I~23 (z~0.8) or 22 (z~0.5) (25n FORS2)

• + follow-ups (XMM, MIPS/Spitzer, Halpha imaging, wide-field spectroscopy, GALEX …):

• MIPS+IRAC data for all fields, some WF

• WFI/2.2m RVI imaging for all 20 fields (84hr WFI)

The ESO Distant Cluster Survey (EDisCS)

20 fields with clusters at z=0.42-0.96

ESO LP allocation: 36n VLT/FORS2 + 20n NTT/SOFI

Page 3: The  E SO  Dis tant  C luster  S urvey

CL1202.4-1224

z=0.42

EDisCS Imaging

CL1232.3-1250z=0.54

CL1037.5-1243

z=0.58

CL1054.4-1245

z=0.75

CL1354.1-1231

z=0.76

Page 4: The  E SO  Dis tant  C luster  S urvey

Morphology ACS/HST

CL1037.5-1243

z=0.58

CL1216.4-1201

z=0.79

Page 5: The  E SO  Dis tant  C luster  S urvey

• Deep imaging: VRIJK at z~0.8, BVIJK at z~0.5 (11n FORS2/VLT + 20n SOFI/NTT)

• HST/ACS mosaic imaging for 10 most distant clusters (80 orbits)

• Spectroscopy: at least 4 FORS2 masks at long exposure to get spectra to I~23 (z~0.8) or 22 (z~0.5) (25n FORS2)

• + follow-ups (XMM, MIPS/Spitzer, Halpha imaging, wide-field spectroscopy, GALEX…):

• MIPS+IRAC data for all fields, some WF

• WFI/2.2m RVI imaging for all 20 fields (84hr WFI)

The ESO Distant Cluster Survey (EDisCS)

20 fields with clusters at z=0.42-0.96

ESO LP allocation: 36n VLT/FORS2 + 20n NTT/SOFI

Page 6: The  E SO  Dis tant  C luster  S urvey

Spectroscopy25 nights of FORS2 MXU spectroscopy average of 35 members/cluster

z’s and emission lines to I~23 (over ~3.5mag)

Line strength to I~22.5

’s to I~21.5

Page 7: The  E SO  Dis tant  C luster  S urvey

• Deep imaging: VRIJK at z~0.8, BVIJK at z~0.5 (11n FORS2/VLT + 20n SOFI/NTT)

• HST/ACS mosaic imaging for 10 most distant clusters (80 orbits)

• Spectroscopy: at least 4 FORS2 masks at long exposure to get spectra to I~23 (z~0.8) or 22 (z~0.5) (25n FORS2)

• + follow-ups (XMM, MIPS/Spitzer, Halpha imaging, wide-field spectroscopy, GALEX…):

• MIPS+IRAC data for all fields, some WF

• WFI/2.2m RVI imaging for all 20 fields (84hr WFI)+ IMACS/Magellan LR spectra…

The ESO Distant Cluster Survey (EDisCS)

20 fields with clusters at z=0.42-0.96

ESO LP allocation: 36n VLT/FORS2 + 20n NTT/SOFI

Page 8: The  E SO  Dis tant  C luster  S urvey

Wide range of cluster masses

Milvang-Jensen et al. 2008

Wider range of masses than previous surveys

EDisCS structures progenitors of “typical” clusters today

Allows to study clusters, groups and field on homogeneous data

Page 9: The  E SO  Dis tant  C luster  S urvey

19 clusters, 10 groups (8+ members), poor groups and 120 usable field galaxies

Cl1232 0.54 1080 54 Cl 1216 0.79 1018 67 Cl1138 0.48 732 49 Cl1411 0.52 710 22 Cl1301 0.48 687 35 Cl1353 0.59 666 20 Cl1354 0.76 648 21 Cl105411 0.70 589 49 Cl1227 0.64 574 22 Cl1138a 0.45 542 14 Cl1037a 0.43 537 45 Cl1103 0.96 534 10+ Cl1202 0.42 518 19 Cl1059 0.46 510 41 Cl105412 0.75 504 36 Cl1018 0.47 486 33 Cl1354a 0.60 433 15 Cl1227a 0.58 432 11 Cl1040 0.70 418 30

Cl1301a 0.40 391 17 Cl1103a 0.63 336 15 Cl1037 0.58 319 16 Cl1040b 0.78 259 8 Cl1103b 0.70 252 11 Cl105411a 0.61 227 8 Cl1420 0.50 218 24 Cl105412a 0.73 182 10 Cl1040a 0.63 179 11 Cl1119 0.55 166 17

+ others

Redshift, sigma, N of members

Page 10: The  E SO  Dis tant  C luster  S urvey

24 refereed papers published or submitted, + some ongoing studies.…. see Poggianti et al. June 2009 Messenger 136 54

RED GALAXIES

V-I

I magnitudeDe Lucia et al. 2004

Well-defined relation between colour and luminosity (red sequence) for clusters up to z=1.5, of galaxies whose SF terminated well before the epoch we observe them

Not all today’s red sequence galaxies have been red and passive since high-z

Downsizing of the red sequence: most massive/luminous galaxies stopped forming stars, and were on the red sequence at an earlier epoch than less massive ones

Page 11: The  E SO  Dis tant  C luster  S urvey

0.0 redshift 0.8

Num

ber

ratio

of

red

lum

inou

s-to

-fai

nt g

alax

ies De Lucia et al. 2007

Deficit of faint, red galaxies in distant clusters compared to nearby clusters.

Rudnick et al. 2009

Also from spectral line indices analysis (Sanchez-Blazquez et al. 2009)

BCG stell. pops formed at z 2, no significant evolution in mass since z=1 (whiley et al. 2008)

Build-up of the faint end of the red galaxy LF – Field has more faint red galaxies than clusters at z=0.7, but fewer at z=0.5

Page 12: The  E SO  Dis tant  C luster  S urvey

On the way to the red sequence: evolution of the % of SF-ing galaxies

EDisCS z = 0.4-0.8 Sloan z = 0.04-0.1

Fra

ctio

n of

mem

bers

with

OII

w

ithin

R20

0

Velocity dispersion

10001000

500500

Poggianti et al. 2006

Page 13: The  E SO  Dis tant  C luster  S urvey

Desai et al. (2007)

(Dressler et al. 1997, Fasano et al. 2000, Postman et al. 2005, Smith et al. 2005 – but also Andreon et al. 1998, Holden et al. 2009)

MORPHOLOGICAL EVOLUTION IN CLUSTERS: from spiral to S0 GALAXIES

Elliptical %S0 %

Spiral+Irr %

Also Simard et al. 2009 for evolution of EDisCS early-type fraction

E + S0 %

Page 14: The  E SO  Dis tant  C luster  S urvey

Desai et al. (2007)

Morphological fractions vs redshift

Most of the morphological evolution in luminous galaxies has occurred since z=0.5, during the last 5 Gyrs.

Page 15: The  E SO  Dis tant  C luster  S urvey

WINGS + EDisCS Poggianti et al. 2009b ApJ Letter

Evolution of the morphological fractions as a function of velocity dispersion

AGAIN, THE STRONGEST EVOLUTION BETWEEN z=1 AND TODAY APPEARS TO HAPPEN IN GALAXIES IN

LOW-MASS CLUSTERS

Page 16: The  E SO  Dis tant  C luster  S urvey

The fraction of passive galaxies observed at high-z is about the fraction of galaxies that were already in groups (M > 3 X 10^12) at z=2.5

The fraction of passive galaxies observed at low-z is about the fraction of galaxies that have spent at least the last 3 Gyr (since z=0.3) in clusters (M > 10^14)

Poggianti et al. 2006

Page 17: The  E SO  Dis tant  C luster  S urvey

Poggianti et al. 2008

Morphology-density relation

Page 18: The  E SO  Dis tant  C luster  S urvey

Based on OII line

Poggianti et al. 2008

Anticorrelated Uncorrelated

Sta

r-fo

rmin

g fr

actio

n

Local density Mea

n(E

W)

of O

II g

alax

ies

Local density

STAR FORMATION-LOCAL DENSITY RELATION

Z=0 (red, SDSS clusters)

Z=0.4-0.8 (black, EDisCS)

The EDisCS star formation-density relation qualitatively resembles that observed at low-z: higher density regions have fewer star-forming galaxies, and the average EW(OII) of star-forming galaxies is independent of local density. Thus the SF in star-forming galaxies not affected by local environment? No….

Page 19: The  E SO  Dis tant  C luster  S urvey

Poggianti et al. 2008

All galaxies (black)

SFing galaxies (blue)

Clusters + groups at z~0.4-0.8

Average SFR and sSFR vs density

SFR and SSFR in star-forming galaxies peaks at intermediate densities at high-z?

In summary:

The fraction of star-forming galaxies and the SFR in star-forming galaxies, at least in clusters depend on local

density.

Page 20: The  E SO  Dis tant  C luster  S urvey

Vulcani et al. submitted

THE SFR-MASS RELATION IN CLUSTERS, GROUPS AND FIELD

Z= 0.4 – 0.6 Z = 0.6 – 0.8

Lower median SFR in cluster star-forming galaxies of a given mass then in the field -- Groups like the field??

Average SFR in star-forming galaxies varies with galaxy environment at a fixed galaxy stellar mass

Log

SF

R

Log galaxy stellar mass

Page 21: The  E SO  Dis tant  C luster  S urvey

Poggianti et al. 2008

SF-density = Morphology-density in high-z clusters

Density

Mea

n S

FR

SF

ing

%

For a given Hubble type, no trend of SF with local density

Page 22: The  E SO  Dis tant  C luster  S urvey

VIRIALIZED STRUCTURES AT HIGHER REDSHIFT WERE DENSER BOTH IN GALAXY NUMBER DENSITY AND (DM) MASS !!!……AND THE DENSITY DISTRIBUTION DOES NOT DEPEND ON CLUSTER/GROUPS MASS !!!

Poggianti et al. 2010

Projected local density distributionPhysical (3D) Projected

Z=0.6 z=0

Physical (3D) density distribution in structures of different masses

Page 23: The  E SO  Dis tant  C luster  S urvey

WHAT TIMESCALE? POST-STARBURST SPECTRA IN

DISTANT CLUSTERS

post-starburst galaxies 25% of the distant cluster galaxy population Dressler & Gunn 1983, Couch & Sharples 1987, Dressler et al. 1999, Poggianti et al. 1999, Tran et al. 2001,

2004

Larger % in clusters than in field at similar z’s (Dressler et al. 1999, Poggianti et al. 1999, Tran et al. 2003,2004, now Ediscs, Ma et al… – but Balogh et al. 1999)

SF truncation in clusters

strong Balmer absorption and no line detected in emission

SF ended abruptly sometime during the last Gyr

Page 24: The  E SO  Dis tant  C luster  S urvey

Poggianti et al. 2009a

At z=0.4-0.8, post-starburst galaxies more frequent in

more massive clusters and in some of the groups…

…those groups with a low OII fraction for their sigma

Massive S0 and Sa in transition More massive clusters have a higher proportion of k+a galaxies…

Dusty starburst candidates are frequent in all environments, and are especially frequent in groups

In EDisCS we find that the incidence of k+a galaxies at our redshifts depends strongly on environment

Page 25: The  E SO  Dis tant  C luster  S urvey

GROUP “BIMODALITY” ? THE KEY?Evidence: some groups look like “mini-clusters”, some look like field (at the same mass) for their star forming fraction, morphologies, post-starburst incidence etc

Poggianti et al. 2006, 2008, 2009a, Wilman et al. 2005, 2009, Kautsch et al. 2008, Jeltema et al. 2007 – also Zabludoff & Mulchaey 1998….

Not simply “true” vs “false” groups? (eg. X-ray groups Jeltema et al. 2007) – hard to explain as wrong mass estimate

Difference between two types of groups ought to help to understand what is going on at the group level

Page 26: The  E SO  Dis tant  C luster  S urvey

Stay tuned for galaxy stellar mass functions as a function of environment, redshift and morphological type (Vulcani et al. in prep.) !!

Page 27: The  E SO  Dis tant  C luster  S urvey

For the Hall of Fame:

An open question (two…):

What is/are the physical process/esses responsible for the two passive families? Eg. From cold to hot gas accretion in massive haloes at high-z (primordial), and some “classic” environmental effects at lower-z (quenched)? Can it be the same process? How can we actually DISCRIMINATE OBSERVATIONALLY?

Why are some groups efficient at turning star-forming, late-type galaxies into passive, early-type galaxies and some are not? What are the physical processes involved?

The population of cluster and groups passive galaxies today is composed of two families: “primordial”, massive galaxies that finished forming stars at z≥2 (massive ellipticals – 20% of today’s 80% passive galaxies in clusters), and “quenched/declining” galaxies that stopped forming stars at later epochs due to a combination of intrinsic properties and environmental effects (mostly S0s, mostly non massive, and not all of the S0s, 50-60% of today’s 80%)


Recommended