+ All Categories
Home > Documents > The matter particles

The matter particles

Date post: 30-Dec-2015
Category:
Upload: xanthus-telma
View: 30 times
Download: 0 times
Share this document with a friend
Description:
The fundamental interactions. Gravitationelectromagnetism weak nuclear force strong nuclear force. The ‘ Standard Model ’. = Cosmic DNA. The matter particles. Where. do. the. masses. come from. ?. photon. 0. W. +. Z. 0. W. -. +. 1. 0. -. 1. - PowerPoint PPT Presentation
Popular Tags:
33
Transcript
Page 1: The matter particles
Page 2: The matter particles

Zur Anzeige wird der QuickTime™ Dekompressor „TIFF (LZW)“

benötigt.

Page 3: The matter particles

The matter particles

The ‘Standard Model’

The fundamental interactions

Gravitation electromagnetism weak nuclear force strong nuclear force

= Cosmic DNA

Page 4: The matter particles

Some particles have mass, some do not

+1 0 -1

W + Z 0 W -

Mass 80.419 91.188 80.419

0photon

Mass 0

Where do the masses come from?

Newton:Weight proportional to Mass

Einstein:Energy related to Mass

Neither explained origin of Mass

Are masses due to Higgs boson? (yet another particle)

Page 5: The matter particles
Page 6: The matter particles
Page 7: The matter particles
Page 8: The matter particles
Page 9: The matter particles
Page 10: The matter particles
Page 11: The matter particles
Page 12: The matter particles
Page 13: The matter particles
Page 14: The matter particles

Noise Sources in LIGOGround motion couplesinto motion of mirrors

Counting statistics ofphotons at photodiode

Thermal excitations ofmirror suspensions

Page 15: The matter particles

10-24

10-23

10-22

10-21

10-20

10-19

10-18

1 10 100 1000 104

h (

Hz-1

/2)

Virgo

LIGO

Resonantantennas

Hz

GEO

Core Collapse@ 10 Mpc

BH-BH MergerOscillations@ 100 Mpc

Pulsars hmax – 1 yr integration

BH-BH Inspiral,z = 0.4

BH-BH Inspiral, 100 Mpc

QNM from BH Collisions, 1000 - 100 Msun, z=1

NS, =10-6 , 10 kpc

QNM from BH Collisions, 100 - 10 Msun, 150 Mpc

NS-NS Inspiral, 300 Mpc

NS-NS MergerOscillations@ 100 Mpc

Credit: P.Rapagnani

Design sensitivity

Page 16: The matter particles

Measured sensitivity

C7 NS/NS maximum distance ~ 1.5 Mpc

(7 W)(7 W)(7 W)(7 W)(0.7 W)(0.7 W)(0.7 W)

Design NS/NS maximum distance ~ 30 Mpc

Page 17: The matter particles

WMAP satellite

At t = 400 000 yrs, the Universe becomes transparent: photons no longer interact with

matterBIG BANG

Cosmological background T = 3 K = - 270 °C

Looking back to the primordial Universe

Page 18: The matter particles

When do graviton decouple?

Interaction rate ~ GN2 T5 ~ ----T5

MPl4

Expansion rate H ~ ----

---- ~ ----

T2

T3

MPl

MPl3

H

Gravitons decouple at the Planck era : fossile radiation

(radiation dominated era)

Page 19: The matter particles

Update Scores LCDM TeVeS-

MOND• Solar System ? ?

• Tides/vertical force

• Rot. curves HSB/LSB

• Lensing by Ellip/Clusters

• Hubble Expansion/CMB ????

Stay Tuned!

Page 20: The matter particles
Page 21: The matter particles
Page 22: The matter particles

OG 2.7: New ExperimentsCherenkov TelescopesCherenkov Telescopes

4. HESS-II [Vincent]

• New 28m telescope.• 2048 pixel camera.• Lower energy 40-50

GeV.

5. MAGIC-II [Teshima]

• New 17m telescope.• Possible high-QE

camera.• 2007 schedule.

MAGIC-IMAGIC-I MAGIC-IIMAGIC-II

85m

Page 23: The matter particles

Future ConceptsLarge Cherenkov Tel. Arrays

HE-ASTRO: 217 Telescopes (ø10m), 80m separation.1.1 km2 collection area & 15o FOV !

Fie

ld o

f vi

ew [

π s

r] Field

of view

[deg

]

Collecting Area [km2]

Also, detailed work in Europe and Japan. Cherenkov Telescope Array (CTA)concept well underway.

Page 24: The matter particles
Page 25: The matter particles
Page 26: The matter particles
Page 27: The matter particles

How to go deeper

• A future mission should:– Achieve BLIP– Observe longer (~2)

• ~2 for satellites• John will discuss ground-

based

– Use many more pixels

• To go much deeper, we must use arrays.

Page 28: The matter particles

The South Pole

NSF NSFNSF

NSF

Page 29: The matter particles

Natural WIMP candidate:SUSY LSP neutralino

Stable if SUSY exists and R-parity is conserved

• Direct detection:– WIMP scattering off nuclei

˜ χ 10 =N11

˜ B +N12˜ W 3 +N13

˜ H 10 +N14

˜ H 20

Zg = N11

2+ N12

2gaugino fraction:

PMTsPMTs

PEEK SupportsPEEK Supports

CathodeCathode

GridsGrids

Waveshifter/ReflectorWaveshifter/Reflector

Page 30: The matter particles

Moore’s sensitivity law ?

• Rapid evolution of sensitivity of discriminating experiments(CDMS, EDELWEISS, CRESST, WARP, XENON…)

• But goals are still ≈3 orders of magnitude beyond present best performances

(After Gaitskell)

Page 31: The matter particles

Full Macho Halo:

LMC

0.45 10-6

SMC

0.65 10-6

Self lensing:

LMC-LMC

0.005 - 0.05 10-6

SMC-SMC

0.04 10-6

Lensing LMC-Galactic stars:

LMC-gal

0.01 10-6

Lensing Galactic-Galactic stars:

gal-gal

2.0 10-6

Events rate comparison :

(MACHO 0.12 10-6)

Page 32: The matter particles

_3% at 10-2 M

Final EROS combined limit (1990-2003)

_7% at 0.4 M

_10% at 1 M

LMC data set / No event

LMC + SMC data set with 1 SMC halo candidate

Domain excluded from all EROS data

ZOOMZOOM

Page 33: The matter particles

Recommended