+ All Categories
Home > Documents > The Global Spatial

The Global Spatial

Date post: 05-Dec-2021
Category:
Upload: others
View: 2 times
Download: 0 times
Share this document with a friend
12
The 3-D Global Spatial Data Model Principles and Applications Second Edition Earl F. Burkholder /0\ CRC Press \Cf*' J Taylor &. Francis Group Boca Raton London New York CRC Press is an imprint of the Taylor & Francis Group, an informa business
Transcript

The 3-D Global SpatialData Model

Principles and Applications

Second Edition

Earl F. Burkholder

/0\ CRC Press\Cf*' J Taylor &. Francis Group

Boca Raton London NewYork

CRC Press is an imprint of the

Taylor & Francis Group, an informa business

Contents

Preface to the Second Edition xix

Preface to the First Edition xxi

Acknowledgments xxiii

Author xxv

List ofAbbreviations xxvii

Introduction xxxi

Chapter 1 The Global Spatial Data Model (GSDM) Defined 1

Introduction 1

The GSDM 2

Functional Model Component 3

Computational Designations 5

Algorithm for Functional Model 10

Stochastic Model Component 14

The GSDM Covariance Matrices 14

The GSDM 3-D Inverse 16

BURKORD: Software and Database 18

Summary 18

References 19

Chapter 2 Featuring the 3-D Global Spatial Data Model 21

Introduction 21

The GSDM Facilitates Existing Initiatives 22

U.S. National Academy of Public Administration Reports 22

National Oceanic and Atmospheric Administration 23

Coalition of Geospatial Organizations 24

Other Applications 25

Dynamic Environments 25

Static Environments 25

Information Provided by the GSDM 26

Summary 26

References 27

Chapter 3 Spatial Data and the Science of Measurement 29

Introduction 29

Spatial Data Defined 29

Coordinate Systems Give Meaning to Spatial Data 30

Spatial Data Types 32

Contents

Spatial Data Visualization Is Well Defined 34

Direct and Indirect Measurements Contain Uncertainty 34

Fundamental Physical Constants Are Held Exact 34

Measurements/Observations Contain Errors 35

Measurements Used to Create Spatial Data 35

Taping 35

Leveling 35

EDMI 35

Angles 36

GPS and GNSS 36

Remote Sensing 38

Photogrammetry 38

LiDAR 38

Logistics 38

Errorless Spatial Data 39

Sources of Primary Spatial Data 41

Observations and Measurements 41

Errorless Quantities 42

Derived Spatial Data Are Computed from Primary Spatial Data 42

Establishing and Preserving the Value of Spatial Data 43

Summary 44

References 44

Chapter 4 Summary of Mathematical Concepts 47

Introduction 47

Conventions 48

Numbers 48

Fractions 48

Decimal 48

Radian 49

Sexagesimal 50

Binary 50

Unit Conversions 51

Coordinate Systems 51

Significant Digits 52

Addition and Subtraction 52

Multiplication and Division 53

Avoid Mistakes by Working with Coordinate Differences 54

Logic 54

Arithmetic 55

Algebra 55

Axioms of Equality (for Real Numbers A, B, and C) 56

Axioms ofAddition (for Real Numbers A, B, and Q 56

Axioms of Multiplication (for Real Numbers A, B, and C) 56

Boolean Algebra 56

Contents 'x

Geometry 56

Point 57

Distance 57

Dimension 57

Line 57

Plane 57

Angle 58

Circle 58

Ellipse 58

Triangle 58

Quadrilateral 58

Rectangle 59

Square 59

Trapezoid 59

Parallelogram 59

Polygon 59

Pythagorean Theorem 59

Solid Geometry 60

Sphere 60

Ellipsoid 60

Cube 60

Polyhedron 60

Tetrahedron 60

Pyramid 60

Equation of a Plane in Space 60

Equation of a Sphere in Space 61

Equation of an Ellipsoid Centered on the Origin 61

Conic Sections 61

Vectors 62

Trigonometry 62

Trigonometric Identities 63

Law of Sines 64

Law of Cosines 65

Spherical Trigonometry 65

Calculus 68

Example 68

Differential Calculus Equations 70

Integral Calculus Equations 70

Probability and Statistics 71

Introduction 71

Standard Deviation 72

Measurement 73

Errors 73

Blunders 74

Systematic Errors 74

Random Errors 74

X Contents

Error Sources 74

Personal 74

Environmental 75

Instrumental 75

Accuracy and Precision 75

Computing Standard Deviations 76

Standard Deviation of the Mean 76

Confidence Intervals 77

Hypothesis Testing 78

Matrix Algebra 79

Models 80

Functional 80

Stochastic 80

Error Propagation 81

Error Ellipses 87

Least Squares 88

Linearization 89

Procedure for Nonlinear Solution 90

Applications to the GSDM 90

References 91

Chapter 5 Geometrical Models for Spatial Data Computations 93

Introduction 93

Conventions 94

Two-Dimensional Cartesian Models 97

Math/Science Reference System 98

Engineering/Surveying Reference System 98

Coordinate Geometry 99

Forward 99

Inverse 100

Intersections 100

Line-Line (One Solution or No Solution If Lines Are Parallel).... 102

Line-Circle (May Have Two Solutions, One Solution, or

No Solution) 102

Circle-Circle (May Have Two Solutions, One Solution, or

No Solution) 103

Perpendicular Offset 104

Area by Coordinates 104

Circular Curves 106

Definitions 106

Degree of Curve 106

Elements and Equations 107

Stationing 109

Metric Considerations 110

Contents xi

Area Formed by Curves 111

Area of Unit Circle 112

Spiral Curves 113

Spiral Geometry 113

Intersecting a Line with a Spiral 116

Computing Area Adjacent to a Spiral 117

Radial Surveying 118

Vertical Curves 121

Three-Dimensional Models for Spatial Data 124

Volume of a Rectangular Solid 124

Volume of a Sphere 124

Volume of Cone 125

Prismoidal Formula 126

Traditional 3-D Spatial Data Models 128

The 3-D GSDM 128

References 129

Chapter 6 Overview of Geodesy 131

Introduction: Science and Art 131

Fields of Geodesy 131

Goals of Geodesy 132

Historical Perspective 137

Religion, Science, and Geodesy 138

Degree Measurement 139

Eratosthenes 139

Poseidonius 140

Caliph Abdullah al Mamun 140

Gerardus Mercator 140

Willebrord Snellius 141

Jean Picard 141

Isaac Newton 141

Jean-Dominique and Jacques Cassini 142

French Academy of Science 142

Meter 143

Developments during the Nineteenth and Twentieth Centuries 143

Forecast for the Twenty-First Century 145

References 146

Chapter 7 Geometrical Geodesy 147

Introduction 147

The Two-Dimensional Ellipse 149

The Three-Dimensional Ellipsoid 154

Ellipsoid Radii of Curvature 154

Normal Section Radius of Curvature 155

Geometrical Mean Radius 155

xii Contents

Rotational Ellipsoid 155

Equation of Ellipsoid 155

Geocentric and Geodetic Coordinates 156

BK1 Transformation 157

BK2 Transformation 158

Iteration 158

Noniterative (Vincenty) Method 159

Example of BK1 Transformation 160

Example of BK2 Transformation—Iteration 161

Example of BK2 Transformation—Vincenty's Method

(Same Point) 162

Meridian Arc Length 163

Length of a Parallel 166

Surface Area of Sphere 166

Ellipsoid Surface Area 167

The Geodetic Line 169

Description 169

Clairaut's Constant 170

Geodetic Azimuths 172

Target Height Correction 174

Geodesic Correction 175

Geodetic Position Computation—Forward and Inverse 175

Puissant Forward (BK18) 176

Puissant Inverse (BK19) 177

Numerical Integration 178

BK18: Forward 178

BK19: Inverse 181

Geodetic Position Computations Using State Plane Coordinates.... 185

GSDM 3-D Geodetic Position Computations 186

Forward—BK3 186

Inverse—BK4 187

GSDM Inverse Example: New Orleans to Chicago 188

References 193

Chapter 8 Geodetic Datums 195

Introduction 195

Horizontal Datums 196

Brief History 196

North American Datum of 1927 (NAD 27) 198

North American Datum of 1983 (NAD 83) 198

World Geodetic System 1984 199

International Terrestrial Reference Frame 200

High Accuracy Reference Network—HARN 202

Contents xin

Continuously Operating Reference Station—CORS 204

NA2011 205

Vertical Datums 205

Sea Level Datum of 1929 (now NGVD 29) 205

International Great Lakes Datum 206

North American Vertical Datum of 1988—NAVD 88 206

Datum Transformations 207

NAD 27 to NAD 83 (1986) 208

NAD 83 (1986) to HPGN 208

NAD 83 (xxxx) to NAD 83 (yyyy) 208

NGVD 29 to NAVD 88 208

HTDP 208

Software Sources 208

7-( 14-) Parameter Transformation 209

3-D Datums 209

References 210

Chapter 9 Physical Geodesy 213

Introduction 213

Gravity 214

Definitions 215

Elevation (Generic) 216

Equipotential Surface 216

Level Surface 216

Geoid 216

Geopotential Number 217

Dynamic Height 217

Orthometric Height 217

Ellipsoid Height 217

Geoid Height 217

Gravity and the Shape of the Geoid 218

Laplace Correction 219

Measurements and Computations 221

Interpolation and Extrapolation 221

Gravity 222

Tide Readings 223

Differential Levels 223

Ellipsoid Heights 224

Time 225

Use of Ellipsoid Heights in Place of Orthometric Heights 225

The Need for Geoid Modeling 227

Geoid Modeling and the GSDM 231

Using a Geoid Model 232

References 234

xiv Contents

Chapter 10 Satellite Geodesy and Global Navigation Satellite Systems 237

Introduction 237

Brief History of Satellite Positioning 240

Modes of Positioning 244

Elapsed Time 244

Doppler Shift 244

Interferometry 246

Satellite Signals 247

C/ACode 249

Carrier Phase 250

Differencing 251

Single Differencing 252

Double Differencing 252

Triple Differencing 252

RINEX 252

Processing GNSS Data 253

Spatial Data Types 254

Autonomous Processing 255

Vector Processing 256

Multiple Vectors 257

Traditional Networks 259

Advanced Processing 259

The Future of Survey Control Networks—Has It Arrived? 262

References 265

Chapter 11 Map Projections and State Plane Coordinates 267

Introduction: Round Earth—Flat Map 267

Projection Criteria 268

Projection Figures 270

Permissible Distortion and Area Covered 273

U.S. State Plane Coordinate System (SPCS) 274

History 275

Features 275

NAD 27 and NAD 83 277

Current Status—NAD 83 SPCS 279

Advantages 280

Disadvantages 280

Procedures 281

Grid Azimuth 281

Grid Distance 281

Traverses 284

Loop Traverse 285

Point-to-Point Traverse 285

Contents xv

Algorithms for Traditional Map Projections 285

Lambert Conformal Conic Projection 286

BK10 Transformation for Lambert Conformal Conic

Projection 288

BK11 Transformation for Lambert Conformal Conic

Projection 288

Transverse Mercator Projection 289

BK10 Transformation for Transverse Mercator Projection ....292

BK11 Transformation for Transverse Mercator Projection.... 294

Oblique Mercator Projection 297

BK10 Transformation for Oblique Mercator Projection 299

BK11 Transformation for Oblique Mercator Projection 300

Low-Distortion Projection 302

References 302

Chapter 12 Spatial Data Accuracy 305

Introduction 305

Forces Driving Change 305

Transition 306

Consequences 308

Accuracy 309

Introduction 309

Definitions 311

Absolute and Relative Quantities 311

Spatial Data Types and Their Accuracy 313

Accuracy Statements 313

But Everything Moves 313

Observations, Measurements, and Error Propagation 315

Finding the Uncertainty of Spatial Data Elements 315

Using Points Stored in a XIYIZ Database 317

Example 319

Control Values and Observed Vectors 320

Blunder Checks 321

Least Squares Solution 322

Results 323

Network Accuracy and Local Accuracy 323

References 328

Chapter 13 Using the GSDM to Compute a Linear Least SquaresGNSS Network 329

Introduction 329

Parameters and Linearization 329

Baselines and Vectors 330

xvi Contents

Observations and Measurements 330

Covariance Matrices and Weight Matrices 331

Two Equivalent Adjustment Methods 332

Formulations of Matrices—Indirect Observations 333

Example GNSS Network Project in Wisconsin 336

RINEX Data Used to Build the Wisconsin Network 338

Blunder Checks 338

Building Matrices for a Linear Least Squares Solution 341

/Vector—n, 1 341

B Matrix—n, u 343

Q Matrix—n, n 343

Computer Printouts 345

Notes Pertaining to Adjustment 364

References 364

Chapter 14 Computing Network Accuracy and Local Accuracy

Using the Global Spatial Data Model 365

Introduction 365

Background 366

Summary of Pertinent Concepts 366

Detailed Example Based on Wisconsin Network 368

Conclusion 376

References 376

Chapter 15 Using the GSDM—Projects and Applications 379

Introduction 379

Features 381

The Functional Model 381

The Stochastic Model 381

Database Issues 384

Implementation Issues 385

Examples and Applications 387

Example 1—Supplemental NMSU Campus Control Network...387

Example 2—Hypothesis Testing 400

Example 3—Using Terrestrial Observations in the GSDM 401

Example 4—Using the GSDM to Develop a 2-D Survey Plat....407

Example 5—New Mexico Initial Point and Principal Meridian 410

Example 6—State Boundary between Texas and New

Mexico along the Rio Grande River 417

Example 7 in Wisconsin—Leveling in the Context of the

GSDM (Example in Wisconsin) 427

Example 8—Determining the NAVD 88 Elevation of

HARN Station REILLY 427

Contents xvii

Example 9—Determining the Shadow Height at a Proposed

NEXRAD Installation 432

Example 10—Comparison of 3-D Computational Models 434

Example 11—Underground Mapping 438

Example 12—Laying Out a Parallel of Latitude Using the

GSDM 440

Analogous to Solar Method 441

Analogous to Tangent-Offset Method 442

The Future Will Be What We Make It 443

References 445

Appendix A: Rotation Matrix Derivation 447

Appendix B: 1983 State Plane Coordinate Zone Constants 451

Appendix C: 3-D Inverse with Statistics 459

Appendix D: Development of the Global Spatial Data Model (GSDM) 461

Appendix E: Evolution of Meaning for Terms: Network Accuracyand Local Accuracy 465

Index 473


Recommended