+ All Categories
Home > Documents > The Muscular System - Weebly

The Muscular System - Weebly

Date post: 07-Nov-2021
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
74
The Muscular System Specialized tissue that enable the body and its parts to move.
Transcript
Page 1: The Muscular System - Weebly

The Muscular System

Specialized tissue that enable the body and its parts to move.

Page 2: The Muscular System - Weebly

Anterior View

Page 3: The Muscular System - Weebly

Posterior View

Page 4: The Muscular System - Weebly

TRIVIA! • How many muscles are there in the human body?

– Answer: 640 Muscles – The muscles make up about 40 % of the body mass.

• What is the longest muscle in the body?

– Answer: The Sartorius – The Sartorius runs from the outside of the hip, down and across to the inside of

the knee. It twists and pulls the thigh outwards.

• What is the smallest muscle in the body? – Answer: The Stapedius – The Stapedius is located deep in the ear. It is only 5mm long and thinner than

cotton thread. It is involved in hearing.

• What is the biggest muscle in the body? – Answer: The Gluteus Maximus – The Gluteus Maximus is located in the buttock. It pulls the leg backwards

powerfully for walking and running.

Page 5: The Muscular System - Weebly

Functions of the Muscles

• Movement • Maintenance of posture and muscle tone • Heat production • Protects the bones and internal organs.

Page 6: The Muscular System - Weebly

Muscle Classification

• Functionally – Voluntarily – can be moved at will – Involuntarily – can’t be moved intentionally

• Structurally – Striated – have stripes across the fiber – Smooth – no striations

Page 7: The Muscular System - Weebly

The 3 Types of Muscles

Skeletal Muscle Smooth Muscle Cardiac Muscle

3 Types of Muscles

Page 8: The Muscular System - Weebly

Smooth Muscle

• Fibers are thin and spindle shaped.

• No striations • Single nuclei • Involuntary • Contracts slowly

Page 9: The Muscular System - Weebly

Smooth Muscle • They fatigue… but very slowly • Found in the circulatory system

– Lining of the blood vessels – Helps in the circulation of the blood

• Found in the digestive system – Esophagus, stomach, intestine – Controls digestion

• Found in the respiratory system – Controls breathing

• Found in the urinary system – Urinary bladder – Controls urination

Page 10: The Muscular System - Weebly

Cardiac Muscle

• Cells are branched and appear fused with one another

• Has striations • Each cell has a central

nuclei • Involuntary

Page 11: The Muscular System - Weebly

Cardiac Muscle

• Found ONLY in the heart • Contractions of the heart muscles pump

blood throughout the body and account for the heartbeat.

• Healthy cardiac muscle NEVER fatigues or else…

Page 12: The Muscular System - Weebly

Skeletal Muscle

Fibers are long and cylindrical

Has many nuclei Has striations

Have alternating dark and light bands

Voluntary

Page 13: The Muscular System - Weebly

Skeletal Muscle

• Attached to skeleton by tendons • Causes movement of bones at the joints. • And yes… they do fatigue • Muscle fatigue activity what substance

forms causing muscle fatigue??? – Lactic Acid

Page 14: The Muscular System - Weebly

Functions of Skeletal Muscle

• Movement – muscle move bones by pulling not pushing. – Synergists – any movement is generally

accomplished by more than one muscle. All of the muscles responsible for the movement are synergists.

– The one that is most responsible for the movement is the Prime Mover (agonist).

Page 15: The Muscular System - Weebly

Functions of Skeletal Muscle

• Movement – Antagonists – muscles and muscle groups usually

work in pairs – example the biceps flex your arm and its

partner the triceps extend your arm. The two muscles are antagonists, i.e. cause opposite actions.

– when one contracts the other relaxes. – Levators – muscle that raise a body part.

Page 16: The Muscular System - Weebly
Page 17: The Muscular System - Weebly

Functions of Skeletal Muscle

• Maintenance of posture or muscle tone – We are able to maintain our body position because of

tonic contractions in our skeletal muscles. These contractions don’t produce movement yet hold our muscles in position.

• Heat production – contraction of muscles produces most of the heat required to maintain body temperature.

Page 18: The Muscular System - Weebly

Structure of Skeletal Muscle

• Composed of striated muscle cells (=muscle fibers) and connective tissue. – Most muscles attach to 2 bones that have a moveable

joint between them. • The attachment to the bone that does not move is the origin. • The attachment to the bone that moves is the insertion.

– Tendons anchor muscle firmly to bones. Tendons are made of dense fibrous connective tissue.

– Ligaments connect bone to bone at a joint.

Page 19: The Muscular System - Weebly

Structure of Skeletal Muscle

• Bursae – small fluid filled sacs that lie between some tendons and the bones beneath them. They are made of connective tissue and are lined with synovial membrane that secretes synovial fluid.

Page 20: The Muscular System - Weebly

Structure of Skeletal Muscle

• Contribution of the nervous system – Electrochemical impulses travel from the frontal

lobes of the cerebrum via motor nerves to the muscle fibers and cause them to contract.

– Sensation is a function of the brain – impulses are integrated in the parietal lobes of the cerebrum (conscious muscle sense) and in the cerebellum (unconscious). These activities promote coordination.

Page 21: The Muscular System - Weebly

Structure of Skeletal Muscle

• Microscopic anatomy – Muscle cells (fibers) are grouped in a highly organized

way in the muscle. The membrane that surrounds the muscle cell is called the sarcolemma.

– Muscle cells are filled with 2 types of fine threadlike proteins called myofilaments: myosin (thick) and actin (thin). These structures slide past each other causing the muscle cell to contract or shorten.

– The myofilaments are arranged in the cells in small units called sarcomeres.

Page 22: The Muscular System - Weebly

Structure of Skeletal Muscle

• Neuromuscular junction – Spot where the axon of a motor nerve nears the

muscle fiber. – The axon terminal does not touch the muscle but

comes close. The space between the axon and the muscle cell is called the synapse.

– Within the terminal end of the axon are small sacs filled with a neurotransmitter called acetylcholine.

Page 23: The Muscular System - Weebly

Muscle Contraction

• Sequence – Electrical impulse travels down a motor neuron.

When it reaches the end, acetylcholine (chemical) is released into the synapse.

– Acetylcholine bind to special receptors on the muscle cell and causes an electrical impulse to spread over the cell.

– The sarcomeres shorten and the muscle cell contracts.

Page 24: The Muscular System - Weebly

Naming Skeletal Muscles

• Location of the muscle • Shape of the muscle • Relative Size of the muscle • Direction/Orientation of the muscle

fibers/cells • Number of Origins • Location of the Attachments • Action of the muscle

Page 25: The Muscular System - Weebly

Muscles Named by Location Location: • frontalis – frontal bone • lateralis – lateral or on the side • tibialis anterior – front of tibia • fibularis longus – near fibula • supra – above • infra – below • sub - underneath

Page 26: The Muscular System - Weebly

Muscles Named by Shape

Shape:

– deltoid – triangle – Latissimus – wide – teres - round – trapezius – trapezoid – serratus –saw-tooth – orbicularis – circular

Page 27: The Muscular System - Weebly

Naming Skeletal Muscles

• Shape:

Rhomboideus major

Trapezius

Deltoid

Serratus anterior

Page 28: The Muscular System - Weebly

Muscles Named by Size

• Maximus – largest • Minimis – smallest • Longus – longest • Brevis – short • Major – large • Minor – small

Psoas major

Psoas minor

Page 29: The Muscular System - Weebly

Muscles Named by Direction of Fibers Direction/Orientation: • Rectus (straight) - parallel to

the muscle’s long axis ex: rectus abdominis

• Transversus (transverse) – at

right angles to the muscle’s long axis

• Oblique – diagonal

Page 30: The Muscular System - Weebly

Muscles Named by Direction of Fibers

Rectus

abdominis

External oblique

Page 31: The Muscular System - Weebly

Muscles Named for Number of Origins

• Biceps – 2

• Triceps – 3

• Quadriceps – 4

Biceps brachii

Page 32: The Muscular System - Weebly

Muscles Named for Origin and Insertion

Sternocleidomastoid originates from sternum and clavicle and inserts on mastoid process of temporal bone

origins

insertion

Page 33: The Muscular System - Weebly

Muscles Named for Origin and Insertion Points

Origin and Insertion: sterno = sternum cleiodo = clavicle mastoid = location on the

temporal bone

sternocleiodomastoid muscle

Page 34: The Muscular System - Weebly

Muscles Named for Action

• Flexor carpi radialis (extensor carpi radialis) – flexes wrist

• Abductor pollicis brevis (adductor pollicis) – flexes thumb

• Abductor magnus – abducts thigh

• Extensor digitorum – extends fingers

Adductor magnus

Page 35: The Muscular System - Weebly

Arrangement of Fascicles

• Parallel - strap-like – ex: sartorius

• Fusiform - spindle

shaped – ex: biceps femoris

Page 36: The Muscular System - Weebly

Arrangement of Fascicles • Pennate

– "feather shaped”

• Unipennate – one Feather – ex: extensor digitorum

longus

• Bipennate – Two Feahers – ex: rectus femoris

• Multipennate – Many

Feathers – ex: deltoid

Page 37: The Muscular System - Weebly

Arrangement of Fascicles

• Convergent – Coming together – ex: pectoralis major

• Circular - Round

– Called sphincters – ex: orbicularis oris

Page 38: The Muscular System - Weebly

There are about 60 muscles in the face.

Smiling is easier than frowning.

It takes 20 muscles to smile and over 40 to frown.

Smile and make someone happy.

Page 39: The Muscular System - Weebly

Anatomy of the Muscular System

•Origin Muscle attachment that remains fixed

•Insertion Muscle attachment that moves

•Action What joint movement a muscle produces i.e. flexion, extension, abduction, etc.

Page 40: The Muscular System - Weebly

• For muscles to create a movement, they can only pull, not push

• Muscles in the body rarely work alone, & are usually arranged in groups surrounding a joint

• A muscle that contracts to create the desired action is known as an agonist or prime mover

• A muscle that helps the agonist is a synergist

• A muscle that opposes the action of the agonist, therefore undoing the desired action is an antagonist

Page 41: The Muscular System - Weebly

Anatomy of skeletal muscles

Skeletal muscle

fiber (cell)

Muscle Fascicle

Surrounded by perimysium

Surrounded by endomysium

endomysium

perimysium

Skeletal muscle

Surrounded by epimysium

epimysium tendon

Page 42: The Muscular System - Weebly

Microanatomy of a Muscle Fiber (cell)

Page 43: The Muscular System - Weebly

Microanatomy of a Muscle Fiber (Cell)

sarcolemma transverse (T) tubules sarcoplasmic

reticulum terminal cisternae

myofibril

thin myofilament

thick myofilament

triad

mitochondria

Play IP Anatomy of Skeletal muscles (IP p. 7)

nuclei

myoglobin

Page 44: The Muscular System - Weebly

Muscle fiber

Sarcomere

Thin filaments Thick filaments Thin myofilament

Myosin molecule of thick myofilament

sarcomere Z-line

Myofibril

Page 45: The Muscular System - Weebly

Thin Myofilament

(myosin binding site)

Page 46: The Muscular System - Weebly

Thick myofilament

(has ATP & actin binding site)

Page 47: The Muscular System - Weebly

Sarcomere

Z line Z line A band

H zone

I band Zone of overlap M line

Zone of overlap

Thin myofilaments Thick

myofilaments

Page 48: The Muscular System - Weebly

Sliding Filament Theory • Myosin heads attach to actin molecules (at binding (active) site)

• Myosin “pulls” on actin, causing thin myofilaments to slide across thick myofilaments, towards the center of the sarcomere

• Sarcomere shortens, I bands get smaller, H zone gets smaller, & zone of overlap increases

Page 49: The Muscular System - Weebly

• As sarcomeres shorten, myofibril shortens. As myofibrils shorten, so does muscle fiber

• Once a muscle fiber begins to contract, it will contract maximally

• This is known as the “all or none” principle

Page 50: The Muscular System - Weebly
Page 51: The Muscular System - Weebly

Sarcomere

Z Z Z

Z Z Z

I

A A

Page 52: The Muscular System - Weebly

Physiology of skeletal muscle contraction • Skeletal muscles require stimulation from the nervous system in order to contract

• Motor neurons are the cells that cause muscle fibers to contract

(motor neuron)

cell body

dendrites

axon Synaptic terminals

(synaptic end bulbs) telodendria axon hillock

Page 53: The Muscular System - Weebly

telodendria

Synaptic terminal

(end bulb)

Neuromuscular junction

Synaptic vessicles

containing Ach

Motor end plate of sarcolemma

Synaptic cleft Neuromuscular

junction

Page 54: The Muscular System - Weebly

Overview of Events at the neuromuscular junction

• An action potential (AP), an electrical impulse, travels down the axon of the motor neuron to the end bulbs (synaptic terminals)

• The AP causes the synaptic vesicles to fuse with the end bulb membrane, resulting in the release of Acetylcholine (Ach) into the synaptic cleft

• Ach diffuses across the synaptic cleft & binds to Ach receptors on the motor end plate

• The binding of Ach to its receptors causes a new AP to be generated along the muscle cell membrane

• Immediately after it binds to its receptors, Ach will be broken down by Acetylcholinesterase (AchE) – an enzyme present in the synaptic cleft

Page 55: The Muscular System - Weebly

Figure 7-4(b-c) 2 of 5 Copyright © 2007 Pearson Education, Inc., publishing as Benjamin Cummings

Synaptic cleft

Arrival of an action potential at the synaptic terminal

Sarcolemma of motor end plate

Arriving action potential

Vesicles

ACh AChE molecules ACh receptor site

Action potential

Synaptic terminal

Axon

Sarcolemma

Muscle fiber

• An action potential (AP), an electrical impulse, travels down the axon of the motor neuron to the end bulbs (synaptic terminals)

Page 56: The Muscular System - Weebly

Figure 7-4(b-c) 3 of 5 Copyright © 2007 Pearson Education, Inc., publishing as Benjamin Cummings

Synaptic cleft

Vesicles in the synaptic terminal fuse with the neuronal membrane and dump their contents into the synaptic cleft.

Release of acetylcholine

Arrival of an action potential at the synaptic terminal

Sarcolemma of motor end plate

Arriving action potential

Vesicles

ACh AChE molecules ACh receptor site

Action potential

Synaptic terminal

Axon

Sarcolemma

Muscle fiber

•The AP causes the synaptic vesicles to fuse with the end bulb membrane, resulting in the release of Acetylcholine (Ach) into the synaptic cleft

Page 57: The Muscular System - Weebly

Figure 7-4(b-c) 4 of 5 Copyright © 2007 Pearson Education, Inc., publishing as Benjamin Cummings

Synaptic cleft

Vesicles in the synaptic terminal fuse with the neuronal membrane and dump their contents into the synaptic cleft.

The binding of ACh to the receptors increases the membrane permeability to sodium ions. Sodium ions then rush into the cell.

ACh binding at the motor and plate Release of acetylcholine

Arrival of an action potential at the synaptic terminal

Sarcolemma of motor end plate

Arriving action potential

Vesicles

ACh AChE molecules ACh receptor site

Action potential

Synaptic terminal

Axon

Sarcolemma

Muscle fiber

Na+

Na+ Na+

•Ach diffuses across the synaptic cleft & binds to Ach receptors on the motor end plate

Page 58: The Muscular System - Weebly

•The binding of Ach to its receptors causes a new AP to be generated along the muscle cell membrane

•Immediately after it binds to its receptors, Ach will be broken down by Acetylcholinesterase (AchE) – an enzyme present in the synaptic cleft

Page 59: The Muscular System - Weebly

Table 7-1

Physiology of Skeletal Muscle Contraction •Once an action potential (AP) is generated at the motor end plate it will spread like an electrical current along the sarcolemma of the muscle fiber

• The AP will also spread into the T-tubules, exciting the terminal cisternae of the sarcoplasmic reticula

•This will cause Calcium (Ca+2 ) gates in the SR to open, allowing Ca+2 to diffuse into the sarcoplasm

•Calcium will bind to troponin (on the thin myofilament), causing it to change its shape. This then pulls tropomyosin away from the active sites of actin molecules.

•The exposure of the active sites allow the sliding of the filaments

Page 60: The Muscular System - Weebly

Copyright © 2007 Pearson Education, Inc., publishing as Benjamin Cummings Figure 7-5 3 of 7

Resting sarcomere

Myosin head

Active-site exposure

Troponin

Actin Tropomyosin

ADP

P +

ADP P +

ADP P +

Active site

Sarcoplasm

Ca2+

Ca2+

ADP

P +

• Calcium (Ca+2 ) gates in the SR open, allowing Ca+2 to diffuse into the sarcoplasm • Calcium will bind to troponin (on the thin myofilament), causing it to change its shape. • This then pulls tropomyosin away from the active sites of actin molecules.

Physiology of skeletal muscle contraction – events at the myofilaments

Page 61: The Muscular System - Weebly

Copyright © 2007 Pearson Education, Inc., publishing as Benjamin Cummings Figure 7-5 4 of 7

Resting sarcomere

Myosin head

Active-site exposure Cross-bridge formation

Troponin

Actin Tropomyosin

ADP

P +

ADP P +

ADP P +

Active site

Sarcoplasm

Ca2+

Ca2+

ADP

P +

ADP + P

Ca2+

ADP + P

Ca2+

• Myosin heads are “energized” by the presence of ADP + PO43-

at the ATP binding site (energy is released as phosphate bond of ATP breaks)

• Once the active sites are exposed, the energized myosin heads hook into actin molecules forming cross-bridges

Physiology of skeletal muscle contraction – events at the myofilaments

Page 62: The Muscular System - Weebly

Copyright © 2007 Pearson Education, Inc., publishing as Benjamin Cummings Figure 7-5 5 of 7

Resting sarcomere

Myosin head

Active-site exposure Cross-bridge formation

Pivoting of myosin head

Troponin

Actin Tropomyosin

ADP

P +

ADP P +

ADP P +

Active site

Sarcoplasm

Ca2+

Ca2+

ADP

P +

ADP + P

Ca2+

ADP + P

Ca2+

Ca2+

ADP + P

Ca2+

ADP + P

• Using the stored energy, the attached myosin heads pivot toward the center of the sarcomere

• The ADP & phosphate group are released from the myosin head

Physiology of skeletal muscle contraction – events at the myofilaments

Page 63: The Muscular System - Weebly

Resting sarcomere

Myosin head

Active-site exposure

Cross bridge detachment

Cross-bridge formation

Pivoting of myosin head

Troponin

Actin Tropomyosin

ADP

P +

ADP P +

ADP P +

Active site

Sarcoplasm

Ca2+

Ca2+

ADP

P +

ADP + P

Ca2+

ADP + P

Ca2+

Ca2+

ADP + P

Ca2+

ADP + P

Ca2+

ATP

ATP

Ca2+

• A new molecule of ATP binds to the myosin head, causing the cross bridge to detach from the actin strand • The myosin head will get re-energized as the ATP ADP+P

• As long as the active sites are still exposed, the myosin head can bind again to the next active site

Physiology of skeletal muscle contraction – events at the myofilaments

Page 64: The Muscular System - Weebly

Resting sarcomere

Myosin head

Myosin reactivation

Active-site exposure

Cross bridge detachment

Cross-bridge formation

Pivoting of myosin head

Troponin

Actin Tropomyosin

ADP

P +

ADP P +

ADP P +

Active site

Sarcoplasm

Ca2+

Ca2+

ADP

P +

ADP + P

Ca2+

ADP + P

Ca2+

Ca2+

ADP + P

Ca2+

ADP + P

Ca2+

ATP

ATP

Ca2+

Ca2+

Ca2+

ADP P +

+ P

ADP

http://www.youtube.com/watch?v=CepeYFvqmk4 -animation

http://www.youtube.com/watch?v=kvMFdNw35L0 –

animation with Taylor Swift song

Physiology of skeletal muscle contraction – events at the myofilaments

Page 65: The Muscular System - Weebly

Physiology of Skeletal Muscle Contraction • If there are no longer APs generated on the motor neuron, no more Ach will be released

• AchE will remove Ach from the motor end plate, and AP transmission on the muscle fiber will end

• Ca+2 gates in the SR will close & Ca+2 will be actively transported back into the SR

• With Ca+2 removed from the sarcoplasm (& from troponin), tropomyosin will re-cover the active sites of actin

• No more cross-bridge interactions can form

• Thin myofilaments slide back to their resting state

Table 7-1

Page 67: The Muscular System - Weebly

These physiological processes describe what happen at the cellular level – how skeletal muscle fibers contract

But what about at the organ level? How do skeletal muscles (like your biceps brachii) contract to create useful movement?

Muscle Fiber Contraction

Page 68: The Muscular System - Weebly

• Skeletal muscles are made up of thousands of muscle fibers

• A single motor neuron may directly control a few fibers within a muscle, or hundreds to thousands of muscle fibers

• All of the muscle fibers controlled by a single motor neuron constitute a motor unit

Muscle Fiber Contraction

Page 69: The Muscular System - Weebly

The size of the motor unit determines how fine the control of movement can be – small motor units precise control (e.g. eye muscles large motor units gross control (e.g. leg muscles)

Page 70: The Muscular System - Weebly

Recruitment is the ability to activate more motor units as more force (tension) needs to be generated

There are always some motor units active, even when at rest. This creates a resting tension known as muscle tone, which helps stabilize bones & joints, & prevents atrophy

Play IP Contraction of motor units p. 3-7 PLAY

Hypertrophy – “stressing” a muscle (i.e. exercise) causes more myofilaments/myofibrils to be produced within muscle fibers; allows for more “cross bridges” resulting in more force (strength) as well as larger size

Page 71: The Muscular System - Weebly

MUSCLE

MUSCLE FIBER

MYOFIBRIL

SARCOMERE

Page 72: The Muscular System - Weebly

Movement of skeletal muscle

• These muscles move when the brain sends messages to the muscle

• Always work in pairs • 2 movements of skeletal muscle

– Contraction (shorten) – Extension (lengthen)

Page 73: The Muscular System - Weebly

Categories of skeletal muscle actions

• Categories Actions

• Extensor Increases the angle at a joint • Flexor Decreases the angle at a joint • Abductor Moves limb away from long axis of body • Adductor Moves limb toward long axis of body • Levator Moves insertion upward • Depressor Moves insertion downward • Rotator Rotates a bone along its axis • Sphincter Constricts an opening

Page 74: The Muscular System - Weebly

Recommended