+ All Categories
Home > Documents > The Identification of Controlled Substances by TLC-SERS SUMMER€¦ ·...

The Identification of Controlled Substances by TLC-SERS SUMMER€¦ ·...

Date post: 20-May-2020
Category:
Upload: others
View: 3 times
Download: 0 times
Share this document with a friend
1
The illicit drugs were not detectable on the TLC plates using normal Raman spectroscopy. When the TLC spots of the drugs were analyzed with SERS, the spectrum was enhanced thus enabling direct drug iden@fica@on. The Identification of Controlled Substances by TLC-SERS Kasey Cargill and Brooke W. Kammrath, Ph.D. Henry C. Lee College of Criminal Justice and Forensic Sciences Theory Methods and Materials Results Conclusions References Acknowledgements Thin layer chromatography (TLC) combined with surface enhanced Raman spectroscopy (SERS) proved to be an ideal method for separa@ng and iden@fying controlled substances and mixtures. This combined method adheres to the standards set forth by the Scien@fic Working Group for the Analysis of Seized Drugs (SWGDRUG) and is a rapid, reliable, and repeatable method of drug analysis. TLC is a separa@on method used as a screening test in forensic laboratories. This technique involves deposi@ng sample onto a planar sta@onary phase then using a liquid mobile phase that travels up the sta@onary phase by capillary ac@on. The ending result is a plate of spots that are the separated components of the mixture. Raman spectroscopy is an iden@fica@on method that examines the frequency change of a light source due to its interac@on with the sample. The major limita@ons to Raman spectroscopy are low sensi@vity and fluorescence interference. SERS enhances the scaOering procedure of Raman spectroscopy and corrects the disadvantages of normal Raman spectroscopy. The procedure mirrors that of normal Raman—the main difference being the addi@on of a silver nanopar@cle colloid. TLCSERS is completed on a TLC plate by adding a metallic colloid to a separated TLC spot, and then directly analyzing the spot using Raman spectroscopy. 1) Szabo, N. J., & Winefordner, J. D. (1997). Evalua@on of two commercially available TLC materials as SERS substrates. Applied Spectroscopy, 51(7), 965975. 2) Rana, V., Canamares, M. V., Kubic, T., Leona, M., & Lombardi, J. R. (2011). SurfaceEnhanced Raman spectroscopy for trace iden@fica@on of controlled substances: morphine, codeine, and hydrocodone. Journal of Forensic Sciences, 56(1), 200207. 3) Smith, E., & Dent, G. (2005). Modern Raman Spectroscopy A Prac=cal Approach. (pp. 113127). West Sussex, England: John Wiley & Sons Ltd. 4) Pozzi, F., Shibayama, N., Leona, M., & Lombardi, J. R. (2012). TLCSERS study of syrian rue (peganum harmala) and its main alkaloid cons@tuents. Journal of Raman Spectroscopy. 5) United States Department of Jus@ce, Drug Enforcement Administra@on. (2011). Scien@fic working group for the analysis of seized drugs (SWGDRUG) recommenda@ons. Retrieved from website: hOp:// www.swgdrug.org/Documents/SWGDRUG Recommenda@ons 6.pdf The authors would like to thank the University of New Haven Summer Undergraduate Research Fellowship for financially suppor@ng this research. We would also like to thank Dr. Chris Palenik (Microtrace) for sharing his knowledge on metallic colloids and Dr. John Lombardi (CCNY) for his meaningful discussions on the subject of TLCSERS. Last, we greatly appreciate all of the faculty of UNH’s Forensic Science Department, and would like to especially thank Norma HollenderCelico, the Forensic Science laboratory manager, for all of her help making this research a reality. SUMMER UNDERGRADUATE RESEARCH FELLOWSHIP This research analyzed the illicit drugs cocaine, codeine, methamphetamine, and 3,4methylenedioxyNmethylamphetamine (MDMA). The drugs were mixed with caffeine for the drug mixture analysis. The same procedure was carried out on all of the above drugs. A sample of 0.100g was weighted out and placed in a glass vial. From the 0.100g of sample, 0.0100g was combined with 2.5mL of methanol to make a liquid solu@on. To confirm that the dispersive Raman spectrometer equipped with a 780 nm frequencystabilized single mode diode laser was working properly, a polystyrene reference standard was analyzed daily. Substrate tests were also conducted using aluminum plates and silica gel on glass TLC plates. The solid samples and dried residues from the liquid solu@ons were tested using normal Raman spectroscopy and SERS using the following collec@on parameters: auto exposure with the signal to noise ra@o set to 500 and a maximum collec@on @me of 3 minutes. The normal Raman and SERS spectra were used as comparisons for the TLCSERS spectra of the drugs and mixtures. To analyze using TLCSERS, the liquid solu@on was spoOed on a TLC plate, then separated using a 9:1 chloroform to methanol TLC bath. The spots were found using a short wave UV light. The sample spots were analyzed using normal Raman spectroscopy. To perform the SERS analysis, a drop of silver colloid was placed directly onto the TLC plate spot then analyzed with the Raman spectrometer. This procedure was conducted for all four drugs and for the separated drug mixtures. Future Work Addi@onal research experiments will be conducted using different illicit drugs and drug mixtures. An inves@ga@on into the use of gold colloids, rather than silver colloids, for SERS enhancement will be explored. Also, the authors will evaluate the limits of detec@on for this technique. Last, research focusing on the detec@on of illicit drugs in body fluids using both normal Raman and SERS spectroscopy will be explored. TLCSERS proved to be a successful method for the separa@on and iden@fica@on of controlled substances and controlled substance mixtures. This combined technique has the poten@al to greatly benefit the forensic science community because it requires less sample, @me, and money when compared to other methods of illicit drug analysis and conforms to the currently accepted standards of drug iden@fica@on set forth by SWGDRUG. Cocaine: normal Raman vs. SERS Figure 2 shows two spectra for the analysis of cocaine. The top is the normal Raman spectrum of cocaine while the boOom is the SERS spectrum of cocaine. MDMA: TLCnormal Raman vs. TLCSERS vs. SERS 808 1342 1469 MDMA TLC 15J uly2013 auto 10 20 30 40 Int 339 413 523 632 709 766 806 934 1029 1246 1364 1440 1497 1537 MDMA TLC Ag6_18 16July 2013 auto 400 600 800 1000 1200 1400 Int 244 346 531 715 774 812 1036 1102 1253 1368 1444 1501 1607 2930 MDMA Ag5 19Aug2013 auto 500 1000 1500 2000 Int 500 1000 1500 2000 2500 3000 Raman shift (cm-1) Figure 4 shows three spectra for the analysis of MDMA. The top is a normal Raman spectrum of a MDMA spot on a separated TLC plate. The middle is a SERS spectrum of a MDMA spot on a separated TLC plate. The boOom is a SERS spectrum of MDMA on an aluminum slide. Cocaine: TLCnormal Raman vs. TLCSERS vs. SERS 1006 1352 TLC Cocaine 25June2013 auto 100 200 300 Int 622 685 786 843 895 1007 1030 1185 1281 1391 1455 1604 1721 2965 TLC Cocaine Ag unrep 25June2013 auto 100 200 300 Int 622 685 785 859 895 1279 1395 1456 1604 1723 2984 Cocaine Ag unrep 24June2013 50s 4 100 200 300 Int 500 1000 1500 2000 2500 3000 Raman shift (cm-1) Figure 3 shows three spectra for the analysis of cocaine. The top is a normal Raman spectrum of a cocaine spot on a separated TLC plate. The middle is a SERS spectrum of a cocaine spot on a separated TLC plate. The boOom is a SERS spectrum of cocaine on an aluminum slide. 84 116 173 342 585 616 787 871 1001 1025 1277 1460 1599 1716 2904 2960 3025 3071 3350 3370 Cocaine1 14June2013 auto 100 200 300 400 500 600 700 800 900 Int 239 622 685 785 859 895 1006 1030 1279 1395 1456 1604 1723 2984 3071 3075 Cocaine Ag unrep 24June2013 50s 4 100 200 300 400 500 600 700 800 900 Int 500 1000 1500 2000 2500 3000 Raman shift (cm-1) Silver Colloid Prepara@on Figure 1 shows the silver colloid being prepared. The pictures were taken in 10 minute increments. The colloid is composed of two solu@ons: the first being 0.170g silver nitrate and 1.00L deionized water and the second being 1.00g sodium citrate and 0.100L deionized water. 50.0mL of the silver nitrate solu@on was heated to a boil, and then 1.00mL of sodium citrate solu@on was added. The solu@on was heated for one hour.
Transcript

           The  illicit  drugs  were  not  detectable  on  the  TLC  plates  using  normal  Raman  spectroscopy.  When  the  TLC  spots  of  the  drugs  were  analyzed  with  SERS,  the  spectrum  was  enhanced  thus  enabling  direct  drug  iden@fica@on.    

The Identification of Controlled Substances by TLC-SERS Kasey Cargill and Brooke W. Kammrath, Ph.D.

Henry C. Lee College of Criminal Justice and Forensic Sciences

Theory

Methods and Materials

Results Conclusions

References

Acknowledgements

                   Thin  layer  chromatography  (TLC)  combined  with  surface-­‐enhanced  Raman  spectroscopy  (SERS)  proved  to  be  an  ideal  method  for  separa@ng  and  iden@fying  controlled  substances  and  mixtures.  This  combined  method  adheres  to  the  standards  set  forth  by  the  Scien@fic  Working  Group  for  the  Analysis  of  Seized  Drugs  (SWGDRUG)  and  is  a  rapid,  reliable,  and  repeatable  method  of  drug  analysis.                        TLC  is  a  separa@on  method  used  as  a  screening  test  in  forensic  laboratories.  This  technique  involves  deposi@ng  sample  onto  a  planar  sta@onary  phase  then  using  a  liquid  mobile  phase  that  travels  up  the  sta@onary  phase  by  capillary  ac@on.  The  ending  result  is  a  plate  of  spots  that  are  the  separated  components  of  the  mixture.                    Raman  spectroscopy  is  an  iden@fica@on  method  that  examines  the  frequency  change  of  a  light  source  due  to  its  interac@on  with  the  sample.  The  major  limita@ons  to  Raman  spectroscopy  are  low  sensi@vity  and  fluorescence  interference.                        SERS  enhances  the  scaOering  procedure  of  Raman  spectroscopy  and  corrects  the  disadvantages  of  normal  Raman  spectroscopy.  The  procedure  mirrors  that  of  normal  Raman—the  main  difference  being  the  addi@on  of  a  silver  nanopar@cle  colloid.                        TLC-­‐SERS  is  completed  on  a  TLC  plate  by  adding  a  metallic  colloid  to  a  separated  TLC  spot,  and  then  directly  analyzing  the  spot  using  Raman  spectroscopy.  

1)  Szabo,  N.  J.,  &  Winefordner,  J.  D.  (1997).  Evalua@on  of  two  commercially  available  TLC  materials  as  SERS  substrates.  Applied  Spectroscopy,  51(7),  965-­‐975.  2)  Rana,  V.,  Canamares,  M.  V.,  Kubic,  T.,  Leona,  M.,  &  Lombardi,  J.  R.  (2011).  Surface-­‐Enhanced  Raman  spectroscopy  for  trace  iden@fica@on  of  controlled  substances:  morphine,  codeine,  and  hydrocodone.  Journal  of  Forensic  Sciences,  56(1),  200-­‐207.  3)  Smith,  E.,  &  Dent,  G.  (2005).  Modern  Raman  Spectroscopy-­‐  A  Prac=cal  Approach.  (pp.  113-­‐127).  West  Sussex,  England:  John  Wiley  &  Sons  Ltd.  4)  Pozzi,  F.,  Shibayama,  N.,  Leona,  M.,  &  Lombardi,  J.  R.  (2012).  TLC-­‐SERS  study  of  syrian  rue  (peganum  harmala)  and  its  main  alkaloid  cons@tuents.  Journal  of  Raman  Spectroscopy.  5)  United  States  Department  of  Jus@ce,  Drug  Enforcement  Administra@on.  (2011).  Scien@fic  working  group  for  the  analysis  of  seized  drugs  (SWGDRUG)  recommenda@ons.  Retrieved  from  website:  hOp://www.swgdrug.org/Documents/SWGDRUG  Recommenda@ons  6.pdf    

                   The  authors  would  like  to  thank  the  University  of  New  Haven  Summer  Undergraduate  Research  Fellowship  for  financially  suppor@ng  this  research.  We  would  also  like  to  thank  Dr.  Chris  Palenik  (Microtrace)  for  sharing  his  knowledge  on  metallic  colloids  and  Dr.  John  Lombardi  (CCNY)  for  his  meaningful  discussions  on  the  subject  of  TLC-­‐SERS.  Last,  we  greatly  appreciate  all  of  the  faculty  of  UNH’s  Forensic  Science  Department,  and  would  like  to  especially  thank  Norma  Hollender-­‐Celico,  the  Forensic  Science  laboratory  manager,  for  all  of  her  help  making  this  research  a  reality.  

SUMMER  UNDERGRADUATE  

RESEARCH    FELLOWSHIP  

                   This  research  analyzed  the  illicit  drugs  cocaine,  codeine,  methamphetamine,  and  3,4-­‐methylenedioxy-­‐N-­‐methylamphetamine  (MDMA).  The  drugs  were  mixed  with  caffeine  for  the  drug  mixture  analysis.  The  same  procedure  was  carried  out  on  all  of  the  above  drugs.  A  sample  of  0.100g  was  weighted  out  and  placed  in  a  glass  vial.  From  the  0.100g  of  sample,  0.0100g  was  combined  with  2.5mL  of  methanol  to  make  a  liquid  solu@on.                        To  confirm  that  the  dispersive  Raman  spectrometer  equipped  with  a  780  nm  frequency-­‐stabilized  single  mode  diode  laser  was  working  properly,  a  polystyrene  reference  standard  was  analyzed  daily.  Substrate  tests  were  also  conducted  using  aluminum  plates  and  silica  gel  on  glass  TLC  plates.  The  solid  samples  and  dried  residues  from  the  liquid  solu@ons  were  tested  using  normal  Raman  spectroscopy  and  SERS  using  the  following  collec@on  parameters:  auto  exposure  with  the  signal  to  noise  ra@o  set  to  500  and  a  maximum  collec@on  @me  of  3  minutes.  The  normal  Raman  and  SERS  spectra  were  used  as  comparisons  for  the  TLC-­‐SERS  spectra  of  the  drugs  and  mixtures.  To  analyze  using  TLC-­‐SERS,  the  liquid  solu@on  was  spoOed  on  a  TLC  plate,  then  separated  using  a  9:1  chloroform  to  methanol  TLC  bath.  The  spots  were  found  using  a  short  wave  UV  light.  The  sample  spots  were  analyzed  using  normal  Raman  spectroscopy.    To  perform  the  SERS  analysis,  a  drop  of  silver  colloid  was  placed  directly  onto  the  TLC  plate  spot  then  analyzed  with  the  Raman  spectrometer.  This  procedure  was  conducted  for  all  four  drugs  and  for  the  separated  drug  mixtures.    

Future Work                  Addi@onal  research  experiments  will  be  conducted  using  different  illicit  drugs  and  drug  mixtures.  An  inves@ga@on  into  the  use  of  gold  colloids,  rather  than  silver  colloids,  for  SERS  enhancement  will  be  explored.  Also,  the  authors  will  evaluate  the  limits  of  detec@on  for  this  technique.  Last,  research  focusing  on  the  detec@on  of  illicit  drugs  in  body  fluids  using  both  normal  Raman  and  SERS  spectroscopy  will  be  explored.    

                   TLC-­‐SERS  proved  to  be  a  successful  method  for  the  separa@on  and  iden@fica@on  of  controlled  substances  and  controlled  substance  mixtures.  This  combined  technique  has  the  poten@al  to  greatly  benefit  the  forensic  science  community  because  it  requires  less  sample,  @me,  and  money  when  compared  to  other  methods  of  illicit  drug  analysis  and  conforms  to  the  currently  accepted  standards  of  drug  iden@fica@on  set  forth  by  SWGDRUG.    

Cocaine:  normal  Raman  vs.  SERS  

Figure  2  shows  two  spectra  for  the  analysis  of  cocaine.    The  top  is  the  normal  Raman  spectrum  of  cocaine  while  the  boOom  is  the  SERS  spectrum  of  cocaine.  

MDMA:  TLC-­‐normal  Raman  vs.  TLC-­‐SERS  vs.  SERS    

80

813

42

14

69

MDMA TLC 15July2013 auto

10

20

30

40

Int

33

941

3

52

3

63

2

70

9

76

68

06

93

4

10

29

12

46

13

6414

40

14

9715

37

MDMA TLC Ag6_18 16July2013 auto

400

600

800

1000

1200

1400

Int

24

4

34

6

53

171

5

77

481

2

10

3611

02

12

53

13

6814

44

15

01

16

07

29

30

MDMA Ag5 19Aug2013 auto

500

1000

1500

2000

Int

500 1000 1500 2000 2500 3000 Raman shift (cm-1)

Figure  4  shows  three  spectra  for  the  analysis  of  MDMA.  The  top  is  a  normal  Raman  spectrum  of  a  MDMA  spot  on  a  separated  TLC  plate.  The  middle  is  a  SERS  spectrum  of  a  MDMA  spot  on  a  separated  TLC  plate.  The  boOom  is  a  SERS  spectrum  of  MDMA  on  an  aluminum  slide.    

Cocaine:  TLC-­‐normal  Raman  vs.  TLC-­‐SERS  vs.  SERS  

10

06

13

52

TLC Cocaine 25June2013 auto

100

200

300

Int

62

26

85

78

68

43

89

5

10

07

10

30

11

85

12

81

13

91

14

55

16

04

17

21

29

65

TLC Cocaine Ag unrep 25June2013 auto

100

200

300

Int

62

26

85

78

5

85

98

95

12

79

13

95

14

56

16

04

17

23

29

84

Cocaine Ag unrep 24June2013 50s 4

100

200

300

Int

500 1000 1500 2000 2500 3000 Raman shift (cm-1)

Figure  3  shows  three  spectra  for  the  analysis  of  cocaine.    The  top  is  a  normal  Raman  spectrum  of  a  cocaine  spot  on  a  separated  TLC  plate.  The  middle  is  a  SERS  spectrum  of  a  cocaine  spot  on  a  separated  TLC  plate.  The  boOom  is  a  SERS  spectrum  of  cocaine  on  an  aluminum  slide.  

84

11

61

73

34

2

58

561

6

78

787

1

10

01

10

25

12

77

14

60

15

99

17

16

29

04

29

60

30

25

30

71

33

50

33

70

Cocaine1 14June2013 auto

100

200

300

400

500

600

700

800

900

Int

23

9

62

26

85

78

58

59

89

5

10

06

10

30

12

79

13

95

14

56

16

04

17

23

29

84

30

71

30

75

Cocaine Ag unrep 24June2013 50s 4

100

200

300

400

500

600

700

800

900

Int

500 1000 1500 2000 2500 3000 Raman shift (cm-1)

!!

! ! ! ! !!

Silver  Colloid  Prepara@on  

Figure  1  shows  the  silver  colloid  being  prepared.  The  pictures  were  taken  in  10  minute  increments.  The  colloid  is  composed  of  two  solu@ons:  the  first  being  0.170g  silver  nitrate  and  1.00L  deionized  water  and  the  second  being  1.00g  sodium  citrate  and  0.100L  deionized  water.  50.0mL  of  the  silver  nitrate  solu@on  was  heated  to  a  boil,  and  then  1.00mL  of  sodium  citrate  solu@on  was  added.  The  solu@on  was  heated  for  one  hour.    

Recommended