+ All Categories
Home > Documents > The National TCAD Framework: An Information Power … · The National TCAD Framework: An...

The National TCAD Framework: An Information Power … · The National TCAD Framework: An...

Date post: 20-Apr-2018
Category:
Upload: vunhan
View: 224 times
Download: 5 times
Share this document with a friend
14
The National TCAD Framework: An Information Power Grid Application Bryan A. Biegel Numerical Aerospace Simulation Division NASA Ames Research Center Seminar at: Center for Integrated Systems Stanford University October 8, 1997 The National TCAD Framework: An Information Power Grid Application Outline Background & Motivation The National TCAD Framework The Information Power Grid Conclusions
Transcript
Page 1: The National TCAD Framework: An Information Power … · The National TCAD Framework: An Information Power Grid Application Bryan A. Biegel Numerical Aerospace Simulation Division

The National TCAD Frame work:An Inf ormation P ower Grid Application

Br yan A. Bieg el

Numerical Aer ospace Sim ulation Division

NASA Ames Resear ch Center

Seminar at:

Center f or Integrated Systems

Stanf ord Univer sity

October 8, 1997

The National TCAD Frame work:An Inf ormation P ower Grid Application

Outline• Backgr ound & Motiv ation

• The National TCAD Frame work

• The Inf ormation P ower Grid

• Conc lusions

Page 2: The National TCAD Framework: An Information Power … · The National TCAD Framework: An Information Power Grid Application Bryan A. Biegel Numerical Aerospace Simulation Division

Traditional Appr oach toSemiconductor T echnology Ad vancement

Fabrication Steps

Current Technology Proposed

Desiredperformanceachieved?

Deadlineor budget

exceeded?

YesYes

Apply

experience

No

No

Next Generation

Done

Fabricateprototype;

scaling laws,

Characterize prototypestructure, doping,materials, fabrication

Design

characterizeoperation

Prob lems with Scaling La ws andExperimental Iteration as De vices Shrink

• Experimental iteration increasingly expensive and slow

• Scaling laws are failing:

• Fabrication, material changes

• Devices structure changes

• Small-geometry/high-field effects:

• hot electron transport, punch-through, avalanchemultiplication, drain-induced barrier lowering, oxide andjunction breakdown, leakage currents

• Microwave effects

• Quantum effects:

• gate oxide tunneling, inversion layer quantization, quantumtransport, and transconductance degradation

• Scaling laws do not prepare us for transition to quantum devices

Page 3: The National TCAD Framework: An Information Power … · The National TCAD Framework: An Information Power Grid Application Bryan A. Biegel Numerical Aerospace Simulation Division

Quantum Eff ects in an n-MOSFET

n+ Gate Gat

e O

xide

EC

EV

EC

nq(x)

Tunneling

Energy

Barrier

quantization

e-

p-Si Substrate

proximityeffect

nc(x)

Potential Ad vantages of TCAD

• More general cases than scaling

• Much less expensive than experiment

• View of internal processes

• Investigation of individual physical effects

• Ultimate control of time, temperature, position, environment

Why are these just PO TENTIAL ad vantages?

I-V

V(x,y)

Experimental Result Additional Simulation Info

Page 4: The National TCAD Framework: An Information Power … · The National TCAD Framework: An Information Power Grid Application Bryan A. Biegel Numerical Aerospace Simulation Division

TCAD Tools: What Industr y “Needs”

Existing capabilities:

• 3-D process and device simulation

• Intuitive graphical user interface (GUI)

• High-quality graphical output (1-D, 2-D, 3-D, transient)

• Optimized for large computations

• Coupling of simulation tools

Non-existing functionality:

• Arbitrary process steps, device structures, materials, and tests

• Flexible physical model(s)

• Auto selection of numerical methods

• Functional modularity

• Hierarchy of models

General Electr onic De viceTranspor t Models

Comple xity ,Comp. Cost

ClassicalQuantum-Corrected

Quantum

Low Drift-diffusion Density-g radientSchrödinger ,

Transfer matr ix

Moder ateEnergy balance ,Hydrodynamic

Quantum EB ,Quantum HD

Density matr ix,Wigner function

HighBoltzmann

transpor t equationQuantum Boltz-mann equation

Green’s functions

Microwave,Optoelectronic

Substitute Maxw ell’s equations f or Poisson equation

Page 5: The National TCAD Framework: An Information Power … · The National TCAD Framework: An Information Power Grid Application Bryan A. Biegel Numerical Aerospace Simulation Division

Challeng es for TCAD De velopment1) Developing TCAD tools is difficult:

• Distance to results analysis is long

• Few coding short-cuts are available

• Little collaboration outside of groups

• No standard for tool interaction

⇒ Never implement sophisticated featuresindustry needs

2) Computation hardware is expensive

⇒ Compromises in model, implementation,execution

3) Inadequate numerical methods

Derive physicalmodel

Convert tonumerical model

Program

Debug

Enhance numericalmethods, gridding,efficiency, graphics

Run simulations

Analyze results

The National TCAD Frame work:An Inf ormation P ower Grid Application

Outline• Background & Motivation

• The National TCAD Frame work

• The Information Power Grid

• Conclusions

Page 6: The National TCAD Framework: An Information Power … · The National TCAD Framework: An Information Power Grid Application Bryan A. Biegel Numerical Aerospace Simulation Division

New TCAD Development Appr oach:National TCAD Frame work (NTF)

Modular TCAD development platform

• Enables and encourages collaboration

• Well-defined functional interfaces

• Basic "glue" services

Multiply usefulness of high-level functionality

Run simulations

Analyze results

Run simulations

Analyze results

Run simulations

Analyze results

Run simulations

Analyze results

National TCAD Framework

Model 4Model 3Model 2Model 1

Numerics 4Numerics 3Numerics 2Numerics 1

Gridding 4Gridding 3Gridding 2Gridding 1

Graphics 4Graphics 3Graphics 2Graphics 1

NTF: Tool De veloper Interests

• Plenty of work

• Preserve intellectual property

• Easy to plug into

• Collaboration-at-a-distance

• Modules replaceable at low level

• New facilities for existing tools

Additional tool vendor interests:

• Protect existing products andcustomer base

• Add value that people will pay for

National TCAD Frame work

New Functions Legacy Tools

Core ServicesNew Functions

Page 7: The National TCAD Framework: An Information Power … · The National TCAD Framework: An Information Power Grid Application Bryan A. Biegel Numerical Aerospace Simulation Division

NTF: Model De veloper Interests• Model specified as set of PDEs, constraints

• Ideally, model independent of other code

• Practically, collaborate with numerical experts

n∂ t∂⁄ ∇ nµn– ψ∇ Dn n∇+( )•=

p∂ t∂⁄ ∇ pµp ψ∇ Dp p∇+( )•=

∇2ψ q– ρ ε⁄=

Ideal Device Simulator

C-VI-V

V(x,y)

NTF: User Interests

• Greater functionality

• Better accuracy

• Fewer bugs

• Better ease of use

• More flexibility to modify models, devices, tests

• Bigger problems, more robustness, faster execution

• Platform independence

• Better technical support

• Low initial investment

• High-level functionality using“Artificial intelligence”

Application: Logic

Power: < 1 µW/gate

Simulation T ask

Fmax: > 100 GHz

Safety: > 3σ

Proce

ss

FlowSiGeCMOS0.15 µm3.8 nm

Page 8: The National TCAD Framework: An Information Power … · The National TCAD Framework: An Information Power Grid Application Bryan A. Biegel Numerical Aerospace Simulation Division

NTF: Ar tificial Intellig ence

Note: ES = expert system; Rank = relative importance

Exper t System Description Implementation RankSpeech recognition Commercial 3Natural language and math expression interpretation Commercial 2Estimation of device structure or operation Data mining ES 1Estimation of computational resources needed Data mining ES 1Selection of optimal physical model(s) Data mining ES 2Selection of optimal gridding, numerics, solution algorithms Data mining ES 2Correction of non-convergence, excess error, device malfunction Rule-based ES 2Interactive visualization Commercial/NASA 1Gesture recognition Commercial/NASA 3Extraction of default and user-defined results/parameters Rule-based ES 3Optimization of device according to specified constraints Rule-based ES 1Default and user-specified interaction between tools Rule-based ES 1Analyze discrepancies between experiment, simulation Rule-based ES 2Tune physical model and RSMs using experimental data Rule-based ES 3Apply context-sensitive user and default preferences Rule-based ES 3

NTF: Related W ork

SoftwarePackage G

UI

Fun

ctio

nal

Mod

ular

ity

Gra

phic

alO

utpu

t

New

Ph

ysic

alM

odel

s

AI

Sel

ectio

nof

Num

eric

s

Com

ple

xTo

polo

gies

Larg

eC

ompu

tatio

ns

Tool

Cou

plin

g

IPG

Com

patib

ility

Mathematica, etc. Y N Y Y Y N N N N

PROPHET N Y poor Y N Y Y poor N

ALAMODE N Y poor Y N Y Y N N

NEMO Y Y Y N N Y Y N N

TMA, Silvaco, etc. Y N Y N N Y Y Y N

NTF Y Y Y Y Y Y Y Y Y

Page 9: The National TCAD Framework: An Information Power … · The National TCAD Framework: An Information Power Grid Application Bryan A. Biegel Numerical Aerospace Simulation Division

The National TCAD Frame work:An Inf ormation P ower Grid Application

Outline• Background & Motivation

• The National TCAD Framework

• The Inf ormation P ower Grid

• Conclusions

Information P ower Grid (IPG): Wh y?

Observations:

• Many computations of interest (e.g., TCAD) beyond feasibility

• Uncountable CPU cycles are wasted "bit-flips"

IPG goal: To link massive numbers of heterogeneous, distributedcompute resources as virtual supercomputer; provide simple access

IPG could largely solve 2nd TCAD challenge: cost of computation

Supercomputers Workstation FarmsDM Parallel SM Parallel"Devices"

Page 10: The National TCAD Framework: An Information Power … · The National TCAD Framework: An Information Power Grid Application Bryan A. Biegel Numerical Aerospace Simulation Division

IPG: Benefits/Goals

• De-couple computational resources from intellectual resources

• Minimize cost of supercomputing

• Transparent access

• Collaboration-at-a-distance

• Web interface for users, developers

IPG: Implementation Sta ges

• Web interface to fixed server (network computing)

• Auto-select single host at run-time

• Load-balancing with multiple, pre-compiled hosts

• Dynamic compiling on multiple hosts as determined by:

• program execution profile

• user input parameters

• computational resource database query

• host availability.

The IPG is just netw ork computing on ster oids!

Page 11: The National TCAD Framework: An Information Power … · The National TCAD Framework: An Information Power Grid Application Bryan A. Biegel Numerical Aerospace Simulation Division

IPG: Interface Scenario

Information P ower Grid

Host Info

Current Resour ce Usage

CPU Hours:

Memory GB:

Disk GB:

Comm GB/s:

Total Cost:

6.364

13.57

89.90

27.74

$340.21

Priority Pref erence: Speed

National TCAD Frame work

Running: 3 Details

Completed: 2

Development: 1

Job Summar y

Go To

Visual

IPG Host Inf ormationHost Type Cost Mem

grumpydopeysleepy

CPU000

253.5vn.nas.nasa

OctaneO2OctaneC90

0.1410.1340.129

0.0450.0480.0484.3256.9802.226

3.2402.0130.755

74.6314.07

O2000o2k.ncsa.uiuc90.sdsc.ed C90

IPG: Requirements

• Buying and selling computational resources, code fees

• Computational resource database server (like a DNS):

• CPU, memory, disk, bandwidth, cost

• Universal code format (like Java)

• Compilation and execution profile for each application:

• Best compilation options, libraries required

• Best execution architecture (scalar, vector, parallel, distributed)

• Execution resources required versus platform

• IPG operating system (job scheduling, execution profiling, etc.)

• Data and code security

Page 12: The National TCAD Framework: An Information Power … · The National TCAD Framework: An Information Power Grid Application Bryan A. Biegel Numerical Aerospace Simulation Division

IPG: Analogy to Electric P ower GridPrincipal benefits:

• load sharing/balancing

• fault tolerance, minimum loss-of-service

• economies of scale

Principal risks/challenges:

• possible fault domino effect

• reliance on facilities under other’s control

• negotiation of agreements

• standards development and compliance policing

IPG: Related W orkIPG Equivalents:

• NPACI (NSF Partnership for Advanced Computational Infrastructure;NCSA, SDSC) http://www.npaci.edu/

• Legion Worldwide Virtual Computer, University of Virginia,http://www.cs.virginia.edu/~legion/

• Globus Metacomputing Environment: http://www.globus.org

Distributed operating systems:

• Inferno (Lucent Technologies) http://plan9.bell-labs.com/inferno/

• Spring (Sun) http://www.sun.com/tech/projects/spring/index.html

• JavaSpaces (JavaSoft) http://chatsubo.javasoft.com/javaspaces/

• Millennium (Microsoft) http://131.107.1.182:80/research/os/Millennium/mgoals.html

Page 13: The National TCAD Framework: An Information Power … · The National TCAD Framework: An Information Power Grid Application Bryan A. Biegel Numerical Aerospace Simulation Division

The National TCAD Frame work:An Inf ormation P ower Grid Application

Outline• Background & Motivation

• The National TCAD Framework

• The Information Power Grid

• Conc lusions

Why is NAS In volved in NTF , IPG?

• NASA Ames is Center of Excellence for Information Technology

• Unique NAS resources allow prototyping of IPG and NTF:

• Supercomputing and parallel computation hardware

• Advanced numerical computation software

• Numerical and parallel computation experts

• Functionality beyond current industry interests

• Computational applications

• Human-computer interface (HCI)

• Managing large computation systems (scheduling, storage, etc.)

• Provide organizing influence (and funding)

• Important to future NASA and government missions

Page 14: The National TCAD Framework: An Information Power … · The National TCAD Framework: An Information Power Grid Application Bryan A. Biegel Numerical Aerospace Simulation Division

Summar y

It is critical to expand the role of TCAD in electronics soon.

Two challenges currently prevent this:

• Difficulty of creating sophisticated TCAD tools

• Lack of sufficient, affordable compute resources

Technologies were described to overcome both challenges:

• National TCAD Framework: TCAD developers join and conquer

• Information Power Grid: TCAD users join and conquer


Recommended