+ All Categories
Home > Documents > The FMM for 3D Helmholtz Equation - CSCAMM · 2004. 4. 26. · CSCAMM FAM04: 04/19/2004 ©...

The FMM for 3D Helmholtz Equation - CSCAMM · 2004. 4. 26. · CSCAMM FAM04: 04/19/2004 ©...

Date post: 06-Feb-2021
Category:
Upload: others
View: 3 times
Download: 0 times
Share this document with a friend
31
© Duraiswami & Gumerov, 2003-2004 CSCAMM FAM04: 04/19/2004 The FMM for 3D Helmholtz Equation Nail Gumerov & Ramani Duraiswami UMIACS [gumerov][ramani]@umiacs.umd.edu © Duraiswami & Gumerov, 2003-2004 CSCAMM FAM04: 04/19/2004 Reference N.A. Gumerov & R. Duraiswami Fast Multipole Methods for Solution of the Helmholtz Equation in Three Dimensions Academic Press, Oxford (2004) (in process).
Transcript
  • © Duraiswami & Gumerov, 2003-2004CSCAMM FAM04: 04/19/2004

    The FMM for 3D Helmholtz Equation

    Nail Gumerov & Ramani Duraiswami

    UMIACS[gumerov][ramani]@umiacs.umd.edu

    © Duraiswami & Gumerov, 2003-2004CSCAMM FAM04: 04/19/2004

    ReferenceN.A. Gumerov & R. Duraiswami

    Fast Multipole Methods for Solution of the Helmholtz Equation in Three Dimensions

    Academic Press, Oxford (2004)(in process).

  • © Duraiswami & Gumerov, 2003-2004CSCAMM FAM04: 04/19/2004

    Content• Helmholtz Equation• Expansions in Spherical Coordinates• Matrix Translations• Complexity and Modifications of the FMM• Fast Translation Methods• Error Bounds• Multiple Scattering Problem

    © Duraiswami & Gumerov, 2003-2004CSCAMM FAM04: 04/19/2004

    Helmholtz Equation

  • © Duraiswami & Gumerov, 2003-2004CSCAMM FAM04: 04/19/2004

    Helmholtz Equation

    • Wave equation in frequency domainAcousticsElectromagneics (Maxwell equations)Diffusion/heat transfer/boundary layersTelegraph, and related equationsk can be complex

    • Quantum mechanicsKlein-Gordan equationShroedinger equation

    • Relativistic gravity (Yukawa potentials, k is purely imaginary)• Molecular dynamics (Yukawa)• Appears in many other models

    © Duraiswami & Gumerov, 2003-2004CSCAMM FAM04: 04/19/2004

    Boundary Value Problems

    nS

  • © Duraiswami & Gumerov, 2003-2004CSCAMM FAM04: 04/19/2004

    Green’s Function and Identity

    nS Ω

    © Duraiswami & Gumerov, 2003-2004CSCAMM FAM04: 04/19/2004

    Distributions of Monopoles and Dipoles

    nS Ω

  • © Duraiswami & Gumerov, 2003-2004CSCAMM FAM04: 04/19/2004

    Expansions in Spherical Coordinates

    © Duraiswami & Gumerov, 2003-2004CSCAMM FAM04: 04/19/2004

    Spherical Basis Functions

    x

    y

    z

    O

    x

    y

    z

    O

    x

    y

    z

    φ

    r

    rir

    x

    y

    z

    O

    x

    y

    z

    O

    x

    y

    z

    φ

    r

    rir

    Spherical Coordinates

    Regular Basis Functions

    Singular Basis Functions

    Spherical Harmonics

    Associated Legendre Functions

    Spherical Bessel Functions

    Spherical Hankel Functions of the First Kind

  • © Duraiswami & Gumerov, 2003-2004CSCAMM FAM04: 04/19/2004

    Spherical Harmonics

    n

    m

    © Duraiswami & Gumerov, 2003-2004CSCAMM FAM04: 04/19/2004

    Spherical Bessel Functions

  • © Duraiswami & Gumerov, 2003-2004CSCAMM FAM04: 04/19/2004

    Isosurfaces For Regular Basis Functions

    n

    m

    © Duraiswami & Gumerov, 2003-2004CSCAMM FAM04: 04/19/2004

    Isosurfaces For Singular Basis Functions

    n

    m

  • © Duraiswami & Gumerov, 2003-2004CSCAMM FAM04: 04/19/2004

    Expansions

    Wave vector

    © Duraiswami & Gumerov, 2003-2004CSCAMM FAM04: 04/19/2004

    Matrix Translations

  • © Duraiswami & Gumerov, 2003-2004CSCAMM FAM04: 04/19/2004

    Reexpansions of Basis Functions

    Reexpansion Matrices

    rt

    R S

    Or

    rt

    R S

    Or

    © Duraiswami & Gumerov, 2003-2004CSCAMM FAM04: 04/19/2004

    Recursive Computation of Reexpansion Matrices

    |m|

    n’

    p-1

    |m*|

    02p-2-|m*| 2p-2p-1

    n’

    m m’(n’,m’,m+1)

    (n’-1,m’-1,m) (n’+1,m’-1,m)

    |m|

    n’

    p-1

    |m*|

    02p-2-|m*| 2p-2p-1

    n’

    m m’

    n’

    m m’(n’,m’,m+1)

    (n’-1,m’-1,m) (n’+1,m’-1,m)

    n n

    |m’|

    |m|

    |m|

    |m| |m’|

    |s|

    |m’| < |m| |m’| > |m|2p-2-|m|

    p-1

    p-12p-2-|m| 2p-2-|m’|

    2p-2-|m’|

    0 0

    p-1-|m|+|m’|

    p-1-|m’|+|m|

    n’

    n

    (n’,n-1)

    (n’-1,n)

    (n’,n+1)

    (n’+1,n)

    n

    (n’,n-1)

    (n’-1,n)

    (l,n+1)

    (n’+1,n)

    n’

    n’ n’

    p-1

    p-1n n

    |m’|

    |m|

    |m|

    |m| |m’|

    |s|

    |m’| < |m| |m’| > |m|2p-2-|m|

    p-1

    p-12p-2-|m| 2p-2-|m’|

    2p-2-|m’|

    0 0

    p-1-|m|+|m’|

    p-1-|m’|+|m|

    n’

    n

    (n’,n-1)

    (n’-1,n)

    (n’,n+1)

    (n’+1,n)

    n

    (n’,n-1)

    (n’-1,n)

    (l,n+1)

    (n’+1,n)

    n’

    n’ n’

    p-1

    p-1

    p4 elements of the truncated reexpansion matrices can be computed for O(p4) operations recursively

    Gumerov & Duraiswami,SIAM J. Sci. Stat. Comput.25(4), 1344-1381, 2003.

  • © Duraiswami & Gumerov, 2003-2004CSCAMM FAM04: 04/19/2004

    Translations

    Ω1

    Ω2

    x*1

    x*2R (R|R)

    x R

    Ωr(x*)

    x*

    (R|R)

    y x*+tt

    r

    Ωr1(x*+t)

    r1

    xiΩ1

    Ω2x*1

    x*2

    S

    (S|S)

    S

    xi

    x*x*+t

    (S|S)

    y

    t

    Ωr1(x*+t) Ωr(x*)

    rr1

    xiΩ1

    x*1x*2

    S

    (S|S)

    S

    xi

    x*

    x*+t

    (S|R)

    y

    t

    Ωr1(x*+t)

    r

    r1

    R|R S|S S|R

    © Duraiswami & Gumerov, 2003-2004CSCAMM FAM04: 04/19/2004

    Problem:

    • For the Helmholtz equation absolute and uniform convergence can be achieved only for

    p > ka. For large ka the FMM with constant p isvery expensive (comparable with straightforward methods);inaccurate (since keeps much larger number of terms than required, which causes numerical instabilities).

    a

    ExpansionDomain

    D

    2a=31/2D

  • © Duraiswami & Gumerov, 2003-2004CSCAMM FAM04: 04/19/2004

    Model of Truncation Number Behavior for Fixed Error

    p

    ka0 ka*

    p*

    In the multilevel FMM we associate its own plwith each level l:

    “Breakdown level”

    Box size at level l

    © Duraiswami & Gumerov, 2003-2004CSCAMM FAM04: 04/19/2004

    Complexity of Single Translation

    Translation exponent

  • © Duraiswami & Gumerov, 2003-2004CSCAMM FAM04: 04/19/2004

    Spatially Uniform Data Distributions

    Constant!

    © Duraiswami & Gumerov, 2003-2004CSCAMM FAM04: 04/19/2004

    Complexity of the Optimized FMM for Fixed kD0 and Variable N

    100000

    1000000

    1E+07

    1E+08

    1E+09

    1E+10

    1E+11

    1E+12

    1000 10000 100000 1000000Number of Sources

    Num

    ber o

    f Mul

    tiplic

    atio

    ns

    nu=1, lb=2nu=1.5, lb=2nu=2, lb=2nu=1, lb=5nu=1.5, lb=5nu=2, lb=5

    Straightforward, y=x2

    3D Spatially Uniform Random Distribution

    N=M

    y=ax

  • © Duraiswami & Gumerov, 2003-2004CSCAMM FAM04: 04/19/2004

    Optimum Level for Low Frequencies

    0.00001

    0.0001

    0.001

    0.01

    0.1

    1

    10

    100

    2 3 4 5 6 7

    Max Level of Space Subdivision

    Num

    ber o

    f Mul

    tiplic

    atio

    ns, x

    10e1

    1N=M=10000003D Spatially Uniform Random Distribution

    Direct SummationTranslation

    Total

    nu=1

    1.5

    2

    2

    1.5

    1

    © Duraiswami & Gumerov, 2003-2004CSCAMM FAM04: 04/19/2004

    Volume Element Methods

    Ns

    wavelength

    D0 = D0 k/(2π) wavelengths = N1/3 sourcesCritical Translation Exponent!

    computational domain

  • © Duraiswami & Gumerov, 2003-2004CSCAMM FAM04: 04/19/2004

    What Happens if Truncation Number is Constant for All Levels?

    “Catastrophic Disaster of the FMM”

    © Duraiswami & Gumerov, 2003-2004CSCAMM FAM04: 04/19/2004

    Surface Data Distributions

    Critical Translation Exponent!

    Boundary Element Methods:

  • © Duraiswami & Gumerov, 2003-2004CSCAMM FAM04: 04/19/2004

    Optimum Level of Space Subdivision

    0

    1

    2

    3

    4

    5

    6

    7

    8

    1000 10000 100000 1000000Number of Sources

    Opt

    imum

    Max

    Lev

    el

    nu=1nu=1.5nu=2

    lb=20

    1

    2

    3

    4

    5

    6

    7

    8

    1000 10000 100000 1000000Number of Sources

    Opt

    imum

    Max

    Lev

    el

    nu=1nu=1.5nu=2

    lb=5

    lb=2 lb=5

    © Duraiswami & Gumerov, 2003-2004CSCAMM FAM04: 04/19/2004

    Performance of the MLFMM for Surface Data Distributions

    100000

    1000000

    1E+07

    1E+08

    1E+09

    1E+10

    1E+11

    1E+12

    1000 10000 100000 1000000Number of Sources

    Num

    ber o

    f Mul

    tiplic

    atio

    ns

    nu=1, lb=2nu=1.5, lb=2nu=2, lb=2nu=1, lb=5nu=1.5, lb=5nu=2, lb=5

    Straightforward, y=x2

    Uniform Random Distributionover a Sphere Surface

    N=M

    y=ax

  • © Duraiswami & Gumerov, 2003-2004CSCAMM FAM04: 04/19/2004

    Effective Dimensionality of the Problem

    Computational domain

    1 cube

    8 cubes

    © Duraiswami & Gumerov, 2003-2004CSCAMM FAM04: 04/19/2004

    Fast Translation Methods

  • © Duraiswami & Gumerov, 2003-2004CSCAMM FAM04: 04/19/2004

    Translation Methods• O(p5): Matrix Translation with Computation of Matrix Elements Based on Clebsch-

    Gordan Coefficients;• O(p4) (Low Asymptotic Constant): Matrix Translation with Recursive Computation of

    Matrix Elements• O(p3) (Low Asymptotic Constants):

    Rotation-Coaxial Translation Decomposition with Recursive Computation of Matrix Elements;Sparse Matrix Decomposition;

    • O(p2logβp)Rotation-Coaxial Translation Decomposition with Structured Matrices for Rotation and Fast Legendre Transform for Coaxial Translation;Translation Matrix Diagonalization with Fast Spherical Transform;Asymptotic Methods;Diagonal Forms of Translation Operators with Spherical Filtering.

    © Duraiswami & Gumerov, 2003-2004CSCAMM FAM04: 04/19/2004

    O(p3) Methods

  • © Duraiswami & Gumerov, 2003-2004CSCAMM FAM04: 04/19/2004

    Rotation - Coaxial Translation Decomposition (Complexity O(p3))

    z

    y

    y

    xx

    yx

    z

    yx

    z

    zp4

    p3p3

    p3

    z

    y

    y

    xx

    yx

    zyx

    z

    yx

    z

    zp4

    p3p3

    p3

    From the group theory follows that general translation can be reduced to

    0.01

    0.1

    1

    10

    10 100

    Truncation Number, p

    CP

    U T

    ime

    (s)

    Full Matrix Translation

    Rotational-Coaxial Translation Decomposition

    y=ax4

    y=bx3

    kt=86

    © Duraiswami & Gumerov, 2003-2004CSCAMM FAM04: 04/19/2004

    Sparse Matrix Decomposition

    Matrix-vector products with these matrices computed recursively

  • © Duraiswami & Gumerov, 2003-2004CSCAMM FAM04: 04/19/2004

    O(p2logβp) Methods

    © Duraiswami & Gumerov, 2003-2004CSCAMM FAM04: 04/19/2004

    Fast Rotation Transform

    Euler angles

    Diagonal matrices

    Diagonal matrices

    Block-Toeplitz matrices

    Complexity: O(p2logp)

  • © Duraiswami & Gumerov, 2003-2004CSCAMM FAM04: 04/19/2004

    Fast Coaxial Translation

    Diagonal matricesLegendre andtransposed Legendre matrices

    Fast multiplication of the Legendre and transposed Legendre matrices can be performed via the forward and inverse FAST LEGENDRE TRANSFORM (FLT) with complexity O(p2log2p)

    Healy et al Advances in Computational Mathematics 21: 59-105, 2004.

    © Duraiswami & Gumerov, 2003-2004CSCAMM FAM04: 04/19/2004

    Diagonalization of General Translation Operator

    Diagonal matricesMatrices for the forward and inverse and Spherical Transform

    FAST SPHERICAL TRANSFORM (FST) can be performed with complexity O(p2log2p)

    Healy et al Advances in Computational Mathematics 21: 59-105, 2004.

  • © Duraiswami & Gumerov, 2003-2004CSCAMM FAM04: 04/19/2004

    Method of Signature Function(Diagonal Forms of the Translation Operator)

    Regular Solution

    Singular Solution

    © Duraiswami & Gumerov, 2003-2004CSCAMM FAM04: 04/19/2004

    Final Summation and Initial Expansion

  • © Duraiswami & Gumerov, 2003-2004CSCAMM FAM04: 04/19/2004

    The FMM with Band-Unlimited Signature Functions (O(p2) method)

    0.1

    1

    10

    100

    1000

    10000

    1000 10000 100000 1000000Number of Sources

    CP

    U T

    ime

    (s)

    y = ax 2

    y = bx

    Straightforward

    FMM

    O(p )3

    O(p )2

    O(p )+err bound2

    kD =10, M=N,Spatially Uniform Random Distributions

    0

    Pre-Set StepO(p )2

    O(p )3

    © Duraiswami & Gumerov, 2003-2004CSCAMM FAM04: 04/19/2004

    Deficiencies• Low Frequencies;• High Frequencies;• Constant p;• Instabilities after two or three levels of translations.

  • © Duraiswami & Gumerov, 2003-2004CSCAMM FAM04: 04/19/2004

    Methods to Fix:• Use of Band-limited functions;• Error control via band-limits;• Requires filtering procedures (complexity O(p2log2p) or O(p2logp))

    with large asymptotic constants;• The length of the representation is changed via

    interpolation/anterpolation procedures.

    © Duraiswami & Gumerov, 2003-2004CSCAMM FAM04: 04/19/2004

    Error Bounds

  • © Duraiswami & Gumerov, 2003-2004CSCAMM FAM04: 04/19/2004

    Source Expansion Errors

    rs

    r

    ab

    rs

    r

    ab0 0

    rs

    r

    ab

    rs

    r

    ab0 0

    © Duraiswami & Gumerov, 2003-2004CSCAMM FAM04: 04/19/2004

    Approximation of the Error

  • © Duraiswami & Gumerov, 2003-2004CSCAMM FAM04: 04/19/2004

    We proved that for source summation problems the truncation numbers can be selected based on the above

    chart when using translations with rectangularlytruncated matrices

    r

    ab 0

    rsa/2t

    b/2

    r

    ab 0

    rsa/2t

    b/2

    ra

    b

    0rs

    ta

    ra

    b

    0rs

    ta

    r

    ab

    rs

    a/2t0

    r

    ab

    rs

    a/2t0

    S|S S|R R|R

    © Duraiswami & Gumerov, 2003-2004CSCAMM FAM04: 04/19/2004

    Low Frequency FMM Error

    a

    b

    O

    A

    B

    ab

    C

    B

    a

    O

    A

    Q

    R|R, S|S S|R

    a

    b

    O

    A

    B

    ab

    C

    B

    a

    O

    A

    Qa

    b

    O

    A

    B

    ab

    C

    B

    a

    O

    A

    Q

    R|R, S|S S|R

  • © Duraiswami & Gumerov, 2003-2004CSCAMM FAM04: 04/19/2004

    High Frequency FMM Error

    © Duraiswami & Gumerov, 2003-2004CSCAMM FAM04: 04/19/2004

    Multiple Scattering Problem

  • © Duraiswami & Gumerov, 2003-2004CSCAMM FAM04: 04/19/2004

    Problem

    Boundary Conditions:

    100 random spheres 1000 random spheres100 random spheres 1000 random spheres

    © Duraiswami & Gumerov, 2003-2004CSCAMM FAM04: 04/19/2004

    Scattered Field DecompositionT-Matrix Method

    Expansion Coefficients

    Singular Basis Functions Hankel Functions

    Spherical Harmonics

    Vector Form:

    dot product

  • © Duraiswami & Gumerov, 2003-2004CSCAMM FAM04: 04/19/2004

    Solution of Multiple Scattering Problem

    T-Matrix Method

    4

    2

    1

    6

    53

    Incident Wave

    Scattered Wave

    Coupled System of Equations:

    (S|R)-TranslationMatrix

    “Effective” Incident Field

    © Duraiswami & Gumerov, 2003-2004CSCAMM FAM04: 04/19/2004

    Reflection Method & Krylov Subspace Method (GMRES)

    Reflection (Simple Iteration) Method:

    General Formulation (used in GMRES)

    Iterative Methods

  • © Duraiswami & Gumerov, 2003-2004CSCAMM FAM04: 04/19/2004

    100 random spheres (MLFMM)ka=1.6 ka=4.8ka=2.8

    R G B

    © Duraiswami & Gumerov, 2003-2004CSCAMM FAM04: 04/19/2004

    Surface Potential Imaging

  • © Duraiswami & Gumerov, 2003-2004CSCAMM FAM04: 04/19/2004

    Performance Test

    1

    10

    100

    1000

    10000

    100000

    10 100 1000 10000 100000Number of Scatterers

    CP

    U T

    ime

    (s)

    Volume Fraction = 0.2, ka=0.5

    Periodically-Random Spatial Distributionof Spheres of Equal Size

    Reflection +FMMStraightforward

    y=cx3

    y=ax

    Reflection+Direct

    y=bx2

    © Duraiswami & Gumerov, 2003-2004CSCAMM FAM04: 04/19/2004

    Computable Problems on Desktop PC

    MLFMM

    Met

    hod

    Number of Scatterers101 102 103100 104 105

    BEM

    Multipole Straightforward

    Multipole Iterative

    MLFMM

    Also strongly depends on ka !

  • © Duraiswami & Gumerov, 2003-2004CSCAMM FAM04: 04/19/2004

    More About This Problemin Our Talk Next Week


Recommended