+ All Categories
Home > Documents > THE PHOTOOXIDATION OF 2-METHYL-2-BUTENE …ufdcimages.uflib.ufl.edu/UF/E0/04/26/40/00001/im_y.pdfTHE...

THE PHOTOOXIDATION OF 2-METHYL-2-BUTENE …ufdcimages.uflib.ufl.edu/UF/E0/04/26/40/00001/im_y.pdfTHE...

Date post: 08-Jun-2018
Category:
Upload: phamnguyet
View: 216 times
Download: 0 times
Share this document with a friend
91
1 THE EFFECTS OF ACTIVE CHLORINES ON PHOTOOXIDATION OF 2-METHYL- 2-BUTENE By YUNSEOK IM A THESIS PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF ENGINEERING UNIVERSITY OF FLORIDA 2010
Transcript
Page 1: THE PHOTOOXIDATION OF 2-METHYL-2-BUTENE …ufdcimages.uflib.ufl.edu/UF/E0/04/26/40/00001/im_y.pdfTHE EFFECTS OF ACTIVE CHLORINES ON PHOTOOXIDATION OF 2-METHYL-2 ... effects on both

1

THE EFFECTS OF ACTIVE CHLORINES ON PHOTOOXIDATION OF 2-METHYL-2-BUTENE

By

YUNSEOK IM

A THESIS PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF ENGINEERING

UNIVERSITY OF FLORIDA

2010

Page 2: THE PHOTOOXIDATION OF 2-METHYL-2-BUTENE …ufdcimages.uflib.ufl.edu/UF/E0/04/26/40/00001/im_y.pdfTHE EFFECTS OF ACTIVE CHLORINES ON PHOTOOXIDATION OF 2-METHYL-2 ... effects on both

2

© 2010 Yunseok Im

Page 3: THE PHOTOOXIDATION OF 2-METHYL-2-BUTENE …ufdcimages.uflib.ufl.edu/UF/E0/04/26/40/00001/im_y.pdfTHE EFFECTS OF ACTIVE CHLORINES ON PHOTOOXIDATION OF 2-METHYL-2 ... effects on both

3

To my family

Page 4: THE PHOTOOXIDATION OF 2-METHYL-2-BUTENE …ufdcimages.uflib.ufl.edu/UF/E0/04/26/40/00001/im_y.pdfTHE EFFECTS OF ACTIVE CHLORINES ON PHOTOOXIDATION OF 2-METHYL-2 ... effects on both

4

ACKNOWLEDGMENTS

I thank to my advisor Dr. Myoseon Jang for her invaluable guidance, support,

concerns. In addition, I would like to thank my committees, Dr. Ben Koopman and Dr.

John Hearn, for their time and helpful comments on this thesis. I also thank to my lab

members, Min Zhong, Tianyi Chen, Ori R. Baber, Jiaying Li and my good friend

Nima Afshar Mohajer.

Page 5: THE PHOTOOXIDATION OF 2-METHYL-2-BUTENE …ufdcimages.uflib.ufl.edu/UF/E0/04/26/40/00001/im_y.pdfTHE EFFECTS OF ACTIVE CHLORINES ON PHOTOOXIDATION OF 2-METHYL-2 ... effects on both

5

TABLE OF CONTENTS

ACKNOWLEDGMENTS .................................................................................................. 4

page

LIST OF TABLES ............................................................................................................ 7

LIST OF FIGURES .......................................................................................................... 8

LIST OF ABBREVIATIONS ............................................................................................. 9

ABSTRACT ................................................................................................................... 11

CHAPTER

1 INTRODUCTION .................................................................................................... 13

2 EXPERIMENTS ...................................................................................................... 15

2.1. Teflon Film Indoor Chamber Experiments ....................................................... 15 2.2. MB Oxidation Product Analysis ........................................................................ 16

3 MODELING STUDY................................................................................................ 23

3.1. Determination of Mechanism and Reaction Rate Constants ............................ 23 3.2. Active Chlorine Formation in Saline-Oxone Aerosol ........................................ 25 3.3. Simulation ........................................................................................................ 26

4 RESULTS AND DISCUSSION ............................................................................... 31

4.1. Effect of Active Chlorines on MB Oxidation ..................................................... 31 4.1.1. MB with Active Chlorines under the Dark Condition ............................... 31 4.1.2. Effect of Active Chlorines on MB Oxidation under the UV

Condition ....................................................................................................... 31 4.2. Oxygenated Products from MB Photooxidation ............................................... 33 4.3. Model Simulation vs. Observation.................................................................... 34 4.4. Impact of Active Chlorines on Ozone Formation .............................................. 35

5 CONCLUSION ........................................................................................................ 42

APPENDIX

A REACTION MECHANISMS OF MB ........................................................................ 43

A.1. Inorganic Reaction Mechanism ....................................................................... 43 A.2. Active Chlorine Reaction Mechanism .............................................................. 44 A.3. MB Reaction Mechanism ................................................................................. 45

B LIGHT CHARACTERIZATION ................................................................................ 80

B.1. Experimental Measurement ............................................................................. 80 B.2. Model Simulation ............................................................................................. 81

Page 6: THE PHOTOOXIDATION OF 2-METHYL-2-BUTENE …ufdcimages.uflib.ufl.edu/UF/E0/04/26/40/00001/im_y.pdfTHE EFFECTS OF ACTIVE CHLORINES ON PHOTOOXIDATION OF 2-METHYL-2 ... effects on both

6

LIST OF REFERENCES ............................................................................................... 86

BIOGRAPHICAL SKETCH ............................................................................................ 91

Page 7: THE PHOTOOXIDATION OF 2-METHYL-2-BUTENE …ufdcimages.uflib.ufl.edu/UF/E0/04/26/40/00001/im_y.pdfTHE EFFECTS OF ACTIVE CHLORINES ON PHOTOOXIDATION OF 2-METHYL-2 ... effects on both

7

LIST OF TABLES

Table

page

2-1 Experimental conditions for MB photolysis in the presence of the internally mixed saline-Oxone aerosol. .............................................................................. 19

3-1 Group rate constants for H-atom abstraction by Cl radical with substituent factors F(X) at 298 K .......................................................................................... 27

3-2 Group rate constants for Cl radical addition and substituent factors F(X) at 298 K .................................................................................................................. 28

3-3 The comparison of reference values and SRR estimations for the reaction rate constants of organic compounds with a Cl radical at 298 K. ....................... 29

4-1 Relative intensities of fragmentation peaks in GC/MS spectra for PFBHA derivatives of MB oxidation products in both EI and CI modes. .......................... 36

Page 8: THE PHOTOOXIDATION OF 2-METHYL-2-BUTENE …ufdcimages.uflib.ufl.edu/UF/E0/04/26/40/00001/im_y.pdfTHE EFFECTS OF ACTIVE CHLORINES ON PHOTOOXIDATION OF 2-METHYL-2 ... effects on both

8

LIST OF FIGURES

Figure

page

2-1 The 2 m3 Teflon film photoirradiation indoor chamber and instruments used for studies of the effect of the Active chlorines on the MB oxidation. ......... 20

2-2 The molecular structures of O-(2,3,4,5,6-pentafluorobenzyl) hydroxyamine hydrochloride (PFBHA) derivatization. ................................................................ 21

2-3 The schematics of PFBHA derivatization process for carbonyl group of sample ................................................................................................................ 22

4-1 Time profiles of observed MB concentrations in Exps I, II, III, IV and V of Table 2-1 (empty dots for MB concentrations under the UV condition and dark dots for MB concentrations under the dark condition) and kinetic model simulation results (Solid line). .................................................................. 37

4-2 Reconstructed m/z = 181 ion chromatogram in the EI mode for PFBHA-carbonyl derivatives originated from MB oxidation with active chlorines ............ 38

4-3 Mass fragmentation spectra in the CI and the EI modes for PFBHA derivatives of major carbonyl products originated from MB photooxidation in the presence of active chlorines. .................................................................... 39

4-4 The time profiles of carbonyl products from the photooxidation of MB in the presence of active chlorines. The concentrations of experimentally observed carbonyl products were compared to those in kinetic model simulation ........................................................................................................... 40

4-5 The time profiles of experimentally observed O3 and NOx and MB are compared with kinetic model simulation: simulation with active chlorine (A) and simulation without active chlorine (B). ......................................................... 41

B-1 Irradiance spectrum of UV-visible lamps in the chamber. ................................... 83

B-2 Time profile experimental data and model simulation of NOx / NO2 / NO / O3 concentrations at low O2 condition in the Teflon bag under the controlled UV light .............................................................................................. 84

B-3 A flow chart for generation of photolysis rate files in Morpho. Square box denotes input files; ellipse, output files and rhombus, executable files. .............. 85

Page 9: THE PHOTOOXIDATION OF 2-METHYL-2-BUTENE …ufdcimages.uflib.ufl.edu/UF/E0/04/26/40/00001/im_y.pdfTHE EFFECTS OF ACTIVE CHLORINES ON PHOTOOXIDATION OF 2-METHYL-2 ... effects on both

9

LIST OF ABBREVIATIONS

ACN Acetonitrile

CCA Concentration of Active Chlorine

CI Chemical Ionization

Deriv. MW Molecular Weight of derivatized compound

EI Electron Impact

F(X) Substituent factor of function group, X in Structure-Reactivity-Relationship method

GC/ITMS Gas Chromatograph-Ion Trap Mass Spectrometer

i.d. inner diamter

IS Internal Standard

M Molecular Weight of derivatized product

MB 2-methyl-2-butene

MCM The Master Chemical Mechanism

MOxone Mass of Oxone in saline-Oxone aerosol

Msalt Mass of non-Oxone salt in saline-Oxone aerosol

MT-aerosol Total mass of aerosol

Mwater Mass of water in saline-Oxone aerosol

MW Molecular Weight

PFBHA O-(2,3,4,5,6-pentafluorobenzyl) hydroxyamine hydrochloride

RH Relative Humidity

RO2· Alkyl peroxy radical

RT Retention Time

SMPS Scanning mobility particle Sizer

SOA Secondary Organic Aerosol

SRR Structure-Reactivity-Relationship

VOC Volatile Organic Compound

Page 10: THE PHOTOOXIDATION OF 2-METHYL-2-BUTENE …ufdcimages.uflib.ufl.edu/UF/E0/04/26/40/00001/im_y.pdfTHE EFFECTS OF ACTIVE CHLORINES ON PHOTOOXIDATION OF 2-METHYL-2 ... effects on both

10

Vol. Conc. Volume Concentration of aerosol (nm3/cm3)

X Function group in Structure-Reactivity-Relationship method

Page 11: THE PHOTOOXIDATION OF 2-METHYL-2-BUTENE …ufdcimages.uflib.ufl.edu/UF/E0/04/26/40/00001/im_y.pdfTHE EFFECTS OF ACTIVE CHLORINES ON PHOTOOXIDATION OF 2-METHYL-2 ... effects on both

11

Abstract of Thesis Presented to the Graduate School of the University of Florida in Partial Fulfillment of the

Requirements for the Degree of Master of Engineering THE EFFECTS OF ACTIVE CHLORINES ON PHOTOOXIDATION OF 2-METHYL-

2-BUTENE

By

Yunseok Im

December 2010

Chair: Myoseon Jang Major: Environmental Engineering Sciences

Active chlorines comprising hypochlorite (OCl-), hypochlorous acid (HOCl) and

chlorine (Cl2) are the active constituents in bleach solution for a variety of industrial

and consumer applications. However, the strong oxidative reactivity of active

chlorine can cause adverse effects on both human health and the environment. In

this study, the aerosolized Oxone [2KHSO5 KHSO4 K2SO4] with saline solution has

been utilized to produce active chlorines (HOCl and Cl2). To investigate the impact

of active chlorines on volatile organic compound (VOC) oxidation, 2-Methyl-2-butene

(MB) as a surrogate VOC was photoirradiated in the presence of active chlorines

using a 2 m3 Teflon film indoor chamber. The resulting carbonyl products produced

from photooxidation of MB were derivatized with O-(2,3,4,5,6-pentafluorobenzyl)

hydroxyamine hydrochloride (PFBHA) and analyzed using gas chromatograph-ion

trap mass spectroscopy (GC/ITMS). The photooxidation of MB in the presence of

active chlorines was simulated with an explicit kinetic model using a chemical solver

(Morpho) which included both a Master Chemical Mechanism (MCM) and Cl radical

reactions. The reaction rate constants of a Cl radical with MB and its oxidized

products were estimated using Structure-Reactivity Relationship method. Under

the dark condition no effect of active chlorines on MB oxidation appears, whereas

Page 12: THE PHOTOOXIDATION OF 2-METHYL-2-BUTENE …ufdcimages.uflib.ufl.edu/UF/E0/04/26/40/00001/im_y.pdfTHE EFFECTS OF ACTIVE CHLORINES ON PHOTOOXIDATION OF 2-METHYL-2 ... effects on both

12

under the UV condition rapid MB oxidation was observed due to active chlorines.

The model simulation agrees with chamber data showing rapid production of

oxygenated products that are characterized using a GC/ITMS. Ozone formation

was enhanced when MB was oxidized in the presence of active chlorines under high

NOx concentration.

Page 13: THE PHOTOOXIDATION OF 2-METHYL-2-BUTENE …ufdcimages.uflib.ufl.edu/UF/E0/04/26/40/00001/im_y.pdfTHE EFFECTS OF ACTIVE CHLORINES ON PHOTOOXIDATION OF 2-METHYL-2 ... effects on both

13

CHAPTER 1 INTRODUCTION

Active chlorines—hypochlorite (OCl-), hypochlorous acid (HOCl) and chlorine

gas (Cl2)—have been commonly used for a variety of industrial and consumer

application such as household bleach [usually 3~6% NaOCl solution] (Odabasi,

2008), oxidizer in swimming pools, and a disinfectant in water purification or waste

water treatment plants (Bellar et al., 1974). However, due to their strong reactivity,

active chlorines as directly harm human respiratory systems through inhalation

(Winder, 2000) and indirectly affect health by producing secondary harmful pollutants

that are recognized as carcinogens, toxicants, or irritants (Nazaroff et al., 2004)

through reaction with ambient volatile organic compounds (VOCs).

The active chlorine species (HOCl and Cl2) produced in either aqueous solution

or aerosolized particles can quickly evaporated into the air (Jang et al., 2010) and

produce highly reactive radicals such as OH and Cl radicals through direct photolysis.

HOCl + hν → ·OH + Cl · eq. 1

Cl2 + hν → 2Cl· eq. 2

Such reactive radicals can react with atmospheric VOCs in the gas phase and

produce a variety of oxygenated organic products. It has also been recognized that

multifunctional oxygenated products such as α,β-unsaturated carbonyls and α-

oxocarbonyls can cause health effects (Pope et al., 2006, Davidson et al., 2005).

The impact of active chlorines on atmospheric environment has been poorly

understood, although the consumption of chlorine oxidants has enormously

increased due to decontamination of unwanted chemicals and harmful biosystems

such as bacteria and virus. Only a few studies have shown the impact of chlorine

oxidants on indoor air quality. For example, Odabasi (2008) reported the production

of halogenated VOCs such as chloroform and carbon tetrachloride from the

Page 14: THE PHOTOOXIDATION OF 2-METHYL-2-BUTENE …ufdcimages.uflib.ufl.edu/UF/E0/04/26/40/00001/im_y.pdfTHE EFFECTS OF ACTIVE CHLORINES ON PHOTOOXIDATION OF 2-METHYL-2 ... effects on both

14

application of chlorine bleach in house cleaning due to the reaction of active

chlorines and organic matter on contaminated surfaces.

In this study, the impact of active chlorine species on the atmospheric

environment was evaluated using a 2 m3 indoor Teflon film chamber. The internally

mixed Oxone [2KHSO5, KHSO4, K2SO4] with saline solution has been aerosolized

into the chamber to produce active chlorines (Jang et al., 2010). The particle

concentration of saline Oxone aerosol that is measured with a scanning mobility

particle sizer (SMPS) (TSI, Model 3080) enables the estimation of possible amounts

of active chlorines in the air. 2-methyl-2-butene (MB) was chosen as a surrogate

VOC since MB is a simple five-carbon alkene that produces mostly gas-phase

oxygenated products without secondary organic aerosol (SOA) formation (Cao et al.,

2007). MB also yields high OH radical production when MB reacts with ozone.

Among branched alkenes originated from gasoline automobile combustion, MB is the

most abundant (Schauer et al., 2002). The resulting oxygenated products were

also analyzed using a gas chromatograph-ion trap mass spectrometer (GC-ITMS).

The observed MB decay, ozone production, and analyzed oxygenated products were

simulated using the explicit chemical mechanisms.

Page 15: THE PHOTOOXIDATION OF 2-METHYL-2-BUTENE …ufdcimages.uflib.ufl.edu/UF/E0/04/26/40/00001/im_y.pdfTHE EFFECTS OF ACTIVE CHLORINES ON PHOTOOXIDATION OF 2-METHYL-2 ... effects on both

15

CHAPTER 2 EXPERIMENTS

2.1. Teflon Film Indoor Chamber Experiments

The photochemical reaction of MB in the presence of active chlorines was

conducted using a 2 m3 indoor Teflon chamber. The Chamber was surrounded by

16 fluorescent lamps (Solarc Systems Inc., FS40T12/UVB, UVA340, UVA351, and

TL40W/03RS) that are controlled by switching “on/off” (Figure. 2-1). Prior to

experiments, the chamber was flushed with the clean air from two clean air

generators (Aadco Model 737, Rckville, MD; Whatman Model 75-52, Haverhill, MA)

in parallel.

As a source of active chlorines, the Oxone aerosol mixed with saline was used

because the concentrations of active chlorines in the gas phase can be easily

manipulated and estimated from SMPS particle concentration data. The chemical

compositions of oxidant aqueous solution to produce saline-Oxone aerosol are

shown in Table 2-1. The amount of gas-phase active chlorines was estimated from

SMPS data, oxidant aerosol density, and the water mass fraction of oxidant aerosol

with the assumption that active chlorines originated from the oxidant aerosol were

predominantly present in the gas phase (Jang et al., 2010) (see “3.2 Active chlorine

formation in saline-Oxone aerosol”).

The chamber experiment begins with injection of about 400 ppb of MB into the

chamber using a T-shaped stainless tube under clean air streams. Approximately 3

ppm of carbon tetrachloride (CCl4) was added to the chamber as a non-reactive

tracer (Demore et al., 1997, Huybrechts et al., 1996) to account for dilution. Both

MB and CCl4 concentrations were monitored using a HP-5890 GC-FID with a DB5

fused silica capillary column (15 m, 0.53 mm i.d., 1.5 μm thickness, J & W Scientific

INC., Cat# 1255012). The GC oven temperature was fixed at 50 °C. The flow rate

Page 16: THE PHOTOOXIDATION OF 2-METHYL-2-BUTENE …ufdcimages.uflib.ufl.edu/UF/E0/04/26/40/00001/im_y.pdfTHE EFFECTS OF ACTIVE CHLORINES ON PHOTOOXIDATION OF 2-METHYL-2 ... effects on both

16

of a carrier gas (nitrogen) was 10.0 mL/min. After concentration of MB was stabilized,

UV-Visible lamps were turned on for photoirradiation. T hen, the mixture made of

1 % saline (sea salt, Sigma-Aldrich) and 2 % Oxone (Potassium monopersulfate

triple salt, ≥ 47 % KHSO5 basis, Sigma-Aldrich) aqueous solutions was atomized into

the chamber using a medical nebulizer (LC STAR, Pari Respiratory Equipment, Inc.,

Midlothian, VA) (Table 2-1). The particle concentration was monitored with a SMPS

(TSI, Model 3080) integrated with a condensation nuclei counter (TSI, Model 3025A

and Model 3022). The sampling flow of SMPS was 0.3 L/min with a sheath airflow

rate at 2 L/min. NOx and ozone concentrations were monitored with

Chemoluminescence NO/NO2 analyzer (Teledyne, model 200E) and photometric

ozone analyzer (Teledyne, model 400E), respectively. Temperature and relative

humidity (RH) were measured with an electronic thermohygrometer (Dwyer Series

485).

To characterize the products from MB oxidation, the chamber air was sampled

every 25 min (20 minutes sampling, 5 minutes preparing) for 2.5 hours (total of 6

samples) with a flow rate of 1.0 L/min using an impinger that contained 12 mL of

acetonitrile (Aldrich). To collect gas products without oxidant particles, the Teflon

coated borosilicate filter (PALL Membrane, 47 mm) was installed upstream of the

impinger. Prior to each photoirradiation experiment, the chamber background air

was analyzed for potential contamination.

2.2. MB Oxidation Product Analysis

The c arbonyl pr oducts of i mpinger s amples w ere d erivatized by O -(2,3,4,5,

6-pentafluorobenzyl) hydroxyamine hy drochloride ( PFBHA) ( Le Lacheur et al., 1

993; Y u et al ., 1995; J ang et al., 2001) (Figure 2-2). Figure 2-3 summarized the

derivatization procedure. For each 10 mL of impinger sample, 10 μL of bornyl

Page 17: THE PHOTOOXIDATION OF 2-METHYL-2-BUTENE …ufdcimages.uflib.ufl.edu/UF/E0/04/26/40/00001/im_y.pdfTHE EFFECTS OF ACTIVE CHLORINES ON PHOTOOXIDATION OF 2-METHYL-2 ... effects on both

17

acetate (2.5 mg/mL in methylene chloride) as an internal standard was added.

Then, 6 μL of PFBHA reagent (60 mg/mL in water) was added to the sample, mixed

with a vortex mixer, and sonicated for 30 minutes. The resulting solution stood at

60 °C for 12 hours for further completion of derivatization reaction. Then, three

drops of sulfuric acid (98 %) were added to the solution to eliminate the unreacted

PFBHA reagent in the reaction solution. After adding 7 mL of water, the reaction

solution was extracted with 1 mL of hexane three times. Extracts were dried using

anhydrous magnesium sulfate (MgSO4) powder and concentrated to 0.5 mL using

the gentle stream of the clean air.

PFBHA-carbonyl derivatives were analyzed using a GC/ITMS (VARIAN, CP-

3800 GC, Saturn 2200) in the on-column mode associated with an auto injector

(Varian 7800). The GC was performed on a 30 m × 0.25 mm i.d. HP-5MS capillary

column (0.25 μm film thickness). The temperature program for the GC column was

60 °C for 0.5 min, 60~100 °C at 8 °C/min, and hold for 2.5 min at 100 °C,

100~280 °C at 10 °C/min, and hold for 8 min at 280 °C. Helium was used as GC

carrier gas at 1.9 mL/min. Mass spectrometry employed both the chemical

ionization (CI) mode with acetonitrile and the electron impact (EI) mode, over a mass

range of 50~650 amu. The sample injector onto GC-ITMS was operated by the on-

column mode with temperature program (60 °C for 0.1 min, 60~250 °C at 150 °C/min,

and hold for 10 min at 250 °C).

For the product quantification, four levels of external standard solution

containing seven different carbonyl compounds (citral, hexanal, octyl aldehyde,

trans-2-hexenal, Acrolein, methacrolein and trans-2-methyl-2-butenal) in acetonitrile

were used. Calibration standard solutions were also derivatized using the PFBHA

derivatization method and analyzed in the same way with the analysis of sample

Page 18: THE PHOTOOXIDATION OF 2-METHYL-2-BUTENE …ufdcimages.uflib.ufl.edu/UF/E0/04/26/40/00001/im_y.pdfTHE EFFECTS OF ACTIVE CHLORINES ON PHOTOOXIDATION OF 2-METHYL-2 ... effects on both

18

analytes described above. The area of the 181 amu fragment peak of product-

derivatives, which is a characteristic fragment peak of PFBHA derivatives, was

normalized by the area of the 95 amu fragment peak associated with an internal

standard (bornyl acetate) in electron impact (EI) mode. Using the normalized 181

peak area, calibration curves were obtained (R2 ≥ 0.995).

Page 19: THE PHOTOOXIDATION OF 2-METHYL-2-BUTENE …ufdcimages.uflib.ufl.edu/UF/E0/04/26/40/00001/im_y.pdfTHE EFFECTS OF ACTIVE CHLORINES ON PHOTOOXIDATION OF 2-METHYL-2 ... effects on both

19

Table 2-1. Experimental conditions for MB photolysis in the presence of the internally mixed saline-Oxone aerosola.

Exp Aerosol composition b RH (%)

initial MB Conc. ( ppb)

Initial NOx (ppb)

Aerosol Vol. Conc. (nm3/cm3)

MWaterc

(mg/m3) MOxone

d

(mg/m3) CCl

e

(ppb)

I Saline:Oxone (1:2) 15.5 361

≤ 3f

1.1 x1012 0.278 0.621 49.4

II Saline:Oxone (1:4) 9.0 408 1.6 x1012 0.405 1.162 86.2

III Saline:Oxone (1:6) 13.0 347 1.1 x1012 0.278 0.798 63.5

IV Saline:Oxone:Phosphate (1:2:4) 9.0 380 8.7 x1011 0.086 0.249 19.8

V Saline:Oxone (1:2) 14.2 332 7.2 x1011 0.182 0.407 32.3

VI Saline:Oxone (1:2) 27.0 15 26 5.7 x1011 0.179 0.299 23.7

a. experimental temperature: 304K-305K, b. The Saline is 1 % (W/V), Oxone is 2 % (W/V) and the phosphate buffer is 2% (W/V) aqueous solution, c. The mass of water in oxidant aerosol (eq. 13). D. The mass of Oxone in oxidant aerosol (eq. 13), e. The calculated c oncentration of ac tive c hlorines i n t he c hamber ai r, f . In t he m odel simulation, t he c oncentrations of bot h N O and N O2 were set at 1. 5 ppb f or experiments I-V (NOx ≤ 3 ppb).

Page 20: THE PHOTOOXIDATION OF 2-METHYL-2-BUTENE …ufdcimages.uflib.ufl.edu/UF/E0/04/26/40/00001/im_y.pdfTHE EFFECTS OF ACTIVE CHLORINES ON PHOTOOXIDATION OF 2-METHYL-2 ... effects on both

20

Figure 2-1. The 2 m3 Teflon film photoirradiation indoor chamber and instruments

used for studies of the effect of the Active chlorines on the MB oxidation.

Page 21: THE PHOTOOXIDATION OF 2-METHYL-2-BUTENE …ufdcimages.uflib.ufl.edu/UF/E0/04/26/40/00001/im_y.pdfTHE EFFECTS OF ACTIVE CHLORINES ON PHOTOOXIDATION OF 2-METHYL-2 ... effects on both

21

Figure 2-2. The molecular structures of O-(2,3,4,5,6-pentafluorobenzyl)

hydroxyamine hydrochloride (PFBHA) derivatization.

Page 22: THE PHOTOOXIDATION OF 2-METHYL-2-BUTENE …ufdcimages.uflib.ufl.edu/UF/E0/04/26/40/00001/im_y.pdfTHE EFFECTS OF ACTIVE CHLORINES ON PHOTOOXIDATION OF 2-METHYL-2 ... effects on both

22

Figure 2-3. The schematics of PFBHA derivatization process for carbonyl group of

sample. a. ACN:acetonitlile

Page 23: THE PHOTOOXIDATION OF 2-METHYL-2-BUTENE …ufdcimages.uflib.ufl.edu/UF/E0/04/26/40/00001/im_y.pdfTHE EFFECTS OF ACTIVE CHLORINES ON PHOTOOXIDATION OF 2-METHYL-2 ... effects on both

23

CHAPTER 3 MODELING STUDY

3.1. Determination of Mechanism and Reaction Rate Constants

Photooxidation of MB with radicals (·OH and Cl·) produced from photolysis of

active chlorines (eq. 1 and eq. 2) was simulated with the explicit kinetic mechanisms

integrated with a chemical solver, Morpho (Jeffries et al., 1998). The simulation

results were compared to experimentally observed MB decay and identified products.

In this study, the explicit gas-phase reaction mechanisms of MB with atmospheric

common oxidant radicals such as OH and ozone in the presence of NOx were

constructed using the MCM (Jenkin et al., 2003), and the reaction constants of a

variety of MB oxidation products with Cl radicals were calculated with the Structure-

Reactivity Relationship (SRR) method (Atkinson et al., 1997, Kwok et al., 1995,

Jenkin et al., 1997). For example, in the SRR method, rate constants of organic

compounds with a Cl radical are estimated based on group rate constants and the

neighboring substituent group as shown below,

k(CH3-X) = kprimF(X) eq. 3

k(X-CH2-Y) = ksecF(X) F(Y) eq. 4

k(X-CH<Y, Z) = ktertF(X) F(Y) F(Z) eq. 5

in which kprim, ksec, and ktert are the rate constants of -CH3, -CH2-, -CH< groups,

respectively. X, Y, and Z are substituent functional groups. F(X), F(Y), and F(Z)

are the substituent factors for X, Y, Z substituent groups.

However, the original SRR method proposed by Atkinson (1997) for Cl radical

reactions includes only the H-atom abstraction of alkanes with limited number of

substitute factors. To determine the rate constants for both Cl abstraction reactions

of a variety of substituted alkanes and the Cl radical addition to different alkenes, a

substituent factor, F(x) is used in a manner analogous to Atkinson (1985)’s method.

Page 24: THE PHOTOOXIDATION OF 2-METHYL-2-BUTENE …ufdcimages.uflib.ufl.edu/UF/E0/04/26/40/00001/im_y.pdfTHE EFFECTS OF ACTIVE CHLORINES ON PHOTOOXIDATION OF 2-METHYL-2 ... effects on both

24

F(x) factors of a variety of functional group and their effects on neighboring functional

groups are semiempirically determined using the 119 Cl radical reaction rate

constants known in literatures (Tables 3-1, 3-2 and 3-3). For Cl addition reaction

rate constants, the SRR method of this study begins with 14 simple alkenes without

any substituent groups. After determining addition reaction rate constants of alkene

groups, F(x) factors as effect of substituents on the reactions of alkene with Cl

radicals are determined. The F(x) value of each functional group other than

alkanes and alkenes is determined using a subset of organic compounds. For

example, both the rate constant of a carbonyl group (=O, -CHO) and its F(x) factor

on the neighboring group next to an aldehyde group for the hydrogen abstraction by

the Cl radical are determined using seven aliphatic aldehydes known for reaction

rate constants.

Table 3-3 shows the literature values of Cl radical reaction rate constants of 119

compounds used in this study, and compared to rate constants predicted using the

SRR method. The good linearity appears between literature values and SRR

predicted values (R2 = 0.89). Some group rate constants and F(x) factors were

derived using insufficient data set (less than 4 data points, see the number of

compounds in Tables 3-1 and 3-2) due to the lack of literature data and requires

improvement when more Cl reaction rate constants are available in the future.

The rate constants for most alkanes and alkenes are estimated at 298 K using

the SRR method. The rate constants estimated at 298 K are also applied to other

temperatures within the ambient temperature range (Atkinson, 1997 and references

in Table 3-3). The resulting group rate constants and F(x) values in Tables 3-1 and 3-

2 were used to predict rate constants for Cl radical reactions of variety of MB

oxidized compounds used in MCM.

Page 25: THE PHOTOOXIDATION OF 2-METHYL-2-BUTENE …ufdcimages.uflib.ufl.edu/UF/E0/04/26/40/00001/im_y.pdfTHE EFFECTS OF ACTIVE CHLORINES ON PHOTOOXIDATION OF 2-METHYL-2 ... effects on both

25

3.2. Active Chlorine Formation in Saline-Oxone Aerosol

For the calculation of the amount of available active chlorines in the gas phase,

it was assumed that all monopersulfate (HSO5-) in Oxone reacts with excess

amounts of chlorine ion associated with saline and produces active chlorines

(equations 6–12).

HSO5- + H2O ↔ SO5

2- + H3O+ (pKa = 9.4) eq. 6

HSO5- + Cl- → H+ + OCl- + SO4

2- eq. 7

HOCl ↔ OCl- + H+ (pKa = 7.5 at 25 °C) eq. 8

HOCl + Cl- + H+ ↔ Cl2 + H2O eq. 9

NaCl + HOCl → Cl2 + NaOH eq. 10

HOCl (p) ↔ HOCl (g) eq. 11

Cl2 (p) ↔ Cl2 (g) eq. 12

The amount of active chlorines produced from saline-Oxone aerosol was

calculated based on the Oxone mass (MOxone) aerosolized into the chamber. The

MOxone in the saline-Oxone aerosol was calculated based on a mass balance by

subtracting the aerosol water mass (Mwater) and the mass of non-Oxone salts (Msalts)

from the total aerosol mass (MT-aerosol).

MOxone = MT-aerosol – Mwater – Msalts eq 13

The MT-aerosol is calculated with the aerosol density (1.1 g/cm3) (Jang et al.,

2010), and the aerosol volume concentration in the chamber, which is measured by

SMPS. Mwater in aerosol was calculated using the water mass fraction of saline-

Oxone aerosol at a given RH, which has been reported in the recent study by Jang

et al. (2010). For example, the water mass fractions are 0.23 and 0.09 for saline-

Oxone aerosol and phosphate buffered saline-Oxone aerosol at RH=10%,

respectively. Msalts is estimated from the mass fraction of saline and phosphate of

Page 26: THE PHOTOOXIDATION OF 2-METHYL-2-BUTENE …ufdcimages.uflib.ufl.edu/UF/E0/04/26/40/00001/im_y.pdfTHE EFFECTS OF ACTIVE CHLORINES ON PHOTOOXIDATION OF 2-METHYL-2 ... effects on both

26

the total aerosol mass based on the mixing ratio of Oxone, saline and phosphate

buffer in the aqueous solution (Table 2-1).

3.3. Simulation

The photolysis rates of inorganic species and organic compounds were

calculated from the cross sectional area of the molecule, the quantum yield of each

photolysis mechanism at a given molecule and the light intensity at given light source

used for the indoor chamber experiment. The irradiance spectrum of the light

source inside the photoirradiation chamber was determined using the NO2 photolysis

experiment at given NO2 and oxygen concentrations. For photooxidation of base

gases inside the chamber, methane (1.8 ppm), formaldehyde (18 ppb) and

acetaldehyde (6 ppb) were included in the model simulation.

Page 27: THE PHOTOOXIDATION OF 2-METHYL-2-BUTENE …ufdcimages.uflib.ufl.edu/UF/E0/04/26/40/00001/im_y.pdfTHE EFFECTS OF ACTIVE CHLORINES ON PHOTOOXIDATION OF 2-METHYL-2 ... effects on both

27

Table 3-1. Group rate constants for H-atom abstraction by Cl radical with substituent

factors F(X) at 298 K

Group 1010 × k (298 K) (cm3 molecule-1s-1)

# of Comp.a

-CH3 0.35b n.ac -CH2- 0.93b n.ac >CH- 0.68b n.ac O-H 0.0 14 OO-H 0.44 2

Substituent X Factor F(X) # of Comp.a

-CH3 1.00b n.ac

-CH2- 0.79b n.ac >CH- 0.79b n.ac >C< 0.79b n.ac >C=C< 0.89 12 =O 1.40 7 -CHO 0.19 6 -CO- 0.06 8 -OH 0.51 10 -OOH 0.39 1 -C(O)OH 0.0008 1 -Cl 0.08 9 -CHClx- 0.124 10 -C-ONO2 0.06 18 -O-NO2 0.03 18 -NO2 0.00 4 -C-NO2 0.00 4 a. the number of literature rate constants to obtain the group rate constant or factor, b. from Atkinson (1997), c. n.a: not applicable.

Page 28: THE PHOTOOXIDATION OF 2-METHYL-2-BUTENE …ufdcimages.uflib.ufl.edu/UF/E0/04/26/40/00001/im_y.pdfTHE EFFECTS OF ACTIVE CHLORINES ON PHOTOOXIDATION OF 2-METHYL-2 ... effects on both

28

Table 3-2. Group rate constants for Cl radical addition and substituent factors F(X) at

298 K

Group 1010 × k (298 K) (cm3 molecule-1 s-1)

# of Compa.

CH2=CH- 2.16 7 CH2=C< 2.22 4 cis -CH=CH- 2.53 1 trans -CH=CH- 2.98 2 -CH=C< 3.06 1

substituent X factor F(X) # of Compa.

-CH3 1.00 n.ab

-CH2- 1.00 n.ab >CH- 1.00 n.ab >C< 1.00 n.ab >C=C< 1.00 n.ab -CHO 0.23 7 -CO- 0.93 2 -Cl 0.59 13 -CHClx- 1.00 4 -C(O)OH 0.11 1 a. the number of literature rate constants to obtain the group rate constant or factor, b. n.a: not applicable.

Page 29: THE PHOTOOXIDATION OF 2-METHYL-2-BUTENE …ufdcimages.uflib.ufl.edu/UF/E0/04/26/40/00001/im_y.pdfTHE EFFECTS OF ACTIVE CHLORINES ON PHOTOOXIDATION OF 2-METHYL-2 ... effects on both

29

Table 3-3. The comparison of reference values and SRR estimations for the reaction

rate constants of organic compounds with a Cl radical at 298 K

Compound 1010 x k (298K) (cm3 molecule-1 s-1) Compound

1010 x k (298K) (cm3 molecule-1 s-1)

Reference Estimation Reference Estimation Ethane 0.59a 0.7 1-Methylpentyl ester nitric acid 2.84t 2.26 Propane 1.37a 1.48 2-Nitrooxy-1-propanol 0.42v 0.07 n-Butane 2.18a 2.02 1-Nitrooxy-2-propanol 0.45v 0.32 i-Butane 1.43a 1.51 2-Nitrooxy-1-Butanol 0.98v 0.38 Pentane 2.80a 2.60 1-Nitrooxy-2-Butanol 0.87v 1.25 Hexnae 3.40a 3.18 3-Nitrooxy-1-Butanol 1.39v 0.33 Heptane 3.90a 3.76 4-Nitrooxy-2-Butanol 1.40v 0.62 Octane 4.60a 4.34 4-Nitrooxy-1-Butanol 1.82v 1.18 Nonane 4.80a 4.92 2-Nitrooxy-1-Pentanol 1.59v 1.64 Decane 5.50a 5.50 1-Nitrooxy-2-Pentanol 1.25v 1.63 Propene 2.50b 2.44 4-Nitrooxy-1-Pentanol 1.56v 1.55 1-Butene 3.00c 3.23 5-Nitrooxy-2-Pentanol 2.05v 1.71 i-Butene 3.38d 2.75 6-Nitrooxy-1-Hexanol 2.44v 2.18 cis-2-Butene 3.13e 3.12 Ethyl chloride 0.119w 0.115 trans-2-Butene 3.58e 3.57 1-Chloro-propane 0.535w 0.448 1-Pentene 3.97d 3.71 2-Chloro-propane 0.201w 0.139 2-Methyl-2-butene 3.95d 3.94 1,3-Dichloro-propane 0.11x 0.13 3-Methyl-1-butene 3.29d 3.29 1-Chloro-butane 1.11w 1.16 2-Methyl-1-butene 3.58d 3.58 2-Chloro-butane 0.687w 0.477 Isoprene 4.60f 4.60 2-Chloro-2-methyl-propane 0.13x 0.13 3-Methylene-pentane 3.89d 4.37 1-Chloro-pentane 1.59w 1.74 4-Methyl-2-pentene 4.11d 4.53 1,1,2,3-Tetrachloro-propane 0.0093y 0.0100 3-Methyl-1-pentene 3.85e 4.10 1,2,3-Trichloro-propane 0.0186y 0.0186 2-Methyl-1-propene 3.38e 2.86 1,3-Dichloro-1-propene 1.67y 1.68 Propanal 1.20g 1.20 2,3-Dichloro-1-propene 1.46y 1.30 Butanal 1.38h 1.90 tras-1-Chloro-1-propene 1.79z 2.09 Methylpropanal 1.70i 1.43 2,3-Dichloro-1-propene 1.15z 1.30 Pentanal 2.56j 2.48 3-Chloro-1-propene 2.49z 2.68 Hexnanal 2.88j 3.06 2-Chloro-1,3-butadiene 3.62z 3.40 Heptanal 3.00j 3.64 cis-1-chloro-1-propene 1.49z 1.83 2,2-Dimethylpropanal 1.58i 1.58 Chloroethene 1.46z 1.26 2-Butanone 0.357k 0.353 1-Chloro-2-butene 2.5aa 2.81 3-Pentanone 0.757k 0.665 trans-1,2-Dichloro-ethene 0.932z 1.03 3-Hexanone 1.43l 1.39 cis-1,2-Dichloro-ethene 0.918z 0.87 2-Hexanone 1.88l 1.66 2-Chloro-1-propene 2.32z 1.62 2-Pentanone 1.11l 1.076 3-Chloro-2-(chloromethyl)-1-propene 2.41z 2.30 5-Methyl-2-hexanone 1.549m 1.736 1,1-Dichloro-ethene 1.25ab 0.75 Methyl isobutyl ketone 0.845m 1.155 2-Methyl-3-buten-2-ol 3.30ah 2.68 3-Methyl-2-butanone 0.436m 0.606 2-Buten-1-ol 3.158ac 3.254 Ethanol 0.96n 0.75 3-Methyl-2-buten-1-ol 4.034ac 4.184 Propanol 1.5n 1.39 2-Methyl-2-propen-1-ol 1.785ac 2.984 i-Propanol 0.828o 0.900 2-Propen-1-ol 0.63ad 2.60 n-Butanol 1.966p 1.966 2-Propenal 1.4ae 1.34 2-Butanol 1.32q 1.56 trans-2-Butenl 2.58i 1.84 i-Butanol 1.82r 1.47 2-Methyl-2-propenal 2.35c 1.66

Page 30: THE PHOTOOXIDATION OF 2-METHYL-2-BUTENE …ufdcimages.uflib.ufl.edu/UF/E0/04/26/40/00001/im_y.pdfTHE EFFECTS OF ACTIVE CHLORINES ON PHOTOOXIDATION OF 2-METHYL-2 ... effects on both

30

Table 3-3. Continued

Compound 1010 x k (298K) (cm3 molecule-1 s-1) Compound

1010 x k (298K) (cm3 molecule-1 s-1)

Reference Estimation Reference Estimation t-Butanol 0.34r 0.83 trans-2-Pentenal 1.31j 2.63 1-Pentanol 2.58r 2.55 trans-2-Hexenal 1.92j 3.19 3-Pentanol 2.01s 2.24 trans-2-Heptenal 2.4j 3.8 2-Pentanol 2.18q 2.42 Methyl vinyl ketone 2.0c 2.0 2,3-Dimethyl-2-butanol 1.03q 1.64 1,3-Dichloro-2-propanone 0.0055y 0.0086 3-Methyl-1-butanol 2.37r 2.05 3-Chloro-2-butanone 0.056i 0.068 2-Methyl-2-butanol 0.70q 1.56 Chloromethyl vinyl ketone 2.0aa 2.0 3-Methyl-2-butanol 1.17q 1.64 4-Chlorocrotonaldehyde 1.6aa 1.7 Ethyl ester-nitric acid 0.047a 0.047 1-Chloro-2-propanone 0.035af 0.025 1-Methylethyl ester-nitric acid 0.058a 0.058 Chloro-acetaldehyde 0.163ag 0.106 Propyl ester-nitric acid 0.271a 0.354 2-Chloro-ethanol 0.301ai 0.115 1-Methylpropyl ester-nitric acid 1.000t 1.047 Acetic acid 0.0003n 0.0003 Butyl-nitrate 0.923u 1.077 2-Propenoic acid 0.24ad 0.23 Pentyl ester-nitric acid 1.57u 1.66 Methyl peroxide 0.57aj 0.58 Ethyl hydroperoxide 1.07aj 1.08 a. A tkinson ( 1997), b . K aiser et al. ( 1996), c. O rlando et al . ( 2003), d. E zell et al . (2002), e. Kaiser et al. (2007) , f. Ragains et al. (1997) , g. Atkinson et al. (2001), h. Cuevas et al. (2006), i. Theven et al. (2000), j. Rodriguez et al. (2005), k. Zhao et al. (2008), l . Taketani et al. (2006), m. Albaladejo et al. (2003), n. Finlayson-Pitts et al. (2000), o. Yamanaka et al. (2007), p. Nelson et al. (1990), q. Ballesteros et al. (2007), r. Wu et al. (2003), s. Hurley et al. (2008), t. Wallington et al. (1990A), u. Nielsen et al. (1991), v. Treves et al. (2002), w. Wallington et al. (1989A), x. Donaghy et al. (1993), y. V oicu et al . ( 2001), z . G rosjean et al . ( 1992), a a. Wang et al . ( 2002), ab. Kleindienst et al . (1989), ac . Rodriguez et al . (2008), ad. A randa et al . (2003), ae. Canosa-Mas et al . ( 2001), af . Notario et al. ( 2000), ag. W ang et al . (2005), ah . Ferronato et al . ( 1998), ai . Wallington et al. ( 1990B), aj . Wallington et al . ( 1989B), Temperature: (i, l, v: 296K), (r, t, w, y, ai, aj: 295K), (x: 306K).

Page 31: THE PHOTOOXIDATION OF 2-METHYL-2-BUTENE …ufdcimages.uflib.ufl.edu/UF/E0/04/26/40/00001/im_y.pdfTHE EFFECTS OF ACTIVE CHLORINES ON PHOTOOXIDATION OF 2-METHYL-2 ... effects on both

31

CHAPTER 4 RESULTS AND DISCUSSION

4.1. Effect of Active Chlorines on MB Oxidation

4.1.1. MB with Active Chlorines under the Dark Condition

To evaluate possible dark reactions of active chlorines with MB, saline-Oxone

aerosol was introduced into the chamber in the presence of MB with the light source

off. Fi gure 4-1E shows the time profile of MB concentrations both with and without

active chlorines in different light condition. After injection of active chlorines (100

min), no decay of MB was observed as shown in Figure 4-1E indicating that dark

reactions—if present—are insignificant.

4.1.2. Effect of Active Chlorines on MB Oxidation under the UV Condition

MB is photochemically stable under the ambient sunlight and our light source

because it absorbs no light for wavelengths higher than 290 nm (Zepp et al., 1977).

The spectral output of the UV-Visible lights in the chamber ranges from 290 to 1000

nm. When the MB was photoirradiated under the NOx condition without active

chlorines, MB can also be gradually decayed shown in Figure 4-1 due to the

reactions of MB with ozone and an OH radical, which are produced from a NOx

photochemical cycle (Equations 14-20).

NO2 + hv → NO + O(3P) eq. 14

NO + RO 2· → RO· + NO2 eq. 15

O(3P) + O2 + M → O3 + M eq. 16

O3 + hv → O2 + O (1D) eq. 17

O(1D) + H 2O → 2 ·OH eq. 18

MB + O 3 → Products eq. 19

MB + ·OH → Products eq. 20

Page 32: THE PHOTOOXIDATION OF 2-METHYL-2-BUTENE …ufdcimages.uflib.ufl.edu/UF/E0/04/26/40/00001/im_y.pdfTHE EFFECTS OF ACTIVE CHLORINES ON PHOTOOXIDATION OF 2-METHYL-2 ... effects on both

32

Although the chamber is flushed with the clean air prior to each chamber

experiment, the presence of a small amount of NOx (≤ 3 ppb) inside the chamber is

inevitable due to diffusion. For the model simulation of experiments I-V (NOx ≤ 3

ppb in Table 2-1) of this study, the initial concentrations of both NO and NO2 were

set at 1.5 ppb.

After injection of saline-Oxone aerosol, a rapid decay of MB has been observed

under the light condition (A-D in Figure 4-1) due to the MB reaction with the radicals

(e.g.,·OH and Cl·) originated from photolysis of active chlorines (Equations 1 and 2).

The simulation using the explicit kinetic model also accords with the experimentally

observed MB decay as shown in Figure 4-1.

Table 2-1 shows amounts of active chlorines present in chamber experiments,

which were calculated based on aerosol composition and SMPS particle

concentrations (see section 3.2. “Active chlorine formation in saline-Oxone aerosol”).

With the higher Oxone mass in aerosol composition at given aerosol mass and RH,

the greater amount of active chlorines appears in the chamber air and consequently

higher MB decay is observed. The model simulations also agree with experimental

results: II > III > I > IV in Table 2-1 and Figure 4-1. The distribution ratio of HOCl

to Cl2 evaluated from saline-Oxone aerosol to in the gas phase is currently unknown

due to the lack of either direct measurement methods or solvent extraction, which

leads the thermodynamic redistribution among chemical species in aqueous sample

(eqs 8-12). In this study, the HOCl to Cl2 ratio was determined by fitting the

simulation to experimentally observed MB decay using four chamber experimental

data (I-IV in Table 2-1). The resulting HOCl to Cl2 ratio is 57:43.

A buffer such as sodium bicarbonate has often been used to control the

distribution of HOCl and OCl- in aqueous chemistry to increase the capability of

Page 33: THE PHOTOOXIDATION OF 2-METHYL-2-BUTENE …ufdcimages.uflib.ufl.edu/UF/E0/04/26/40/00001/im_y.pdfTHE EFFECTS OF ACTIVE CHLORINES ON PHOTOOXIDATION OF 2-METHYL-2 ... effects on both

33

active chlorines (Delcomyn et al., 2006). In the aqueous chemistry of active

chlorine, the fraction of HOCl in total active chlorines (HOCl + OCl-) in the presence

of weak base buffer such as phosphate or carbonate buffer is smaller than those in

the absence of buffer. However, with the phosphate buffer (experiment IV in Table

2-1 and Figure 4-1D), no suppression of active chlorine formation from the oxidant

aerosol was observed. This result is consistent with the previous study (Jang et al.,

2010) which shows insignificant effect of phosphate buffer on suppressing the

formation of active chlorines in saline-Oxone aerosol.

4.2. Oxygenated Products from MB Photooxidation

In this study, PFBHA derivatization of a carbonyl group was chosen because

many MB oxygenated products are expected to contain a carbonyl group (Grosjean,

1990). In addition, PFBHA derivatization helps to tentatively identify a molecular

structure due to the characteristic fragmentation patterns of carbonyl derivative

compounds. For example, the 181 fragmentation peak in GC/MS spectra with the

EI mode is unique for PFBHA-derivative compounds. The molecular ion peak of

carbonyl derivative in the GC/MS spectrum was identified with M+1 in the CI mode.

Figure 4-2 shows the chromatograms reconstructed with 181 amu ion in the EI mode

for PFBHA-carbonyl derivatives (Exp III in Table 2-1) of MB oxidation products in the

presence of active chlorines. Table 4-1 and Figure 4-3 summarize the mass

fragmentation of PFBHA derivatives of MB oxidation products in CI and EI modes.

The tentatively identified compounds include methylpropenal (P1), methyl vinyl

ketone (P2), methylgryoxal (P3), biacetyl (P4), 3-methyl-3-buten-2-one (P5, MW=84),

2-methylbut-2-enal (P6, cis and trans MW=84). For bicarbonyls such as

methylglyoxal, both mono- and di-derivative were identified.

Page 34: THE PHOTOOXIDATION OF 2-METHYL-2-BUTENE …ufdcimages.uflib.ufl.edu/UF/E0/04/26/40/00001/im_y.pdfTHE EFFECTS OF ACTIVE CHLORINES ON PHOTOOXIDATION OF 2-METHYL-2 ... effects on both

34

Other than tentatively analyzed carbonyl products, the simulation result of

Experiment I in Table 2-1 shows that carbon monoxide, acetone, acetaldehyde and

formaldehyde are also formed through photochemical oxidation of MB (Figure 4-2).

However, since both formaldehyde and acetone are ubiquitous in the ambient air,

these compounds were not included for simulating the experimental data. Chlorine

containing carbonyl compounds were not detected in the product analysis, although

chemical mechanisms predict formation chlorine containing carbonyls. The

concentrations of chlorine containing products probably would not high enough for

GC-ITMS detection.

4.3. Model Simulation vs. Observation

Figure 4-4 shows the time profiles of experimentally detected carbonyl products

from MB oxidation along with their simulation results. Overall, the explicit kinetic

model reasonably simulates experimentally observed products. The methylglyoxal

(P3) begins to form after turning UV light on even before introducing saline-Oxone

aerosol into the chamber and continuously increases, suggesting that methylglyoxal

is produced from the MB reaction with ozone produced from a NOx cycle and further

reaction of the resulting Criegiee radical. In previous study by Grosjean et al.

(1990), methylglyoxal was also observed as one of major products together with

acetone, formaldehyde and acetaldehyde in ozonolysis of MB. Other oxygenated

products other than methylglyoxal rapidly increase immediately after introducing

active chlorines into the chamber under the light condition and continuously

increases for about 30 minutes. This result indicates that carbonyl products but for

methylglyoxal are produced mainly through the MB oxidation by the radicals (·OH,

Cl·) generated from photolysis of active chlorines. The rapid increase of

Page 35: THE PHOTOOXIDATION OF 2-METHYL-2-BUTENE …ufdcimages.uflib.ufl.edu/UF/E0/04/26/40/00001/im_y.pdfTHE EFFECTS OF ACTIVE CHLORINES ON PHOTOOXIDATION OF 2-METHYL-2 ... effects on both

35

concentrations of carbonyl products also evinces the fast reaction of MB with

radicals originated from photolysis of active chlorines (Equations 1, 2 and 20).

4.4. Impact of Active Chlorines on Ozone Formation

Under the low NOx condition (≤ 3 ppb) with the high MB concentration (400

ppb) (Exp. I-V in Table 2-1), the O3 formation was very low since not only O3 is

consumed by the high concentration of MB but also the NOx concentration is not

high enough to produce O3. To study the impact of active chlorines on O3 formation,

the chamber experiment was operated under lower MB (15 ppb) higher NOx (26 ppb)

concentrations (Exp. VI in Table 2-1). Figure 4-5 shows the simulations of MB

oxidation in the presence of active chlorines (Figure 4-5A) and the absence of active

chlorines (Figure 4-5B) and are compared to experimental data of O3, NOx and MB

concentrations. Immediately after active chlorines were introduced into the

chamber, the O3 concentration rapidly increased evidently showing that photolysis of

active chlorines enhances the ozone formation under UV-Visible condition. A

sudden flux of OH and Cl radicals generated from photolysis of HOCl and Cl2 rapidly

consumes MB to produce alkyl peroxy radicals (RO2⋅) which consequently increase

O3 concentration through the acceleration of a NOx cycle (Equation 14~16). The

similar results have been reported in the air quality model to simulate the impact of

swimming pool (Tanaka et al., 2003 and Chang et al., 2006) showing that chlorine

radical rapidly increased O3 concentration causing 1 hour O3 violation based on the

air quality ozone standard.

Page 36: THE PHOTOOXIDATION OF 2-METHYL-2-BUTENE …ufdcimages.uflib.ufl.edu/UF/E0/04/26/40/00001/im_y.pdfTHE EFFECTS OF ACTIVE CHLORINES ON PHOTOOXIDATION OF 2-METHYL-2 ... effects on both

36

Table 4-1. Relative intensities of fragmentation peaks in GC/MS spectra for PFBHA derivatives of MB oxidation products in both EI and CI modes.

Products RTa (min) MW Deriv.

MW CI EI

M+1 M-197 181 M-225 M-211 M-197 M-181 M-30 M-17 M-15 M-1 M M+1 M+181 239 43 P1 10.37 70 265 100 - 100 2.0 - 1.0 5.5 4.7 7.0 - 3.6 10.6 1.9 0.6 - - P2 10.56 70 265 100 3.7 100 4.1 1.0 1.5 - 3.1 - - 34.3 18.7 2.0 3.0 - - P3(mono)

b 10.71 72 267 100 - 100 1.9 2.1 - 1.2 - 2.2 - - - - - 8.7 - P3(mono) 10.92 72 267 100 - 100 2.9 0.7 - - - - - - - - 0.5 - 27.7 P4 11.60 86 281 100 7.2 100 - - - - 3.0 3.5 - - - - - - 37.1 P5 11.88 84 279 100 30.2 100 0.8 5.7 - 14.0 - - 0.2 3.0 5.1 1.6 1.3 - 8.17 P6 13.13 84 279 100 6.2 100 1.7 1.1 0.6 13.4 - - 28.9 - - - - - 28.4 P6 13.57 84 279 100 7.4 100 - - 1.0 5.2 - - 61.4 - 3.4 - - - 27.8 P3(di)

c 19.43 72 462 100 30.2 100 - - 15.1 - 0.7 0.8 - - 1.8 2.6 - - -

P3(di) 19.73 72 462 100 - 100 - - 16.6 - 3.0 1.2 - - 2.8 1.1 - - -

a: Retention time, b. mono-PHBHA derivative, c. di-PHBHA derivative

Page 37: THE PHOTOOXIDATION OF 2-METHYL-2-BUTENE …ufdcimages.uflib.ufl.edu/UF/E0/04/26/40/00001/im_y.pdfTHE EFFECTS OF ACTIVE CHLORINES ON PHOTOOXIDATION OF 2-METHYL-2 ... effects on both

37

Figure 4-1. Time profiles of observed MB concentrations in Exps I, II, III, IV and V of

Table 2-1 (empty dots for MB concentrations under the UV condition and dark dots for MB concentrations under the dark condition) and kinetic model simulation results (Solid line).

Page 38: THE PHOTOOXIDATION OF 2-METHYL-2-BUTENE …ufdcimages.uflib.ufl.edu/UF/E0/04/26/40/00001/im_y.pdfTHE EFFECTS OF ACTIVE CHLORINES ON PHOTOOXIDATION OF 2-METHYL-2 ... effects on both

38

Figure 4-2. Reconstructed m/z = 181 ion chromatogram in the EI mode for PFBHA-

carbonyl derivatives originated from MB oxidation with active chlorines. IS: Internal Standard, C: Contamination.

Page 39: THE PHOTOOXIDATION OF 2-METHYL-2-BUTENE …ufdcimages.uflib.ufl.edu/UF/E0/04/26/40/00001/im_y.pdfTHE EFFECTS OF ACTIVE CHLORINES ON PHOTOOXIDATION OF 2-METHYL-2 ... effects on both

39

Figure 4-3. Mass fragmentation spectra in the CI and the EI modes for PFBHA

derivatives of major carbonyl products originated from MB photooxidation in the presence of active chlorines.

Page 40: THE PHOTOOXIDATION OF 2-METHYL-2-BUTENE …ufdcimages.uflib.ufl.edu/UF/E0/04/26/40/00001/im_y.pdfTHE EFFECTS OF ACTIVE CHLORINES ON PHOTOOXIDATION OF 2-METHYL-2 ... effects on both

40

Figure 4-4. The time profiles of carbonyl products from the photooxidation of MB in the presence of active chlorines. The concentrations of experimentally observed carbonyl products were compared to those in kinetic model simulation. The data points in the dark area are related to no photochemical reaction. The experimental conditions (I, II, III, IV) can be found in Table 2-1.

Page 41: THE PHOTOOXIDATION OF 2-METHYL-2-BUTENE …ufdcimages.uflib.ufl.edu/UF/E0/04/26/40/00001/im_y.pdfTHE EFFECTS OF ACTIVE CHLORINES ON PHOTOOXIDATION OF 2-METHYL-2 ... effects on both

41

Figure 4-5. The time profiles of experimentally observed O3 and NOx and MB are

compared with kinetic model simulation: simulation with active chlorine (A) and simulation without active chlorine (B).

Page 42: THE PHOTOOXIDATION OF 2-METHYL-2-BUTENE …ufdcimages.uflib.ufl.edu/UF/E0/04/26/40/00001/im_y.pdfTHE EFFECTS OF ACTIVE CHLORINES ON PHOTOOXIDATION OF 2-METHYL-2 ... effects on both

42

CHAPTER 5 CONCLUSION

In this study effect of active chlorines (HOCl and Cl2) on MB oxidation and O3

formation were investigated using chamber experiments and through the kinetic

model study. For kinetic model simulation of MB photooxidation in the presence of

HOCl and Cl2, the reaction mechanisms and rate constants of chlorine radicals with

MB and its oxygenated products were advanced using a SRR method. In the

presence of active chlorines under the light condition, MB was rapidly oxidized

through the reaction with Cl and OH radicals photochemically produced. Our

explicit kinetic model closely simulates the rapid production of oxygenated products

that are characterized using a GC/ITMS associated with PFBHA-carbonyl

derivatization. The enhancement of O3 formation has been observed in both

photoirradiation chamber studies and kinetic model simulation when MB was

photochemically oxidized in the presence of active chlorine and NOx. Ou r study

suggests that in sunny day the areas that have high flux of active chlorines from

swimming pools and water treatment facilities, can produce a high pitch of ozone

concentrations in early morning immediately after sunrise because active chlorines

accumulated through night time can form active radicals via photolysis and

participate on reactions with VOCs. Such tendency has also been found in the

ambient air near Houston, TX (Chang et al., 2006).

Page 43: THE PHOTOOXIDATION OF 2-METHYL-2-BUTENE …ufdcimages.uflib.ufl.edu/UF/E0/04/26/40/00001/im_y.pdfTHE EFFECTS OF ACTIVE CHLORINES ON PHOTOOXIDATION OF 2-METHYL-2 ... effects on both

43

APPENDIX A REACTION MECHANISM OF MB

A.1. Inorganic Reaction Mechanism

// I == INORGANIC CHEMISTRY =========================================== // a) NO2 photolysis -------------------------------------------------- NAMES PhotoRateIDs += { NO2_to_O3P }; R[Ia1]= NO2 -hv-> NO + O3P @ j[NO2_to_O3P]; R[Ia2]= O3P + O2 + M ----> O3 + M @ 6.0E-34*T_300^-2.3; R[Ia3]= O3 + NO ----> NO2 + O2 @ 2.0E-12*EXP(-1400.0/TK); //(1.8E-14) // Ia2, Ia3 NASA97, T1 R[Ia4]= O3P + NO2 ----> NO + O2 @ 6.5E-12*EXP(120.0/TK); // Ia4 NASA97, T1 R[Ia5]= O3P + NO2 ----> NO3 + O2 @ TROE(9.00E-32*T_300^-2.0, 2.2E-11,b[M], 0.6); R[Ia6]= O3P + NO ----> NO2 @ TROE(9.00E-32*T_300^-1.5, 3.0E-11, b[M], 0.6); // Ia5 and Ia6 NASA97, T2 R[Ia7]= NO + NO + O2 ----> 2.0*NO2 @ 3.30E-39*EXP(530.0/TK); // Ia7 IUPAC97

// b) NO3 CHEMISTRY -------------------------------------------------- NAMES PhotoRateIDs += { NO3_to_NO, NO3_to_NO2 }; R[Ib1] = O3 + NO2 ----> NO3 + O2 @ 1.2E-13*EXP(-2450.0/TK); //(3E-17) R[Ib2] = NO3 -hv-> NO + O2 @ j[NO3_to_NO]; R[Ib2b]= NO3 -hv-> NO2 + O3P @ j[NO3_to_NO2]; R[Ib3] = NO3 + NO ----> 2.0*NO2 @ 1.50E-11*EXP(170.0/TK); R[Ib4] = NO3 + NO2 ----> NO + NO2 + O2 @ 4.50E-14*EXP(-1260.0/TK); R[Ib5f]= NO3 + NO2 -M--> N2O5 @ TROE(2.20E-30*T_300^-3.9,1.50E-12*T_300^-0.7, b[M], 0.6) ; R[Ib5r]= N2O5 ----> NO3 + NO2 @ k[Ib5f]/(2.7E-27*EXP(11000.0/TK)) ; // Ib5f NASA97, T2; // Ib5r Ke=2.7E-27*EXP(11000/T)

R[Ib7]= N2O5 + H2O ----> 2.0*HNO3 @ 1.5E-21; // homogeneous rate only // c) OZONE photolysis ------------------------------------------------ NAMES PhotoRateIDs += { O3_to_O3P, O3_to_O1D }; R[Ic1] = O3 -hv-> O3P + O2 @ j[O3_to_O3P] ; R[Ic2] = O3 -hv-> O1D + O2 @ j[O3_to_O1D] ; R[Ic3] = O1D + M ----> O3P + M @ 1.92E-11*EXP( 126.0/TK) ; // ave of N2 and O2 rates R[Ic4] = O1D + H2O ----> 2.0*OH @ 2.20E-10; R[Ic5] = O3 + OH ----> HO2 + O2 @ 1.60E-12*EXP(-940.0/TK) ; R[Ic6] = O3 + HO2 ----> OH + 2.0 * O2 @ 1.10E-14*EXP(-580.0/TK) ; // d) HONO CHEMISTRY ------------------------------------------------- NAMES PhotoRateIDs += { HONO_to_OH }; R[Id1] = NO + NO2 + H2O ----> 2.0*HONO @ 4.4E-40 ; R[Id2] = HONO + HONO ----> NO + NO2 +H2O @ 1.0E-20 ; R[Id3] = OH + NO -M--> HONO @ TROE(7.00E-31*T_300^-2.6, 3.60E-11*T_300^-0.1, b[M], 0.6) ;

Page 44: THE PHOTOOXIDATION OF 2-METHYL-2-BUTENE …ufdcimages.uflib.ufl.edu/UF/E0/04/26/40/00001/im_y.pdfTHE EFFECTS OF ACTIVE CHLORINES ON PHOTOOXIDATION OF 2-METHYL-2 ... effects on both

44

R[Id4] = HONO -hv-> OH + NO @ j[HONO_to_OH] ; R[Id5] = OH + HONO ----> NO2 + H2O @ 1.80E-11*EXP(-390.0/TK); // e) NO/NO2 with HO2 ------------------------------------------------ R[Ie1] = HO2 + NO ----> OH + NO2 @ 3.50E-12*EXP(250.0/TK) ; R[Ie2f] = HO2 + NO2 -M--> PNA @ TROE(1.80E-31*T_300^-3.2, 4.70E-12*T_300^-1.4, b[M], 0.6); R[Ie2r] = PNA -M--> HO2 + NO2 @ k[Ie2f]/(2.1E-27*EXP(10900.0/TK)); // Ie2f NASA97, T2; Ie2r Ke=2.1E-27*EXP(10900/T) R[Ie3] = OH + PNA ----> NO2 + H2O + O2 @ 1.30E-12*EXP(380.0/TK) ; // f) HO2 TERMINATION REACTIONS --------------------------------------- NAMES PhotoRateIDs += { H2O2_to_OH }; R[If1] = OH + NO2 -M--> HNO3 @ TROE(2.6E-30*T_300^-2.9, 7.5E-11*T_300^-0.6, b[M], 0.41); //IUPAC 6:97 R[If2] = OH + HNO3 ----> NO3 +H2O @ 7.20E-15*EXP(785.0/TK) + LMHW(1.90E-33*EXP( 725.0/TK),4.10E-16*EXP(1440.0/TK),b[M]); // NASA97 R[If3] = HO2 + HO2 ----> H2O2 + O2 @ ( 2.2E-13*EXP( 600.0/TK) + 1.9E-33*EXP( 980.0/TK) * b[M] ) * ( 1.0 + 1.4E-21*EXP(2200.0/TK) * b[H2O] ); // IUPAC 97 R[If6] = H2O2 -hv-> 2.0*OH @ j[H2O2_to_OH]; R[If7] = OH + H2O2 ----> HO2 + H2O @ 2.90E-12*EXP(-160.0/TK) ; R[If8] = OH + HO2 ----> O2 + H2O @ 4.80E-11*EXP( 250.0/TK) ; // If3--If5 NASA97, T1, note B13 // g) OH basic PROPAGATION REACTIONS -------------------------------------- R[Ig1] = OH + CO ----> HO2 + CO2 @ 1.50E-13 * (1.0+0.6*Patm) ; R[Ig2] = OH + CH4 ----> 'CH3-O2.' + 'H-CO-H' + HO2 @ 2.45E-12*EXP(-1775.0/TK); // NASA 97 // Declare species NR, which is used to provide // mass balance with ambient inputs of propane, etc.. R[NR_1] = ----> NR @ 0.0; // end of principle mechanism file.

A.2. Active Chlorine Reaction Mechanism

// HOCL chemistry =========================================== NAMES PhotoRateIDs += { HOCL_to_OH, CL2_to_CL, HCL_to_CL, CLO_to_CL }; R[HOCL1] = CLO -hv-> O3P + CL @ j[CLO_to_CL]; R[HOCL2] = HOCL -hv-> OH + CL @ j[HOCL_to_OH]; R[HOCL3] = CL2 -hv-> CL + CL @ j[CL2_to_CL]; R[HOCL4] = HCL -hv-> H + CL @ j[HCL_to_CL]; R[HOCL5] = O3P + HOCL ----> OH + CLO @ 1.7E-13 ; R[HOCL6] = CL + O3 ----> CLO + O2 @ 2.3E-11*EXP(-200.0/TK); R[HOCL7] = CL + H2 ----> HCL + HO2 @ 3.05E-11*EXP(-2270.0/TK);

Page 45: THE PHOTOOXIDATION OF 2-METHYL-2-BUTENE …ufdcimages.uflib.ufl.edu/UF/E0/04/26/40/00001/im_y.pdfTHE EFFECTS OF ACTIVE CHLORINES ON PHOTOOXIDATION OF 2-METHYL-2 ... effects on both

45

R[HOCL8] = CL + H2O2 ----> HCL + HO2 @ 1.1E-11*EXP(-980.0/TK); R[HOCL9] = CL + CLONO2 ----> CL2 + NO3 @ 6.8E-12*EXP(160.0/TK); R[HOCL10] = CL + HOCL ----> CL2 + OH @ 2.5E-12*EXP(-130.0/TK); R[HOCL11] = CL + NO + M ----> NOCL + M @ 7.6E-32*(TK/300.0)^-1.8; R[HOCL12] = CL + NO3 ----> CLO + NO2 @ 2.40E-11; R[HOCL13] = CLO + NO ----> CL + NO2 @ 6.4E-12*EXP(290.0/TK) ; R[HOCL14] = CLO + HO2 ----> HOCL + O2 @ 4.8E-13*EXP(700.0/TK) ; R[HOCL15] = CLO + O3P ----> CL + O2 @ 3.80E-11 ; R[HOCL16] = CLO + OH ----> HO2 + CL @ 1.1E-11*EXP(120.0/TK)*0.98 ; R[HOCL17] = CLO + OH ----> HCL + O2 @ 1.1E-11*EXP(120.0/TK)*0.02 ; R[HOCL18] = CLO + O3P ----> CL + O2 @ 2.8E-11*EXP(85.0/TK) ; R[HOCL19] = CLO + NO2 + M ----> CLONO2 + M @ 1.8E-31*(TK/300.0)^-3.4;//2.38E-12 ; R[HOCL20] = CLONO2 ----> CLO + NO2 @ 5.49E-04 ; R[HOCL21] = CLONO2 + OH ----> HOCL + NO3 + HNO3 + CLO @ 1.2E-12*EXP(-330.0/TK)*0.5 ; R[HOCL22] = CLO + CLO ----> CL2 + O2 @ 1.0E-12*EXP(-1590.0/TK) ; R[HOCL23] = CLO + CLO ----> CLOO + CL @ 3.0E-11*EXP(-2450.0/TK) ; R[HOCL24] = CLO + CLO ----> OCLO + CL @ 3.5E-13*EXP(-1370.0/TK) ; R[HOCL25] = CLO + CLO + M ----> CL2O2 + M @ 1.6E-32*(TK/300.0)^-4.5 ; R[HOCL26] = OH + HCL ----> CL + H20 @ 2.6E-12*EXP(-350.0/TK) ; R[HOCL27] = OH + HOCL ----> CLO + H20 @ 3.0E-12*EXP(-500.0/TK) ; R[HOCL28] = NO3 + HCL ----> HNO3 + CL @ 5.00E-17 ; R[HOCL29] = CL + NO2 + M ----> CLNO2 + M @ 1.8E-31*(TK/300.0)^-2.0; R[HOCL30] = CL2 + OH ----> HOCL + CL @ 1.4E-12*EXP(-900.0/TK) ; R[HOCL31] = CLO + O3 ----> CLOO + O2 @ 1.4E-17 ; R[HOCL32] = CLO + O3 ----> OCLO + O2 @ 1.0E-12*EXP(-4800.0/TK); R[HOCL33] = CLO + CH4 ----> @ 4.0E-18; // end of principle mechanism file.

A.3. MB Reaction Mechanism

// ********************************************************************* // MECHANISM FOR 2-methly-2-butene with OH and CL radicals // ********************************************************************* // //*****MCM reaction rate coefficients*****// SCALARS //simple rate coefficient KRO2NO, KRO2HO2, KAPHO2, KAPNO, KRO2NO3, KNO3AL, KDEC, KROPRIM, KROSEC, //complex rate coeffieient KFPAN, KBPAN, KMT01, KMT02, KMT03, KMT04, KMT05,

Page 46: THE PHOTOOXIDATION OF 2-METHYL-2-BUTENE …ufdcimages.uflib.ufl.edu/UF/E0/04/26/40/00001/im_y.pdfTHE EFFECTS OF ACTIVE CHLORINES ON PHOTOOXIDATION OF 2-METHYL-2 ... effects on both

46

KMT06, KMT07, KMT08, KMT09, KMT10, K1, K3, K4, K2, KMT11, KMT12, KMT13, KMT14, KMT15, KMT16, KMT17; //simple rate coefficients withk KRO2NO = 2.54E-12*EXP(360.0/TK); withk KRO2HO2 = 2.91E-13*EXP(1300.0/TK); withk KAPHO2 = 4.30E-13*EXP(1040.0/TK); withk KAPNO = 8.10E-12*EXP(270.0/TK); withk KRO2NO3 = 2.50E-12; withk KNO3AL = 1.44E-12*EXP(-1862.0/TK); withk KDEC = 1.00E+06; withk KROPRIM = 6.00E-14*EXP(-550.0/TK); withk KROSEC = 1.50E-14*EXP(-200.0/TK); //complex rate coefficients // withk KFPAN = TROE( 2.70E-28*(T_300)^-7.1, 1.20E-11*(T_300)^-0.9, b[M], 0.3); withk KBPAN = TROE(4.90E-03*EXP(-12100.0/TK), 5.40E+16*EXP(-13830.0/TK), b[M], 0.3); withk KMT01 = TROE(1.00E-31*(T_300)^-1.6, 3.00E-11*(T_300)^0.3, b[M], 0.85); withk KMT02 = TROE( 1.30E-31*(T_300)^-1.5, 2.30E-11*(TK/200)^0.24, b[M], 0.6); withk KMT03 = TROE( 3.60E-30*(T_300)^-4.1, 1.90E-12*(T_300)^0.2, b[M], 0.35); withk KMT04 = TROE( 1.00E-03*(T_300)^-3.5*EXP(-11000.0/TK), 9.70E+14*(T_300)^0.1*EXP (-11080.0/TK), b[M], 0.35); withk KMT05 = 1 + ((0.6*b[M])/(2.652E+19*(300.0/TK))); withk KMT06 = 1 + (1.40E-21*EXP(2200.0/TK)*b[H2O]); withk KMT07 = TROE( 7.40E-31*(T_300)^-2.4, 3.30E-11*(T_300)^-0.3, b[M], EXP(-TK/1420.0)); withk KMT08 = TROE( 3.30E-30*(T_300)^-3.0,4.10E-11, b[M], 0.4); withk KMT09 = TROE( 1.80E-31*(T_300)^-3.2,4.70E-12, b[M], 0.6); withk KMT10 = TROE(4.10E-05*EXP(-10650.0/TK),4.80E+15*EXP(-11170.0/TK), b[M], 0.5); withk K1 = 2.40E-14*EXP(460.0/TK); withk K3 = 6.50E-34*EXP(1335.0/TK); withk K4 = 2.70E-17*EXP(2199.0/TK); withk K2 = (K3*b[M])/(1+(K3*b[M]/K4)); withk KMT11 = K1 + K2 ; withk KMT12 = TROE( 4.00E-31*(T_300)^-3.3,2.00E-12, b[M], 0.45); withk KMT13 = TROE(2.50E-30*(T_300)^5.5,7.50E-12, b[M], 0.36); withk KMT14 = TROE( 9.00E-05*EXP(-9690.0/TK), 1.10E+16*EXP(-10560.0/TK), b[M], 0.36); withk KMT15 = TROE( 7.00E-29*(T_300)^-3.1,9.00E-12, b[M], 0.48); withk KMT16 = TROE( 8.00E-27*(T_300)^-3.5,3.00E-11, b[M], 0.5); withk KMT17 = TROE( 5.00E-30*(TK/298.0)^-1.5, 9.40E-12*EXP(-700.0/TK), b[M], EXP(-TK/580.0) + EXP(-2320.0/TK)); // //22 NAMES PhotoRateIDs += {

Page 47: THE PHOTOOXIDATION OF 2-METHYL-2-BUTENE …ufdcimages.uflib.ufl.edu/UF/E0/04/26/40/00001/im_y.pdfTHE EFFECTS OF ACTIVE CHLORINES ON PHOTOOXIDATION OF 2-METHYL-2 ... effects on both

47

MACR_to_Prods, HCHO_to_HO2, HCHO_to_H2, CH3CHO_TO_HCO, HOCH2CHO_to_RO2, iC3H7CHO_to_HCO, METHACRO_to_HCHO, HOCH2COCH3_to_CH3CO, GLY_to_HO2, GLY_to_HCHO, MGLY_to_HO2, CH3COCOCH3_to_CH3CO, COOH_to_HO2, CH3COCH3_to_CH3CO, CH3CHNO3COCH3_to_NO2, iC5H11NO3_to_NO2, CH2NO3CHNO3CHCH2_to_NO2, tC4H9NO3_to_NO2, HONO_to_NO, CH3NO3_to_NO2, CH3OOH_to_CH3O, MVK_to_MARCO3}; // Add a bulk species to hold the sum of all RO2 conc NAMES BlkSpcIDs += { RO2 }; before b[RO2] = 0.0; //0 REFERENCE R[MBabs1]= 'CH3-C(CH3)=CH-CH3' + CL ----> 'CH3-C(CH3)=CH-CH2-O2.' + HCL @2.98E-11*0.4 ; // 1 ATKINSON 1997 R[MBabs2]= 'CH3-C(CH3)=CH-CH3' + CL ----> 'CH2=CH-C(CH3)(O2.)-CH3'+ HCL @2.98E-11*0.6 ; // 1 ATKINSON 1997 R[MBabs3]= 'CH3-C(CH3)=CH-CH3' + CL ----> 'CIS-CH2(O2.)-C(CH3)=CH-CH3'+ HCL @2.98E-11*0.5 ; // 1 ATKINSON 1997 R[MBabs4]= 'CH3-C(CH3)=CH-CH3' + CL ----> 'CH2=C(CH3)-CH(O2.)-CH3' + HCL @2.98E-11*1.0 ; // 2 ATKINSON 1997 R[MBabs5]= 'CH3-C(CH3)=CH-CH3' + CL ----> 'TRAN-CH2(O2.)-C(CH3)=CH-CH3'+ HCL @2.98E-11*0.5 ; // 2 ATKINSON 1997 //00 R[MBabs1H]= 'CH3-C(CH3)=CH-CH3' + OH ----> 'CH3-C(CH3)=CH-CH2-O2.' @1.36E-13*0.4 ; // 1 ATKINSON 1995 R[MBabs2H]= 'CH3-C(CH3)=CH-CH3' + OH ----> 'CH2=CH-C(CH3)(O2.)-CH3' @1.36E-13*0.6 ; // 1 ATKINSON 1995 R[MBabs3H]= 'CH3-C(CH3)=CH-CH3' + OH ----> 'CIS-CH2(O2.)-C(CH3)=CH-CH3' @1.36E-13*0.5 ; // 1 ATKINSON 1995 R[MBabs4H]= 'CH3-C(CH3)=CH-CH3' + OH ----> 'CH2=C(CH3)-CH(O2.)-CH3' @1.36E-13*1.0 ; // 2 ATKINSON 1995 R[MBabs5H]= 'CH3-C(CH3)=CH-CH3' + OH ----> 'TRAN-CH2(O2.)-C(CH3)=CH-CH3' @1.36E-13*0.5 ; // 2 ATKINSON 1995 //1 R[MBabs7]= 'CH3-C(CH3)=CH-CH2-O2.' + RO2 ----> 'CH3-C(CH3)=CH-CH2-O.' @2.4E-12*0.8 ; // 1-0 ISOPAO2 R[MBabs8]= 'CH3-C(CH3)=CH-CH2-O2.' + RO2 ----> 'H-CO-CH=C(CH3)-CH3)' @2.4E-12*0.1 ; // 1-1 ISOPAO2 (mw84) R[MBabs9]= 'CH3-C(CH3)=CH-CH2-O2.' + RO2 ----> 'HO-CH2-CH=C(CH3)-CH3' @2.4E-12*0.1 ; // 1-2 ISOPAO2 //NOX OZONE R[MBabs9A]= 'CH3-C(CH3)=CH-CH2-O2.' + NO ----> 'CH3-C(CH3)=CH-CH2-O.' + NO2 @KRO2NO*0.892 ; // ISOPAO2 R[MBabs10A]= 'CH3-C(CH3)=CH-CH2-O2.' + HO2 ----> 'HOO-CH2-CH=C(CH3)-CH3' @KRO2HO2*0.706 ; // ISOPAO2 R[MBabs11A]= 'CH3-C(CH3)=CH-CH2-O2.' + NO3 ----> 'CH3-C(CH3)=CH-CH2-O.' + NO2 @KRO2NO3 ; // ISOPAO2 R[MBabs12A]= 'HOO-CH2-CH=C(CH3)-CH3' + OH ----> 'H-CO-CH=C(CH3)-CH3' + OH @1.07E-10 ; // 1-2 ISOPAOOH R[MBabs13A]= 'HOO-CH2-CH=C(CH3)-CH3' + CL ----> 'H-CO-CH=C(CH3)-CH3' + OH +HCL @3.1E-11 ; // R[MBabs14A]= 'HOO-CH2-CH=C(CH3)-CH3' -hv-> 'CH3-C(CH3)=CH-CH2-O2.' + OH @j[COOH_to_HO2] ; // COOH(j41) // R[MBabs10]= 'CH2=CH-C(CH3)(O2.)-CH3' + RO2 ----> 'CH2=CH-C(CH3)(O.)-CH3' @1.6E-13*0.7 ; // 1-3 JENKIN 1995 R[MBabs11]= 'CH2=CH-C(CH3)(O2.)-CH3' + RO2 ----> 'CH3-C(CH3)(OH)-CH=CH2' @1.6E-13*0.3 ; // 1-3 JENKIN 1995 // NOX OZONE R[MBabs15A]= 'CH2=CH-C(CH3)(O2.)-CH3' + NO ----> 'CH2=CH-C(CH3)(NO3)-CH3' @KRO2NO*0.072 ; // ISOPBO2 R[MBabs16A]= 'CH2=CH-C(CH3)(O2.)-CH3' + NO ----> 'CH2=CH-C(CH3)(O.)-CH3' + NO2 @KRO2NO*0.928 ; // ISOPBO2 R[MBabs17A]= 'CH2=CH-C(CH3)(O2.)-CH3' + HO2 ----> 'CH3-C(CH3)(OOH)-CH=CH2' @KRO2HO2*0.706 ; // ISOPBO2

Page 48: THE PHOTOOXIDATION OF 2-METHYL-2-BUTENE …ufdcimages.uflib.ufl.edu/UF/E0/04/26/40/00001/im_y.pdfTHE EFFECTS OF ACTIVE CHLORINES ON PHOTOOXIDATION OF 2-METHYL-2 ... effects on both

48

R[MBabs18A]= 'CH2=CH-C(CH3)(O2.)-CH3' + NO3 ----> 'CH2=CH-C(CH3)(O.)-CH3' + NO2 @KRO2NO3 ; // ISOPBO2 R[MBabs19A]= 'CH2=CH-C(CH3)(NO3)-CH3' -hv-> 'CH2=CH-C(CH3)(O.)-CH3' @j[tC4H9NO3_to_NO2]; //t-C4h9no3.cqy(J55) R[MBabs20A]= 'CH3-C(CH3)(OOH)-CH=CH2' + OH ----> 'CH2=CH-C(CH3)(O2.)-CH3' @4.20E-11 ; // ISOPBOOH R[MBabs21A]= 'CH3-C(CH3)(OOH)-CH=CH2' + CL ----> 'CH2=CH-C(CH3)(O2.)-CH3' +HCL @4.4E-11 ; // ISOPBOOH R[MBabs22A]= 'CH3-C(CH3)(OOH)-CH=CH2' -hv-> 'CH2=CH-C(CH3)(O.)-CH3' + OH @j[COOH_to_HO2]; // COOH(j41) // R[MBabs12]= 'CIS-CH2(O2.)-C(CH3)=CH-CH3' + RO2 ----> 'CIS-CH2(O.)-C(CH3)=CH-CH3' @2.4E-12*0.8 ; // 1-4 ISOPAO2 R[MBabs13]= 'CIS-CH2(O2.)-C(CH3)=CH-CH3' + RO2 ----> 'CIS-H-CO-C(CH3)=CH-CH3' @2.4E-12*0.1 ; // 1-5 ISOPAO2 (mw84) R[MBabs14]= 'CIS-CH2(O2.)-C(CH3)=CH-CH3' + RO2 ----> 'CIS-HO-CH2-C(CH3)=CH-CH3' @2.4E-12*0.1 ; // 1-6 ISOPAO2 // R[MBabs23A]= 'CIS-CH2(O2.)-C(CH3)=CH-CH3' + NO ----> 'CIS-CH2(O.)-C(CH3)=CH-CH3' + NO2 @KRO2NO*0.892 ; // ISOPAO2 R[MBabs23B]= 'CIS-CH2(O2.)-C(CH3)=CH-CH3' + NO ----> 'CIS-NO3-CH2-C(CH3)=CH-CH3' @KRO2NO*0.108 ; // ISOPAO2 R[MBabs23C]= 'CIS-CH2(O2.)-C(CH3)=CH-CH3' + NO3 ----> 'CIS-CH2(O.)-C(CH3)=CH-CH3' + NO2 @KRO2NO3 ; // ISOPAO2 R[MBabs24A]= 'CIS-CH2(O2.)-C(CH3)=CH-CH3' + HO2 ----> 'CIS-HOO-CH2-C(CH3)=CH-CH3' @KRO2HO2*0.706 ; // ISOPAO2 R[MBabs25A]= 'CIS-HOO-CH2-C(CH3)=CH-CH3' + OH ----> 'CIS-H-CO-C(CH3)=CH-CH3' + OH @1.07E-10 ; // ISOPAOOH R[MBabs26A]= 'CIS-HOO-CH2-C(CH3)=CH-CH3' + CL ----> 'CIS-H-CO-C(CH3)=CH-CH3' + OH +HCL @3.1E-11 ; // R[MBabs27A]= 'CIS-HOO-CH2-C(CH3)=CH-CH3' -hv-> 'CIS-CH2(O.)-C(CH3)=CH-CH3' + OH @j[COOH_to_HO2] ; // COOH(j41) //1-0 R[MBabs16]= 'CH3-C(CH3)=CH-CH2-O.' + O2 ----> 'H-CO-CH=C(CH3)-CH3' @KROPRIM ; // 1-1 IPEAO R[MBabs17]= 'CH3-C(CH3)=CH-CH2-O.' ----> 'CIS-HO-CH2-CH=C(CH3)-CH2-O2.' @3.05E+11*EXP(-4240/TK)*0.5 ; // IPEAO R[MBabs17B]= 'CH3-C(CH3)=CH-CH2-O.' ----> 'CH3-CO-CH3' + CO + 'H-CO-H' @3.05E+11*EXP(-4240/TK)*0.5 ; // IPEAO R[MBabs18]= 'CIS-HO-CH2-CH=C(CH3)-CH2-O2.' + RO2 ----> 'CIS-HO-CH2-CH=C(CH3)-CH2-O.' @2.00E-12*0.8 ; // ISOPCO2 R[MBabs19]= 'CIS-HO-CH2-CH=C(CH3)-CH2-O2.' + RO2 ----> 'CIS-HO-CH2-CH=C(CH3)-CO-H' @2.00E-12*0.1 ; // 1-0-1 ISOPCO2 R[MBabs20]= 'CIS-HO-CH2-CH=C(CH3)-CH2-O2.' + RO2 ----> 'CIS-HO-CH2-C(CH3)=CH-CH2-OH' @2.00E-12*0.1 ; // 1-0-2 ISOPCO2 R[MBabs21]= 'CIS-HO-CH2-CH=C(CH3)-CH2-O.' ----> 'CIS-HO-CH2-C(CH3)=CH-CO-H' + HO2 @8.4E+10*EXP(-3523/TK)*0.3; // 1-0-2 ISOPCO R[MBabs22]= 'CIS-HO-CH2-CH=C(CH3)-CH2-O.' ----> 'H-CO-H' + 'HO-CH2-C0-H' + 'CO(O2.)-CH3' @8.4E+10*EXP(-3523/TK)*0.7; // 1-0-2ISOPCO // R[MBabs28A]= 'CIS-HO-CH2-CH=C(CH3)-CH2-O2.' + NO ----> 'CIS-HO-CH2-CH=C(CH3)-CH2-NO3' @KRO2NO*0.108 ; // ISOPCO2 R[MBabs29A]= 'CIS-HO-CH2-CH=C(CH3)-CH2-O2.' + NO ----> 'CIS-HO-CH2-CH=C(CH3)-CH2-O.' + NO2 @KRO2NO*0.892 ; // ISOPCO2 R[MBabs30A]= 'CIS-HO-CH2-CH=C(CH3)-CH2-O2.' + NO3 ----> 'CIS-HO-CH2-CH=C(CH3)-CH2-O.' + NO2 @KRO2NO3 ; // ISOPCO2 R[MBabs31A]= 'CIS-HO-CH2-CH=C(CH3)-CH2-O2.' + HO2 ----> 'CIS-HOO-CH2-C(CH3)=CH-CH2-OH' @KRO2HO2*0.706 ; // ISOPCO2 R[MBabs32A]= 'CIS-HOO-CH2-C(CH3)=CH-CH2-OH' + OH ----> 'CIS-HO-CH2-CH=C(CH3)-CO-H' @1.07E-10; // ISOPCOOH R[MBabs33A]= 'CIS-HOO-CH2-C(CH3)=CH-CH2-OH' + CL ----> 'CIS-HO-CH2-CH=C(CH3)-CO-H'+HCL @4.4E-11 ; // ISOPCOOH R[MBabs34A]= 'CIS-HOO-CH2-C(CH3)=CH-CH2-OH' -hv-> 'CIS-HO-CH2-CH=C(CH3)-CH2-O.' @j[COOH_to_HO2] ; // COOH(j41) R[MBabs35A]= 'CIS-HO-CH2-CH=C(CH3)-CH2-NO3' + OH ----> 'CIS-HO-CH2-CH=C(CH3)-CO-H' + NO2 @8.91E-11; // ISOPCNO3 R[MBabs36A]= 'CIS-HO-CH2-CH=C(CH3)-CH2-NO3' + CL ----> 'CIS-HO-CH2-CH=C(CH3)-CO-H' +HCL + NO2 @3.75E-10 ; // R[MBabs37A]= 'CIS-HO-CH2-CH=C(CH3)-CH2-NO3' -hv-> 'CIS-HO-CH2-CH=C(CH3)-CH2-O.' + NO2 @j[CH2NO3CHNO3CHCH2_to_NO2] ; // (J53) //1-0-1 R[MBabs23]= 'CIS-HO-CH2-CH=C(CH3)-CO-H' + OH ----> 'CIS-HO-CH2-CH=C(CH3)-CO-O2.' @2.21E-11*0.48; // HC4CCHO R[MBabs24]= 'CIS-HO-CH2-CH=C(CH3)-CO-H' + CL ----> 'CIS-HO-CH2-CH=C(CH3)-CO-O2.' +HCL @4.22E-10*0.3; // R[MBabs25]= 'CIS-HO-CH2-CH=C(CH3)-CO-H' + OH ----> 'HO-CH2-CH(OH)-C(CH3)(O2.)-CO-H' @4.52E-11*0.52 ; // 1-0-1-1 HC4CCHO R[MBabs26]= 'CIS-HO-CH2-CH=C(CH3)-CO-H' + CL ----> 'HO-CH2-CH(CL)-C(CH3)(O2.)-CO-H' +HCL @2.21E-10*0.7 ; // 1-0-1-2 R[MBabs27]= 'CIS-HO-CH2-CH=C(CH3)-CO-H' -hv-> 'CIS-HO-CH2-CH=C(CH3)-CO-O2.' + HO2 @j[MACR_to_Prods] ; // Macr(j19) R[MBabs28]= 'CIS-HO-CH2-CH=C(CH3)-CO-H' -hv-> 'CO(O2.)-CH3' + HO2 + CO + 'HO-CH2-CO-H' @j[METHACRO_to_HCHO] ; // METHACRO(j18) R[MBabs29]= 'CIS-HO-CH2-CH=C(CH3)-CO-O2.' + RO2 ----> 'CIS-HO-CO-C(CH3)=CH-CH2-OH' @1.00E-11*0.3 ; // HC4CCO3 R[MBabs30]= 'CIS-HO-CH2-CH=C(CH3)-CO-O2.' + RO2 ----> 'HO-CH2-CO-H' + 'CO(O2.)-CH3' @1.00E-11*0.7 ; // HC4CCO3 R[MBabs31]= 'CIS-HO-CO-C(CH3)=CH-CH2-OH' + OH ----> 'HO-CH2-CO-H' + 'CO(O2.)-CH3' @2.52E-11 ; // HC4CCO2H R[MBabs32]= 'CIS-HO-CO-C(CH3)=CH-CH2-OH' + CL ----> 'HO-CH2-CO-H' + 'CO(O2.)-CH3'+HCL @1.03E-10 ; // // R[MBabs22B]= 'CIS-HO-CH2-CH=C(CH3)-CO-H' + O3 ----> 'H-CO-CO-CH3' + 'HO-CH2-C(=O-O)-H' @2.4E-17*0.5; // HC4CCHO R[MBabs24B]= 'CIS-HO-CH2-CH=C(CH3)-CO-H' + O3 ----> 'HO-CH2-CO-H' + 'H-CO-C(=O-O)-CH3' @2.4E-17*0.5; // HC4CCHO //GAOOB R[MBabs25B]= 'HO-CH2-C(=O-O)-H' ----> 'HO-CH2-C(=O-O)-H(2)' @KDEC*0.11; // GAOOB R[MBabs26B]= 'HO-CH2-C(=O-O)-H' ----> OH + HO2 + CO + 'H-CO-H' @KDEC*0.89; // GAOOB //GAOO R[MBabs27B]= 'HO-CH2-C(=O-O)-H(2)' + CO ----> 'HO-CH2-CO-H' @1.2E-15; // GAOO

Page 49: THE PHOTOOXIDATION OF 2-METHYL-2-BUTENE …ufdcimages.uflib.ufl.edu/UF/E0/04/26/40/00001/im_y.pdfTHE EFFECTS OF ACTIVE CHLORINES ON PHOTOOXIDATION OF 2-METHYL-2 ... effects on both

49

R[MBabs28B]= 'HO-CH2-C(=O-O)-H(2)' + H2O ----> 'HO-CO-CH2-OH' @1.0E-17; // GAOO R[MBabs29B]= 'HO-CH2-C(=O-O)-H(2)' + NO ----> 'HO-CH2-CO-H' + NO2 @1.0E-14; // GAOO R[MBabs30B]= 'HO-CH2-C(=O-O)-H(2)' + H2O ----> 'HO-CH2-CO-H' + H2O2 @6.0E-18; // GAOO R[MBabs31B]= 'HO-CH2-C(=O-O)-H(2)' + NO2 ----> 'HO-CH2-CO-H' + NO3 @1.0E-15; // GAOO //MGLYOOA R[MBabs32B]= 'H-CO-C(=O-O)-CH3' ----> 'H-CO-C(=O-O)-CH3(2)' @KDEC*0.11; // MGLYOOA R[MBabs33B]= 'H-CO-C(=O-O)-CH3' ----> OH + CO + 'CO(O2.)-CH3' @KDEC*0.89; // MGLYOOA //MGLYOOA R[MBabs34B]= 'H-CO-C(=O-O)-CH3(2)' + CO ----> 'H-CO-CO-CH3' @1.2E-15; // MGLYOOA R[MBabs35B]= 'H-CO-C(=O-O)-CH3(2)' + NO ----> 'H-CO-CO-CH3' + NO2 @1.0E-14; // GAOO R[MBabs36B]= 'H-CO-C(=O-O)-CH3(2)' + H2O ----> 'H-CO-CO-CH3' + H2O2 @6.0E-18; // GAOO R[MBabs37B]= 'H-CO-C(=O-O)-CH3(2)' + NO2 ----> 'H-CO-CO-CH3' + NO3 @1.0E-15; // GAOO // R[MBabs38A]= 'CIS-HO-CH2-CH=C(CH3)-CO-O2.' + HO2 ----> 'CIS-HOO-CO-C(CH3)=CH-CH2-OH' @KAPHO2*0.71 ; // HC4CCO3 R[MBabs39A]= 'CIS-HO-CH2-CH=C(CH3)-CO-O2.' + HO2 ----> 'CIS-HO-CO-C(CH3)=CH-CH2-OH' + O3 @KAPHO2*0.29 ; // HC4CCO3 R[MBabs40A]= 'CIS-HO-CH2-CH=C(CH3)-CO-O2.' + NO2 ----> 'CIS-HO-CH2-CH=C(CH3)-CO-O-NO3' @KFPAN ; // HC4CCO3 R[MBabs41A]= 'CIS-HO-CH2-CH=C(CH3)-CO-O2.' + NO ----> 'HO-CH2-CO-H' + 'CO(O2.)-CH3' + NO2 @KAPNO ; // HC4CCO3 R[MBabs42A]= 'CIS-HO-CH2-CH=C(CH3)-CO-O2.' + NO3 ----> 'HO-CH2-CO-H' + 'CO(O2.)-CH3' + NO2 @KRO2NO3*1.6 ; // HC4CCO3 R[MBabs43A]= 'CIS-HOO-CO-C(CH3)=CH-CH2-OH' + OH ----> 'CIS-HO-CH2-CH=C(CH3)-CO-O2.' @2.88E-11 ; // HC4CCO3H R[MBabs44A]= 'CIS-HOO-CO-C(CH3)=CH-CH2-OH' + CL ----> 'CIS-HO-CH2-CH=C(CH3)-CO-O2.'+HCL @4.4E-11 ; // R[MBabs45A]= 'CIS-HOO-CO-C(CH3)=CH-CH2-OH' -hv-> 'HO-CH2-CO-H' + 'CO(O2.)-CH3' + OH @j[COOH_to_HO2] ; // COOH(j41) R[MBabs46A]= 'CIS-HO-CH2-CH=C(CH3)-CO-O-NO3' ----> 'CIS-HO-CH2-CH=C(CH3)-CO-O2.' + NO2 @KBPAN ; // C5PAN19 R[MBabs47A]= 'CIS-HO-CH2-CH=C(CH3)-CO-O-NO3' + OH ----> 'HO-CH2-CH(OH)-CO-CH3' + CO + NO2 @2.52E-11 ; // C5PAN19 R[MBabs48A]= 'CIS-HO-CH2-CH=C(CH3)-CO-O-NO3' + CL ----> 'HO-CH2-CH(OH)-CO-CH3' + CO + NO2 +HCL @1.03E-10 ; // C5PAN19 // HO12CO3C4 R[MBabs49A]= 'HO-CH2-CH(OH)-CO-CH3' + OH ----> 'HO-CH2-CO-CO-CH3' + HO2 @1.88E-11 ; // R[MBabs50A]= 'HO-CH2-CH(OH)-CO-CH3' + CL ----> 'HO-CH2-CO-CO-CH3' + HO2 + HCL @4.12E-11 ; // R[MBabs51A]= 'HO-CH2-CH(OH)-CO-CH3' -hv-> 'HO-CH2-CO-H' + 'CO(O2.)-CH3' + HO2 @j[HOCH2COCH3_to_CH3CO]; //OHAcetone(j22) //1-0-1-1 R[MBabs34]= 'HO-CH2-CH(OH)-C(CH3)(O2.)-CO-H' + RO2 ----> 'HO-CH2-CH(OH)-C(CH3)(OH)-CO-H' @9.20E-14*0.3 ; // C57O2 R[MBabs35]= 'HO-CH2-CH(OH)-C(CH3)(O2.)-CO-H' + RO2 ----> 'HO-CH2-CH(OH)-C(CH3)(O.)-CO-H' @9.20E-14*0.7 ; // C57O2 R[MBabs36]= 'HO-CH2-CH(OH)-C(CH3)(OH)-CO-H' + OH ----> 'HO-CH2-CH(OH)-C(CH3)(O.)-CO-H' @3.04E-11 ; // C57OH R[MBabs37]= 'HO-CH2-CH(OH)-C(CH3)(OH)-CO-H' + CL ----> 'HO-CH2-CH(OH)-C(CH3)(O.)-CO-H' + HCL @7.5E-11 ; // R[MBabs38]= 'HO-CH2-CH(OH)-C(CH3)(O.)-CO-H' ----> 'HO-CH2-CO-H' + 'H-CO-CO-CH3' + HO2 @KDEC ; // C57O // R[MBabs52A]= 'HO-CH2-CH(OH)-C(CH3)(O2.)-CO-H' + NO ----> 'HO-CH2-CH(OH)-C(CH3)(O.)-CO-H' + NO2 @KRO2NO ; // C57O2 R[MBabs53A]= 'HO-CH2-CH(OH)-C(CH3)(O2.)-CO-H' + NO3 ----> 'HO-CH2-CH(OH)-C(CH3)(O.)-CO-H' + NO2 @KRO2NO3 ; // C57O2 R[MBabs54A]= 'HO-CH2-CH(OH)-C(CH3)(O2.)-CO-H' + HO2 ----> 'H-CO-C(CH3)(OOH)-CH(OH)-CH2-OH' @KRO2HO2*0.706 ; // C57O2 R[MBabs55A]= 'H-CO-C(CH3)(OOH)-CH(OH)-CH2-OH' -hv-> 'HO-CH2-CH(OH)-C(CH3)(O.)-CO-H'+ OH @j[COOH_to_HO2] ; // COOH(j41) R[MBabs56A]= 'H-CO-C(CH3)(OOH)-CH(OH)-CH2-OH' + OH ----> 'HO-CH2-CH(OH)-C(CH3)(O2.)-CO-H' @3.16E-11;// C57O2 R[MBabs57A]= 'H-CO-C(CH3)(OOH)-CH(OH)-CH2-OH' + CL ----> 'HO-CH2-CH(OH)-C(CH3)(O2.)-CO-H' + HCL @4.4E-11 ;// C57O2 //1-0-1-2 R[MBabs40]= 'HO-CH2-CH(CL)-C(CH3)(O2.)-CO-H' + RO2 ----> 'HO-CH2-CH(CL)-C(CH3)(OH)-CO-H' @9.20E-14*0.3 ; // R[MBabs41]= 'HO-CH2-CH(CL)-C(CH3)(O2.)-CO-H' + RO2 ----> 'HO-CH2-CH(CL)-C(CH3)(O.)-CO-H' @9.20E-14*0.7 ; // R[MBabs42]= 'HO-CH2-CH(CL)-C(CH3)(OH)-CO-H' + OH ----> 'HO-CH2-CH(CL)-C(CH3)(O.)-CO-H' @3.04E-11 ; // C57OH R[MBabs43]= 'HO-CH2-CH(CL)-C(CH3)(OH)-CO-H' + CL ----> 'HO-CH2-CH(CL)-C(CH3)(O.)-CO-H' + HCL @1.13E-10 ; // R[MBabs44]= 'HO-CH2-CH(CL)-C(CH3)(O.)-CO-H' ----> 'HO-CH2-CH(CL)-O2.' + 'H-CO-CO-CH3' @KDEC ; // C57O R[MBabs45]= 'HO-CH2-CH(CL)-O2.' + RO2 ----> 'HO-CH2-CH(CL)-O.' @8.80E-13*0.60 ; // JENKIN1997 R[MBabs46]= 'HO-CH2-CH(CL)-O2.' + RO2 ----> 'HO-CH2-CO-CL' @8.80E-13*0.20 ; // JENKIN1997 R[MBabs47]= 'HO-CH2-CH(CL)-O2.' + RO2 ----> 'HO-CH2-CH(OH)-CL' @8.80E-13*0.20 ; // JENKIN1997 R[MBabs48]= 'HO-CH2-CH(CL)-O.' ----> 'H-CO-H' + 'CL-CO-H' + HO2 @KDEC ; // CL12PRCO // R[MBabs58A]= 'HO-CH2-CH(CL)-C(CH3)(O2.)-CO-H' + NO ----> 'HO-CH2-CH(CL)-C(CH3)(O.)-CO-H' + NO2 @KRO2NO ; // C57O2 R[MBabs59A]= 'HO-CH2-CH(CL)-C(CH3)(O2.)-CO-H' + NO3 ----> 'HO-CH2-CH(CL)-C(CH3)(O.)-CO-H' + NO2 @KRO2NO3 ; // C57O2 R[MBabs60A]= 'HO-CH2-CH(CL)-C(CH3)(O2.)-CO-H' + HO2 ----> 'H-CO-C(CH3)(OOH)-CH(CL)-CH2-OH' @KRO2HO2*0.706 ; //C57O2 R[MBabs61A]= 'H-CO-C(CH3)(OOH)-CH(CL)-CH2-OH' -hv-> 'HO-CH2-CH(CL)-C(CH3)(O.)-CO-H' + OH @j[COOH_to_HO2] ; //COOH(j41)

Page 50: THE PHOTOOXIDATION OF 2-METHYL-2-BUTENE …ufdcimages.uflib.ufl.edu/UF/E0/04/26/40/00001/im_y.pdfTHE EFFECTS OF ACTIVE CHLORINES ON PHOTOOXIDATION OF 2-METHYL-2 ... effects on both

50

R[MBabs62A]= 'H-CO-C(CH3)(OOH)-CH(CL)-CH2-OH' + OH ----> 'HO-CH2-CH(CL)-C(CH3)(O2.)-CO-H' @3.16E-11;// C57O2 R[MBabs63A]= 'H-CO-C(CH3)(OOH)-CH(CL)-CH2-OH' + CL ----> 'HO-CH2-CH(CL)-C(CH3)(O2.)-CO-H' + HCL @4.4E-11 ; // // R[MBabs64A]= 'HO-CH2-CH(CL)-O2.' + NO ----> 'HO-CH2-CH(CL)-O.' + NO2 @KRO2NO ; // JENKIN1997 R[MBabs65A]= 'HO-CH2-CH(CL)-O2.' + NO3 ----> 'HO-CH2-CH(CL)-O.' + NO2 @KRO2NO3 ; // JENKIN1997 R[MBabs66A]= 'HO-CH2-CH(CL)-O2.' + HO2 ----> 'HOO-CH(CL)-CH2-OH' @KRO2HO2*0.706; // JENKIN1997 R[MBabs67A]= 'HOO-CH(CL)-CH2-OH' + OH ----> 'HO-CH2-CH(CL)-O2.' @3.16E-11; // JENKIN1997 R[MBabs68A]= 'HOO-CH(CL)-CH2-OH' + CL ----> 'HO-CH2-CH(CL)-O2.' + HCL @4.4E-11; // JENKIN1997 R[MBabs69A]= 'HOO-CH(CL)-CH2-OH' -hv-> 'HO-CH2-CH(CL)-O.' @j[COOH_to_HO2] ; // COOH(j41) //1-0-2 R[MBabs50]= 'CIS-HO-CH2-C(CH3)=CH-CH2-OH' + OH ----> 'CIS-HO-CH2-C(CH3)=CH-CO-H' + HO2 @9.30E-11*0.5 ; // ISOPAOH R[MBabs51]= 'CIS-HO-CH2-C(CH3)=CH-CH2-OH' + CL ----> 'CIS-HO-CH2-C(CH3)=CH-CO-H' + HO2 + HCL @4.16E-10*0.5 ; // R[MBabs52]= 'CIS-HO-CH2-C(CH3)=CH-CH2-OH' + OH ----> 'CIS-HO-CH2-CH=C(CH3)-CO-H' + HO2 @9.30E-11*0.5 ; // 1-0-1 ISOPAOH R[MBabs53]= 'CIS-HO-CH2-C(CH3)=CH-CH2-OH' + CL ----> 'CIS-HO-CH2-CH=C(CH3)-CO-H' + HO2 + HCL @4.16E-10*0.5 ; // 1-0-1 R[MBabs54]= 'CIS-HO-CH2-CH=C(CH3)-CO-H' + OH ----> 'CIS-HO-CH2-C(CH3)=CH-CO-O2.' @4.52E-11*0.48 ; // 1-0-2-1 HC4ACHO R[MBabs55]= 'CIS-HO-CH2-CH=C(CH3)-CO-H' + CL ----> 'CIS-HO-CH2-C(CH3)=CH-CO-O2.' + HCL @2.21E-10*0.5 ; // 1-0-2-1 R[MBabs56]= 'CIS-HO-CH2-CH=C(CH3)-CO-H' + OH ----> 'HO-CH2-C(CH3)(O2.)-CH(OH)-CO-H' @4.52E-11*0.52 ; // 1-0-2-1 HC4ACHO R[MBabs57]= 'CIS-HO-CH2-CH=C(CH3)-CO-H' + CL ----> 'HO-CH2-C(CH3)(O2.)-CH(CL)-CO-H' @2.21E-10*0.5 ; // 1-0-2-2 R[MBabs58]= 'CIS-HO-CH2-CH=C(CH3)-CO-H' -hv-> 'CIS-HO-CH2-C(CH3)=CH-CO-O2.' @j[MACR_to_Prods] ; // Macr(j19) R[MBabs59]= 'CIS-HO-CH2-CH=C(CH3)-CO-H' -hv-> 'HO-CH2-CO-CH3' + 2*HO2 + 2*CO @j[METHACRO_to_HCHO] ; // METHACRO(j18) R[MBabs57C]= 'CIS-HO-CH2-CH=C(CH3)-CO-H' + O3 ----> 'HO-CH2-CO-CH3' + 'H-CO-C(=O-O)-H' @2.40E-17*0.5 ; // 1-0-2-2 HC4ACHO R[MBabs58C]= 'CIS-HO-CH2-CH=C(CH3)-CO-H' + O3 ----> 'H-CO-CO-H' + 'HO-CH2-C(=O-O)-CH3' @2.40E-17*0.5 ; // 1-0-2-2 HC4ACHO R[MBabs59C]= 'H-CO-C(=O-O)-H' ----> 'H-CO-C(=O-O)-H(2)' @KDEC*0.11 ; // 1-0-2-2 GLYOOC R[MBabs60C]= 'H-CO-C(=O-O)-H' ----> OH + HO2 + CO + CO @KDEC*0.89 ; // 1-0-2-2 GLYOOC //GLYOO R[MBabs61C]= 'H-CO-C(=O-O)-H(2)' + CO ----> 'H-CO-CO-H' @1.2E-15 ; // 1-0-2-2 GLYOO R[MBabs62C]= 'H-CO-C(=O-O)-H(2)' + H2O ----> 'HO-CO-CO-H' @1.0E-17 ; // 1-0-2-2 GLYOO R[MBabs63C]= 'H-CO-C(=O-O)-H(2)' + NO ----> 'H-CO-CO-H' + NO2 @1.0E-14 ; // 1-0-2-2 GLYOO R[MBabs64C]= 'H-CO-C(=O-O)-H(2)' + H2O ----> 'H-CO-CO-H' + H2O2 @6.0E-18 ; // 1-0-2-2 GLYOO R[MBabs65C]= 'H-CO-C(=O-O)-H(2)' + NO2 ----> 'H-CO-CO-H' + NO3 @1.0E-15 ; // 1-0-2-2 GLYOO //1-0-2-1 R[MBabs61]= 'CIS-HO-CH2-C(CH3)=CH-CO-O2.' + RO2 ----> 'CIS-HO-CO-CH=C(CH3)-CH2-OH' @1.00E-11*0.3 ; // HC4ACO3 R[MBabs62]= 'CIS-HO-CH2-C(CH3)=CH-CO-O2.' + RO2 ----> 'HO-CH2-CO-CH3' + HO2 + CO @1.00E-11*0.7 ; // HC4ACO3 R[MBabs63]= 'CIS-HO-CO-CH=C(CH3)-CH2-OH' + OH ----> 'HO-CH2-CO-CH3' + HO2 + CO @2.52E-11 ; // HC4ACO2H R[MBabs64]= 'CIS-HO-CO-CH=C(CH3)-CH2-OH' + CL ----> 'HO-CH2-CO-CH3' + HO2 + CO + HCL @7.39E-11 ; // ACID R[MBabs65]= 'HO-CH2-C(CH3)(O2.)-CH(OH)-CO-H' + RO2 ----> 'HO-CH2-C(CH3)(OH)-CH(OH)-CO-H' @9.20E-14*0.3 ; // 1-0-2-1-1 C58O2 R[MBabs66]= 'HO-CH2-C(CH3)(O2.)-CH(OH)-CO-H' + RO2 ----> 'HO-CH2-C(CH3)(O.)-CH(OH)-CO-H' @9.20E-14*0.7 ; // C58O2 R[MBabs67]= 'HO-CH2-C(CH3)(O.)-CH(OH)-CO-H' ----> 'H-CO-CO-H' + 'HO-CH2-CO-CH3' @KDEC ; // C58O2 // R[MBabs70A]= 'CIS-HO-CH2-C(CH3)=CH-CO-O2.' + HO2 ----> 'CIS-HO-CO-CH=C(CH3)-CH2-OH' + O3 @KAPHO2*0.29 ; // HC4ACO3 R[MBabs71A]= 'CIS-HO-CH2-C(CH3)=CH-CO-O2.' + HO2 ----> 'CIS-HOO-CO-CH=C(CH3)-CH2-OH' @KAPHO2*0.71 ; // HC4ACO3 R[MBabs72A]= 'CIS-HO-CH2-C(CH3)=CH-CO-O2.' + NO2 ----> 'CIS-HO-CH2-C(CH3)=CH-CO-O-NO3' @KFPAN ; // HC4ACO3 R[MBabs73A]= 'CIS-HO-CH2-C(CH3)=CH-CO-O2.' + NO ----> 'HO-CH2-CO-CH3' + HO2 + CO + NO2 @KAPNO ; // HC4ACO3 R[MBabs74A]= 'CIS-HO-CH2-C(CH3)=CH-CO-O2.' + NO3 ----> 'HO-CH2-CO-CH3' + HO2 + CO + NO2 @KRO2NO3*1.6 ; // HC4ACO3 R[MBabs75A]= 'CIS-HOO-CO-CH=C(CH3)-CH2-OH' + OH ----> 'CIS-HO-CH2-C(CH3)=CH-CO-O2.' @2.88E-11 ; // HC4ACO3H R[MBabs76A]= 'CIS-HOO-CO-CH=C(CH3)-CH2-OH' + CL ----> 'CIS-HO-CH2-C(CH3)=CH-CO-O2.' + HCL @4.4E-11 ; // HC4ACO3H R[MBabs77A]= 'CIS-HOO-CO-CH=C(CH3)-CH2-OH' -hv-> 'HO-CH2-CO-CH3' + HO2 + CO + OH @j[COOH_to_HO2] ; // COOH(j41) R[MBabs78A]= 'CIS-HO-CH2-C(CH3)=CH-CO-O-NO3' ----> 'CIS-HO-CH2-C(CH3)=CH-CO-O2.' + NO2 @KBPAN ; // C5PAN17 R[MBabs79A]= 'CIS-HO-CH2-C(CH3)=CH-CO-O-NO3' + OH ----> 'HO-CH2-C(CH3)(OH)-CO-H' + NO2 + CO @2.52E-11 ; // C5PAN17 R[MBabs80A]= 'CIS-HO-CH2-C(CH3)=CH-CO-O-NO3' + CL ----> 'HO-CH2-C(CH3)(CL)-CO-H' + NO2 + CO @1.0E-10 ; // C5PAN17 // R[MBabs80B]= 'HO-CH2-C(CH3)(CL)-CO-H' + OH ----> 'HO-CH2-C(CH3)(CL)-CO-O2.' @3.60E-11 ; // HOIPRCHO R[MBabs81B]= 'HO-CH2-C(CH3)(CL)-CO-H' + CL ----> 'HO-CH2-C(CH3)(CL)-CO-O2.' + HCL @2.2E-11 ; // HOIPRCHO

Page 51: THE PHOTOOXIDATION OF 2-METHYL-2-BUTENE …ufdcimages.uflib.ufl.edu/UF/E0/04/26/40/00001/im_y.pdfTHE EFFECTS OF ACTIVE CHLORINES ON PHOTOOXIDATION OF 2-METHYL-2 ... effects on both

51

R[MBabs82B]= 'HO-CH2-C(CH3)(CL)-CO-H' -hv-> 'HO-CH2-C(CL)(O2.)-CH3' + CO + HO2 @j[iC3H7CHO_to_HCO] ; // IC3CHO(J17) R[MBabs83B]= 'HO-CH2-C(CH3)(CL)-CO-H' + NO3 ----> 'HO-CH2-C(CH3)(CL)-CO-O2.' + HNO3 @KNO3AL*4.0 ; // HOIPRCHO // R[MBabs84B]= 'HO-CH2-C(CH3)(CL)-CO-O2.' + RO2 ----> 'HO-CO-C(CH3)(CL)-CH2-OH' @1.00E-11*0.3 ; // HOIPRCO3 R[MBabs85B]= 'HO-CH2-C(CH3)(CL)-CO-O2.' + RO2 ----> 'HO-CH2-C(CL)(O2.)-CH3' @1.00E-11*0.7 ; // HOIPRCO3 R[MBabs86B]= 'HO-CH2-C(CH3)(CL)-CO-O2.' + HO2 ----> 'HO-CO-C(CH3)(CL)-CH2-OH' + O3 @KAPHO2*0.29 ; // HOIPRCO3 R[MBabs87B]= 'HO-CH2-C(CH3)(CL)-CO-O2.' + HO2 ----> 'HOO-CO-C(CH3)(CL)-CH2-OH' @KAPHO2*0.71 ; // HOIPRCO3 R[MBabs88B]= 'HO-CH2-C(CH3)(CL)-CO-O2.' + NO2 ----> 'HO-CH2-C(CH3)(CL)-CO-O-NO3' @KFPAN ; // HOIPRCO3 R[MBabs89B]= 'HO-CH2-C(CH3)(CL)-CO-O2.' + NO ----> 'HO-CH2-C(CL)(O2.)-CH3' + NO2 @KAPNO ; // HOIPRCO3 R[MBabs90B]= 'HO-CH2-C(CH3)(CL)-CO-O2.' + NO3 ----> 'HO-CH2-C(CL)(O2.)-CH3' + NO2 @KRO2NO3*1.6 ; // HOIPRCO3 // R[MBabs90BB]= 'HO-CH2-C(CL)(O2.)-CH3' + RO2 ----> 'HO-CH2-C(CL)(O.)-CH3' @9.20E-14*0.7;// HYPROPO2 R[MBabs91B]= 'HO-CH2-C(CL)(O2.)-CH3' + RO2 ----> 'HO-CH2-C(CL)(OH)-CH3' @9.20E-14*0.3 ; // HYPROPO2 R[MBabs92B]= 'HO-CH2-C(CL)(O2.)-CH3' + HO2 ----> 'HO-CH2-C(CL)(OOH)-CH3' @KRO2HO2*0.520 ; // HYPROPO2 R[MBabs93B]= 'HO-CH2-C(CL)(O2.)-CH3' + NO ----> 'HO-CH2-C(CL)(O.)-CH3' + NO2 @KRO2NO*0.97 ; // HYPROPO2 R[MBabs94B]= 'HO-CH2-C(CL)(O2.)-CH3' + NO3 ----> 'HO-CH2-C(CL)(O.)-CH3' + NO2 @KRO2NO3 ; // HYPROPO2 // R[MBabs95B]= 'HO-CO-C(CH3)(CL)-CH2-OH' + OH ----> 'HO-CH2-C(CL)(O2.)-CH3' @1.46E-11 ; // HOIPRCO2H R[MBabs96B]= 'HO-CO-C(CH3)(CL)-CH2-OH' + CL ----> 'HO-CH2-C(CL)(O2.)-CH3' + HCL @6.5E-11 ; // HOIPRCO2H // R[MBabs97B]= 'HOO-CO-C(CH3)(CL)-CH2-OH' -hv-> 'HO-CH2-C(CL)(O2.)-CH3' + OH @j[COOH_to_HO2] ; // COOH(j41) R[MBabs98B]= 'HOO-CO-C(CH3)(CL)-CH2-OH' + OH ----> 'HO-CH2-C(CH3)(CL)-CO-O2.' @1.82E-11 ; // HOIPRCO3H R[MBabs99B]= 'HOO-CO-C(CH3)(CL)-CH2-OH' + CL ----> 'HO-CH2-C(CH3)(CL)-CO-O2.' + HCL @4.4E-11 ; // HOIPRCO3H // R[MBabs100B]= 'HO-CH2-C(CH3)(CL)-CO-O-NO3' + NO2 ----> 'HO-CH2-C(CH3)(CL)-CO-O2.' @KBPAN ; // HOIPRCO3 R[MBabs101B]= 'HO-CH2-C(CH3)(CL)-CO-O-NO3' + OH ----> 'HO-CH2-C(CH3)(CL)-CO-O2.' @4.50E-12; // C5PAN15 R[MBabs102B]= 'HO-CH2-C(CH3)(CL)-CO-O-NO3' + CL ----> 'HO-CH2-CO-CL' + 'H-CO-H' + CO + NO2 @1.02E-10; // C5PAN15 // R[MBabs103B]= 'HO-CH2-C(CL)(O.)-CH3' ----> 'H-CO-H' + 'CL-CO-CH3' + HO2 @2.00E+14*EXP(-6410/TK);// HYPROPO // R[MBabs104B]= 'HO-CH2-C(CL)(OH)-CH3' + OH ----> 'H-CO-C(CL)(OH)-CH3' + HO2 @1.20E-11*0.387 ; // PROPGLY R[MBabs105B]= 'HO-CH2-C(CL)(OH)-CH3' + CL ----> 'H-CO-C(CL)(OH)-CH3' + HO2 + HCL @9.2E-11*0.6 ; // R[MBabs104BB]= 'HO-CH2-C(CL)(OH)-CH3' + OH ----> 'HO-CH2-CO-CH3' + HO2 @1.20E-11*0.613 ; // PROPGLY R[MBabs105BB]= 'HO-CH2-C(CL)(OH)-CH3' + CL ----> 'HO-CH2-CO-CH3' + HO2 + HCL @9.2E-11*0.4 ; // // R[MBabs106B]= 'H-CO-C(CL)(OH)-CH3' + OH ----> 'CO(O2.)-C(CL)(OH)-CH3' @2.65E-11 ; // CH3CHOHCHO R[MBabs107B]= 'H-CO-C(CL)(OH)-CH3' + CL ----> 'CO(O2.)-C(CL)(OH)-CH3' + HCL @1.09E-10 ; // R[MBabs108B]= 'H-CO-C(CL)(OH)-CH3' + NO3 ----> 'CO(O2.)-C(CL)(OH)-CH3' + HNO3 @KNO3AL*2.4 ; // CH3CHOHCHO R[MBabs109B]= 'H-CO-C(CL)(OH)-CH3' -hv-> 'CL-CO-CH3' + 2*HO2 + CO @j[iC3H7CHO_to_HCO] ; // IC3CHO(J17) // R[MBabs110B]= 'CO(O2.)-C(CL)(OH)-CH3' + RO2 ----> 'CL-CO-CH3' + HO2 @1.0E-11 ; // CH3CHOHCO3 R[MBabs111B]= 'CO(O2.)-C(CL)(OH)-CH3' + HO2 ----> 'HOO-CO-C(CL)(OH)-CH3' @KAPHO2 ; // CH3CHOHCO3 R[MBabs112B]= 'CO(O2.)-C(CL)(OH)-CH3' + NO ----> 'CL-CO-CH3' + HO2 + NO2 @KAPNO ; // CH3CHOHCO3 R[MBabs113B]= 'CO(O2.)-C(CL)(OH)-CH3' + NO3 ----> 'CL-CO-CH3' + HO2 + NO2 @KRO2NO3 ; // CH3CHOHCO3 // R[MBabs114B]= 'HOO-CO-C(CL)(OH)-CH3' + OH ----> 'CO(O2.)-C(CL)(OH)-CH3' @9.34E-12 ; // IPROPOLPER R[MBabs115B]= 'HOO-CO-C(CL)(OH)-CH3' + CL ----> 'CO(O2.)-C(CL)(OH)-CH3' + HCL @4.4E-11 ; // R[MBabs116B]= 'HOO-CO-C(CL)(OH)-CH3' -hv-> 'CL-CO-CH3' + HO2 + OH @j[COOH_to_HO2] ; // COOH(j41) // R[MBabs81A]= 'HO-CH2-C(CH3)(O2.)-CH(OH)-CO-H' + NO ----> 'HO-CH2-C(CH3)(NO3)-CH(OH)-CO-H' @KRO2NO*0.019 ; // 1-0-2-1-1 C58O2 R[MBabs82A]= 'HO-CH2-C(CH3)(O2.)-CH(OH)-CO-H' + NO ----> 'HO-CH2-C(CH3)(O.)-CH(OH)-CO-H' + NO2 @KRO2NO*0.981 ; // C58O2 R[MBabs83A]= 'HO-CH2-C(CH3)(O2.)-CH(OH)-CO-H' + NO3 ----> 'HO-CH2-C(CH3)(O.)-CH(OH)-CO-H' + NO2 @KRO2NO3 ; // C58O2 R[MBabs84A]= 'HO-CH2-C(CH3)(O2.)-CH(OH)-CO-H' + HO2 ----> 'HO-CH2-C(CH3)(OOH)-CH(OH)-CO-H' @KRO2HO2*0.706 ; // C58O2 R[MBabs85A]= 'HO-CH2-C(CH3)(NO3)-CH(OH)-CO-H' + OH ----> 'H-CO-CO-H' + 'HO-CH2-CO-CH3' + HO2 + NO2 @2.32E-11 ; // C58NO3 R[MBabs86A]= 'HO-CH2-C(CH3)(NO3)-CH(OH)-CO-H' + CL ----> 'H-CO-CO-H' + 'HO-CH2-CO-CH3' + HO2 + NO2 + HCL @8.01E-11 ; // C58NO3 R[MBabs87A]= 'HO-CH2-C(CH3)(OOH)-CH(OH)-CO-H' -hv-> 'HO-CH2-C(CH3)(O.)-CH(OH)-CO-H' + OH @j[COOH_to_HO2] ; // COOH(j41)

Page 52: THE PHOTOOXIDATION OF 2-METHYL-2-BUTENE …ufdcimages.uflib.ufl.edu/UF/E0/04/26/40/00001/im_y.pdfTHE EFFECTS OF ACTIVE CHLORINES ON PHOTOOXIDATION OF 2-METHYL-2 ... effects on both

52

R[MBabs88A]= 'HO-CH2-C(CH3)(OOH)-CH(OH)-CO-H' + OH ----> 'HO-CH2-C(CH3)(O2.)-CH(OH)-CO-H' @3.16E-11; // C58OOH R[MBabs89A]= 'HO-CH2-C(CH3)(OOH)-CH(OH)-CO-H' + CL ----> 'HO-CH2-C(CH3)(O2.)-CH(OH)-CO-H' + HCL @4.4E-10 ; // C58OOH //1-0-2-1-1 R[MBabs69]= 'HO-CH2-C(CH3)(OH)-CH(OH)-CO-H' + OH ----> 'HO-CH2-C(CH3)(O.)-CH(OH)-CO-H' @3.04E-11 ; // C58OH R[MBabs70]= 'HO-CH2-C(CH3)(OH)-CH(OH)-CO-H' + CL ----> 'HO-CH2-C(CH3)(O.)-CH(OH)-CO-H' + HCL @1.45E-10 ; // R[MBabs71]= 'HO-CH2-C(CH3)(O.)-CH(OH)-CO-H' ----> 'H-CO-CO-H' + 'HO-CH2-CO-CH3' @KDEC ; // C58O //1-0-2-2 R[MBabs73]= 'HO-CH2-C(CH3)(O2.)-CH(CL)-CO-H' + RO2 ----> 'HO-CH2-C(CH3)(OH)-CH(CL)-CO-H' @9.20E-14*0.3 ; // JENKIN1997 R[MBabs74]= 'HO-CH2-C(CH3)(O2.)-CH(CL)-CO-H' + RO2 ----> 'HO-CH2-C(CH3)(O.)-CH(CL)-CO-H' @9.20E-14*0.7 ; // JENKIN1997 R[MBabs75]= 'HO-CH2-C(CH3)(O.)-CH(CL)-CO-H' ----> 'H-CO-CH(CL)-O2.' + 'HO-CH2-CO-CH3' @KDEC ; // JENKIN1997 R[MBabs76]= 'HO-CH2-C(CH3)(OH)-CH(CL)-CO-H' + OH ----> 'HO-CH2-C(CH3)(O.)-CH(CL)-CO-H' @3.04E-11 ; // C58OH R[MBabs77]= 'HO-CH2-C(CH3)(OH)-CH(CL)-CO-H' + CL ----> 'HO-CH2-C(CH3)(O.)-CH(CL)-CO-H' + HCL @7.52E-11 ; // // R[MBabs90A]= 'HO-CH2-C(CH3)(O2.)-CH(CL)-CO-H' + NO ----> 'HO-CH2-C(CH3)(NO3)-CH(CL)-CO-H' @KRO2NO*0.019 ; // 1-0-2-1-1 C58O2 R[MBabs91A]= 'HO-CH2-C(CH3)(O2.)-CH(CL)-CO-H' + NO ----> 'HO-CH2-C(CH3)(O.)-CH(CL)-CO-H' + NO2 @KRO2NO*0.981 ; // C58O2 R[MBabs92A]= 'HO-CH2-C(CH3)(O2.)-CH(CL)-CO-H' + NO3 ----> 'HO-CH2-C(CH3)(O.)-CH(CL)-CO-H' + NO2 @KRO2NO3 ; // C58O2 R[MBabs93A]= 'HO-CH2-C(CH3)(O2.)-CH(CL)-CO-H' + HO2 ----> 'HO-CH2-C(CH3)(OOH)-CH(CL)-CO-H' @KRO2HO2*0.706 ; // C58O2 R[MBabs94A]= 'HO-CH2-C(CH3)(NO3)-CH(CL)-CO-H' + OH ----> 'H-CO-CH(CL)-O2.' + 'HO-CH2-CO-CH3' + NO2 @2.32E-11 ; // C58NO3 R[MBabs95A]= 'HO-CH2-C(CH3)(NO3)-CH(CL)-CO-H' + CL ----> 'H-CO-CH(CL)-O2.' + 'HO-CH2-CO-CH3' + NO2 + HCL @7.5E-11 ; // C58NO3 R[MBabs96A]= 'HO-CH2-C(CH3)(OOH)-CH(CL)-CO-H' -hv-> 'HO-CH2-C(CH3)(O.)-CH(CL)-CO-H' + OH @j[COOH_to_HO2] ; //COOH(j41) R[MBabs97A]= 'HO-CH2-C(CH3)(OOH)-CH(CL)-CO-H' + OH ----> 'HO-CH2-C(CH3)(O2.)-CH(CL)-CO-H' @3.16E-11 ; // C58OOH R[MBabs98A]= 'HO-CH2-C(CH3)(OOH)-CH(CL)-CO-H' + CL ----> 'HO-CH2-C(CH3)(O2.)-CH(CL)-CO-H'+ HCL @4.4E-11 ; // C58OOH // R[MBabs99A]= 'H-CO-CH(CL)-O2.' + RO2 ----> 'CL-CO-CO-H' @8.8E-13*0.2 ; // ATKINSON1997(STOP) R[MBabs100A]= 'H-CO-CH(CL)-O2.' + RO2 ----> 'CL-CH(OH)-CO-H' @8.8E-13*0.2 ; // ATKINSON1997 R[MBabs101A]= 'H-CO-CH(CL)-O2.' + RO2 ----> 'H-CO-CH(CL)-O.' @8.8E-13*0.6 ; // ATKINSON1997 R[MBabs102A]= 'H-CO-CH(CL)-O2.' + NO ----> 'H-CO-CH(CL)-O.' +NO2 @KRO2NO ; // ATKINSON1997 R[MBabs103A]= 'H-CO-CH(CL)-O2.' + NO3 ----> 'H-CO-CH(CL)-O.' +NO2 @KRO2NO3 ; // ATKINSON1997 R[MBabs104A]= 'H-CO-CH(CL)-O2.' + HO2 ----> 'HOO-CH(CL)-CO-H' @KRO2HO2*0.706 ; // ATKINSON1997 R[MBabs105A]= 'HOO-CH(CL)-CO-H' -hv-> 'H-CO-CH(CL)-O.' + OH @j[COOH_to_HO2] ; // COOH(j41) R[MBabs106A]= 'HOO-CH(CL)-CO-H' + OH ----> 'H-CO-CH(CL)-O2.' @1.90E-12*EXP(190/TK) ; // HCOCH2OOH R[MBabs107A]= 'HOO-CH(CL)-CO-H' + CL ----> 'H-CO-CH(CL)-O2.' @4.4E-11 ; // HCOCH2OOH R[MBabs108A]= 'HOO-CH(CL)-CO-H' + OH ----> 'CL-CO-CO-H' + OH @2.9E-11 ; // HCOCH2OOH R[MBabs109A]= 'HOO-CH(CL)-CO-H' + CL ----> 'CL-CO-CO-H' + OH + HCL @4.4E-11 ; // HCOCH2OOH R[MBabs110A]= 'HOO-CH(CL)-CO-H' -hv-> 'CL-CO-H' + OH + CO + HO2 @j[HOCH2CHO_to_RO2] ; // HOCH2CHO(J15) // R[MBabs111A]= 'H-CO-CH(CL)-O.' ----> 'CL-CO-H' + CO + HO2 @KDEC ; // ATKINSON1997 R[MBabs112A]= 'CL-CH(OH)-CO-H' + OH ----> 'CL-CH(OH)-CO-O2.' @6.18E-12 ; // CL2OHCHO R[MBabs113A]= 'CL-CH(OH)-CO-H' + CL ----> 'CL-CH(OH)-CO-O2.' + HCL @1.18E-11 ; // R[MBabs114A]= 'CL-CH(OH)-CO-O2.' + NO2 ----> 'CL-CH(OH)-CO-O-NO3' @KFPAN ; // CL2OHCO3 R[MBabs115A]= 'CL-CH(OH)-CO-O2.' + HO2 ----> 'HOO-CO-CH(CL)-OH' @KAPHO2*0.71 ; // CL2OHCO3 R[MBabs116A]= 'CL-CH(OH)-CO-O2.' + RO2 ----> 'CL-CO-H' + HO2 @1.0E-11*0.7 ; // CL2OHCO3 R[MBabs117A]= 'CL-CH(OH)-CO-O2.' + NO ----> 'CL-CO-H' + HO2 + NO2 @KAPNO ; // CL2OHCO3 R[MBabs118A]= 'CL-CH(OH)-CO-O2.' + NO3 ----> 'CL-CO-H' + HO2 + NO2 @KRO2NO3*1.6 ; // CL2OHCO3 //1-1 R[MBabs79]= 'H-CO-CH=C(CH3)-CH3' + OH ----> 'H-CO-CH(OH)-C(CH3)(O2.)-CH3' @4.52E-11*0.52 ; // 1-1-1 HC4ACHO R[MBabs80]= 'H-CO-CH=C(CH3)-CH3' + OH ----> 'CO(O2.)-CH=C(CH3)-CH3' @4.52E-11*0.48 ; // 1-1-2 HC4ACHO R[MBabs81]= 'H-CO-CH=C(CH3)-CH3' + CL ----> 'H-CO-CH(CL)-C(CH3)(O2.)-CH3' @2.11E-10*0.5 ; // 1-1-1 R[MBabs82]= 'H-CO-CH=C(CH3)-CH3' + CL ----> 'CO(O2.)-CH=C(CH3)-CH3' + HCL @2.11E-10*0.5 ; // 1-1-1 R[MBabs83]= 'H-CO-CH=C(CH3)-CH3' -hv-> 'CO(O2.)-CH=C(CH3)-CH3' + HO2 @j[MACR_to_Prods] ; // 1-1-1 Macr(j19) R[MBabs84]= 'H-CO-CH=C(CH3)-CH3' -hv-> 'HO-CH2-CO-CH3' + 2*HO2 + 2*CO @j[METHACRO_to_HCHO] ; // METHACRO(j18) // R[MBabs78B]= 'H-CO-CH=C(CH3)-CH3' + O3 ----> 'CH3-CO-CH3' + 'H-CO-C(=O-O)-H' @2.4E-17*0.5 ; // 1-1-1 HC4ACHO R[MBabs79B]= 'H-CO-CH=C(CH3)-CH3' + O3 ----> 'CH3-C(=O-O)-CH3' + 'H-CO-CO-H' @2.4E-17*0.5 ; // 1-1-1 HC4ACHO // //1-1-1

Page 53: THE PHOTOOXIDATION OF 2-METHYL-2-BUTENE …ufdcimages.uflib.ufl.edu/UF/E0/04/26/40/00001/im_y.pdfTHE EFFECTS OF ACTIVE CHLORINES ON PHOTOOXIDATION OF 2-METHYL-2 ... effects on both

53

R[MBabs86]= 'H-CO-CH(OH)-C(CH3)(O2.)-CH3' + RO2 ----> 'H-CO-CH(OH)-C(CH3)(OH)-CH3' @9.20E-14*0.3 ; // 1-1-1-1 JENKIN 1997 R[MBabs87]= 'H-CO-CH(OH)-C(CH3)(O2.)-CH3' + RO2 ----> 'H-CO-CH(OH)-C(CH3)(O.)-CH3' @9.20E-14*0.7 ; // JENKIN 1997 R[MBabs88]= 'H-CO-CH(OH)-C(CH3)(O.)-CH3' ----> 'H-CO-CO-H' + 'CH3-CO-CH3' + HO2 @KDEC ; // R[MBabs89]= 'H-CO-CH(CL)-C(CH3)(O2.)-CH3' + RO2 ----> 'CH3-C(CH3)(OH)-CH(CL)-CO-H' @9.20E-14*0.3 ; // 1-2-2-1 JENKIN 1997 R[MBabs90]= 'H-CO-CH(CL)-C(CH3)(O2.)-CH3' + RO2 ----> 'H-CO-CH(CL)-C(CH3)(O.)-CH3' @9.20E-14*0.7 ; // JENKIN 1997 R[MBabs91]= 'H-CO-CH(CL)-C(CH3)(O.)-CH3' ----> 'H-CO-CH(CL)-O2.' + 'CH3-CO-CH3' + HO2 @KDEC ; // // R[MBabs119A]= 'H-CO-CH(OH)-C(CH3)(O2.)-CH3' + HO2 ----> 'CH3-C(CH3)(OOH)-CH(OH)-CO-H' @KRO2HO2*0.706 ; // R[MBabs120A]= 'H-CO-CH(OH)-C(CH3)(O2.)-CH3' + NO ----> 'H-CO-CH(OH)-C(CH3)(O.)-CH3' +NO2 @KRO2NO ; // JENKIN 1997 R[MBabs121A]= 'H-CO-CH(OH)-C(CH3)(O2.)-CH3' + NO3 ----> 'H-CO-CH(OH)-C(CH3)(O.)-CH3' +NO2 @KRO2NO3 ; // JENKIN 1997 R[MBabs122A]= 'CH3-C(CH3)(OOH)-CH(OH)-CO-H' -hv-> 'H-CO-CH(OH)-C(CH3)(O.)-CH3'+ OH @j[COOH_to_HO2] ; // COOH(j41) R[MBabs123A]= 'CH3-C(CH3)(OOH)-CH(OH)-CO-H' + OH ----> 'H-CO-CH(OH)-C(CH3)(O2.)-CH3' @3.16E-11 ; // C58OOH R[MBabs124A]= 'CH3-C(CH3)(OOH)-CH(OH)-CO-H' + CL ----> 'H-CO-CH(OH)-C(CH3)(O2.)-CH3'+ HCL @4.4E-11 ; // C58OOH // R[MBabs125A]= 'H-CO-CH(CL)-C(CH3)(O2.)-CH3' + HO2 ----> 'CH3-C(CH3)(OOH)-CH(CL)-CO-H' @KRO2HO2*0.706 ; // R[MBabs126A]= 'H-CO-CH(CL)-C(CH3)(O2.)-CH3' + NO ----> 'H-CO-CH(CL)-C(CH3)(O.)-CH3' +NO2 @KRO2NO ; // JENKIN 1997 R[MBabs127A]= 'H-CO-CH(CL)-C(CH3)(O2.)-CH3' + NO3 ----> 'H-CO-CH(CL)-C(CH3)(O.)-CH3' +NO2 @KRO2NO3 ; // JENKIN 1997 R[MBabs128A]= 'CH3-C(CH3)(OOH)-CH(CL)-CO-H' -hv-> 'H-CO-CH(CL)-C(CH3)(O.)-CH3'+ OH @j[COOH_to_HO2] ; // COOH(j41) R[MBabs129A]= 'CH3-C(CH3)(OOH)-CH(CL)-CO-H' + OH ----> 'H-CO-CH(CL)-C(CH3)(O2.)-CH3' @3.16E-11 ; // C58OOH R[MBabs130A]= 'CH3-C(CH3)(OOH)-CH(CL)-CO-H' + CL ----> 'H-CO-CH(CL)-C(CH3)(O2.)-CH3'+ HCL @4.4E-11 ; // C58OOH //1-1-1-1 R[MBabs93]= 'H-CO-CH(OH)-C(CH3)(OH)-CH3' + OH ----> 'CO(O2.)-CH(OH)-C(CH3)(OH)-CH3' @2.75E-11 ; // MBOBCO R[MBabs94]= 'H-CO-CH(OH)-C(CH3)(OH)-CH3' + CL ----> 'CO(O2.)-CH(OH)-C(CH3)(OH)-CH3' + HCL @1.35E-10 ; // R[MBabs95]= 'H-CO-CH(OH)-C(CH3)(OH)-CH3' -hv-> 'H-CO-C(CH3)(OH)-CH3' +CO + 2*HO2 @j[iC3H7CHO_to_HCO] ; // IC3CHO(J17) R[MBabs96]= 'CO(O2.)-CH(OH)-C(CH3)(OH)-CH3' + RO2 ----> 'H-CO-C(CH3)(OH)-CH3' + HO2 @1.00E-11 ; // C4OH2CO3 R[MBabs97]= 'H-CO-C(CH3)(OH)-CH3' + OH ----> 'CO(O2.)-C(CH3)(OH)-CH3' @2.20E-11 ; // 1-1-1-1-1 IBUTALOH R[MBabs98]= 'H-CO-C(CH3)(OH)-CH3' + CL ----> 'CO(O2.)-C(CH3)(OH)-CH3' + HCL @1.3E-10 ; // 1-1-1-1-1 R[MBabs99]= 'H-CO-C(CH3)(OH)-CH3' -hv-> 'CH3-CO-CH3' + CO+ 2*HO2 @j[iC3H7CHO_to_HCO] ; // IC3CHO(J17) // R[MBabs131A]= 'CO(O2.)-CH(OH)-C(CH3)(OH)-CH3' + NO ----> 'H-CO-C(CH3)(OH)-CH3' + HO2 + NO2 @KAPNO ; // C4OH2CO3 R[MBabs132A]= 'CO(O2.)-CH(OH)-C(CH3)(OH)-CH3' + NO3 ----> 'H-CO-C(CH3)(OH)-CH3' + HO2 + NO2 @KRO2NO3*1.6 ; // C4OH2CO3 R[MBabs133A]= 'CO(O2.)-CH(OH)-C(CH3)(OH)-CH3' + NO2 ----> 'NO3-O-CO-CH(OH)-C(CH3)(OH)-CH3' @KFPAN ; // C4OH2CO3 R[MBabs134A]= 'CO(O2.)-CH(OH)-C(CH3)(OH)-CH3' + HO2 ----> 'HOO-CO-CH(OH)-C(CH3)(OH)-CH3' @KAPHO2 ; // C4OH2CO3 R[MBabs135A]= 'NO3-O-CO-CH(OH)-C(CH3)(OH)-CH3' ----> 'CO(O2.)-CH(OH)-C(CH3)(OH)-CH3'+ NO2 @KFPAN ; // C4OH2CO3 R[MBabs136A]= 'NO3-O-CO-CH(OH)-C(CH3)(OH)-CH3' + OH ----> 'H-CO-C(CH3)(OH)-CH3' + CO + NO2 @7.24E-12 ; // C4OH2CPAN R[MBabs137A]= 'NO3-O-CO-CH(OH)-C(CH3)(OH)-CH3' + CL ----> 'H-CO-C(CH3)(OH)-CH3' + CO + NO2+ HCL @5.83E-11 ; // C4OH2CPAN R[MBabs138A]= 'HOO-CO-CH(OH)-C(CH3)(OH)-CH3' + OH ----> 'CO(O2.)-CH(OH)-C(CH3)(OH)-CH3' @1.05E-11 ; // C4OH2CO3H R[MBabs139A]= 'HOO-CO-CH(OH)-C(CH3)(OH)-CH3' + CL ----> 'CO(O2.)-CH(OH)-C(CH3)(OH)-CH3'+ HCL @4.4E-11 ; // C4OH2CO3H R[MBabs140A]= 'HOO-CO-CH(OH)-C(CH3)(OH)-CH3' -hv-> 'H-CO-C(CH3)(OH)-CH3' + HO2 + OH @j[COOH_to_HO2] ; // COOH(j41) //1-1-1-1-1 R[MBabs101]= 'CO(O2.)-C(CH3)(OH)-CH3' ----> 'HO-CO-C(CH3)(OH)-CH3' @1.00E-11*0.3 ; // IPRHOCO3 R[MBabs102]= 'CO(O2.)-C(CH3)(OH)-CH3' ----> 'CH3-CO-CH3' + HO2 @1.00E-11*0.7 ; // IPRHOCO3 R[MBabs103]= 'HO-CO-C(CH3)(OH)-CH3' + OH ----> 'CH3-CO-CH3' + HO2 @1.72E-12 ; // IPRHOCO2H R[MBabs104]= 'HO-CO-C(CH3)(OH)-CH3' + CL ----> 'CH3-CO-CH3' + HO2 + HCL @5.53E-11 ; // //1-1-2 R[MBabs106]= 'CO(O2.)-CH=C(CH3)-CH3' + RO2 ----> 'HO-CO-CH=C(CH3)-CH3' @1.00E-11*0.3 ; // HC4ACO3 R[MBabs107]= 'CO(O2.)-CH=C(CH3)-CH3' + RO2 ----> 'CH3-CO-CH3' + HO2 + CO @1.00E-11*0.7 ; // HC4ACO3 R[MBabs108]= 'HO-CO-CH=C(CH3)-CH3' + OH ----> 'CH3-CO-CH3' + HO2 + CO @2.52E-11 ; // HC4ACO2H R[MBabs109]= 'HO-CO-CH=C(CH3)-CH3' + CL ----> 'CH3-CO-CH3' + HO2 + CO + HCL @9.31E-11 ; // // R[MBabs141A]= 'CO(O2.)-CH=C(CH3)-CH3' + HO2 ----> 'HO-CO-CH=C(CH3)-CH3' +O3 @KAPHO2*0.29 ; // HC4ACO3 R[MBabs142A]= 'CO(O2.)-CH=C(CH3)-CH3' + HO2 ----> 'HOO-CO-CH=C(CH3)-CH3' @KAPHO2*0.71 ; // HC4ACO3 R[MBabs143A]= 'CO(O2.)-CH=C(CH3)-CH3' + NO ----> 'CH3-CO-CH3' + HO2 + CO + NO2 @KAPNO ; // HC4ACO3 R[MBabs144A]= 'CO(O2.)-CH=C(CH3)-CH3' + NO3 ----> 'CH3-CO-CH3' + HO2 + CO + NO2 @KRO2NO3*1.6 ; // HC4ACO3 R[MBabs145A]= 'CO(O2.)-CH=C(CH3)-CH3' + NO2 ----> 'NO3-O-CO-CH=C(CH3)-CH3' @KFPAN ; // HC4ACO3 R[MBabs146A]= 'HOO-CO-CH=C(CH3)-CH3' + OH ----> 'CO(O2.)-CH=C(CH3)-CH3' @2.88E-11 ; // HC4ACO3H

Page 54: THE PHOTOOXIDATION OF 2-METHYL-2-BUTENE …ufdcimages.uflib.ufl.edu/UF/E0/04/26/40/00001/im_y.pdfTHE EFFECTS OF ACTIVE CHLORINES ON PHOTOOXIDATION OF 2-METHYL-2 ... effects on both

54

R[MBabs147A]= 'HOO-CO-CH=C(CH3)-CH3' + CL ----> 'CO(O2.)-CH=C(CH3)-CH3' + HCL @4.4E-11 ; // HC4ACO3H R[MBabs148A]= 'HOO-CO-CH=C(CH3)-CH3' -hv-> 'CH3-CO-CH3' + HO2 + CO + OH @j[COOH_to_HO2] ; // COOH(j41) R[MBabs149A]= 'NO3-CO-CH=C(CH3)-CH3' ----> 'CO(O2.)-CH=C(CH3)-CH3' + NO2 @KBPAN ; // C5PAN17 R[MBabs150A]= 'NO3-O-CO-CH=C(CH3)-CH3' + OH ----> 'H-CO-C(CH3)(OH)-CH3' + NO2 + CO @2.52E-11 ; // C5PAN17 R[MBabs151A]= 'NO3-O-CO-CH=C(CH3)-CH3' + CL ----> 'H-CO-C(CH3)(CL)-CH3' + NO2 + CO @9.31E-11 ; // // R[MBabs151B]= 'H-CO-C(CH3)(CL)-CH3' + OH ----> 'CO(O2.)-C(CH3)(CL)-CH3' @6.82E-12*EXP(405/TK) ; // TBUTCHO R[MBabs152B]= 'H-CO-C(CH3)(CL)-CH3' + CL ----> 'CO(O2.)-C(CH3)(CL)-CH3' + HCL @2.05E-11 ; // TBUTCHO R[MBabs153B]= 'H-CO-C(CH3)(CL)-CH3' -hv-> 'CH3-C(CL)(O2.)-CH3' + CO + HO2 @j[iC3H7CHO_to_HCO] ; // IC3CHO(J17) R[MBabs154B]= 'H-CO-C(CH3)(CL)-CH3' + NO3 ----> 'CO(O2.)-C(CH3)(CL)-CH3' + HNO3 @KNO3AL*8.5 ; // TBUTCHO //1-2 R[MBabs111]= 'HO-CH2-CH=C(CH3)-CH3' + OH ----> 'HO-CH2-CH(OH)-C(CH3)(O2.)-CH3' @1.39E-10*0.6 ; // ATKINSON 1995 R[MBabs112]= 'HO-CH2-CH=C(CH3)-CH3' + OH ----> 'HO-CH2-CH(O2.)-C(CH3)(OH)-CH3' @1.39E-10*0.4 ; // 1-2-1 ATKINSON 1995 R[MBabs113]= 'HO-CH2-CH=C(CH3)-CH3' + CL ----> 'HO-CH2-CH(CL)-C(CH3)(O2.)-CH3' @4.05E-10*0.5 ; // 1-2-2 CL-= R[MBabs114]= 'HO-CH2-CH=C(CH3)-CH3' + CL ----> 'HO-CH2-CH(O2.)-C(CH3)(CL)-CH3' @4.05E-10*0.5 ; // 1-2-3 CL-= R[MBabs115]= 'HO-CH2-CH(OH)-C(CH3)(O2.)-CH3' + RO2 ----> 'HO-CH2-CH(OH)-C(CH3)(O.)-CH3' @9.2E-14*0.7 ; // 1-2-1 JENKIN 1997 R[MBabs116]= 'HO-CH2-CH(OH)-C(CH3)(O2.)-CH3' + RO2 ----> 'HO-CH2-CH(OH)-C(CH3)(OH)-CH3' @9.2E-14*0.3 ; // 1-3-1 JENKIN 1997 // R[MBabs111BB]= 'HO-CH2-CH=C(CH3)-CH3' + O3 ----> 'CH3-CO-CH3' + 'HO-CH2-C(=O-O)-H' @6.51E-15*EXP(-829/TK)*0.50 ; // MB R[MBabs112BB]= 'HO-CH2-CH=C(CH3)-CH3' + O3 ----> 'CH3-C(=O-O)-CH3' + 'HO-CH2-CO-H' @6.51E-15*EXP(-829/TK)*0.50 ; // MB // R[MBabs152A]= 'HO-CH2-CH(OH)-C(CH3)(O2.)-CH3' + NO ----> 'HO-CH2-CH(OH)-C(CH3)(NO3)-CH3' @KRO2NO*0.019 ; // R[MBabs153A]= 'HO-CH2-CH(OH)-C(CH3)(O2.)-CH3' + NO ----> 'HO-CH2-CH(OH)-C(CH3)(O.)-CH3' + NO2 @KRO2NO*0.981 ; // R[MBabs154A]= 'HO-CH2-CH(OH)-C(CH3)(O2.)-CH3' + NO3 ----> 'HO-CH2-CH(OH)-C(CH3)(O.)-CH3' + NO2 @KRO2NO3 ; // R[MBabs155A]= 'HO-CH2-CH(OH)-C(CH3)(O2.)-CH3' + HO2 ----> 'CH3-C(CH3)(OOH)-CH(OH)-CH2-OH' @KRO2HO2*0.706 ; // R[MBabs156A]= 'HO-CH2-CH(OH)-C(CH3)(NO3)-CH3' + OH ----> 'HO-CH2-CO-H' + 'CH3-CO-CH3' + HO2 + NO2 @2.32E-11 ; // R[MBabs157A]= 'HO-CH2-CH(OH)-C(CH3)(NO3)-CH3' + CL ----> 'HO-CH2-CO-H' + 'CH3-CO-CH3' + HO2 + NO2 + HCL @3.75E-11 ; // R[MBabs158A]= 'CH3-C(CH3)(OOH)-CH(OH)-CH2-OH' + OH ----> 'HO-CH2-CH(OH)-C(CH3)(O2.)-CH3' @3.16E-11 ; // R[MBabs159A]= 'CH3-C(CH3)(OOH)-CH(OH)-CH2-OH' + CL ----> 'HO-CH2-CH(OH)-C(CH3)(O2.)-CH3' + HCL @4.4E-11 ; // R[MBabs160A]= 'CH3-C(CH3)(OOH)-CH(OH)-CH2-OH' -hv-> 'HO-CH2-CH(OH)-C(CH3)(O.)-CH3' + OH @j[COOH_to_HO2] ; // COOH(j41) //1-2-1 R[MBabs118]= 'HO-CH2-CH(OH)-C(CH3)(O.)-CH3' ----> 'HO-CH2-CO-H' + 'CH3-CO-CH3' + HO2 @KDEC ; // R[MBabs119]= 'HO-CH2-CH(O2.)-C(CH3)(OH)-CH3' + RO2 ----> 'HO-CH2-CH(OH)-C(CH3)(OH)-CH3' @8.8E-13*0.2 ; // 1-3-1 JENKIN 1997 R[MBabs120]= 'HO-CH2-CH(O2.)-C(CH3)(OH)-CH3' + RO2 ----> 'HO-CH2-CO-C(CH3)(OH)-CH3' @8.8E-13*0.2 ; // 1-3-1 JENKIN 1997 R[MBabs121]= 'HO-CH2-CH(O2.)-C(CH3)(OH)-CH3' + RO2 ----> 'HO-CH2-CH(O.)-C(CH3)(OH)-CH3' @8.8E-13*0.6 ; // R[MBabs122]= 'HO-CH2-CH(O.)-C(CH3)(OH)-CH3' ----> 'HO-CH2-CO-H' + 'CH3-CO-CH3' + HO2 @KDEC ; // // R[MBabs161A]= 'HO-CH2-CH(O2.)-C(CH3)(OH)-CH3' + NO ----> 'HO-CH2-CH(O.)-C(CH3)(OH)-CH3' + NO2 @KRO2NO ; // R[MBabs161B]= 'HO-CH2-CH(O2.)-C(CH3)(OH)-CH3' + NO3 ----> 'HO-CH2-CH(O.)-C(CH3)(OH)-CH3' + NO2 @KRO2NO3 ; // R[MBabs161C]= 'HO-CH2-CH(O2.)-C(CH3)(OH)-CH3' + HO2 ----> 'HO-CH2-CH(OOH)-C(CH3)(OH)-CH3' @KRO2HO2*0.706 ; // R[MBabs161D]= 'HO-CH2-CH(OOH)-C(CH3)(OH)-CH3' + OH ----> 'HO-CH2-CH(O2.)-C(CH3)(OH)-CH3' @3.16E-11 ; // R[MBabs161E]= 'HO-CH2-CH(OOH)-C(CH3)(OH)-CH3' + CL ----> 'HO-CH2-CH(O2.)-C(CH3)(OH)-CH3' + HCL @4.4E-11 ; // R[MBabs161F]= 'HO-CH2-CH(OOH)-C(CH3)(OH)-CH3' -hv-> 'HO-CH2-CH(O.)-C(CH3)(OH)-CH3' + OH @j[COOH_to_HO2]; //COOH(j41) //1-2-2 R[MBabs124]= 'HO-CH2-CH(CL)-C(CH3)(O2.)-CH3' + RO2 ----> 'HO-CH2-CH(CL)-C(CH3)(OH)-CH3' @9.2E-14*0.3 ; // 1-2-2-1 JENKIN 1997 R[MBabs125]= 'HO-CH2-CH(CL)-C(CH3)(O2.)-CH3' + RO2 ----> 'HO-CH2-CH(CL)-C(CH3)(O.)-CH3' @9.2E-14*0.7 ; // JENKIN 1997 R[MBabs126]= 'HO-CH2-CH(CL)-C(CH3)(O.)-CH3' ----> 'HO-CH2-CH(CL)-O2.' + 'CH3-CO-CH3' @KDEC ; // R[MBabs127]= 'HO-CH2-CH(CL)-O2.' + RO2 ----> 'HO-CH2-CH(CL)-OH' @8.80E-13*0.2; // JENKIN 1997 R[MBabs128]= 'HO-CH2-CH(CL)-O2.' + RO2 ----> 'HO-CH2-CO-CL' @8.80E-13*0.2; // JENKIN 1997 R[MBabs129]= 'HO-CH2-CH(CL)-O2.' + RO2 ----> 'HO-CH2-CH(CL)-O.' @8.80E-13*0.6; // JENKIN 1997 R[MBabs130]= 'HO-CH2-CH(CL)-O.' ----> 'H-CO-H' + 'CL-CO-H' + HO2 @KDEC ; // //

Page 55: THE PHOTOOXIDATION OF 2-METHYL-2-BUTENE …ufdcimages.uflib.ufl.edu/UF/E0/04/26/40/00001/im_y.pdfTHE EFFECTS OF ACTIVE CHLORINES ON PHOTOOXIDATION OF 2-METHYL-2 ... effects on both

55

R[MBabs162A]= 'HO-CH2-CH(CL)-C(CH3)(O2.)-CH3' + NO ----> 'HO-CH2-CH(CL)-C(CH3)(NO3)-CH3' @KRO2NO*0.019 ; // R[MBabs163A]= 'HO-CH2-CH(CL)-C(CH3)(O2.)-CH3' + NO ----> 'HO-CH2-CH(CL)-C(CH3)(O.)-CH3' + NO2 @KRO2NO*0.981 ; // R[MBabs164A]= 'HO-CH2-CH(CL)-C(CH3)(O2.)-CH3' + NO3 ----> 'HO-CH2-CH(CL)-C(CH3)(O.)-CH3' + NO2 @KRO2NO3 ; // R[MBabs165A]= 'HO-CH2-CH(CL)-C(CH3)(O2.)-CH3' + HO2 ----> 'CH3-C(CH3)(OOH)-CH(CL)-CH2-OH' @KRO2HO2*0.706 ; // R[MBabs166A]= 'HO-CH2-CH(CL)-C(CH3)(NO3)-CH3' + OH ----> 'HO-CH2-CH(CL)-O2.' + 'CH3-CO-CH3' + NO2 @2.32E-11 ; // R[MBabs167A]= 'HO-CH2-CH(CL)-C(CH3)(NO3)-CH3' + CL ----> 'HO-CH2-CH(CL)-O2.' + 'CH3-CO-CH3' + NO2 + HCL @4.64E-12 ; // R[MBabs168A]= 'CH3-C(CH3)(OOH)-CH(CL)-CH2-OH' + OH ----> 'HO-CH2-CH(CL)-C(CH3)(O2.)-CH3' @3.16E-11 ; // R[MBabs169A]= 'CH3-C(CH3)(OOH)-CH(CL)-CH2-OH' + CL ----> 'HO-CH2-CH(CL)-C(CH3)(O2.)-CH3' + HCL @4.4E-11 ; // R[MBabs170A]= 'CH3-C(CH3)(OOH)-CH(CL)-CH2-OH' -hv-> 'HO-CH2-CH(CL)-C(CH3)(O.)-CH3' + OH @j[COOH_to_HO2] ; // COOH(j41) // R[MBabs171A]= 'HO-CH2-CH(CL)-O2.' + NO ----> 'HO-CH2-CH(CL)-O.' + NO2 @ KRO2NO ; // JENKIN 1997 R[MBabs172A]= 'HO-CH2-CH(CL)-O2.' + NO3 ----> 'HO-CH2-CH(CL)-O.' + NO2 @ KRO2NO3 ; // JENKIN 1997 R[MBabs173A]= 'HO-CH2-CH(CL)-O2.' + HO2 ----> 'HOO-CH(CL)-CH2-OH' @KRO2HO2*0.706; // JENKIN 1997 R[MBabs174A]= 'HOO-CH(CL)-CH2-OH' + OH ----> 'HO-CH2-CH(CL)-O2.' @3.16E-11; // JENKIN 1997 R[MBabs175A]= 'HOO-CH(CL)-CH2-OH' + CL ----> 'HO-CH2-CH(CL)-O2.' + HCL @4.4E-11 ; // JENKIN 1997 R[MBabs176A]= 'HOO-CH(CL)-CH2-OH' -hv-> 'HO-CH2-CH(CL)-O.' + OH @j[COOH_to_HO2] ; // COOH(j41) //1-2-2-1 R[MBabs132]= 'HO-CH2-CH(CL)-C(CH3)(OH)-CH3' + OH ----> 'CH3-C(CH3)(OH)-CH(CL)-CO-H' @1.18E-12 ; // ATKINSON 1995 R[MBabs133]= 'HO-CH2-CH(CL)-C(CH3)(OH)-CH3' + CL ----> 'CH3-C(CH3)(OH)-CH(CL)-CO-H' + HCL @6.44E-11 ; // ATKINSON 1997 R[MBabs134]= 'CH3-C(CH3)(OH)-CH(CL)-CO-H' + OH ----> 'CH3-C(CH3)(OH)-CH(CL)-CO-O2.' @6.41E-12 ; // ATKINSON 1995 R[MBabs135]= 'CH3-C(CH3)(OH)-CH(CL)-CO-H' + CL ----> 'CH3-C(CH3)(OH)-CH(CL)-CO-O2.' + HCL @6.79E-11 ; // R[MBabs136]= 'CH3-C(CH3)(OH)-CH(CL)-CO-O2.' + RO2 ----> 'HO-CO-CH(CL)-C(CH3)(OH)-CH3' @1.00E-11*0.3 ; // C4OH2CO3 R[MBabs137]= 'CH3-C(CH3)(OH)-CH(CL)-CO-O2.' + RO2 ----> 'CH3-C(CH3)(OH)-CH(CL)-O2.' @1.00E-11*0.7 ; // C4OH2CO3 R[MBabs138]= 'HO-CO-CH(CL)-C(CH3)(OH)-CH3' + OH ----> 'CH3-C(CH3)(OH)-CH(CL)-O2.' @1.41E-11 ; // HO2C4CO2H R[MBabs139]= 'HO-CO-CH(CL)-C(CH3)(OH)-CH3' + CL ----> 'CH3-C(CH3)(OH)-CH(CL)-O2.' + HCL @5.50E-11 ; // 1-2-2-1-1 // R[MBabs177A]= 'CH3-C(CH3)(OH)-CH(CL)-CO-O2.' + NO ----> 'CH3-C(CH3)(OH)-CH(CL)-O2.' + NO2 @KAPNO ; // C4OH2CO3 R[MBabs178A]= 'CH3-C(CH3)(OH)-CH(CL)-CO-O2.' + NO3 ----> 'CH3-C(CH3)(OH)-CH(CL)-O2.' + NO2 @KRO2NO3*1.6 ; // C4OH2CO3 R[MBabs179A]= 'CH3-C(CH3)(OH)-CH(CL)-CO-O2.' + NO2 ----> 'CH3-C(CH3)(OH)-CH(CL)-CO-O-NO3' @KFPAN ; // C4OH2CO3 R[MBabs180A]= 'CH3-C(CH3)(OH)-CH(CL)-CO-O2.' + HO2 ----> 'HOO-CO-CH(CL)-C(CH3)(OH)-CH3' @KAPHO2 ; // C4OH2CO3 R[MBabs181A]= 'CH3-C(CH3)(OH)-CH(CL)-CO-O-NO3' ----> 'CO(O2.)-CH(OH)-C(CH3)(OH)-CH3'+ NO2 @KFPAN ; // C4OH2CO3 R[MBabs182A]= 'CH3-C(CH3)(OH)-CH(CL)-CO-O-NO3' + OH ----> 'CH3-C(CH3)(OH)-CH(CL)-O2.' + CO + NO2 @7.24E-12 ; // C4OH2CPAN R[MBabs183A]= 'CH3-C(CH3)(OH)-CH(CL)-CO-O-NO3' + CL ----> 'CH3-C(CH3)(OH)-CH(CL)-O2.' + CO + NO2 + HCL @5.83E-11 ; // C4OH2CPAN R[MBabs184A]= 'HOO-CO-CH(CL)-C(CH3)(OH)-CH3' + OH ----> 'CH3-C(CH3)(OH)-CH(CL)-CO-O2.' @1.05E-11 ; // C4OH2CO3H R[MBabs185A]= 'HOO-CO-CH(CL)-C(CH3)(OH)-CH3' + CL ----> 'CH3-C(CH3)(OH)-CH(CL)-CO-O2.' + HCL @4.4E-11 ; // C4OH2CO3H R[MBabs186A]= 'HOO-CO-CH(CL)-C(CH3)(OH)-CH3' -hv-> 'CH3-C(CH3)(OH)-CH(CL)-O.' + OH @j[COOH_to_HO2] ; // COOH(j41) //1-2-2-1-1 R[MBabs141]= 'CH3-C(CH3)(OH)-CH(CL)-O2.' + RO2 ----> 'HO-CH(CL)-C(CH3)(OH)-CH3' @8.8E-13*0.2 ; // JENKIIN 1997 R[MBabs142]= 'CH3-C(CH3)(OH)-CH(CL)-O2.' + RO2 ----> 'CL-CO-C(CH3)(OH)-CH3' @8.8E-13*0.2 ; // JENKIIN 1997 R[MBabs143]= 'CH3-C(CH3)(OH)-CH(CL)-O2.' + RO2 ----> 'CL-CH(O.)-C(CH3)(OH)-CH3' @8.8E-13*0.6 ; // JENKIIN 1997 R[MBabs144]= 'CL-CH(O.)-C(CH3)(OH)-CH3' ----> 'CL-CO-H' + 'CH3-CO-CH3' +HO2 @KDEC ; // JENKIIN 1997 R[MBabs145]= 'HO-CH(CL)-C(CH3)(OH)-CH3' +OH ----> 'CL-CO-C(CH3)(OH)-CH3' + HO2 @3.17E-12 ; // ATKINSON1995 R[MBabs146]= 'HO-CH(CL)-C(CH3)(OH)-CH3' +CL ----> 'CL-CO-C(CH3)(OH)-CH3' + HO2 + HCL @5.74E-11 ; // ATKINSON1997 // R[MBabs187A]= 'CH3-C(CH3)(OH)-CH(CL)-O2.' + NO ----> 'CL-CH(O.)-C(CH3)(OH)-CH3' + NO2 @KRO2NO ; // JENKIIN 1997 R[MBabs188A]= 'CH3-C(CH3)(OH)-CH(CL)-O2.' + NO3 ----> 'CL-CH(O.)-C(CH3)(OH)-CH3' + NO2 @KRO2NO3 ; // JENKIIN 1997 R[MBabs189A]= 'CH3-C(CH3)(OH)-CH(CL)-O2.' + HO2 ----> 'HOO-CH(CL)-C(CH3)(OH)-CH3' @KRO2HO2*0.706 ; // JENKIIN 1997 R[MBabs190A]= 'HOO-CH(CL)-C(CH3)(OH)-CH3' + OH ----> 'CH3-C(CH3)(OH)-CH(CL)-O2.' @3.16E-11 ; // JENKIIN 1997 R[MBabs191A]= 'HOO-CH(CL)-C(CH3)(OH)-CH3' + CL ----> 'CH3-C(CH3)(OH)-CH(CL)-O2.' + HCL @4.4E-11 ; // JENKIIN 1997 R[MBabs192A]= 'HOO-CH(CL)-C(CH3)(OH)-CH3' -hv-> 'CH3-C(CH3)(OH)-CH(CL)-O.' + OH @j[COOH_to_HO2] ; // COOH(j41) //1-2-3 R[MBabs148]= 'HO-CH2-CH(O2.)-C(CH3)(CL)-CH3' + RO2 ----> 'HO-CH2-CH(OH)-C(CH3)(CL)-CH3' @8.8E-13*0.2 ; // 1-2-3-1 JENKIN 1997 R[MBabs149]= 'HO-CH2-CH(O2.)-C(CH3)(CL)-CH3' + RO2 ----> 'HO-CH2-CO-C(CH3)(CL)-CH3' @8.8E-13*0.2 ; // 1-2-3-1 JENKIN 1997 R[MBabs150]= 'HO-CH2-CH(O2.)-C(CH3)(CL)-CH3' + RO2 ----> 'HO-CH2-CH(O.)-C(CH3)(CL)-CH3' @8.8E-13*0.6 ; // JENKIN 1997

Page 56: THE PHOTOOXIDATION OF 2-METHYL-2-BUTENE …ufdcimages.uflib.ufl.edu/UF/E0/04/26/40/00001/im_y.pdfTHE EFFECTS OF ACTIVE CHLORINES ON PHOTOOXIDATION OF 2-METHYL-2 ... effects on both

56

R[MBabs151]= 'HO-CH2-CH(O.)-C(CH3)(CL)-CH3' ----> 'HO-CH2-CO-H' + 'CH3-C(CL)(O2.)-CH3' @KDEC ; // R[MBabs152]= 'CH3-C(CL)(O2.)-CH3' + RO2 ----> 'CH3-CO-CH3' + CL @9.20E-13*0.70 ; // JENKIN 1997 R[MBabs153]= 'CH3-C(CL)(O2.)-CH3' + RO2 ----> 'CH3-C(CL)(OH)-CH3' @9.20E-13*0.70 ; // JENKIN 1997 // R[MBabs193A]= 'HO-CH2-CH(O2.)-C(CH3)(CL)-CH3' + NO ----> 'HO-CH2-CH(O.)-C(CH3)(CL)-CH3' + NO2 @KRO2NO ; // JENKIN 1997 R[MBabs194A]= 'HO-CH2-CH(O2.)-C(CH3)(CL)-CH3' + NO3 ----> 'HO-CH2-CH(O.)-C(CH3)(CL)-CH3' + NO2 @KRO2NO3 ; // JENKIN 1997 R[MBabs195A]= 'HO-CH2-CH(O2.)-C(CH3)(CL)-CH3' + HO2 ----> 'HO-CH2-CH(OOH)-C(CH3)(CL)-CH3' @KRO2HO2*0.706 ; // JENKIN 1997 R[MBabs196A]= 'HO-CH2-CH(OOH)-C(CH3)(CL)-CH3' + OH ----> 'HO-CH2-CH(O2.)-C(CH3)(CL)-CH3' @3.16E-11 ; // JENKIN 1997 R[MBabs197A]= 'HO-CH2-CH(OOH)-C(CH3)(CL)-CH3' + CL ----> 'HO-CH2-CH(O2.)-C(CH3)(CL)-CH3' + HCL @4.4E-11 ; // JENKIN 1997 R[MBabs198A]= 'HO-CH2-CH(OOH)-C(CH3)(CL)-CH3' ----> 'HO-CH2-CH(O.)-C(CH3)(CL)-CH3' + OH @j[COOH_to_HO2] ; // COOH(j41) // R[MBabs199A]= 'CH3-C(CL)(O2.)-CH3' + NO ----> 'CH3-CO-CH3' + CL + NO2 @KRO2NO ; // JENKIN 1997 R[MBabs200A]= 'CH3-C(CL)(O2.)-CH3' + NO3 ----> 'CH3-CO-CH3' + CL + NO2 @KRO2NO3 ; // JENKIN 1997 R[MBabs201A]= 'CH3-C(CL)(O2.)-CH3' + HO2 ----> 'CH3-C(CL)(OOH)-CH3' @KRO2HO2*0.706 ; // JENKIN 1997 R[MBabs202A]= 'CH3-C(CL)(OOH)-CH3' + OH ----> 'CH3-C(CL)(O2.)-CH3' @3.16E-11 ; // JENKIN 1997 R[MBabs203A]= 'CH3-C(CL)(OOH)-CH3' + CL ----> 'CH3-C(CL)(O2.)-CH3' + HCL @9.12E-11 ; // JENKIN 1997 R[MBabs204A]= 'CH3-C(CL)(OOH)-CH3' -hv-> 'CH3-CO-CH3' + CL + OH @j[COOH_to_HO2] ; // COOH(j41) //1-2-3-1 R[MBabs155]= 'HO-CH2-CH(OH)-C(CH3)(CL)-CH3' + OH ----> 'HO-CH2-CO-C(CH3)(CL)-CH3' + HO2 @1.51E-11; // MBOAOH R[MBabs156]= 'HO-CH2-CH(OH)-C(CH3)(CL)-CH3' + CL ----> 'HO-CH2-CO-C(CH3)(CL)-CH3' + HO2 + HCL @4.95E-11; // JENKIIN 1997 R[MBabs157]= 'HO-CH2-CO-C(CH3)(CL)-CH3' + OH ----> 'H-CO-CO-C(CH3)(CL)-CH3' @3.79E-12; // MBOACO R[MBabs158]= 'HO-CH2-CO-C(CH3)(CL)-CH3' + CL ----> 'H-CO-CO-C(CH3)(CL)-CH3' +HCL @1.15E-11; // JENKIIN 1997 R[MBabs159]= 'HO-CH2-CO-C(CH3)(CL)-CH3' -hv-> 'CO(O2.)-C(CH3)(CL)-CH3' + 'H-CO-H' + HO2 @j[HOCH2COCH3_to_CH3CO];//OHAcetone(j22) R[MBabs160]= 'H-CO-CO-C(CH3)(CL)-CH3' + OH ----> 'CO(O2.)-C(CH3)(CL)-CH3' + 'H-CO-H' + HO2 @1.38E-11; // MBOCOCO R[MBabs161]= 'H-CO-CO-C(CH3)(CL)-CH3' + CL ----> 'CO(O2.)-C(CH3)(CL)-CH3' + 'H-CO-H' + HO2 + HCL @1.44E-11 ; // R[MBabs162]= 'H-CO-CO-C(CH3)(CL)-CH3' -hv-> 'CO(O2.)-C(CH3)(CL)-CH3' + CO + HO2 @j[MGLY_to_HO2] ; //MGLYOX(J34) R[MBabs163]= 'CO(O2.)-C(CH3)(CL)-CH3' + RO2 ----> 'CH3-C(CL)(O2.)-CH3' @1.00E-11*0.7 ; // IPRHOCO3 R[MBabs164]= 'CO(O2.)-C(CH3)(CL)-CH3' + RO2 ----> 'HO-CO-C(CH3)(CL)-CH3' @1.00E-11*0.3 ; // IPRHOCO3 R[MBabs165]= 'HO-CO-C(CH3)(CL)-CH3' + OH ----> 'CH3-C(CL)(O2.)-CH3' @1.72E-12 ; // IPRHOCO2H R[MBabs166]= 'HO-CO-C(CH3)(CL)-CH3' + CL ----> 'CH3-C(CL)(O2.)-CH3' + HCL @8.68E-12 ; // // R[MBabs205A]= 'CO(O2.)-C(CH3)(CL)-CH3' + NO2 ----> 'NO3-O-CO-C(CH3)(CL)-CH3' @KFPAN ; // IPRCO3 R[MBabs206A]= 'CO(O2.)-C(CH3)(CL)-CH3' + HO2 ----> 'HOO-CO-C(CH3)(CL)-CH3' @KAPHO2*0.71 ; // IPRCO3 R[MBabs207A]= 'CO(O2.)-C(CH3)(CL)-CH3' + HO2 ----> 'HO-CO-C(CH3)(CL)-CH3' + O3 @KAPHO2*0.29 ; // IPRCO3 R[MBabs208A]= 'CO(O2.)-C(CH3)(CL)-CH3' + NO ----> 'CH3-C(CL)(O2.)-CH3' + NO2 @KAPNO ; // IPRCO3 R[MBabs209A]= 'CO(O2.)-C(CH3)(CL)-CH3' + NO3 ----> 'CH3-C(CL)(O2.)-CH3' + NO2 @KRO2NO3*1.6 ; // IPRCO3 R[MBabs210A]= 'NO3-O-CO-C(CH3)(CL)-CH3' ----> 'CO(O2.)-C(CH3)(CL)-CH3' + NO2 @KBPAN ; // PIPN R[MBabs211A]= 'NO3-O-CO-C(CH3)(CL)-CH3' +OH ----> 'CO(O2.)-C(CH3)(CL)-CH3' + NO2 @2.66E-12 ; // PIPN R[MBabs212A]= 'NO3-O-CO-C(CH3)(CL)-CH3' +CL ----> 'CO(O2.)-C(CH3)(CL)-CH3' + NO2 + HCL @8.68E-12 ; // PIPN R[MBabs213A]= 'CO(O2.)-C(CH3)(CL)-CH3' -hv-> 'CH3-C(CL)(O2.)-CH3' + OH @j[COOH_to_HO2] ; // COOH(j41) R[MBabs214A]= 'HOO-CO-C(CH3)(CL)-CH3' + OH ----> 'CO(O2.)-C(CH3)(CL)-CH3' @6.26E-12; //PERIBUACID R[MBabs215A]= 'HOO-CO-C(CH3)(CL)-CH3' + CL ----> 'CO(O2.)-C(CH3)(CL)-CH3' + HCL @4.4E-11; //PERIBUACID //1-3 R[MBabs167]= 'CH2=CH-C(CH3)(O.)-CH3' ----> 'CH3-CO-CH3' + CO @2.00E+14*EXP(-6995/TK)*0.6 ; // IPECO R[MBabs168]= 'CH2=CH-C(CH3)(O.)-CH3' ----> 'CH3-CO-CH=CH2' + 'H-CO-H' @2.00E+14*EXP(-6995/TK)*0.4 ; // IPECO R[MBabs169]= 'CH3-C(CH3)(OH)-CH=CH2' + OH ----> 'HO-CH2-CH(O2.)-C(CH3)(OH)-CH3' @6.9E-11*0.67 ; // MBO R[MBabs170]= 'CH3-C(CH3)(OH)-CH=CH2' + CL ----> 'CH3-C(CH3)(OH)-CH(O2.)-CH2-CL' @2.71E-10*0.5 ; // 1-3-2 R[MBabs171]= 'CH3-C(CH3)(OH)-CH=CH2' + OH ----> 'CH2(O2.)-CH(OH)-C(CH3)(OH)-CH3' @6.9E-11*0.33 ; // MBO R[MBabs172C]= 'CH3-C(CH3)(OH)-CH=CH2' + CL ----> 'CH3-C(CH3)(OH)-CH(CL)-CH2-O2.' @2.71E-10*0.5 ; // 1-3-2 R[MBabs173C]= 'CH3-C(CH3)(OH)-CH=CH2' + NO3 ----> 'CH3-C(CH3)(OH)-CH(O2.)-CH2-NO3.' @1.4E-15*0.65 ; // MBO R[MBabs174C]= 'CH3-C(CH3)(OH)-CH=CH2' + NO3 ----> 'CH3-C(CH3)(OH)-CH(NO3)-CH2-O2.' @2.0E-10*0.35 ; // MBO //MVK R[MBabs167D]= 'CH3-CO-CH=CH2' -hv-> 'CH2=CH-CH3' + CO @j[MVK_to_MARCO3] ;//MVK_MARCO3.CQY(j23) R[MBabs168D]= 'CH3-CO-CH=CH2' -hv-> 'CO(O2.)-CH3' + 'H-CO-H' + CO + HO2 @j[MVK_to_MARCO3] ;//MVK_MARCO3.CQY(j24) R[MBabs169D]= 'CH3-CO-CH=CH2' + OH ----> 'CH2(O2.)-CH(OH)-CO-CH3' @4.13E-12*EXP(452/TK)*0.3; //MVK R[MBabs170D]= 'CH3-CO-CH=CH2' + CL ----> 'CH3-CO-CH(CL)-CH2-O2.' @2.15E-10*0.5; //2003ORL/TYN334-353

Page 57: THE PHOTOOXIDATION OF 2-METHYL-2-BUTENE …ufdcimages.uflib.ufl.edu/UF/E0/04/26/40/00001/im_y.pdfTHE EFFECTS OF ACTIVE CHLORINES ON PHOTOOXIDATION OF 2-METHYL-2 ... effects on both

57

R[MBabs171D]= 'CH3-CO-CH=CH2' + OH ----> 'HO-CH2-CH(O2.)-CO-CH3' @4.13E-12*EXP(452/TK)*0.7; //MVK R[MBabs172D]= 'CH3-CO-CH=CH2' + CL ----> 'CH3-CO-CH(O2.)-CH2-CL' @2.15E-10*0.5; // R[MBabs173D]= 'CH3-CO-CH=CH2' + O3 ----> 'H-CO-C-CH3' + 'H-C(=O-O)-H' @7.51E-16*EXP(-1521/TK)*0.5; //MVK R[MBabs174D]= 'CH3-CO-CH=CH2' + O3 ----> 'H-C(=O-O)-CO-CH3' + 'H-CO-H' @7.51E-16*EXP(-1521/TK)*0.5; //MVK //C3H6 R[MBabs175D]= 'CH2=CH-CH3' + OH ----> 'HO-CH2-CH(O2.)-CH3' @KMT16*0.87; R[MBabs176D]= 'CH2=CH-CH3' + OH ----> 'CH2(O2.)-CH(OH)-CH3' @KMT16*0.13; R[MBabs177D]= 'CH2=CH-CH3' + CL ----> 'CL-CH2-CH(O2.)-CH3' @2.5E-10*0.5; // PITTS R[MBabs178D]= 'CH2=CH-CH3' + CL ----> 'CH2(O2.)-CH(CL)-CH3' @2.5E-10*0.5; // R[MBabs179D]= 'CH2=CH-CH3' + O3 ----> 'H-C(=O-O)-CH3' + 'H-CO-H' @5.51E-15*EXP(-1878/TK)*0.5; R[MBabs180D]= 'CH2=CH-CH3' + O3 ----> 'H-C(=O-O)-H' + 'H-CO-CH3' @5.51E-15*EXP(-1878/TK)*0.5; R[MBabs181D]= 'CH2=CH-CH3' + NO3 ----> 'CH2(NO3)-CH(O2.)-CH3' @9.40E-15*0.65; R[MBabs182D]= 'CH2=CH-CH3' + NO3 ----> 'CH2(O2.)-CH(NO3)-CH3' @9.40E-15*0.35; //HYPROPO2 R[MBabs183D]= 'HO-CH2-CH(O2.)-CH3' + RO2 ----> 'HO-CH2-CO-CH3' @8.8E-13*0.2; R[MBabs184D]= 'HO-CH2-CH(O2.)-CH3' + RO2 ----> 'HO-CH2-CH(OH)-CH3' @8.8E-13*0.2; R[MBabs185D]= 'HO-CH2-CH(O2.)-CH3' + RO2 ----> 'HO-CH2-CH(O.)-CH3' @8.8E-13*0.6; R[MBabs186D]= 'HO-CH2-CH(O2.)-CH3' + NO ----> 'HO-CH2-CH(O.)-CH3' + NO2 @KRO2NO*0.977; R[MBabs187D]= 'HO-CH2-CH(O2.)-CH3' + HO2 ----> 'HO-CH2-CH(OOH)-CH3' @KRO2HO2*0.52; R[MBabs188D]= 'HO-CH2-CH(O2.)-CH3' + NO3 ----> 'HO-CH2-CH(O.)-CH3' + NO2 @KRO2NO3; //PROPGLY R[MBabs190D]= 'HO-CH2-CH(OH)-CH3' + OH ----> 'H-CO-CH(OH)-CH3' + HO2 @1.2E-11*0.387; R[MBabs191D]= 'HO-CH2-CH(OH)-CH3' + OH ----> 'HO-CH2-CO-CH3' + HO2 @1.2E-11*0.613; R[MBabs192D]= 'HO-CH2-CH(OH)-CH3' + CL ----> 'H-CO-CH(OH)-CH3' + HO2 + HCL @9.25E-11*0.5; R[MBabs193D]= 'HO-CH2-CH(OH)-CH3' + CL ----> 'HO-CH2-CO-CH3' + HO2 + HCL @9.25E-11*0.5; //CH3CHOHCHO R[MBabs194D]= 'H-CO-CH(OH)-CH3' + OH ----> 'CO(O2.)-CH(OH)-CH3' @2.65E-11; R[MBabs195D]= 'H-CO-CH(OH)-CH3' + CL ----> 'CO(O2.)-CH(OH)-CH3' + HCL @1.29E-10; R[MBabs196D]= 'H-CO-CH(OH)-CH3' + NO3 ----> 'CO(O2.)-CH(OH)-CH3' +HNO3 @KNO3AL*2.4; R[MBabs197D]= 'H-CO-CH(OH)-CH3' -hv-> 'H-CO-CH3' + 2*HO2 + CO @j[iC3H7CHO_to_HCO] ; // IC3CHO(J17) //CH3CHOHCO3 R[MBabs198D]= 'CO(O2.)-CH(OH)-CH3' + RO2 ----> 'H-CO-CH3' + HO2 @1.00E-11; R[MBabs199D]= 'CO(O2.)-CH(OH)-CH3' + HO2 ----> 'HOO-CO-CH(OH)-CH3' @KAPHO2; R[MBabs200D]= 'CO(O2.)-CH(OH)-CH3' + NO2 ----> 'NO3-O-CO-CH(OH)-CH3' @KFPAN; R[MBabs201D]= 'CO(O2.)-CH(OH)-CH3' + NO ----> 'H-CO-CH3' + HO2 + NO2 @KAPNO; R[MBabs202D]= 'CO(O2.)-CH(OH)-CH3' + NO3 ----> 'H-CO-CH3' + HO2 + NO2 @KRO2NO3*1.6; //IPROPOLPER R[MBabs203D]= 'HOO-CO-CH(OH)-CH3' + OH ----> 'CO(O2.)-CH(OH)-CH3' @9.34E-12; R[MBabs204D]= 'HOO-CO-CH(OH)-CH3' + CL ----> 'CO(O2.)-CH(OH)-CH3' + HCL @4.4E-11; R[MBabs205D]= 'HOO-CO-CH(OH)-CH3' -hv-> 'H-CO-CH3' + HO2 + OH @j[COOH_to_HO2]; //COOH(j41) //IPROPOLPAN R[MBabs206D]= 'NO3-O-CO-CH(OH)-CH3' ----> 'CO(O2.)-CH(OH)-CH3' + NO2 @KBPAN; R[MBabs207D]= 'NO3-O-CO-CH(OH)-CH3' + OH ----> 'H-CO-CH3' +CO + NO2 @2.34E-12; R[MBabs208D]= 'NO3-O-CO-CH(OH)-CH3' + CL ----> 'H-CO-CH3' +CO + NO2 + HCL @2.77E-11; //HYPROPO R[MBabs209D]= 'HO-CH2-CH(O.)-CH3' ----> 'H-CO-CH3' + 'H-CO-H'+ HO2 @2.00E+14*EXP(-6410/TK); //HYPROPO2H R[MBabs210D]= 'HO-CH2-CH(OOH)-CH3' -hv-> 'HO-CH2-CH(O.)-CH3'+ OH @j[COOH_to_HO2]; //COOH(j41) R[MBabs211D]= 'HO-CH2-CH(OOH)-CH3'+ OH ----> 'HO-CH2-CH(O2.)-CH3' @1.90E-12*EXP(190/TK); R[MBabs212D]= 'HO-CH2-CH(OOH)-CH3'+ CL ----> 'HO-CH2-CH(O2.)-CH3' + HCL @4.4E-11*0.5; R[MBabs213D]= 'HO-CH2-CH(OOH)-CH3'+ OH ----> 'HO-CH2-CO-CH3' +OH @2.44E-11; R[MBabs214D]= 'HO-CH2-CH(OOH)-CH3'+ CL ----> 'HO-CH2-CO-CH3' + OH + HCL @4.4E-11*0.5; //IPROPOLO2 R[MBabs215D]= 'CO(O2.)-CH(OH)-CH3'+ NO ----> 'CO(O.)-CH(OH)-CH3' + NO2 @KRO2NO*0.991; R[MBabs216D]= 'CO(O2.)-CH(OH)-CH3'+ NO3 ----> 'CO(O.)-CH(OH)-CH3' + NO2 @KRO2NO3; R[MBabs217D]= 'CO(O2.)-CH(OH)-CH3'+ HO2 ----> 'HOO-CH2-CH(OH)-CH3' @KRO2HO2*0.52;

Page 58: THE PHOTOOXIDATION OF 2-METHYL-2-BUTENE …ufdcimages.uflib.ufl.edu/UF/E0/04/26/40/00001/im_y.pdfTHE EFFECTS OF ACTIVE CHLORINES ON PHOTOOXIDATION OF 2-METHYL-2 ... effects on both

58

R[MBabs218D]= 'CO(O2.)-CH(OH)-CH3'+ RO2 ----> 'C(O.)-CH(OH)-CH3' @2.00E-12*0.6; R[MBabs219D]= 'CO(O2.)-CH(OH)-CH3'+ RO2 ----> 'HO-CH2-CH(OH)-CH3' @2.00E-12*0.2; R[MBabs220D]= 'CO(O2.)-CH(OH)-CH3'+ RO2 ----> 'H-CO-CH(OH)-CH3' @2.00E-12*0.2; //IPROPOLO R[MBabs221D]= 'CO(O.)-CH(OH)-CH3'+ RO2 ----> 'H-CO-CH3' + 'H-CO-H' + HO2 @2.00E+14*EXP(-5505/TK); //IPROPOLO2H R[MBabs222D]= 'HOO-CH2-CH(OH)-CH3'+ OH ----> 'CH2(O2.)-CH(OH)-CH3' @1.90E-12*EXP(190/TK); R[MBabs223D]= 'HOO-CH2-CH(OH)-CH3'+ CL ----> 'CH2(O2.)-CH(OH)-CH3' + HCL @4.4E-11*0.5; R[MBabs224D]= 'HOO-CH2-CH(OH)-CH3'+ OH ----> 'H-CO-CH(OH)-CH3' + OH @1.83E-11; R[MBabs225D]= 'HOO-CH2-CH(OH)-CH3'+ CL ----> 'H-CO-CH(OH)-CH3' + OH + HCL @4.4E-11*0.5; R[MBabs226D]= 'HOO-CH2-CH(OH)-CH3' -hv-> 'CH2(O.)-CH(OH)-CH3' + OH @j[COOH_to_HO2]; //COOH(j41) //PRONO3BO2 R[MBabs227D]= 'CH2(NO3)-CH(O2.)-CH3' + RO2 ----> 'CH2(NO3)-CH(O2.)-CH3' @4.0E-14*0.6; R[MBabs228D]= 'CH2(NO3)-CH(O2.)-CH3' + RO2 ----> 'CH2(NO3)-CH(OH)-CH3' @4.0E-14*0.2; R[MBabs229D]= 'CH2(NO3)-CH(O2.)-CH3' + RO2 ----> 'CH2(NO3)-CO-CH3' @4.0E-14*0.2; R[MBabs230D]= 'CH2(NO3)-CH(O2.)-CH3' + NO ----> 'CH2(NO3)-CH(O.)-CH3'+ NO2 @KRO2NO; R[MBabs231D]= 'CH2(NO3)-CH(O2.)-CH3' + HO2 ----> 'CH2(NO3)-CH(OOH)-CH3' @KRO2HO2*0.52; R[MBabs232D]= 'CH2(NO3)-CH(O2.)-CH3' + NO3 ----> 'CH2(NO3)-CH(O.)-CH3' @KRO2NO3; //PRONO3BO R[MBabs233D]= 'CH2(NO3)-CH(O.)-CH3' + O2 ----> 'CH2(NO3)-CO-CH3' + HO2 @KROSEC; R[MBabs234D]= 'CH2(NO3)-CH(O.)-CH3' ----> 'H-CO-CH3' + 'H-CO-H' + NO2 @7.0E+3; //PROLNO3 R[MBabs235D]= 'CH2(NO3)-CH(OH)-CH3' + OH ----> 'H-CO-CH(OH)-CH3' + NO2 @1.71E-12; R[MBabs236D]= 'CH2(NO3)-CH(OH)-CH3' + CL ----> 'H-CO-CH(OH)-CH3' + NO2 + HCL @2.76E-11; //NOA R[MBabs237D]= 'CH2(NO3)-CO-CH3' -hv-> 'CH2(O.)-CO-CH3' + NO2 @j[CH3CHNO3COCH3_to_NO2] ; //3butanoneNO3(j56) R[MBabs238D]= 'CH2(NO3)-CO-CH3' -hv-> 'CO(O.)-CH3' + 'H-CO-H' + NO2 @j[CH3CHNO3COCH3_to_NO2] ; //3butanoneNO3(j57) R[MBabs239D]= 'CH2(NO3)-CO-CH3' + OH ----> 'H-CO-CO-CH3' + NO2 @1.3E-13; R[MBabs240D]= 'CH2(NO3)-CO-CH3' + CL ----> 'H-CO-CO-CH3' + NO2 + HCL @2.1E-12; //PR2O2HNO3 R[MBabs241D]= 'CH2(NO3)-CH(OOH)-CH3' -hv-> 'CH2(NO3)-CH(O.)-CH3' + OH @j[COOH_to_HO2]; //COOH(j41) R[MBabs242D]= 'CH2(NO3)-CH(OOH)-CH3'+ OH ----> 'CH2(NO3)-CH(O2.)-CH3' @1.90E-12*EXP(190/TK); R[MBabs243D]= 'CH2(NO3)-CH(OOH)-CH3'+ CL ----> 'CH2(NO3)-CH(O2.)-CH3' + HCL @4.4e-11*0.5; R[MBabs244D]= 'CH2(NO3)-CH(OOH)-CH3'+ OH ----> 'CH2(NO3)-CO-CH3' + OH @3.47E-12; R[MBabs245D]= 'CH2(NO3)-CH(OOH)-CH3'+ CL ----> 'CH2(NO3)-CO-CH3' + OH + HCL @4.4e-11*0.5; //PRONO3AO2 R[MBabs246D]= 'CH2(O2.)-CH(NO3)-CH3'+ RO2 ----> 'CH2(O.)-CH(NO3)-CH3' @6.0E-13*0.6; R[MBabs247D]= 'CH2(O2.)-CH(NO3)-CH3'+ RO2 ----> 'HO-CH2-CH(NO3)-CH3' @6.0E-13*0.2; R[MBabs248D]= 'CH2(O2.)-CH(NO3)-CH3'+ RO2 ----> 'H-CO-CH(NO3)-CH3' @6.0E-13*0.2; R[MBabs249D]= 'CH2(O2.)-CH(NO3)-CH3'+ NO ----> 'CH2(O.)-CH(NO3)-CH3' + NO2 @KRO2NO; R[MBabs250D]= 'CH2(O2.)-CH(NO3)-CH3'+ HO2 ----> 'HOO-CH2-CH(NO3)-CH3' @KRO2HO2*0.52; R[MBabs251D]= 'CH2(O2.)-CH(NO3)-CH3'+ NO3 ----> 'HOO-CH2-CH(NO3)-CH3' + NO2 @KRO2NO3; //PRONO3AO R[MBabs252D]= 'CH2(O.)-CH(NO3)-CH3'+ O2 ----> 'H-CO-CH(NO3)-CH3' + HO2 @KROPRIM; R[MBabs253D]= 'CH2(O.)-CH(NO3)-CH3' ----> 'H-CO-H' + 'H-CO-CH3' + NO2 @7.0E+3; //CHOPRNO3 R[MBabs254D]= 'H-CO-CH(NO3)-CH3'+ OH ----> 'CO(O2.)-CH(NO3)-CH3' @3.55E-12; R[MBabs255D]= 'H-CO-CH(NO3)-CH3'+ CL ----> 'CO(O2.)-CH(NO3)-CH3' + HCL @8.4E-12; R[MBabs256D]= 'H-CO-CH(NO3)-CH3' -hv-> 'H-CO-CH(O.)-CH3' + NO2 @j[CH3CHNO3COCH3_to_NO2] ; // 3butanoneNO3(j56) R[MBabs257D]= 'H-CO-CH(NO3)-CH3' -hv-> HO2 + CO + 'H-CO-CH3' + NO2 @j[CH3CHNO3COCH3_to_NO2] ; // 3butanoneNO3(j57) R[MBabs258D]= 'H-CO-CH(NO3)-CH3'+ NO3 ----> 'CO(O2.)-CH(NO3)-CH3' + HNO3 @KNO3AL*2.4; //PRNO3CO3 R[MBabs259D]= 'CO(O2.)-CH(NO3)-CH3'+ RO2 ----> 'HO-CO-CH(NO3)-CH3' @1.0E-11*0.3; R[MBabs260D]= 'CO(O2.)-CH(NO3)-CH3'+ RO2 ----> 'H-CO-CH3' + NO2 @1.0E-11*0.7; R[MBabs261D]= 'CO(O2.)-CH(NO3)-CH3'+ NO2 ----> 'NO3-O-CO-CH(NO3)-CH3' @KFPAN; R[MBabs262D]= 'CO(O2.)-CH(NO3)-CH3'+ HO2 ----> 'HOO-CO-CH(NO3)-CH3' @KAPHO2*0.71;

Page 59: THE PHOTOOXIDATION OF 2-METHYL-2-BUTENE …ufdcimages.uflib.ufl.edu/UF/E0/04/26/40/00001/im_y.pdfTHE EFFECTS OF ACTIVE CHLORINES ON PHOTOOXIDATION OF 2-METHYL-2 ... effects on both

59

R[MBabs263D]= 'CO(O2.)-CH(NO3)-CH3'+ HO2 ----> 'HO-CO-CH(NO3)-CH3' +O3 @KAPHO2*0.29; R[MBabs264D]= 'CO(O2.)-CH(NO3)-CH3'+ NO ----> 'H-CO-CH3' + NO2 + NO2 @KAPNO; R[MBabs265D]= 'CO(O2.)-CH(NO3)-CH3'+ NO3 ----> 'H-CO-CH3' + NO2 + NO2 @KRO2NO3*1.6; //PRNO3CO2H R[MBabs266D]= 'HO-CO-CH(NO3)-CH3'+ OH ----> 'H-CO-CH3' + NO2 @3.14E-13; R[MBabs267D]= 'HO-CO-CH(NO3)-CH3'+ CL ----> 'H-CO-CH3' + NO2 + HCL @2.17E-12; //PRNO3PAN R[MBabs268D]= 'NO3-O-CO-CH(NO3)-CH3' ----> 'CO(O2.)-CH(NO3)-CH3' + NO2 @KBPAN; R[MBabs269D]= 'NO3-O-CO-CH(NO3)-CH3' +OH ----> 'H-CO-CH3' + NO2 + CO + NO2 @1.43E-13; R[MBabs270D]= 'NO3-O-CO-CH(NO3)-CH3' +CL ----> 'H-CO-CH3' + NO2 + CO + NO2 + HCL @2.17E-12; //PRNO3CO3H R[MBabs271D]= 'HOO-CO-CH(NO3)-CH3' +OH ----> 'CO(O2.)-CH(NO3)-CH3' @3.77E-12; R[MBabs272D]= 'HOO-CO-CH(NO3)-CH3' +CL ----> 'CO(O2.)-CH(NO3)-CH3' + HCL @4.4E-11; R[MBabs273D]= 'HOO-CO-CH(NO3)-CH3' -hv-> 'H-CO-CH3' + NO2 + OH @j[COOH_to_HO2]; //COOH(j41) //PROPALO R[MBabs274D]= 'H-CO-CH(O.)-CH3' ----> 'H-CO-CH3' + HO2 + CO @KDEC; //PR1O2HNO3 R[MBabs275D]= 'HOO-CH2-CH(NO3)-CH3' -hv-> 'CH2(O.)-CH(NO3)-CH3' + OH @j[COOH_to_HO2]; //COOH(j41) R[MBabs276D]= 'HOO-CH2-CH(NO3)-CH3' + OH ----> 'CH2(O2.)-CH(NO3)-CH3' @1.90E-12*EXP(190/TK); R[MBabs277D]= 'HOO-CH2-CH(NO3)-CH3' + CL ----> 'CH2(O2.)-CH(NO3)-CH3' + HCL @4.4e-11*0.5; R[MBabs278D]= 'HOO-CH2-CH(NO3)-CH3' + CL ----> 'H-CO-CH(NO3)-CH3' + HCL + OH @4.4e-11*0.5; R[MBabs279D]= 'HOO-CH2-CH(NO3)-CH3' + OH ----> 'H-CO-CH(NO3)-CH3' + OH @1.69E-12; //HMVKAO2 R[MBabs280D]= 'CH2(O2.)-CH(OH)-CO-CH3' + RO2 ----> 'H-CO-CH(OH)-CO-CH3' @2.0E-12*0.2; R[MBabs281D]= 'CH2(O2.)-CH(OH)-CO-CH3' + RO2 ----> 'HO-CH2-CH(OH)-CO-CH3' @2.0E-12*0.2; R[MBabs282D]= 'CH2(O2.)-CH(OH)-CO-CH3' + RO2 ----> 'CH2(O.)-CH(OH)-CO-CH3' @2.0E-12*0.6; R[MBabs283D]= 'CH2(O2.)-CH(OH)-CO-CH3' + NO ----> 'CH2(O.)-CH(OH)-CO-CH3' + NO2 @KRO2NO*0.983; R[MBabs284D]= 'CH2(O2.)-CH(OH)-CO-CH3' + NO3 ----> 'CH2(O.)-CH(OH)-CO-CH3' + NO2 @KRO2NO3; //CO2H3CHO R[MBabs285D]= 'H-CO-CH(OH)-CO-CH3' + OH ----> 'CO(O2.)-CH(OH)-CO-CH3' @2.45E-11; R[MBabs286D]= 'H-CO-CH(OH)-CO-CH3' + CL ----> 'CO(O2.)-CH(OH)-CO-CH3' +HCL @7.75E-11; R[MBabs287D]= 'H-CO-CH(OH)-CO-CH3' + NO3 ----> 'CO(O2.)-CH(OH)-CO-CH3' + HNO3 @KNO3AL*4.0; R[MBabs288D]= 'H-CO-CH(OH)-CO-CH3' -hv-> 'H-CO-CO-CH3'+ CO + 2* HO2 @j[HOCH2CHO_to_RO2] ; // HOCH2CHO(J15); //CO2H3CO3 R[MBabs289D]= 'CO(O2.)-CH(OH)-CO-CH3' + RO2 ----> 'H-CO-CO-CH3' + HO2 @1.0E-11; R[MBabs290D]= 'CO(O2.)-CH(OH)-CO-CH3' + HO2 ----> 'HOO-CO-CH(OH)-CO-CH3' @KAPHO2; R[MBabs291D]= 'CO(O2.)-CH(OH)-CO-CH3' + NO2 ----> 'NO3-O-CO-CH(OH)-CO-CH3' @KFPAN; R[MBabs292D]= 'CO(O2.)-CH(OH)-CO-CH3' + NO ----> 'H-CO-CO-CH3' + HO2 + NO2 @KAPNO; R[MBabs293D]= 'CO(O2.)-CH(OH)-CO-CH3' + NO3 ----> 'H-CO-CO-CH3' + HO2 + NO2 @KRO2NO3*1.6; //CO2H3CO3H R[MBabs294D]= 'HOO-CO-CH(OH)-CO-CH3' + OH ----> 'CO(O2.)-CH(OH)-CO-CH3' @7.34E-12; R[MBabs295D]= 'HOO-CO-CH(OH)-CO-CH3' + CL ----> 'CO(O2.)-CH(OH)-CO-CH3' + HCL @4.4E-11; R[MBabs296D]= 'HOO-CO-CH(OH)-CO-CH3' -hv-> 'H-CO-CO-CH3' + HO2 + OH @j[COOH_to_HO2]; //COOH(j41); R[MBabs297D]= 'HOO-CO-CH(OH)-CO-CH3' -hv-> 'CO(O2.)-CH3' + HO2 + 'HOO-CO-CO-H' @j[HOCH2COCH3_to_CH3CO] ; // OHAcetone(j22) //CHPAN6 R[MBabs298D]= 'NO3-O-CO-CH(OH)-CO-CH3' ----> 'CO(O2.)-CH(OH)-CO-CH3' + NO2 @KBPAN; R[MBabs299D]= 'NO3-O-CO-CH(OH)-CO-CH3' + OH ----> 'H-CO-CO-CH3' + NO2 + CO @3.74E-12; R[MBabs300D]= 'NO3-O-CO-CH(OH)-CO-CH3' + CL ----> 'H-CO-CO-CH3' + NO2 + CO @2.1E-12; // HMVKAO R[MBabs301D]= 'CH2(O.)-CH(OH)-CO-CH3' ----> 'H-CO-CO-CH3' + 'H-CO-H' + HO2 @KDEC; // HMVKAOOH R[MBabs302D]= 'HOO-CH2-CH(OH)-CO-CH3' + OH ----> 'H-CO-CH(OH)-CO-CH3' + OH @5.77E-11; R[MBabs303D]= 'HOO-CH2-CH(OH)-CO-CH3' + CL ----> 'H-CO-CH(OH)-CO-CH3' + OH + HCL @4.4E-11; R[MBabs304D]= 'HOO-CH2-CH(OH)-CO-CH3' -hv-> 'CH2(O.)-CH(OH)-CO-CH3' + OH @j[COOH_to_HO2]; //COOH(j41); //HMVKBO2

Page 60: THE PHOTOOXIDATION OF 2-METHYL-2-BUTENE …ufdcimages.uflib.ufl.edu/UF/E0/04/26/40/00001/im_y.pdfTHE EFFECTS OF ACTIVE CHLORINES ON PHOTOOXIDATION OF 2-METHYL-2 ... effects on both

60

R[MBabs305D]= 'HO-CH2-CH(O2.)-CO-CH3' +RO2 ----> 'HO-CH2-CH(O.)-CO-CH3' @8.8E-13*0.6; R[MBabs306D]= 'HO-CH2-CH(O2.)-CO-CH3' +RO2 ----> 'HO-CH2-CH(OH)-CO-CH3' @8.8E-13*0.2; R[MBabs307D]= 'HO-CH2-CH(O2.)-CO-CH3' +RO2 ----> 'HO-CH2-CO-CO-CH3' @8.8E-13*0.2; R[MBabs308D]= 'HO-CH2-CH(O2.)-CO-CH3' +NO ----> 'HO-CH2-CH(O.)-CO-CH3' + NO2 @KRO2NO; R[MBabs309D]= 'HO-CH2-CH(O2.)-CO-CH3' +HO2 ----> 'HO-CH2-CH(OOH)-CO-CH3' @KRO2HO2*0.625; R[MBabs310D]= 'HO-CH2-CH(O2.)-CO-CH3' +NO3 ----> 'HO-CH2-CH(O.)-CO-CH3' + NO2 @KRO2NO3; //HMVKBO R[MBabs311D]= 'HO-CH2-CH(O.)-CO-CH3' ----> 'CO(O2.)-CH3' + 'HO-CH2-CO-H' @KDEC; //HMVKBOOH R[MBabs312D]= 'HO-CH2-CH(OOH)-CO-CH3' + OH ----> 'HO-CH2-CO-CO-CH3' + OH @3.95E-11; R[MBabs313D]= 'HO-CH2-CH(OOH)-CO-CH3' + CL ----> 'HO-CH2-CO-CO-CH3' + OH + HCL @4.4E-11; R[MBabs314D]= 'HO-CH2-CH(OOH)-CO-CH3' -hv-> 'HO-CH2-CH(O.)-CO-CH3' + OH @j[COOH_to_HO2]; //COOH(j41); //MGLOOA R[MBabs315D]= 'H-C(=O-O)-CO-CH3' ----> 'H-C(=O-O)-CO-CH3(2)' @KDEC*0.24; R[MBabs316D]= 'H-C(=O-O)-CO-CH3' ----> 'CO(O2.)-CH3' + OH + CO @KDEC*0.36; R[MBabs317D]= 'H-C(=O-O)-CO-CH3' ----> 'H-CO-CH3' @KDEC*0.20; R[MBabs318D]= 'H-C(=O-O)-CO-CH3' ----> 'CO(O2.)-CH3' + 'H-CO-H' + HO2 @KDEC*0.20; //MGLOO R[MBabs319D]= 'H-C(=O-O)-CO-CH3(2)' + CO ----> 'H-CO-CO-CH3' @1.2E-15; R[MBabs320D]= 'H-C(=O-O)-CO-CH3(2)' + H2O ----> 'HO-CO-CO-CH3' @1.0E-17; R[MBabs321D]= 'H-C(=O-O)-CO-CH3(2)' + NO ----> 'H-CO-CO-CH3' + NO2 @1.0E-17; R[MBabs322D]= 'H-C(=O-O)-CO-CH3(2)' + H2O ----> 'H-CO-CO-CH3' + H2O2 @6.0E-18; R[MBabs323D]= 'H-C(=O-O)-CO-CH3(2)' + NO2 ----> 'H-CO-CO-CH3' + NO3 @6.0E-18; //MBOBO2 R[MBabs175C]= 'CH2(O2.)-CH(OH)-C(CH3)(OH)-CH3' + RO2 ----> 'CH2(O.)-CH(OH)-C(CH3)(OH)-CH3' @2.0E-12*0.6 ; // R[MBabs176C]= 'CH2(O2.)-CH(OH)-C(CH3)(OH)-CH3' + RO2 ----> 'H-CO-CH(OH)-C(CH3)(OH)-CH3' @2.0E-12*0.2 ; // 1-1-1-1 R[MBabs177C]= 'CH2(O2.)-CH(OH)-C(CH3)(OH)-CH3' + RO2 ----> 'HO-CH2-CH(OH)-C(CH3)(OH)-CH3' @2.0E-12*0.2 ; // 1-3-1 R[MBabs178C]= 'CH2(O2.)-CH(OH)-C(CH3)(OH)-CH3' + NO ----> 'CH2(O.)-CH(OH)-C(CH3)(OH)-CH3' + NO2 @KRO2NO*0.974 ; // R[MBabs179C]= 'CH2(O2.)-CH(OH)-C(CH3)(OH)-CH3' + NO3 ----> 'CH2(O.)-CH(OH)-C(CH3)(OH)-CH3' + NO2 @KRO2NO3 ; // R[MBabs180C]= 'CH2(O2.)-CH(OH)-C(CH3)(OH)-CH3' + HO2 ----> 'HOO-CH2-CH(OH)-C(CH3)(OH)-CH3' @KRO2HO2 ; // MBOBOOH //MBOBO R[MBabs181C]= 'CH2(O.)-CH(OH)-C(CH3)(OH)-CH3' ----> 'H-CO-H' + HO2 + 'H-CO-C(CH3)(OH)-CH3' @KDEC ; // MBOBO2 //MBOBOOH R[MBabs182C]= 'HOO-CH2-CH(OH)-C(CH3)(OH)-CH3' + OH ----> 'CH2(O2.)-CH(OH)-C(CH3)(OH)-CH3' @1.90E-12*EXP(190/TK) ; R[MBabs183C]= 'HOO-CH2-CH(OH)-C(CH3)(OH)-CH3' + CL ----> 'CH2(O2.)-CH(OH)-C(CH3)(OH)-CH3'+ HCL @4.4E-11*0.5 ; R[MBabs184C]= 'HOO-CH2-CH(OH)-C(CH3)(OH)-CH3' + OH ----> 'H-CO-CH(OH)-C(CH3)(OH)-CH3' + OH @2.05E-12 ; //1-1-1-1 R[MBabs185C]= 'HOO-CH2-CH(OH)-C(CH3)(OH)-CH3' + CL ----> 'H-CO-CH(OH)-C(CH3)(OH)-CH3' + OH + [email protected]*0.5 ; R[MBabs186C]= 'HOO-CH2-CH(OH)-C(CH3)(OH)-CH3' -hv-> 'CH2(O.)-CH(OH)-C(CH3)(OH)-CH3'+ OH @j[COOH_to_HO2]; //COOH(j41) // R[MBabs187C]= 'CH3-C(CH3)(OH)-CH(CL)-CH2-O2.' + RO2 ----> 'CH3-C(CH3)(OH)-CH(CL)-CH2-O.' @2.0E-12*0.6 ; // R[MBabs188C]= 'CH3-C(CH3)(OH)-CH(CL)-CH2-O2.' + RO2 ----> 'CH3-C(CH3)(OH)-CH(CL)-CO-H' @2.0E-12*0.2 ; // 1-2-2-1 R[MBabs189C]= 'CH3-C(CH3)(OH)-CH(CL)-CH2-O2.' + RO2 ----> 'HO-CH2-CH(CL)-C(CH3)(OH)-CH3' @2.0E-12*0.2 ; // 1-2-2-1 R[MBabs190C]= 'CH3-C(CH3)(OH)-CH(CL)-CH2-O2.' + NO ----> 'CH3-C(CH3)(OH)-CH(CL)-CH2-O.' + NO2 @KRO2NO*0.974 ; // R[MBabs191C]= 'CH3-C(CH3)(OH)-CH(CL)-CH2-O2.' + NO3 ----> 'CH3-C(CH3)(OH)-CH(CL)-CH2-O.' + NO2 @KRO2NO3 ; // R[MBabs192C]= 'CH3-C(CH3)(OH)-CH(CL)-CH2-O2.' + HO2 ----> 'HOO-CH2-CH(CL)-C(CH3)(OH)-CH3' @KRO2HO2 ; // MBOBOOH R[MBabs193C]= 'CH3-C(CH3)(OH)-CH(CL)-CH2-O.' + O2 ----> 'CH3-C(CH3)(OH)-CH(CL)-CO-H' @KROPRIM ; // CL12PRC // R[MBabs194C]= 'HOO-CH2-CH(CL)-C(CH3)(OH)-CH3' + OH ----> 'CH3-C(CH3)(OH)-CH(CL)-CH2-O2.' @1.90E-12*EXP(190/TK); // MBOBOOH R[MBabs195C]= 'HOO-CH2-CH(CL)-C(CH3)(OH)-CH3' + CL ----> 'CH3-C(CH3)(OH)-CH(CL)-CH2-O2.' +HCL @4.4E-11*0.5; // MBOBOOH R[MBabs196C]= 'HOO-CH2-CH(CL)-C(CH3)(OH)-CH3' + OH ----> 'CH3-C(CH3)(OH)-CH(CL)-CO-H' + OH @2.05E-12; // R[MBabs197C]= 'HOO-CH2-CH(CL)-C(CH3)(OH)-CH3' + CL ----> 'CH3-C(CH3)(OH)-CH(CL)-CO-H' + OH + HCL @4.4E-11*0.5; // R[MBabs198C]= 'HOO-CH2-CH(CL)-C(CH3)(OH)-CH3' -hv-> 'CH3-C(CH3)(OH)-CH(CL)-CH2-O.'+ OH @j[COOH_to_HO2]; //COOH(j41) // R[MBabs169B]= 'CH3-C(CH3)(OH)-CH=CH2' + O3 ----> 'H-C(=O-O)-H' + 'H-CO-C(CH3)(OH)-CH3' @1.10E-17*0.5 ; // ME3BUT1ENE R[MBabs170B]= 'CH3-C(CH3)(OH)-CH=CH2' + O3 ----> 'H-CO-H' + 'H-C(O=-O)-C(CH3)(OH)-CH3' @1.10E-17*0.5 ; // ME3BUT1ENE //CH2OOB

Page 61: THE PHOTOOXIDATION OF 2-METHYL-2-BUTENE …ufdcimages.uflib.ufl.edu/UF/E0/04/26/40/00001/im_y.pdfTHE EFFECTS OF ACTIVE CHLORINES ON PHOTOOXIDATION OF 2-METHYL-2 ... effects on both

61

R[MBabs171B]= 'H-C(=O-O)-H' ----> CO @KDEC*0.4 ; // CH2OOB R[MBabs172B]= 'H-C(=O-O)-H' ----> 'H-C(=O-O)-H(2)' @KDEC*0.24 ; // CH2OOB R[MBabs173B]= 'H-C(=O-O)-H' ----> HO2 + CO + OH @KDEC*0.36 ; // C2EOOB //CH2OO R[MBabs174B]= 'H-C(=O-O)-H(2)' + CO ----> 'H-CO-H' @1.2E-15 ; // C2EOO R[MBabs175B]= 'H-C(=O-O)-H(2)' + H2O ----> 'HO-CO-H' @1.0E-17 ; // C2EOO R[MBabs176B]= 'H-C(=O-O)-H(2)' + H2O ----> 'H-CO-H' + H2O2 @6.0E-18 ; // C2EOO R[MBabs177B]= 'H-C(=O-O)-H(2)' + NO ----> 'H-CO-H' + NO2 @1.0E-14 ; // C2EOO R[MBabs178B]= 'H-C(=O-O)-H(2)' + NO2 ----> 'H-CO-H' + NO3 @1.0E-15 ; // C2EOO //MBOOOA R[MBabs179B]= 'H-C(=O-O)-C(CH3)(OH)-CH3' ----> 'H-C(=O-O)-C(CH3)(OH)-CH3(2)' @KDEC*0.24 ; // IPRCHOOA R[MBabs180B]= 'H-C(=O-O)-C(CH3)(OH)-CH3' ----> 'CH3-CH(OH)-CH3' @KDEC*0.20 ; // IPRCHOOA R[MBabs181B]= 'H-C(=O-O)-C(CH3)(OH)-CH3' ----> 'CH3-CO-CH3' + HO2 + CO + OH @KDEC*0.36 ; // IPRCHOOA R[MBabs182B]= 'H-C(=O-O)-C(CH3)(OH)-CH3' ----> 'CH3-CO-CH3' + HO2 + HO2 @KDEC*0.20 ; // IPRCHOOA //MBOOO R[MBabs183B]= 'H-C(=O-O)-C(CH3)(OH)-CH3(2)' + CO ----> 'H-CO-C(CH3)(OH)-CH3' @1.2E-15 ; // 1-1-1-1 R[MBabs184B]= 'H-C(=O-O)-C(CH3)(OH)-CH3(2)' + H2O ----> 'HO-CO-C(CH3)(OH)-CH3' @1.0E-17 ; // 1-1-1-1 R[MBabs185B]= 'H-C(=O-O)-C(CH3)(OH)-CH3(2)' + NO ----> 'H-CO-C(CH3)(OH)-CH3' + NO2 @1.0E-14 ; // 1-1-1-1 R[MBabs186B]= 'H-C(=O-O)-C(CH3)(OH)-CH3(2)' + H2O ----> 'H-CO-C(CH3)(OH)-CH3' + H2O2 @1.0E-18 ; // 1-1-1-1 R[MBabs187B]= 'H-C(=O-O)-C(CH3)(OH)-CH3(2)' + NO2 ----> 'H-CO-C(CH3)(OH)-CH3' + NO3 @1.0E-15 ; // 1-1-1-1 //1-3-1 R[MBabs172]= 'HO-CH2-CH(OH)-C(CH3)(OH)-CH3' + OH ----> 'HO-CH2-CO-C(CH3)(OH)-CH3' @1.51E-11 ; // MBOAOH R[MBabs173]= 'HO-CH2-CH(OH)-C(CH3)(OH)-CH3' + CL ----> 'HO-CH2-CO-C(CH3)(OH)-CH3' + HCL @1.14E-11 ; // ATKINSON 1997 R[MBabs174]= 'HO-CH2-CO-C(CH3)(OH)-CH3' + OH ----> 'CH3-C(CH3)(OH)-CO-CO-H' + HO2 @3.79E-12 ; // MBOACO R[MBabs175]= 'HO-CH2-CO-C(CH3)(OH)-CH3' + CL ----> 'CH3-C(CH3)(OH)-CO-CO-H' + HO2 + HCL @5.81E-11 ; // ATKINSON 1997 R[MBabs176]= 'HO-CH2-CO-C(CH3)(OH)-CH3' -hv-> 'CH3-C(CH3)(OH)-CO-O2.' + 'H-CO-H' + HO2 @j[HOCH2COCH3_to_CH3CO] ; //OHAcetone(j22) R[MBabs177]= 'CH3-C(CH3)(OH)-CO-CO-H' + OH ----> 'CO(O2.)-C(CH3)(OH)-CH3' + CO @1.38E-11 ; // 1-1-1-1-1 MBOCOCO R[MBabs178]= 'CH3-C(CH3)(OH)-CO-CO-H' + CL ----> 'CO(O2.)-C(CH3)(OH)-CH3' + CO + HCL @5.94E-11 ; // R[MBabs179]= 'H-CO-CO-C(CH3)(OH)-CH3' -hv-> 'CH3-C(CH3)(OH)-CO-O2.' + CO + HO2 @j[MGLY_to_HO2]; // MGLYOX(J34) //1-3-2 R[MBabs181]= 'CH3-C(CH3)(OH)-CH(O2.)-CH2-CL' + RO2 ----> 'CL-CH2-CH(OH)-C(CH3)(OH)-CH3' @8.8E-13*0.2 ; // JENKIN 1997 R[MBabs182]= 'CH3-C(CH3)(OH)-CH(O2.)-CH2-CL' + RO2 ----> 'CH3-C(CH3)(OH)-CO-CH2-CL' @8.8E-13*0.2 ; // 1-3-2-1 JENKIN 1997 R[MBabs183]= 'CH3-C(CH3)(OH)-CH(O2.)-CH2-CL' + RO2 ----> 'CH3-C(CH3)(OH)-CH(O.)-CH2-CL' @8.8E-13*0.6 ; // JENKIN 1997 R[MBabs184]= 'CH3-C(CH3)(OH)-CH(O.)-CH2-CL' ----> 'H-CO-CH2-CL' + 'CH3-CO-CH3'+HO2 @KDEC ; // R[MBabs185]= 'CL-CH2-CH(OH)-C(CH3)(OH)-CH3' + OH ----> 'CH3-C(CH3)(OH)-CO-CH2-CL' @1.51E-11 ; // MBOAOH R[MBabs186]= 'CL-CH2-CH(OH)-C(CH3)(OH)-CH3' + CL ----> 'CH3-C(CH3)(OH)-CO-CH2-CL' + HCL @6.44E-11 ; // ATKINSON 1997 // R[MBabs216A]= 'CH3-C(CH3)(OH)-CH(O2.)-CH2-CL' + NO ----> 'CH3-C(CH3)(OH)-CH(O.)-CH2-CL' + NO2 @KRO2NO*0.938; // MEBU2OLO2 R[MBabs217A]= 'CH3-C(CH3)(OH)-CH(O2.)-CH2-CL' + NO3 ----> 'CH3-C(CH3)(OH)-CH(O.)-CH2-CL' + NO2 @KRO2NO3; // MEBU2OLO2 R[MBabs218A]= 'CH3-C(CH3)(OH)-CH(O2.)-CH2-CL' + NO ----> 'CH3-C(CH3)(OH)-CH(NO3)-CH2-CL' @KRO2NO*0.062; // MEBU2OLO2 R[MBabs219A]= 'CH3-C(CH3)(OH)-CH(O2.)-CH2-CL' + HO2 ----> 'CL-CH2-CH(OOH)-C(CH3)(OH)-CH3' @KRO2HO2*0.706; // MEBU2OLO2 R[MBabs220A]= 'CH3-C(CH3)(OH)-CH(NO3)-CH2-CL' + OH ----> 'CH3-C(CH3)(OH)-CO-CH2-CL' + NO2 @5.97E-13; // MEBU2ONO3 R[MBabs221A]= 'CH3-C(CH3)(OH)-CH(NO3)-CH2-CL' + CL ----> 'CH3-C(CH3)(OH)-CO-CH2-CL' + NO2 +HCL @5.59E-11; // MEBU2ONO3 R[MBabs222A]= 'CL-CH2-CH(OOH)-C(CH3)(OH)-CH3' + OH ----> 'CH3-C(CH3)(OH)-CH(O2.)-CH2-CL' @1.90E-12*EXP(190/TK) ; // MEBU2OLOOH R[MBabs223A]= 'CL-CH2-CH(OOH)-C(CH3)(OH)-CH3' + CL ----> 'CH3-C(CH3)(OH)-CH(O2.)-CH2-CL' +HCL @4.4E-11*0.5 ; // MEBU2OLOOH R[MBabs224A]= 'CL-CH2-CH(OOH)-C(CH3)(OH)-CH3' + OH ----> 'CH3-C(CH3)(OH)-CO-CH2-CL' + OH @2.07E-11 ; // MEBU2OLOOH R[MBabs225A]= 'CL-CH2-CH(OOH)-C(CH3)(OH)-CH3' + CL ----> 'CH3-C(CH3)(OH)-CO-CH2-CL' + OH +HCL @4.4E-11*0.5 ; //MEBU2OLOOH R[MBabs226A]= 'CL-CH2-CH(OOH)-C(CH3)(OH)-CH3' ----> 'CH3-C(CH3)(OH)-CH(O.)-CH2-CL' + OH @j[COOH_to_HO2] ; //COOH(j41) //1-3-2-1 R[MBabs188]= 'CH3-C(CH3)(OH)-CO-CH2-CL' + OH ----> 'CL-CH2-CO-C(CH3)(O.)-CH3' @1.38E-12 ; // MIPKAOH R[MBabs189]= 'CH3-C(CH3)(OH)-CO-CH2-CL' + CL ----> 'CL-CH2-CO-C(CH3)(O.)-CH3' + HCL @5.57E-11 ; // R[MBabs190]= 'CL-CH2-CO-C(CH3)(O.)-CH3' ----> 'CO(O2.)-CH2-CL' + 'CH3-CO-CH3' @KDEC ; // //1-4 R[MBabs192]= 'CIS-CH2(O.)-C(CH3)=CH-CH3' ----> 'CIS-HO-CH2-C(CH3)=CH-CH2-O2.' @3.05E+11*EXP(-4240/TK)*0.5 ;

Page 62: THE PHOTOOXIDATION OF 2-METHYL-2-BUTENE …ufdcimages.uflib.ufl.edu/UF/E0/04/26/40/00001/im_y.pdfTHE EFFECTS OF ACTIVE CHLORINES ON PHOTOOXIDATION OF 2-METHYL-2 ... effects on both

62

// MIPEAO R[MBabs192B]= 'CIS-CH2(O.)-C(CH3)=CH-CH3' ----> 'H-CO-CH3' + 'CO(O2.)-CH3' + 'H-CO-H' @3.05E+11*EXP(-4240/TK)*0.5; // MIPEAO R[MBabs193]= 'CIS-HO-CH2-C(CH3)=CH-CH2-O2.' + RO2 ----> 'CIS-HO-CH2-C(CH3)=CH-CH2-OH' @2.4E-12*0.1 ; // 1-0-2 C5202 R[MBabs194]= 'CIS-HO-CH2-C(CH3)=CH-CH2-O2.' + RO2 ----> 'CIS-HO-CH2-C(CH3)=CH-CO-H' @2.4E-12*0.1 ; // 1-0-2 R[MBabs195]= 'CIS-HO-CH2-C(CH3)=CH-CH2-O2.' + RO2 ----> 'CIS-HO-CH2-C(CH3)=CH-CH2-O.' @2.4E-12*0.8 ; // R[MBabs196]= 'CIS-HO-CH2-C(CH3)=CH-CH2-O.' ----> 'CIS-HO-CH2-CH=C(CH3)-CO-H' @8.4E+10*EXP(-3523/TK)*0.5 ; // ISOPAO R[MBabs197]= 'CIS-HO-CH2-C(CH3)=CH-CH2-O.' ----> 'HO-CH2-CO-CH3' + CO + 'H-CO-H' @8.4E+10*EXP(-3523/TK)*0.5 ; // ISOPAO // R[MBabs227A]= 'CIS-HO-CH2-C(CH3)=CH-CH2-O2.' + NO3 ----> 'CIS-HO-CH2-C(CH3)=CH-CH2-O.' + NO2 @KRO2NO3 ; // ISOPAO2 R[MBabs228A]= 'CIS-HO-CH2-C(CH3)=CH-CH2-O2.' + NO ----> 'CIS-HO-CH2-C(CH3)=CH-CH2-O.' + NO2 @KRO2NO*0.892 ; //ISOPAO2 R[MBabs229A]= 'CIS-HO-CH2-C(CH3)=CH-CH2-O2.' + NO ----> 'CIS-HO-CH2-C(CH3)=CH-CH2-NO3' @KRO2NO*0.108 ; //ISOPAO2 R[MBabs230A]= 'CIS-HO-CH2-C(CH3)=CH-CH2-O2.' + HO2 ----> 'CIS-HOO-CH2-CH=C(CH3)-CH2-OH' @KRO2HO2*0.706 ; //ISOPAO2 R[MBabs231A]= 'CIS-HO-CH2-C(CH3)=CH-CH2-NO3' + OH ----> 'CIS-HO-CH2-C(CH3)=CH-CO-H' + NO2 @8.91E-11 ; //ISOPANO3 R[MBabs232A]= 'CIS-HO-CH2-C(CH3)=CH-CH2-NO3' + CL ----> 'CIS-HO-CH2-C(CH3)=CH-CO-H' + NO2 + HCL @9.12E-11 ; //ISOPANO3 R[MBabs233A]= 'CIS-HO-CH2-C(CH3)=CH-CH2-NO3' -hv-> 'CIS-HO-CH2-C(CH3)=CH-CH2-O.' + NO2 @j[CH2NO3CHNO3CHCH2_to_NO2]; //4_buten_no3.cqy(J53) R[MBabs234A]= 'CIS-HOO-CH2-CH=C(CH3)-CH2-OH' + OH ----> 'CIS-HO-CH2-C(CH3)=CH-CO-H' + OH @1.07E-10 ; //ISOPAO2 R[MBabs235A]= 'CIS-HOO-CH2-CH=C(CH3)-CH2-OH' + CL ----> 'CIS-HO-CH2-C(CH3)=CH-CO-H' + OH + HCL @4.4E-11 ; //ISOPAO2 R[MBabs236A]= 'CIS-HOO-CH2-CH=C(CH3)-CH2-OH' -hv-> 'CIS-HO-CH2-C(CH3)=CH-CH2-O.' + OH @j[COOH_to_HO2] ; // COOH(j41) //1-5 R[MBabs198]= 'CIS-H-CO-C(CH3)=CH-CH3' + OH ----> 'CIS-CO(O2.)-C(CH3)=CH-CH3' @4.52E-11*0.48 ; // HC4CCHO 84 R[MBabs199]= 'CIS-H-CO-C(CH3)=CH-CH3' + CL ----> 'CIS-CO(O2.)-C(CH3)=CH-CH3' + HCL @4.46E-10*0.2 ; // R[MBabs200]= 'CIS-H-CO-C(CH3)=CH-CH3' + OH ----> 'CH3-CH(OH)-C(CH3)(O2.)-CO-H' @4.52E-11*0.52 ; // 1-5-1 HC4CCHO R[MBabs201]= 'CIS-H-CO-C(CH3)=CH-CH3' + CL ----> 'H-CO-C(CH3)(O2.)-CH(CL)-CH3' + HCL @4.46E-10*0.8 ; // 1-5-2 R[MBabs202]= 'CIS-CO(O2.)-C(CH3)=CH-CH3' + RO2 ----> 'CIS-HO-CO-C(CH3)=CH-CH3' @1.00E-11*0.3 ; // HC4CCO3 R[MBabs203]= 'CIS-CO(O2.)-C(CH3)=CH-CH3' + RO2 ----> 'H-CO-CH3' + 'CO(O2.)-CH3' @1.00E-11*0.7 ; // HC4CCO3 R[MBabs204]= 'CIS-HO-CO-C(CH3)=CH-CH3' + OH ----> 'H-CO-CH3' + 'CO(O2.)-CH3' @2.52E-11 ; // HC4CCO2H R[MBabs205]= 'CIS-HO-CO-C(CH3)=CH-CH3' + CL ----> 'H-CO-CH3' + 'CO(O2.)-CH3' + HCL @9.31E-11 ; // // R[MBabs237A]= 'CIS-CO(O2.)-C(CH3)=CH-CH3' + HO2 ----> 'CIS-HOO-CO-C(CH3)=CH-CH3' @KRO2HO2*0.71 ; // HC4CCO3 R[MBabs238A]= 'CIS-CO(O2.)-C(CH3)=CH-CH3' + HO2 ----> 'CIS-HO-CO-C(CH3)=CH-CH3' + O3 @KRO2HO2*0.29 ; // HC4CCO3 R[MBabs239A]= 'CIS-CO(O2.)-C(CH3)=CH-CH3' + NO2 ----> 'CIS-NO3-O-CO-C(CH3)=CH-CH3' @KFPAN ; // HC4CCO3 R[MBabs240A]= 'CIS-CO(O2.)-C(CH3)=CH-CH3' + NO ----> 'H-CO-CH3' + 'CO(O2.)-CH3'+ NO2 @KAPNO ; // HC4CCO3 R[MBabs241A]= 'CIS-CO(O2.)-C(CH3)=CH-CH3' + NO ----> 'H-CO-CH3' + 'CO(O2.)-CH3'+ NO2 @KRO2NO3*1.6 ; // HC4CCO3 R[MBabs242A]= 'CIS-HOO-CO-C(CH3)=CH-CH3' + OH ----> 'CIS-CO(O2.)-C(CH3)=CH-CH3' @2.88E-11 ; // HC4CCO3H R[MBabs243A]= 'CIS-HOO-CO-C(CH3)=CH-CH3' + CL ----> 'CIS-CO(O2.)-C(CH3)=CH-CH3' + HCL @4.4E-11 ; // HC4CCO3H R[MBabs244A]= 'CIS-CO(O2.)-C(CH3)=CH-CH3' -hv-> 'H-CO-CH3' + 'CO(O2.)-CH3'+ OH @j[COOH_to_HO2];// COOH(j41) R[MBabs245A]= 'CIS-NO3-O-CO-C(CH3)=CH-CH3' + OH ----> 'CIS-HO-CO-C(CH3)=CH-CH3' + NO2 @2.52E-11 ; // C5PAN19 R[MBabs246A]= 'CIS-NO3-O-CO-C(CH3)=CH-CH3' + CL ----> 'CIS-HO-CO-C(CH3)=CH-CH3' + NO2 + HCL @9.31E-11 ; // C5PAN19 R[MBabs247A]= 'CIS-NO3-O-CO-C(CH3)=CH-CH3' ----> 'CIS-CO(O2.)-C(CH3)=CH-CH3' + NO2 @KBPAN ; // C5PAN19 //1-5-1 R[MBabs206]= 'CH3-CH(OH)-C(CH3)(O2.)-CO-H' + RO2 ----> 'H-CO-C(CH3)(OH)-CH(OH)-CH3' @9.20E-14*0.3 ; // JENKIN 1997 R[MBabs207]= 'CH3-CH(OH)-C(CH3)(O2.)-CO-H' + RO2 ----> 'CH3-CH(OH)-C(CH3)(O.)-CO-H' @9.20E-14*0.7 ; // JENKIN 1997 R[MBabs208]= 'H-CO-C(CH3)(OH)-CH(OH)-CH3' + OH ----> 'CH3-CH(OH)-C(CH3)(O.)-CO-H' @3.04E-11 ; // C57OH R[MBabs209]= 'H-CO-C(CH3)(OH)-CH(OH)-CH3' + CL ----> 'CH3-CH(OH)-C(CH3)(O.)-CO-H' + HCL @1.58E-10 ; // R[MBabs210]= 'CH3-CH(OH)-C(CH3)(O.)-CO-H' ----> 'H-CO-CH3' + 'H-CO-CO-CH3' + HO2 @KDEC ; // C57OH 72 // R[MBabs248A]= 'CH3-CH(OH)-C(CH3)(O2.)-CO-H' + NO3 ----> 'CH3-CH(OH)-C(CH3)(O.)-CO-H'+ NO2 @KRO2NO3 ; // R[MBabs249A]= 'CH3-CH(OH)-C(CH3)(O2.)-CO-H' + NO ----> 'CH3-CH(OH)-C(CH3)(O.)-CO-H' + NO2 @KRO2NO ; // R[MBabs250A]= 'CH3-CH(OH)-C(CH3)(O2.)-CO-H' + HO2 ----> 'H-CO-C(CH3)(OOH)-CH(OH)-CH3' @KRO2HO2*0.706 ; // R[MBabs251A]= 'H-CO-C(CH3)(OOH)-CH(OH)-CH3' + OH ----> 'CH3-CH(OH)-C(CH3)(O2.)-CO-H' @4.58E-11 ; // HOC4CHOOOH R[MBabs252A]= 'H-CO-C(CH3)(OOH)-CH(OH)-CH3' + CL ----> 'CH3-CH(OH)-C(CH3)(O2.)-CO-H' + HCL @4.4E-10 ; // HOC4CHOOOH R[MBabs253A]= 'H-CO-C(CH3)(OOH)-CH(OH)-CH3' -hv-> 'CH3-CH(OH)-C(CH3)(O.)-CO-H' + OH @j[COOH_to_HO2];// COOH(j41) R[MBabs254A]= 'H-CO-C(CH3)(OOH)-CH(OH)-CH3' -hv-> 'H-CO-CH3' + 'H-CO-CO-CH3' + HO2 + OH @j[iC3H7CHO_to_HCO] ; // IC3CHO(J17) //1-5-2 R[MBabs212]= 'H-CO-C(CH3)(O2.)-CH(CL)-CH3' + RO2 ----> 'H-CO-C(CH3)(OH)-CH(CL)-CH3' @9.20E-14*0.3 ; // JENKIN 1997 R[MBabs213]= 'H-CO-C(CH3)(O2.)-CH(CL)-CH3' + RO2 ----> 'H-CO-C(CH3)(O.)-CH(CL)-CH3' @9.20E-14*0.7 ; // JENKIN 1997

Page 63: THE PHOTOOXIDATION OF 2-METHYL-2-BUTENE …ufdcimages.uflib.ufl.edu/UF/E0/04/26/40/00001/im_y.pdfTHE EFFECTS OF ACTIVE CHLORINES ON PHOTOOXIDATION OF 2-METHYL-2 ... effects on both

63

R[MBabs214]= 'H-CO-C(CH3)(O.)-CH(CL)-CH3' ----> 'CL-CH(O2.)-CH3' + 'H-CO-CO-CH3' + HO2 @KDEC ; // R[MBabs215]= 'CL-CH(O2.)-CH3' + RO2 ----> 'CL-CH(O.)-CH3' @8.80E-13*0.60 ; // CH3CHCL02 R[MBabs216]= 'CL-CH(O2.)-CH3' + RO2 ----> 'CL-CH(OH)-CH3' @8.80E-13*0.20 ; // CH3CHCL02 R[MBabs217]= 'CL-CH(O2.)-CH3' + RO2 ----> 'CL-CO-CH3' @8.80E-13*0.20 ; // CH3CHCL02 R[MBabs218]= 'CL-CH(O.)-CH3' ----> 'H-CO-CH3' + CL @KDEC ; // //1-6 R[MBabs220]= 'CIS-HO-CH2-C(CH3)=CH-CH3' + OH ----> 'HO-CH2-C(CH3)(O2.)-CH(OH)-CH3' @1.39E-10*0.6 ; // ATKINSON 1995 R[MBabs221]= 'CIS-HO-CH2-C(CH3)=CH-CH3' + OH ----> 'HO-CH2-C(CH3)(OH)-CH(O2.)-CH3' @1.39E-10*0.4 ; // 1-6-1ATKINSON 1995 R[MBabs222]= 'CIS-HO-CH2-C(CH3)=CH-CH3' + CL ----> 'HO-CH2-C(CH3)(O2.)-CH(CL)-CH3' @4.06E-10*0.5 ; // 1-6-2 R[MBabs223]= 'CIS-HO-CH2-C(CH3)=CH-CH3' + CL ----> 'HO-CH2-C(CH3)(CL)-CH(O2.)-CH3' @4.06E-10*0.5 ; // 1-6-3 R[MBabs224]= 'HO-CH2-C(CH3)(O2.)-CH(OH)-CH3' + RO2 ----> 'HO-CH2-C(CH3)(O.)-CH(OH)-CH3' @9.2E-14*0.7 ; // 1-6-2JENKIN 1997 R[MBabs225]= 'HO-CH2-C(CH3)(O2.)-CH(OH)-CH3' + RO2 ----> 'HO-CH2-C(CH3)(OH)-CH(OH)-CH3' @9.2E-14*0.3 ; // 1-6-1JENKIN 1997 // R[MBabs255A]= 'HO-CH2-C(CH3)(O2.)-CH(OH)-CH3' + NO3 ----> 'HO-CH2-C(CH3)(O.)-CH(OH)-CH3' + NO2 @KRO2NO3 ; //ME2BUOLO2 R[MBabs256A]= 'HO-CH2-C(CH3)(O2.)-CH(OH)-CH3' + NO ----> 'HO-CH2-C(CH3)(O.)-CH(OH)-CH3' + NO2 @KRO2NO*0.981 ; //ME2BUOLO2 R[MBabs257A]= 'HO-CH2-C(CH3)(O2.)-CH(OH)-CH3' + NO ----> 'HO-CH2-C(CH3)(NO3)-CH(OH)-CH3' @KRO2NO*0.019 ; //ME2BUOLO2 R[MBabs258A]= 'HO-CH2-C(CH3)(O2.)-CH(OH)-CH3' + HO2 ----> 'HO-CH2-C(CH3)(OOH)-CH(OH)-CH3' @KRO2HO2*0.706 ; //ME2BUOLO2 R[MBabs259A]= 'HO-CH2-C(CH3)(NO3)-CH(OH)-CH3' + OH ----> 'H-CO-CH3' + 'HO-CH2-CO-CH3' + HO2 + NO2 @1.72E-12 ; //ME2BUOLNO3 R[MBabs300A]= 'HO-CH2-C(CH3)(NO3)-CH(OH)-CH3' + CL ----> 'H-CO-CH3' + 'HO-CH2-CO-CH3' + HO2 + NO2 + HCL @3.49E-11 ; //ME2BUOLNO3 R[MBabs301A]= 'HO-CH2-C(CH3)(OOH)-CH(OH)-CH3' + OH ----> 'HO-CH2-C(CH3)(O2.)-CH(OH)-CH3' @1.90E-12*EXP(190/TK) ; //ME2BUOLOOH R[MBabs302A]= 'HO-CH2-C(CH3)(OOH)-CH(OH)-CH3' + CL ----> 'HO-CH2-C(CH3)(O2.)-CH(OH)-CH3' + HCL @4.4E-11 ; //ME2BUOLOOH R[MBabs303A]= 'HO-CH2-C(CH3)(OOH)-CH(OH)-CH3' -hv-> 'HO-CH2-C(CH3)(O.)-CH(OH)-CH3' @j[COOH_to_HO2];// COOH(j41) //1-6-1 R[MBabs227]= 'HO-CH2-C(CH3)(OH)-CH(O2.)-CH3' + RO2 ----> 'HO-CH2-C(CH3)(OH)-CH(OH)-CH3' @8.8E-13*0.2 ; // JENKIN 1997 R[MBabs228]= 'HO-CH2-C(CH3)(OH)-CH(O2.)-CH3' + RO2 ----> 'HO-CH2-C(CH3)(OH)-CO-CH3' @8.8E-13*0.2 ; // JENKIN 1997 R[MBabs229]= 'HO-CH2-C(CH3)(OH)-CH(O2.)-CH3' + RO2 ----> 'HO-CH2-C(CH3)(OH)-CH(O.)-CH3' @8.8E-13*0.6 ; // JENKIN 1997 R[MBabs230]= 'HO-CH2-C(CH3)(OH)-CH(O.)-CH3' ----> 'H-CO-CH3' + 'HO-CH2-CO-CH3' + HO2 @KDEC ; // R[MBabs231]= 'HO-CH2-C(CH3)(OH)-CH(OH)-CH3' +OH ----> 'HO-CH2-C(CH3)(OH)-CO-CH3' + HO2 @8.35E-12 ; // ATKINSON 1995 R[MBabs232]= 'HO-CH2-C(CH3)(OH)-CH(OH)-CH3' +CL ----> 'HO-CH2-C(CH3)(OH)-CO-CH3' + HO2 + HCL @1.20E-10; // R[MBabs233]= 'HO-CH2-C(CH3)(OH)-CO-CH3' + OH ----> 'H-CO-C(CH3)(OH)-CO-CH3' + HO2 @4.00E-12; // 1-6-1-1 ATKINSON 1995 R[MBabs234]= 'HO-CH2-C(CH3)(OH)-CO-CH3' + CL ----> 'H-CO-C(CH3)(OH)-CO-CH3' + HO2 + HCL @6.72E-11; // // R[MBabs304A]= 'HO-CH2-C(CH3)(OH)-CH(O2.)-CH3' + NO3 ----> 'HO-CH2-C(CH3)(OH)-CH(O.)-CH3'+ NO2 @KRO2NO3 ; // ME2BU2OL R[MBabs305A]= 'HO-CH2-C(CH3)(OH)-CH(O2.)-CH3' + NO ----> 'HO-CH2-C(CH3)(OH)-CH(O.)-CH3'+ NO2 @KRO2NO ; // ME2BU2OL R[MBabs306A]= 'HO-CH2-C(CH3)(OH)-CH(O2.)-CH3' + HO2 ----> 'CH3-CH(OOH)-C(CH3)(OH)-CH2-OH' @KRO2HO2*0.706 ; // ME2BU2OL R[MBabs307A]= 'CH3-CH(OOH)-C(CH3)(OH)-CH2-OH' + OH ----> 'HO-CH2-C(CH3)(OH)-CH(O2.)-CH3' @1.90E-12*EXP(190/TK); //ME2BU2OLOOH R[MBabs308A]= 'CH3-CH(OOH)-C(CH3)(OH)-CH2-OH' + CL ----> 'HO-CH2-C(CH3)(OH)-CH(O2.)-CH3' + HCL @4.4E-11*0.5 ; // ME2BU2OLOOH R[MBabs309A]= 'CH3-CH(OOH)-C(CH3)(OH)-CH2-OH' + OH ----> 'HO-CH2-C(CH3)(OH)-CO-CH3' + OH @2.07E-11 ; // ME2BU2OLOOH R[MBabs310A]= 'CH3-CH(OOH)-C(CH3)(OH)-CH2-OH' + CL ----> 'HO-CH2-C(CH3)(OH)-CO-CH3' + OH + HCL @4.4E-11*0.5 ; //ME2BU2OLOOH R[MBabs311A]= 'CH3-CH(OOH)-C(CH3)(OH)-CH2-OH' -hv-> 'HO-CH2-C(CH3)(OH)-CH(O.)-CH3' + OH @j[COOH_to_HO2];// COOH(j41) //1-6-1-1 R[MBabs236]= 'H-CO-C(CH3)(OH)-CO-CH3' + OH ----> 'H-CO-C(CH3)(O.)-CO-CH3' @6.63E-11 ; // C4MCO2OH R[MBabs237]= 'H-CO-C(CH3)(OH)-CO-CH3' + CL ----> 'H-CO-C(CH3)(O.)-CO-CH3' + HCL @1.05E-10 ; // R[MBabs238]= 'H-CO-C(CH3)(OH)-CO-CH3' -hv-> 'H-CO-CO-CH3' + 'CO(O2.)-CH3' + HO2 @j[HOCH2COCH3_to_CH3CO];//OHAcetone(j22) 72 R[MBabs239]= 'H-CO-C(CH3)(OH)-CO-CH3' -hv-> 'CH3-CO-CO-CH3' + 2*H2O + CO @j[iC3H7CHO_to_HCO] ; // IC3CHO(J17) R[MBabs240]= 'H-CO-C(CH3)(O.)-CO-CH3' ----> 'CH3-CO-CO-CH3' + H2O + CO @KDEC*0.5 ; // C4MCO2O 86 R[MBabs241]= 'H-CO-C(CH3)(O.)-CO-CH3' ----> 'H-CO-CO-CH3' + 'CO(O2.)-CH3' @KDEC*0.5 ; // C4MCO2O 72 //1-6-2 R[MBabs243]= 'HO-CH2-C(CH3)(O.)-CH(OH)-CH3' ----> 'H-CO-CH3' + 'HO-CH2-CO-CH3' + HO2 @KDEC*0.0 ; // R[MBabs244]= 'HO-CH2-C(CH3)(O.)-CH(OH)-CH3' ----> 'CH3-CH(OH)-CO-CH3' + 'H-CO-H' + HO2 @KDEC*0.5*2 ; // R[MBabs245]= 'HO-CH2-C(CH3)(O2.)-CH(CL)-CH3' + RO2 ----> 'HO-CH2-C(CH3)(OH)-CH(CL)-CH3' @9.2E-14*0.7 ; // 1-6-2-1 JENKIN 1997 R[MBabs246]= 'HO-CH2-C(CH3)(O2.)-CH(CL)-CH3' + RO2 ----> 'HO-CH2-C(CH3)(O.)-CH(CL)-CH3' @9.2E-14*0.3 ; // JENKIN 1997 R[MBabs247]= 'HO-CH2-C(CH3)(O.)-CH(CL)-CH3' ----> 'CL-CH(O2.)-CH3' + 'HO-CH2-CO-CH3' @KDEC*0.5 ; // 1-5-2 R[MBabs248]= 'HO-CH2-C(CH3)(O.)-CH(CL)-CH3' ----> 'CH3-CO-CH(CL)-CH3' + 'H-CO-H' + HO2 @KDEC*0.5 ; // // R[MBabs312A]= 'HO-CH2-C(CH3)(O2.)-CH(CL)-CH3' + NO3 ----> 'HO-CH2-C(CH3)(O.)-CH(CL)-CH3' + NO2 @KRO2NO3 ; // JENKIN 1997

Page 64: THE PHOTOOXIDATION OF 2-METHYL-2-BUTENE …ufdcimages.uflib.ufl.edu/UF/E0/04/26/40/00001/im_y.pdfTHE EFFECTS OF ACTIVE CHLORINES ON PHOTOOXIDATION OF 2-METHYL-2 ... effects on both

64

R[MBabs313A]= 'HO-CH2-C(CH3)(O2.)-CH(CL)-CH3' + NO ----> 'HO-CH2-C(CH3)(O.)-CH(CL)-CH3' + NO2 @KRO2NO ; // JENKIN 1997 R[MBabs314A]= 'HO-CH2-C(CH3)(O2.)-CH(CL)-CH3' + HO2 ----> 'HO-CH2-C(CH3)(OOH)-CH(CL)-CH3' + NO2 @KRO2HO2*0.706;//JENKIN 1997 R[MBabs315A]= 'HO-CH2-C(CH3)(OOH)-CH(CL)-CH3' + OH ----> 'HO-CH2-C(CH3)(O2.)-CH(CL)-CH3' @4.20E-11 ; // ISOPBOOH R[MBabs316A]= 'HO-CH2-C(CH3)(OOH)-CH(CL)-CH3' + CL ----> 'HO-CH2-C(CH3)(O2.)-CH(CL)-CH3' + HCL @4.4E-11 ; // ISOPBOOH R[MBabs317A]= 'HO-CH2-C(CH3)(OOH)-CH(CL)-CH3' -hv-> 'HO-CH2-C(CH3)(O.)-CH(CL)-CH3' + OH @j[COOH_to_HO2];// COOH(j41) //1-6-2-1 R[MBabs250]= 'HO-CH2-C(CH3)(OH)-CH(CL)-CH3' + OH ----> 'H-CO-C(CH3)(OH)-CH(CL)-CH3' @5.78E-12 ; // M2BUOL2OH R[MBabs251]= 'HO-CH2-C(CH3)(OH)-CH(CL)-CH3' + CL ----> 'H-CO-C(CH3)(OH)-CH(CL)-CH3' + HCL @7.36E-11 ; // ATKINSON 1997 R[MBabs252]= 'H-CO-C(CH3)(OH)-CH(CL)-CH3' + OH ----> 'CO(O2.)-C(CH3)(OH)-CH(CL)-CH3' @2.52E-11 ; // PROL1MCHO R[MBabs253]= 'H-CO-C(CH3)(OH)-CH(CL)-CH3' + CL ----> 'CO(O2.)-C(CH3)(OH)-CH(CL)-CH3' + HCL @1.11E-10 ; // R[MBabs254]= 'CO(O2.)-C(CH3)(OH)-CH(CL)-CH3' + RO2 ----> 'CH3-CO-CH(CL)-CH3' + HO2 @1.00E-11 ; // PROL1MCO3 // R[MBabs318A]= 'CO(O2.)-C(CH3)(OH)-CH(CL)-CH3' + NO3 ----> 'CH3-CO-CH(CL)-CH3' + HO2 + NO2 @KRO2NO3*1.6 ; // PROL1MCO3 R[MBabs319A]= 'CO(O2.)-C(CH3)(OH)-CH(CL)-CH3' + NO ----> 'CH3-CO-CH(CL)-CH3' + HO2 + NO2 @KAPNO ; // PROL1MCO3 R[MBabs320A]= 'CO(O2.)-C(CH3)(OH)-CH(CL)-CH3' + NO2 ----> 'NO3-O-CO-C(CH3)(OH)-CH(CL)-CH3' @KFPAN ; // PROL1MCO3 R[MBabs321A]= 'CO(O2.)-C(CH3)(OH)-CH(CL)-CH3' + HO2 ----> 'HOO-CO-C(CH3)(OH)-CH(CL)-CH3' @KAPHO2 ; // PROL1MCO3 R[MBabs322A]= 'NO3-O-CO-C(CH3)(OH)-CH(CL)-CH3' + OH ----> 'CH3-CO-CH(CL)-CH3' + HO2 + NO2 @1.62E-12 ; // PROL1MCO3 R[MBabs323A]= 'NO3-O-CO-C(CH3)(OH)-CH(CL)-CH3' + CL ----> 'CH3-CO-CH(CL)-CH3' + HO2 + NO2 + HCL @3.6E-11 ; // PROL1MCO3 check R[MBabs324A]= 'NO3-O-CO-C(CH3)(OH)-CH(CL)-CH3' ----> 'CO(O2.)-C(CH3)(OH)-CH(CL)-CH3' + NO2 @KBPAN ; // PROL1MCO3 R[MBabs325A]= 'HOO-CO-C(CH3)(OH)-CH(CL)-CH3' + OH ----> 'CO(O2.)-C(CH3)(OH)-CH(CL)-CH3' @8.08E-12; // PROL1MCO3H R[MBabs326A]= 'HOO-CO-C(CH3)(OH)-CH(CL)-CH3' + CL ----> 'CO(O2.)-C(CH3)(OH)-CH(CL)-CH3' + HCL @4.4E-11 ; // PROL1MCO3H R[MBabs327A]= 'HOO-CO-C(CH3)(OH)-CH(CL)-CH3' ----> 'CH3-CO-CH(CL)-CH3' + HO2 + OH @j[COOH_to_HO2];// COOH(j41) //1-6-3 R[MBabs256]= 'HO-CH2-C(CH3)(CL)-CH(O2.)-CH3' + RO2 ----> 'HO-CH2-C(CH3)(CL)-CH(OH)-CH3' @8.8E-13*0.2; // 1-6-3-1 JENKIN 1997 R[MBabs257]= 'HO-CH2-C(CH3)(CL)-CH(O2.)-CH3' + RO2 ----> 'HO-CH2-C(CH3)(CL)-CO-CH3' @8.8E-13*0.2; // 1-6-3-1 JENKIN 1997 R[MBabs258]= 'HO-CH2-C(CH3)(CL)-CH(O2.)-CH3' + RO2 ----> 'HO-CH2-C(CH3)(CL)-CH(O.)-CH3' @8.8E-13*0.6 ; // JENKIN 1997 R[MBabs259]= 'HO-CH2-C(CH3)(CL)-CH(O.)-CH3' ----> 'H-CO-CH3' + 'HO-CH2-C(CL)(O2.)-CH3' @KDEC ; // // R[MBabs328A]= 'HO-CH2-C(CH3)(CL)-CH(O2.)-CH3' + NO3 ----> 'HO-CH2-C(CH3)(CL)-CH(O.)-CH3' + NO2 @KRO2NO3 ; // HM2C43O2 R[MBabs329A]= 'HO-CH2-C(CH3)(CL)-CH(O2.)-CH3' + NO ----> 'HO-CH2-C(CH3)(CL)-CH(O.)-CH3' + NO2 @KRO2NO*0.871 ; // HM2C43O2 R[MBabs330A]= 'HO-CH2-C(CH3)(CL)-CH(O2.)-CH3' + NO ----> 'HO-CH2-C(CH3)(CL)-CH(NO3)-CH3' @KRO2NO*0.129 ; // HM2C43O2 R[MBabs331A]= 'HO-CH2-C(CH3)(CL)-CH(O2.)-CH3' + HO2 ----> 'CH3-CH(OOH)-C(CH3)(CL)-CH2-OH' @KRO2HO2*0.706 ; // HM2C43O2 R[MBabs332A]= 'HO-CH2-C(CH3)(CL)-CH(NO3)-CH3' + OH ----> 'HO-CH2-C(CH3)(CL)-CO-CH3' + NO2 @4.93E-12 ; // HM2C43NO3 R[MBabs333A]= 'HO-CH2-C(CH3)(CL)-CH(NO3)-CH3' + CL ----> 'HO-CH2-C(CH3)(CL)-CO-CH3' + NO2 + HCL @1.26E-11 ; // HM2C43NO3 R[MBabs334A]= 'HO-CH2-C(CH3)(CL)-CH(NO3)-CH3' -hv-> 'HO-CH2-C(CH3)(CL)-CH(O.)-CH3' + NO2 @j[iC5H11NO3_to_NO2]; // i-c5h11no3.cqy(J54) R[MBabs335A]= 'CH3-CH(OOH)-C(CH3)(CL)-CH2-OH' + OH ----> 'HO-CH2-C(CH3)(CL)-CO-CH3' + OH @3.11E-11 ; // HM2C43OOH R[MBabs336A]= 'CH3-CH(OOH)-C(CH3)(CL)-CH2-OH' + CL ----> 'HO-CH2-C(CH3)(CL)-CO-CH3' + OH + HCL @4.4E-11 ; // HM2C43OOH R[MBabs337A]= 'CH3-CH(OOH)-C(CH3)(CL)-CH2-OH' -hv-> 'HO-CH2-C(CH3)(CL)-CH(O.)-CH3' + OH @j[COOH_to_HO2];// COOH(j41) // CH3COCL R[MBabs262]= 'CL-CO-CH3' -hv-> 'CO(O2.)-CH3' + CL @ j[HOCH2COCH3_to_CH3CO] ; // OHAcetone(j22) R[MBabs263]= 'CL-CO-CH3' + OH ----> 'CL-CO-CH2-O2.' @ 3.88E-14 ; // R[MBabs264]= 'CL-CO-CH3' + CL ----> 'CL-CO-CH2-O2.' + HCL @ 1.0E-14 ; // 1993SHI/WAL6184-6192 // CH3CO3 R[MBabs266]= 'CO(O2.)-CH3' + RO2 ----> 'CH3-O2.' @ 1.00E-11*0.7 ; // R[MBabs267]= 'CO(O2.)-CH3' + RO2 ----> 'HO-CO-CH3' @ 1.00E-11*0.3 ; // R[MBabs268]= 'CO(O2.)-CH3' + HO2 ----> 'HOO-CO-CH3' @ KAPHO2*0.71 ; // R[MBabs269]= 'CO(O2.)-CH3' + HO2 ----> 'HO-CO-CH3' + O3 @ KAPHO2*0.29 ; // // R[MBabs338A]= 'CO(O2.)-CH3' + NO ----> 'CH3-O2.' + NO2 @ KAPNO ; // R[MBabs339A]= 'CO(O2.)-CH3' + NO3 ----> 'CH3-O2.' + NO2 @ KRO2NO3*1.6 ; // R[MBabs340A]= 'CO(O2.)-CH3' + NO2 ----> 'NO3-O-CO-CH3' @ KFPAN; // R[MBabs341A]= 'NO3-O-CO-CH3' ----> 'CO(O2.)-CH3' + NO2 @ KBPAN; //PAN R[MBabs342A]= 'NO3-O-CO-CH3' + OH ----> 'H-CO-H' + CO + NO2 @ 3.0E-14; // PAN R[MBabs343A]= 'NO3-O-CO-CH3' + CL ----> 'H-CO-H' + CO + NO2 + HCL @ 2.0E-14; // PAN//2001ATK/BAU1-56 // CLCOCH2O2

Page 65: THE PHOTOOXIDATION OF 2-METHYL-2-BUTENE …ufdcimages.uflib.ufl.edu/UF/E0/04/26/40/00001/im_y.pdfTHE EFFECTS OF ACTIVE CHLORINES ON PHOTOOXIDATION OF 2-METHYL-2 ... effects on both

65

R[MBabs271]= 'CL-CO-CH2-O2.' + RO2 ----> 'CL-CO-CH2-O.' @ 2.00E-12 ; // R[MBabs272]= 'CL-CO-CH2-O2.' + HO2 ----> 'HOO-CH2-CO-CL' @ 3.30E-13*EXP(820/TK) ; // // R[MBabs344A]= 'CL-CO-CH2-O2.' + NO ----> 'CL-CO-CH2-O.'+ NO2 @ KRO2NO*1.6 ; // R[MBabs345A]= 'CL-CO-CH2-O2.' + NO3 ----> 'CL-CO-CH2-O.'+ NO2 @ KRO2NO3 ; // // CLCOCH2O2 R[MBabs274]= 'CL-CO-CH2-O.' ----> 'H-CO-H' + CO + CL @ KDEC ; // // CLCOCH2OOH R[MBabs276]= 'HOO-CH2-CO-CL' -hv-> 'CL-CO-CH2-O.' + OH @ j[COOH_to_HO2] ; // COOH(j41) R[MBabs277]= 'HOO-CH2-CO-CL' + OH ----> 'CL-CO-CH2-O2.' @ 7.25E-12 ; // R[MBabs278]= 'HOO-CH2-CO-CL' + CL ----> 'CL-CO-CH2-O2.' + HCL @ 4.4E-11 ; // // HCHO R[MBabs280]= 'H-CO-H' -hv-> H2 + CO @ j[HCHO_to_H2] ; // hchos(j12) R[MBabs281]= 'H-CO-H' + OH ----> HO2 + CO @ 1.20E-14*TK*EXP(287/TK) ; // R[MBabs281B]= 'H-CO-H' + CL ----> HO2 + CO + HCL @ 7.3E-11 ; //PITTS R[MBabs282]= 'H-CO-H' -hv-> CO + HO2 + HO2 @ j[HCHO_to_HO2] ; // HCHOR(j11) R[MBabs283]= 'H-CO-H' + NO3 ----> HNO3 + CO + HO2 @ 5.8E-16 ; // HCHO // 1-6-3-1 R[MBabs284]= 'HO-CH2-C(CH3)(CL)-CH(OH)-CH3' + OH ----> 'HO-CH2-C(CH3)(CL)-CO-CH3' + HO2 @2.40E-12 ; // ATKINSON 1995 R[MBabs285]= 'HO-CH2-C(CH3)(CL)-CH(OH)-CH3' + CL ----> 'HO-CH2-C(CH3)(CL)-CO-CH3' + HO2 + HCL @4.21E-11 ; // ATKINSON 1997 R[MBabs286]= 'HO-CH2-C(CH3)(CL)-CO-CH3' + OH ----> 'H-CO-C(CH3)(CL)-CO-CH3' +HO2 @1.17E-12 ; // ATKINSON 1995 R[MBabs287]= 'HO-CH2-C(CH3)(CL)-CO-CH3' + CL ----> 'H-CO-C(CH3)(CL)-CO-CH3' +HO2 + HCL @1.23E-11 ; // ATKINSON 1997 R[MBabs288]= 'H-CO-C(CH3)(CL)-CO-CH3' + OH ----> 'CO(O2.)-C(CH3)(CL)-CO-CH3' @6.10E-12 ; // ATKINSON 1995 R[MBabs289]= 'H-CO-C(CH3)(CL)-CO-CH3' + CL ----> 'CO(O2.)-C(CH3)(CL)-CO-CH3' + HCL @1.82E-11 ; // R[MBabs290]= 'CO(O2.)-C(CH3)(CL)-CO-CH3' + RO2 ----> 'HO-CO-C(CH3)(CL)-CO-CH3' @1.0E-11*0.3 ; // ATKINSON 1995 R[MBabs291]= 'CO(O2.)-C(CH3)(CL)-CO-CH3' + RO2 ----> 'CH3-CO-C(CL)(O2.)-CH3' @1.0E-11*0.7 ; // ATKINSON 1995 // R[MBabs347A]= 'CO(O2.)-C(CH3)(CL)-CO-CH3' + NO3 ----> 'CH3-CO-C(CL)(O2.)-CH3' + NO2 @KRO2NO3*1.6 ; // C41CO3 R[MBabs348A]= 'CO(O2.)-C(CH3)(CL)-CO-CH3' + NO ----> 'CH3-CO-C(CL)(O2.)-CH3' + NO2 @KAPNO ; // C41CO3 R[MBabs349A]= 'CO(O2.)-C(CH3)(CL)-CO-CH3' + NO2 ----> 'NO3-O-CO-C(CH3)(CL)-CO-CH3' @KFPAN ; // C41CO3 R[MBabs350A]= 'CO(O2.)-C(CH3)(CL)-CO-CH3' + HO2 ----> 'HO-CO-C(CH3)(CL)-CO-CH3' + O3 @KAPHO2*0.29 ; // C41CO3 R[MBabs351A]= 'CO(O2.)-C(CH3)(CL)-CO-CH3' + HO2 ----> 'HOO-CO-C(CH3)(CL)-CO-CH3' @KAPHO2*0.71 ; // C41CO3 R[MBabs352A]= 'NO3-O-CO-C(CH3)(CL)-CO-CH3' ----> 'CO(O2.)-C(CH3)(CL)-CO-CH3' + NO2 @KBPAN ; // C5PAN7 R[MBabs353A]= 'NO3-O-CO-C(CH3)(CL)-CO-CH3' + OH ----> 'CH3-CO-C(CL)(O2.)-CH3'+ NO2 + CO @3.96E-12 ; // C5PAN7 R[MBabs354A]= 'NO3-O-CO-C(CH3)(CL)-CO-CH3' + CL ----> 'CH3-CO-C(CL)(O2.)-CH3'+ NO2 + CO + HCL @6.44E-12 ; // C5PAN7 R[MBabs355A]= 'HOO-CO-C(CH3)(CL)-CO-CH3' + OH ----> 'CO(O2.)-C(CH3)(CL)-CO-CH3' @7.56E-12; // C5PAN7 R[MBabs356A]= 'HOO-CO-C(CH3)(CL)-CO-CH3' + CL ----> 'CO(O2.)-C(CH3)(CL)-CO-CH3' + HCL @4.4E-11; // C5PAN7 R[MBabs357A]= 'HOO-CO-C(CH3)(CL)-CO-CH3' -hv-> 'CH3-CO-C(CL)(O2.)-CH3' + OH @j[COOH_to_HO2] ; // COOH(j41) R[MBabs358A]= 'HOO-CO-C(CH3)(CL)-CO-CH3' -hv-> 'CH3-CO-C(CL)(O2.)-CH3' + OH @j[COOH_to_HO2] ; // COOH(j41) // 1-6-3-1-1 R[MBabs293]= 'HO-CO-C(CH3)(CL)-CO-CH3' + OH ----> 'CH3-CO-C(CL)(O2.)-CH3' @4.00E-12 ; // R[MBabs294]= 'HO-CO-C(CH3)(CL)-CO-CH3' + CL ----> 'CH3-CO-C(CL)(O2.)-CH3' + HCL @6.44E-12 ; // R[MBabs295]= 'HO-CO-C(CH3)(CL)-CO-CH3' -hv-> 'CO(O2.)-CH3' + 'CL-CH(O2.)-CH3' @j[HOCH2COCH3_to_CH3CO]; // 1-5-2 OHAcetone(j22) R[MBabs296]= 'CH3-CO-C(CL)(O2.)-CH3' + RO2 ----> 'CH3-C(CL)(OH)-CO-CH3' @9.20E-14*0.3 ; // 122 R[MBabs297]= 'CH3-CO-C(CL)(O2.)-CH3' + RO2 ----> 'CH3-CO-C(CL)(O.)-CH3' @9.20E-14*0.7 ; // R[MBabs298]= 'CH3-CO-C(CL)(O.)-CH3' ----> 'CO(O2.)-CH3' + 'CL-CO-CH3' @KDEC ; // // R[MBabs359A]= 'CH3-CO-C(CL)(O2.)-CH3' + NO3 ----> 'CH3-CO-C(CL)(O.)-CH3' + NO2 @KRO2NO3 ; // MEKBO2 R[MBabs360A]= 'CH3-CO-C(CL)(O2.)-CH3' + NO ----> 'CH3-CO-C(CL)(O.)-CH3' + NO2 @KRO2NO ; // MEKBO2 R[MBabs361A]= 'CH3-CO-C(CL)(O2.)-CH3' + HO2 ----> 'CH3-C(CL)(OOH)-CO-CH3' @KRO2HO2*0.625 ; // MEKBO2 R[MBabs362A]= 'CH3-C(CL)(OOH)-CO-CH3' + OH ----> 'CH3-CO-C(CL)(O2.)-CH3' @1.90E-12*EXP(190/TK) ; // MEKBO2 R[MBabs363A]= 'CH3-C(CL)(OOH)-CO-CH3' + CL ----> 'CH3-CO-C(CL)(O2.)-CH3' + HCL @4.4E-11 ; // MEKBO2 R[MBabs364A]= 'CH3-C(CL)(OOH)-CO-CH3' -hv-> 'CH3-CO-C(CL)(O.)-CH3' + OH @j[COOH_to_HO2] ; // COOH(j41) R[MBabs365A]= 'CH3-C(CL)(OOH)-CO-CH3' -hv-> 'CO(O2.)-CH3' + 'CL-CO-CH3' + OH @j[HOCH2COCH3_to_CH3CO] ; // OHAcetone(j22) // CH3CHO R[MBabs300]= 'H-CO-CH3' + OH ----> 'CO(O2.)-CH3' @ 5.55E-12*EXP(311/TK) ;

Page 66: THE PHOTOOXIDATION OF 2-METHYL-2-BUTENE …ufdcimages.uflib.ufl.edu/UF/E0/04/26/40/00001/im_y.pdfTHE EFFECTS OF ACTIVE CHLORINES ON PHOTOOXIDATION OF 2-METHYL-2 ... effects on both

66

R[MBabs301]= 'H-CO-CH3' + CL ----> 'CO(O2.)-CH3'+ HCL @ 7.20E-11 ; R[MBabs302]= 'H-CO-CH3' -hv-> 'CH3-O2.' + HO2 + CO @ j[CH3CHO_TO_HCO] ; // CCHO(J13) // CH3O2 R[MBabs303]= 'CH3-O2.' + RO2 ----> 'HO-CH3' @ 1.82E-13*EXP(416/TK)*0.335 ; R[MBabs304]= 'CH3-O2.' + RO2 ----> 'H-CO-H' @ 1.82E-13*EXP(416/TK)*0.335 ; R[MBabs305]= 'CH3-O2.' + RO2 ----> 'CH3-O.' @ 1.82E-13*EXP(416/TK)*0.33 ; // R[MBabs366A]= 'CH3-O2.' + NO3 ----> 'CH3-O.' + NO2 @ KRO2NO3*0.4 ; R[MBabs367A]= 'CH3-O2.' + NO ----> 'CH3-O.' + NO2 @ 3.00E-12*EXP(280/TK)*0.999 ; R[MBabs368A]= 'CH3-O2.' + NO2 ----> 'CH3-O-NO3' @ KMT13 ; R[MBabs369A]= 'CH3-O2.' + HO2 ----> 'HOO-CH3' @ 3.80E-13*EXP(780/TK) ; R[MBabs370A]= 'CH3-O-NO3' ----> 'CH3-O2.' + NO2 @ KMT14 ; //CH3CO2H R[MBabs307]= 'HO-CO-CH3' + OH ----> 'CH3-O2.' @ 8.00E-13 ; R[MBabs307B]= 'HO-CO-CH3' + CL ----> 'CH3-O2.' + HCL @ 2.8E-14 ;//2001ATK/BAU1-56 // CH3CO3H//CHECK R[MBabs309]= 'HOO-CO-CH3' -hv-> 'CH3-O2.' + OH @ j[COOH_to_HO2] ; // COOH(j41) R[MBabs310]= 'HOO-CO-CH3' + OH ----> 'CO(O2.)-CH3' @ 3.70E-12 ; R[MBabs310B]= 'HOO-CO-CH3' + CL ----> 'CO(O2.)-CH3' + HCL @ 4.5E-15 ;//1999CRA/WAL365-378 // CH3OH R[MBabs312]= 'HO-CH3' + OH ----> 0.85*('H-CO-H' + HO2) + H2O + 0.15*'CH3-O.' @ 6.01E-18*TK^2*EXP(170/TK) ; R[MBabs312B]= 'HO-CH3' + CL ----> 0.85*('H-CO-H' + HO2) + HCL + 0.15*'CH3-O.' @ 5.5E-11; //Bierbach et al(1992) R[MeOH2] = NO3 + 'HO-CH3' ----> 'H-CO-H' + HO2 + HNO3 @ 1.3E-12*EXP(-2560.0/TK); //CH4 R[Me1] = OH + CH4 ----> 'CH3-O2.' + H2O @ 2.3E-12*EXP(-1765.0/TK); R[Me2] = NO3 + CH4 ----> 'CH3-O2.' + HNO3 @ 1.0E-18; R[Me3] = CL + CH4 ----> 'CH3-O2.' + HCL @ 9.60E-12*EXP(-1350/TK) ; // CH3O R[MBabs314]= 'CH3-O.' + O2 ----> HO2 + 'H-CO-H' @ 7.20E-14*EXP(-1080/TK) ; R[MeO2_5t] = 'CH3-O.' + NO -M--> 'CH3-O-NO' @ TROE(1.6E-29*T_300^-3.5,3.6E-11*T_300^-0.6,b[M], 0.60); R[MeO2_6 ] = 'CH3-O.' + NO2 -M--> 'CH3-O-NO2' @ TROE(2.8E-29*T_300^-4.5,2.0E-11,b[M], 0.44); R[MeNO21] = 'CH3-O-NO' -hv-> 'CH3-O.' + NO @ j[HONO_to_NO]; R[MeNO31] = 'CH3-O-NO2' -hv-> 'CH3-O.' + NO2 @ j[CH3NO3_to_NO2];//Ch3no3.cqy R[MeNO32] = OH + 'CH3-O-NO2' ----> 'H-CO-H' + NO2 + H2O @ 1.0E-14*EXP( 1060.0/TK); R[MeNO33] = CL + 'CH3-O-NO2' ----> 'H-CO-H' + NO2 + HCL @ 1.0E-13*EXP( 1060.0/TK); // CH3OOH R[MBabs316]= 'HOO-CH3' + OH ----> 'CH3-O2.' @ 1.90E-12*EXP(190/TK) ; R[MBabs317]= 'HOO-CH3' + OH ----> OH + 'H-CO-H' + H2O @ 1.00E-12*EXP(190/TK) ; R[MBabs316B]= 'HOO-CH3' + CL ----> 'CH3-O2.' + HCL @ 5.9E-11*0.5 ;//1997ATK/BAU521-1011 R[MBabs317B]= 'HOO-CH3' + CL ----> OH + 'H-CO-H' + HCL @ 5.9E-11*0.5 ;//1997ATK/BAU521-1011 R[MBabs318]= 'HOO-CH3' -hv-> 'CH3-O.' + OH + H2O @ j[CH3OOH_to_CH3O] ; // 2 R[MBabs320]= 'CH2=C(CH3)-CH(O2.)-CH3' + RO2 ----> 'CH2=C(CH3)-CH(O.)-CH3' @1.4E-12*0.6 ; // 2-1 JENKIN 1997 R[MBabs321]= 'CH2=C(CH3)-CH(O2.)-CH3' + RO2 ----> 'CH3-CO-C(CH3)=CH2' @1.4E-12*0.2 ; // 2-2 JENKIN 1997 R[MBabs322]= 'CH2=C(CH3)-CH(O2.)-CH3' + RO2 ----> 'CH3-CH(OH)-C(CH3)=CH2' @1.4E-12*0.2 ; // 2-3 JENKIN 1997 R[MBabs323]= 'TRAN-CH2(O2.)-C(CH3)=CH-CH3' + RO2 ----> 'TRAN-CH2(O.)-C(CH3)=CH-CH3' @2.0E-12*0.6 ; // 2-4 ISOPCO2 R[MBabs324]= 'TRAN-CH2(O2.)-C(CH3)=CH-CH3' + RO2 ----> 'TRAN-H-CO-C(CH3)=CH-CH3' @2.0E-12*0.2 ; // 2-4 ISOPCO2 84 R[MBabs325]= 'TRAN-CH2(O2.)-C(CH3)=CH-CH3' + RO2 ----> 'TRAN-HO-CH2-C(CH3)=CH-CH3' @2.0E-12*0.2 ; // 2-4 ISOPCO2 // R[MBabs325B]= 'TRAN-H-CO-C(CH3)=CH-CH3' + OH ----> 'TRAN-CO(O2.)-C(CH3)=CH-CH3' @4.52E-11*0.48; // HC4CCHO 84 R[MBabs326B]= 'TRAN-H-CO-C(CH3)=CH-CH3' + CL ----> 'TRAN-CO(O2.)-C(CH3)=CH-CH3' + HCL @4.46E-10*0.2; // R[MBabs327B]= 'TRAN-H-CO-C(CH3)=CH-CH3' + OH ----> 'CH3-CH(OH)-C(CH3)(O2.)-CO-H' @4.52E-11*0.52; // 1-5-1 HC4CCHO R[MBabs328B]= 'TRAN-H-CO-C(CH3)=CH-CH3' + CL ----> 'H-CO-C(CH3)(O2.)-CH(CL)-CH3' + HCL @4.46E-10*0.8; // 1-5-2 R[MBabs329B]= 'TRAN-CO(O2.)-C(CH3)=CH-CH3' + RO2 ----> 'TRAN-HO-CO-C(CH3)=CH-CH3' @1.00E-11*0.3; // HC4CCO3 R[MBabs330B]= 'TRAN-CO(O2.)-C(CH3)=CH-CH3' + RO2 ----> 'H-CO-CH3' + 'CO(O2.)-CH3' @1.00E-11*0.7; // HC4CCO3 R[MBabs331B]= 'TRAN-HO-CO-C(CH3)=CH-CH3' + OH ----> 'H-CO-CH3' + 'CO(O2.)-CH3' @2.52E-11 ; // HC4CCO2H

Page 67: THE PHOTOOXIDATION OF 2-METHYL-2-BUTENE …ufdcimages.uflib.ufl.edu/UF/E0/04/26/40/00001/im_y.pdfTHE EFFECTS OF ACTIVE CHLORINES ON PHOTOOXIDATION OF 2-METHYL-2 ... effects on both

67

R[MBabs332B]= 'TRAN-HO-CO-C(CH3)=CH-CH3' + CL ----> 'H-CO-CH3' + 'CO(O2.)-CH3' + HCL @9.31E-11 ; // // R[MBabs371A]= 'CH2=C(CH3)-CH(O2.)-CH3' + NO3 ----> 'CH2=C(CH3)-CH(O.)-CH3' + NO2 @KRO2NO3 ; // ISOPDO2 R[MBabs372A]= 'CH2=C(CH3)-CH(O2.)-CH3' + NO ----> 'CH2=C(CH3)-CH(O.)-CH3' + NO2 @KRO2NO*0.855 ; // ISOPDO2 R[MBabs373A]= 'CH2=C(CH3)-CH(O2.)-CH3' + NO ----> 'CH2=C(CH3)-CH(NO3)-CH3' @KRO2NO*0.145 ; // ISOPDO2 R[MBabs374A]= 'CH2=C(CH3)-CH(O2.)-CH3' + HO2 ----> 'CH3-CH(OOH)-C(CH3)=CH2' @KRO2HO2*0.706 ; // ISOPDO2 R[MBabs375A]= 'CH2=C(CH3)-CH(NO3)-CH3' + OH ----> 'CH3-CO-C(CH3)=CH2' + NO2 @6.10E-11 ; // ISOPDNO3 R[MBabs376A]= 'CH2=C(CH3)-CH(NO3)-CH3' + CL ----> 'CH3-CO-C(CH3)=CH2' + NO2 + HCL @4.72E-11 ; // ISOPDNO3 R[MBabs377A]= 'CH2=C(CH3)-CH(NO3)-CH3' -hv-> 'CH2=C(CH3)-CH(O.)-CH3' + NO2 @j[iC5H11NO3_to_NO2]; // i-c5h11no3.cqy(J54) // R[MBabs378A]= 'TRAN-CH2(O2.)-C(CH3)=CH-CH3' + NO3 ----> 'TRAN-CH2(O.)-C(CH3)=CH-CH3'+ NO2 @KRO2NO3 ; // ISOPCO2 R[MBabs379A]= 'TRAN-CH2(O2.)-C(CH3)=CH-CH3' + NO ----> 'TRAN-CH2(O.)-C(CH3)=CH-CH3'+ NO @KRO2NO*0.892 ; // ISOPCO2 R[MBabs380A]= 'TRAN-CH2(O2.)-C(CH3)=CH-CH3' + NO ----> 'TRAN-NO3-CH2-C(CH3)=CH-CH3' @KRO2NO*0.108 ; // ISOPCO2 R[MBabs381A]= 'TRAN-CH2(O2.)-C(CH3)=CH-CH3' + HO2 ----> 'TRAN-HOO-CH2-C(CH3)=CH-CH3' @KRO2HO2*0.706 ; // ISOPCO2 R[MBabs382A]= 'TRAN-NO3-CH2-C(CH3)=CH-CH3' + OH ----> 'TRAN-H-CO-C(CH3)=CH-CH3' + NO2 @8.91E-11 ; // ISOPCNO3 R[MBabs383A]= 'TRAN-NO3-CH2-C(CH3)=CH-CH3' + CL ----> 'TRAN-H-CO-C(CH3)=CH-CH3' + NO2 + HCL @8.0E-11 ; // ISOPCNO3 R[MBabs384A]= 'TRAN-NO3-CH2-C(CH3)=CH-CH3' -hv-> 'TRAN-CH2(O.)-C(CH3)=CH-CH3'+ NO2 @j[CH2NO3CHNO3CHCH2_to_NO2] ; // 34_buten_no3.cqy(J53) R[MBabs385A]= 'TRAN-HOO-CH2-C(CH3)=CH-CH3' -hv-> 'TRAN-CH2(O.)-C(CH3)=CH-CH3'+ OH @j[COOH_to_HO2] ; // COOH(j41) R[MBabs386A]= 'TRAN-HOO-CH2-C(CH3)=CH-CH3' + OH ----> 'TRAN-H-CO-C(CH3)=CH-CH3'+ OH @1.07E-10 ; // ISOPCOOH R[MBabs387A]= 'TRAN-HOO-CH2-C(CH3)=CH-CH3' + CL ----> 'TRAN-H-CO-C(CH3)=CH-CH3'+ OH + HCL @4.4E-11 ; // ISOPCOOH // 2-1 R[MBabs326]= 'CH2=C(CH3)-CH(O.)-CH3' ----> 'H-CO-H' + 'H-CO-C(CH3)=CH2'+ HO2 @KDEC*0.3 ; // ISOPDO 70 R[MBabs327]= 'CH2=C(CH3)-CH(O.)-CH3' ----> 'H-CO-H' + 'H-CO-CH3' + 'CO(O2.)-CH3' @KDEC*0.7 ; // ISOPDO 70 R[MBabs328]= 'H-CO-C(CH3)=CH2' + OH ----> 'CO(O2.)-C(CH3)=CH2' @1.86E-11*EXP(175/TK)*0.57 ; // 2-1-1 MACR R[MBabs329]= 'H-CO-C(CH3)=CH2' + CL ----> 'CO(O2.)-C(CH3)=CH2' + HCL @2.53E-10*0.2 ; // MACR R[MBabs330]= 'H-CO-C(CH3)=CH2' + OH ----> 'HO-CH2-C(CH3)(O2.)-CO-H' @1.86E-11*EXP(175/TK)*0.43 ; // 2-1-1 MACR R[MBabs331]= 'H-CO-C(CH3)=CH2' + CL ----> 'H-CO-C(CH3)(O2.)-CH2-CL' + HCL @2.53E-10*0.8; // 2-1-2 JENKIN 1997 R[MBabs332]= 'H-CO-C(CH3)=CH2' -hv-> 'CO(O2.)-C(CH3)=CH2' +HO2 @j[MACR_to_Prods] ; // Macr(j19) R[MBabs333]= 'H-CO-C(CH3)=CH2' -hv-> 'CO(O2.)-CH3' +'H-CO-H' @j[METHACRO_to_HCHO] ; // METHACRO(j18) // 2-1-1 R[MBabs335]= 'CO(O2.)-C(CH3)=CH2' + RO2 ----> 'HO-CO-C(CH3)=CH2' @1.00E-11*0.3 ; // MACO3 (MW 86) R[MBabs336]= 'CO(O2.)-C(CH3)=CH2' + RO2 ----> 'CO(O2.)-CH3' + 'H-CO-H' @1.00E-11*0.7 ; // MACO3 R[MBabs337]= 'CO(O2.)-C(CH3)=CH2' + HO2 ----> 'HO-CO-C(CH3)=CH2' + O3 @KAPHO2*0.29 ; // MACO3 R[MBabs338]= 'CO(O2.)-C(CH3)=CH2' + HO2 ----> 'HOO-CO-C(CH3)=CH2' @KAPHO2*0.71 ; // MACO3 R[MBabs339]= 'HO-CO-C(CH3)=CH2' + OH ----> 'CO(O2.)-CH3' + 'H-CO-H' @1.51E-11 ; // MACO2H R[MBabs340]= 'HO-CO-C(CH3)=CH2' + CL ----> 'CO(O2.)-CH3' + 'H-CO-H' + HCL @2.99E-11 ; // R[MBabs341]= 'HOO-CO-C(CH3)=CH2' + OH ----> 'CO(O2.)-C(CH3)=CH2' @1.87E-11 ; // MACO3H R[MBabs342]= 'HOO-CO-C(CH3)=CH2' + CL ----> 'CO(O2.)-C(CH3)=CH2' + HCL @4.4E-11 ; // R[MBabs343]= 'HOO-CO-C(CH3)=CH2' -hv-> 'CO(O2.)-CH3' + 'H-CO-H' @j[COOH_to_HO2]; // COOH(j41) R[MBabs344]= 'HO-CH2-C(CH3)(O2.)-CO-H' + RO2 ----> 'HO-CH2-C(CH3)(O.)-CO-H' @9.20E-14*0.7 ; // MACRO2 R[MBabs345]= 'HO-CH2-C(CH3)(O2.)-CO-H' + RO2 ----> 'HO-CH2-C(CH3)(OH)-CO-H' @9.20E-14*0.3 ; // MACRO2 R[MBabs346]= 'HO-CH2-C(CH3)(O2.)-CO-H' + HO2 ----> 'HO-CH2-C(CH3)(OOH)-CO-H' @KRO2HO2*0.625 ; // MACRO2 R[MBabs347]= 'HO-CH2-C(CH3)(OOH)-CO-H' + OH ----> 'HO-CH2-C(CH3)(O2.)-CO-H' @2.82E-11 ; // MACRO2 R[MBabs348]= 'HO-CH2-C(CH3)(OOH)-CO-H' + CL ----> 'HO-CH2-C(CH3)(O2.)-CO-H' + HCL @4.40E-11 ; // R[MBabs349]= 'HO-CH2-C(CH3)(OOH)-CO-H' -hv-> 'HO-CH2-C(CH3)(O.)-CO-H' + OH @j[COOH_to_HO2] ; // COOH(j41) R[MBabs350]= 'HO-CH2-C(CH3)(OOH)-CO-H' -hv-> 'HO-CH2-CO-CH3' + HO2 +CO + OH @j[iC3H7CHO_to_HCO] ; // IC3CHO(J17) R[MBabs351]= 'HO-CH2-C(CH3)(OH)-CO-H' + OH ----> 'HO-CH2-C(CH3)(O.)-CO-H' @2.46E-11 ; // MACROH R[MBabs352]= 'HO-CH2-C(CH3)(OH)-CO-H' + CL ----> 'HO-CH2-C(CH3)(O.)-CO-H' + HCL @1.4E-10 ; // R[MBabs353]= 'HO-CH2-C(CH3)(O.)-CO-H' -hv-> 'HO-CH2-CO-CH3' + 2*HO2 +CO @j[iC3H7CHO_to_HCO] ; // IC3CHO(J17) R[MBabs354]= 'HO-CH2-C(CH3)(O.)-CO-H' ----> 'HO-CH2-CO-CH3' + 'H-CO-H' @KDEC ; // // R[MBabs388A]= 'CO(O2.)-C(CH3)=CH2' + NO3 ----> 'CO(O2.)-CH3' + 'H-CO-H' + NO2 @KRO2NO3*1.6 ; // MACO3 R[MBabs389A]= 'CO(O2.)-C(CH3)=CH2' + NO ----> 'CO(O2.)-CH3' + 'H-CO-H' + NO2 @8.70E-12*EXP(290/TK) ; // MACO3 R[MBabs390A]= 'CO(O2.)-C(CH3)=CH2' + NO2 ----> 'NO3-O-CO-C(CH3)=CH2' @KFPAN ; // MACO3 R[MBabs391A]= 'NO3-O-CO-C(CH3)=CH2' + OH ----> 'HO-CH2-CO-CH3' + CO + NO2 @3.60E-12 ; // MPAN

Page 68: THE PHOTOOXIDATION OF 2-METHYL-2-BUTENE …ufdcimages.uflib.ufl.edu/UF/E0/04/26/40/00001/im_y.pdfTHE EFFECTS OF ACTIVE CHLORINES ON PHOTOOXIDATION OF 2-METHYL-2 ... effects on both

68

R[MBabs392A]= 'NO3-O-CO-C(CH3)=CH2' + CL ----> 'HO-CH2-CO-CH3' + CO + NO2 @2.99E-11 ; // MPAN R[MBabs393A]= 'NO3-O-CO-C(CH3)=CH2' ----> 'CO(O2.)-C(CH3)=CH2' + NO2 + HCL @KBPAN ; // MPAN // R[MBabs394A]= 'HO-CH2-C(CH3)(O2.)-CO-H' + NO3 ----> 'HO-CH2-C(CH3)(O.)-CO-H' + NO2 @KRO2NO3 ; // MACRO2 R[MBabs395A]= 'HO-CH2-C(CH3)(O2.)-CO-H' + NO ----> 'HO-CH2-C(CH3)(O.)-CO-H' + NO2 @KRO2NO ; // MACRO2 // ACETOL HO-CH2-CO-CH3 R[MBabs356]= 'HO-CH2-CO-CH3' + OH ----> 'H-CO-CO-CH3' + HO2 @3.00E-12 ; // ACETOL R[MBabs357]= 'HO-CH2-CO-CH3' + CL ----> 'H-CO-CO-CH3' + HO2 + HCL @5.60E-11;//1999ORL/TYN1621-1629 R[MBabs358]= 'HO-CH2-CO-CH3' -hv-> 'CO(O2.)-CH3' + 'H-CO-H' + HO2 @j[HOCH2COCH3_to_CH3CO] ; // OHAcetone(j22) // MGLYOX R[MBabs360]= 'H-CO-CO-CH3' + OH ----> 'CO(O2.)-CH3' + CO @ 1.72E-11 ; // MGLYOX R[MBabs361]= 'H-CO-CO-CH3' + CL ----> 'CO(O2.)-CH3' + CO + HCL @ 4.8E-11 ; //1990GRE/YAR689 R[MBabs362]= 'H-CO-CO-CH3' -hv-> 'CO(O2.)-CH3' + CO + HO2 @ j[MGLY_to_HO2] ; // MGLYOX(J34) //2-1-2 R[MBabs364]= 'H-CO-C(CH3)(O2.)-CH2-CL' + RO2 ----> 'H-CO-C(CH3)(O.)-CH2-CL' @9.20E-14*0.7 ; // JENKIN 1997 R[MBabs365]= 'H-CO-C(CH3)(O2.)-CH2-CL' + RO2 ----> 'H-CO-C(CH3)(OH)-CH2-CL' @9.20E-14*0.3 ; // JENKIN 1997 R[MBabs366]= 'H-CO-C(CH3)(OH)-CH2-CL' + OH ----> 'H-CO-C(CH3)(O.)-CH2-CL' @2.46E-11 ; // MACROH R[MBabs367]= 'H-CO-C(CH3)(OH)-CH2-CL' + CL ----> 'H-CO-C(CH3)(O.)-CH2-CL' + HCL @1.08E-10 ; // R[MBabs368]= 'H-CO-C(CH3)(OH)-CH2-CL' -hv-> 'CL-CH2-CO-CH3' + CO+ HO2 + HO2 @j[iC3H7CHO_to_HCO] ; // IC3CHO(J17) R[MBabs369]= 'H-CO-C(CH3)(O.)-CH2-CL' ----> 'CL-CH2-CO-CH3' + 'H-CO-H' @KDEC ; // 92 // R[MBabs396A]= 'H-CO-C(CH3)(O2.)-CH2-CL' + NO3 ----> 'H-CO-C(CH3)(O.)-CH2-CL' + NO2 @KRO2NO3 ;//MACROOH R[MBabs397A]= 'H-CO-C(CH3)(O2.)-CH2-CL' + NO ----> 'H-CO-C(CH3)(O.)-CH2-CL' + NO2 @KRO2NO ;//MACROOH R[MBabs398A]= 'H-CO-C(CH3)(O2.)-CH2-CL' + HO2 ----> 'H-CO-C(CH3)(OOH)-CH2-CL' @KRO2HO2*0.706 ;//MACRO R[MBabs399A]= 'H-CO-C(CH3)(OOH)-CH2-CL' + OH ----> 'H-CO-C(CH3)(O2.)-CH2-CL' @2.82E-11 ; //MACROOH R[MBabs400A]= 'H-CO-C(CH3)(OOH)-CH2-CL' + CL ----> 'H-CO-C(CH3)(O2.)-CH2-CL' + HCL @4.4E-11 ;//MACROOH R[MBabs401A]= 'H-CO-C(CH3)(OOH)-CH2-CL' -hv-> 'H-CO-C(CH3)(O.)-CH2-CL' + OH @j[COOH_to_HO2] ; // COOH(j41) R[MBabs402A]= 'H-CO-C(CH3)(OOH)-CH2-CL' -hv-> 'CL-CH2-CO-CH3' + 'H-CO-H' + OH @j[iC3H7CHO_to_HCO] ; // IC3CHO(J17) //2-2 R[MBabs371]= 'CH3-CO-C(CH3)=CH2' + OH ----> 'HO-CH2-C(CH3)(O2.)-CO-CH3' @4.62E-11*0.7 ; // 2-2-1 ATKINSON 1995 R[MBabs372]= 'CH3-CO-C(CH3)=CH2' + CL ----> 'CH3-CO-C(CH3)(O2.)-CH2-CL' @3.16E-10*0.5 ; // 2-2-2 ATKINSON 1997 R[MBabs373]= 'CH3-CO-C(CH3)=CH2' + OH ----> 'CH2(O2.)-C(CH3)(OH)-CO-CH3' @4.62E-11*0.3 ; // 2-2-3 ATKINSON 1995 R[MBabs374]= 'CH3-CO-C(CH3)=CH2' + CL ----> 'CH3-CO-C(CH3)(CL)-CH2-O2.' @3.16E-10*0.5 ; // 2-2-4 ATKINSON 1997 //2-2-1 R[MBabs376]= 'HO-CH2-C(CH3)(O2.)-CO-CH3' + RO2 ----> 'HO-CH2-C(CH3)(OH)-CO-CH3' @9.2E-14*0.3 ; // 1-6-1 JENKIN 1997 R[MBabs377]= 'HO-CH2-C(CH3)(O2.)-CO-CH3' + RO2 ----> 'HO-CH2-C(CH3)(O.)-CO-CH3' @9.2E-14*0.7 ; // JENKIN 1997 R[MBabs378]= 'HO-CH2-C(CH3)(O.)-CO-CH3' ----> 'CH3-CO-CO-CH3' + 'H-CO-H' + HO2 @KDEC ;// 'CO(O2.)-CH3' + 'HO-CH2-CO-CH3' (09/21/10) // R[MBabs403A]= 'HO-CH2-C(CH3)(O2.)-CO-CH3' + NO3 ----> 'HO-CH2-C(CH3)(O.)-CO-CH3' + NO2 @KRO2NO3 ; // MIPKAO2 R[MBabs404A]= 'HO-CH2-C(CH3)(O2.)-CO-CH3' + NO ----> 'HO-CH2-C(CH3)(O.)-CO-CH3' + NO2 @KRO2NO ; // MIPKAO2 R[MBabs405A]= 'HO-CH2-C(CH3)(O2.)-CO-CH3' + HO2 ----> 'HO-CH2-C(CH3)(OOH)-CO-CH3' @KRO2HO2*0.706 ; // MIPKAO2 R[MBabs406A]= 'HO-CH2-C(CH3)(OOH)-CO-CH3' + OH ----> 'HO-CH2-C(CH3)(O2.)-CO-CH3' @4.98E-12 ; // MIPKAOOH R[MBabs407A]= 'HO-CH2-C(CH3)(OOH)-CO-CH3' + CL ----> 'HO-CH2-C(CH3)(O2.)-CO-CH3' + HCL @4.4E-11 ; // MIPKAOOH R[MBabs408A]= 'HO-CH2-C(CH3)(OOH)-CO-CH3' -hv-> 'HO-CH2-C(CH3)(O.)-CO-CH3' + OH @j[COOH_to_HO2] ; // COOH(j41) R[MBabs409A]= 'HO-CH2-C(CH3)(OOH)-CO-CH3' -hv-> 'HO-CH2-C(CH3)(O.)-CO-CH3' + OH @j[HOCH2COCH3_to_CH3CO] ; // OHAcetone(j22) //2-2-2 R[MBabs380]= 'CH3-CO-C(CH3)(O2.)-CH2-CL' + RO2 ----> 'CL-CH2-C(CH3)(OH)-CO-CH3' @9.2E-14*0.3 ; // 2-3-4 JENKIN 1997 136 R[MBabs381]= 'CH3-CO-C(CH3)(O2.)-CH2-CL' + RO2 ----> 'CH3-CO-C(CH3)(O.)-CH2-CL' @9.2E-14*0.7 ; // JENKIN 1997 R[MBabs382]= 'CH3-CO-C(CH3)(O.)-CH2-CL' ----> 'CH3-CO-CO-CH3' + 'CL-CH2-O2.' @KDEC ; // // R[MBabs410A]= 'CH3-CO-C(CH3)(O2.)-CH2-CL' + NO3 ----> 'CH3-CO-C(CH3)(O.)-CH2-CL' + NO2 @KRO2NO3 ; // MIPKAO2 R[MBabs411A]= 'CH3-CO-C(CH3)(O2.)-CH2-CL' + NO ----> 'CH3-CO-C(CH3)(O.)-CH2-CL' + NO2 @KRO2NO ; // MIPKAO2 R[MBabs412A]= 'CH3-CO-C(CH3)(O2.)-CH2-CL' + HO2 ----> 'CL-CH2C(CH3)(OOH)-CO-CH3' @KRO2HO2*0.706 ; // MIPKAO2 R[MBabs413A]= 'CL-CH2C(CH3)(OOH)-CO-CH3' + OH ----> 'CH3-CO-C(CH3)(O2.)-CH2-CL' @4.98E-12 ; // MIPKAOOH

Page 69: THE PHOTOOXIDATION OF 2-METHYL-2-BUTENE …ufdcimages.uflib.ufl.edu/UF/E0/04/26/40/00001/im_y.pdfTHE EFFECTS OF ACTIVE CHLORINES ON PHOTOOXIDATION OF 2-METHYL-2 ... effects on both

69

R[MBabs414A]= 'CL-CH2C(CH3)(OOH)-CO-CH3' + CL ----> 'CH3-CO-C(CH3)(O2.)-CH2-CL' + HCL @4.4E-11 ; // MIPKAOOH R[MBabs415A]= 'CL-CH2C(CH3)(OOH)-CO-CH3' -hv-> 'CH3-CO-C(CH3)(O.)-CH2-CL' + OH @j[COOH_to_HO2] ; // COOH(j41) R[MBabs416A]= 'CL-CH2C(CH3)(OOH)-CO-CH3' -hv-> 'CH3-CO-C(CH3)(O.)-CH2-CL' + OH @j[HOCH2COCH3_to_CH3CO] ; // OHAcetone(j22) // CH2CLO2 'CL-CH2-O2.' R[MBabs384]= 'CL-CH2-O2.' + RO2 ----> 'HO-CH2-CL' @ 2.00E-12*0.2 ; // R[MBabs385]= 'CL-CH2-O2.' + RO2 ----> 'CL-CO-H' @ 2.00E-12*0.2 ; // R[MBabs386]= 'CL-CH2-O2.' + RO2 ----> 'CL-CH2-O.' @ 2.00E-12*0.6 ; // R[MBabs387]= 'CL-CH2-O2.' + HO2 ----> 'HOO-CH2-CL' @ 3.30E-13*EXP(820/TK); // // R[MBabs417A]= 'CL-CH2-O2.' + NO ----> 'CL-CH2-O.'+ NO2 @ KRO2NO*2.2 ; // R[MBabs418A]= 'CL-CH2-O2.' + NO3 ----> 'CL-CH2-O.'+ NO2 @ KRO2NO3 ; // // CH2CLOH R[MBabs389]= 'HO-CH2-CL' + OH ----> 'CL-CO-H' @ 1.08E-12 ; // R[MBabs390]= 'HO-CH2-CL' + CL ----> 'CL-CO-H' + HCL @ 3.65E-12 ; // // CHOCL R[MBabs392]= 'CL-CO-H' + OH ----> CO + CL @ 6.12E-12 ; // R[MBabs393]= 'CL-CO-H' + CL ----> CO + CL + HCL @ 1.2E-11*EXP(-6776/8.314/TK); // R[MBabs394]= 'CL-CO-H' -hv-> HO2 + CO + CL @ j[HCHO_to_HO2] ; // HCHOR(j11) // CH2CLO R[MBabs396]= 'CL-CH2-O.' + O2 ----> 'CL-CO-H' + HO2 @ KROPRIM ; // // CH2CLOOH R[MBabs398]= 'HOO-CH2-CL' + OH ----> 'CL-CH2-O2.' @ 1.90E-12*EXP(190/TK) ; // R[MBabs399]= 'HOO-CH2-CL' + OH ----> 'CL-CO-H' + OH @ 4.14E-12 ; // R[MBabs400]= 'HOO-CH2-CL' + CL ----> 'CL-CH2-O2.' + HCL @ 4.4E-11 ; // R[MBabs401]= 'HOO-CH2-CL' + CL ----> 'CL-CO-H' + OH + HCL @ 3.20E-11 ; // R[MBabs402]= 'HOO-CH2-CL' -hv-> 'CL-CH2-O.' + OH @ j[COOH_to_HO2] ; // COOH(j41) //BIACET CH3-CO-CO-CH3 R[MBabs404]= 'CH3-CO-CO-CH3' + OH ----> 'CH2(O2.)-CO-CO-CH3' @ 1.40E-18*TK^2*EXP(194/TK) ; // R[MBabs405]= 'CH3-CO-CO-CH3' + CL ----> 'CH2(O2.)-CO-CO-CH3' + HCL @ 7.62E-13 ; // OLSSON ET AL (1996) R[MBabs406]= 'CH3-CO-CO-CH3' -hv-> 2* 'CO(O2.)-CH3' @ j[CH3COCOCH3_to_CH3CO] ; // BIACETYL(J35) // BIACETO2 R[MBabs408]= 'CH2(O2.)-CO-CO-CH3' + RO2 ----> 'CH2(O.)-CO-CO-CH3' @ 2.00E-12*0.6 ; // R[MBabs409]= 'CH2(O2.)-CO-CO-CH3' + RO2 ----> 'H-CO-CO-CO-CH3' @ 2.00E-12*0.2 ; // 100 R[MBabs410]= 'CH2(O2.)-CO-CO-CH3' + RO2 ----> 'HO-CH2-CO-CO-CH3' @ 2.00E-12*0.2 ;// R[MBabs411]= 'CH2(O2.)-CO-CO-CH3' + HO2 ----> 'HOO-CH2-CO-CO-CH3' @ KRO2HO2*0.625 ; // // R[MBabs419A]= 'CH2(O2.)-CO-CO-CH3' + NO ----> 'CH2(O.)-CO-CO-CH3' + NO2 @KRO2NO ; // R[MBabs420A]= 'CH2(O2.)-CO-CO-CH3' + NO3 ----> 'CH2(O.)-CO-CO-CH3' + NO2 @KRO2NO3 ; // R[MBabs421A]= 'HOO-CH2-CO-CO-CH3' + OH ----> 'CH2(O2.)-CO-CO-CH3' @1.90E-12*EXP(190/TK) ; // R[MBabs422A]= 'HOO-CH2-CO-CO-CH3' + CL ----> 'CH2(O2.)-CO-CO-CH3' + HCL @4.4E-11*0.5 ; // R[MBabs423A]= 'HOO-CH2-CO-CO-CH3' + OH ----> 'H-CO-CO-CO-CH3' + OH @5.99E-12 ; // R[MBabs424A]= 'HOO-CH2-CO-CO-CH3' + CL ----> 'H-CO-CO-CO-CH3' + OH + HCL @4.4E-11*0.5; // R[MBabs425A]= 'HOO-CH2-CO-CO-CH3' -hv-> 'CH2(O.)-CO-CO-CH3' + OH @j[COOH_to_HO2] ; // COOH(j41) R[MBabs426A]= 'HOO-CH2-CO-CO-CH3' -hv-> 'CH2(O.)-CO-CO-CH3' + OH @j[CH3COCOCH3_to_CH3CO] ; // BIACETYL(J35) //BIACETO R[MBabs413]= 'CH2(O.)-CO-CO-CH3' ----> 'CO(O2.)-CH3' + 'H-CO-H' + CO @ KDEC ; // CO23C3CHO R[MBabs415]= 'H-CO-CO-CO-CH3' + OH ----> 'CO(O2.)-CH3' + CO + CO @ 1.23E-11 ; // R[MBabs416]= 'H-CO-CO-CO-CH3' + CL ----> 'CO(O2.)-CH3' + CO + CO + HCL @ 7.62E-13 ; // BIACETYL R[MBabs417]= 'H-CO-CO-CO-CH3' -hv-> 'CO(O2.)-CH3' + CO + CO + HO2 @ j[MGLY_to_HO2] ; // MGLYOX(J34) R[MBabs418]= 'H-CO-CO-CO-CH3' -hv-> 'CO(O2.)-CH3' + 'CO(O2.)-CO-H' @ j[CH3COCOCH3_to_CH3CO] ; // BIACETYL(J35) // HCOCO3 R[MBabs420]= 'CO(O2.)-CO-H' + RO2 ----> 'HO-CO-CO-H' @ 1.00E-11*0.3 ; // R[MBabs421]= 'CO(O2.)-CO-H' + RO2 ----> CO + HO2 @ 1.00E-11*0.7 ; // R[MBabs422]= 'CO(O2.)-CO-H' + HO2 ----> 'HO-CO-CO-H' + O3 @ KAPHO2*0.29 ; //

Page 70: THE PHOTOOXIDATION OF 2-METHYL-2-BUTENE …ufdcimages.uflib.ufl.edu/UF/E0/04/26/40/00001/im_y.pdfTHE EFFECTS OF ACTIVE CHLORINES ON PHOTOOXIDATION OF 2-METHYL-2 ... effects on both

70

R[MBabs423]= 'CO(O2.)-CO-H' + HO2 ----> 'HOO-CO-CO-H' @ KAPHO2*0.71 ; // // R[MBabs427A]= 'CO(O2.)-CO-H' + NO3 ----> CO + HO2 + NO2 @ KRO2NO3*1.6 ; // R[MBabs428A]= 'CO(O2.)-CO-H' + NO ----> CO + HO2 + NO2 @ KAPNO ; // R[MBabs429A]= 'CO(O2.)-CO-H' + NO2 ----> 'NO3-O-CO-CO-H' @ KFPAN ; // R[MBabs430A]= 'NO3-O-CO-CO-H' + OH ----> 2*CO + NO2 @ 1.22E-11 ; // R[MBabs431A]= 'NO3-O-CO-CO-H' + CL ----> 2*CO + NO2 + HCL @ 7.6E-14 ; // R[MBabs432A]= 'NO3-O-CO-CO-H' ----> 'CO(O2.)-CO-H' + NO2 @ KBPAN ; // // HCOCO2H R[MBabs425]= 'HO-CO-CO-H' + OH ----> CO + HO2 @ 1.23E-11 ; // R[MBabs426]= 'HO-CO-CO-H' + CL ----> CO + HO2 + HCL @ 1.64E-11 ; // R[MBabs427]= 'HO-CO-CO-H' -hv-> HO2 + HO2 + CO @ j[MGLY_to_HO2] ; // MGLYOX(J34) // HCOCO3H R[MBabs429]= 'HOO-CO-CO-H' + OH ----> 'CO(O2.)-CO-H' @ 1.58E-11 ; // R[MBabs430]= 'HOO-CO-CO-H' + CL ----> 'CO(O2.)-CO-H' + HCL @ 4.4E-11 ; // R[MBabs431]= 'HOO-CO-CO-H' -hv-> HO2 + CO + OH @ j[COOH_to_HO2] ; // COOH(j41) R[MBabs432]= 'HOO-CO-CO-H' -hv-> HO2 + CO + OH @ j[HOCH2CHO_to_RO2] ; // HOCH2CHO(J15) // BIACETOH R[MBabs434]= 'HO-CH2-CO-CO-CH3' + OH ----> 'H-CO-CO-CO-CH3' + HO2 @2.69E-12 ; // R[MBabs435]= 'HO-CH2-CO-CO-CH3' + CL ----> 'H-CO-CO-CO-CH3' + HO2 + HCL @4.94E-12; // ATKINSON 1997 R[MBabs436]= 'HO-CH2-CO-CO-CH3' -hv-> 'CO(O2.)-CH3' + 'HO-CH2-CO-O2.' @j[CH3COCOCH3_to_CH3CO] ; // BIACETYL(J35) // HOCH2CO3 R[MBabs438]= 'HO-CH2-CO-O2.' + RO2 ----> 'HO-CO-CH2-OH' @ 1.00E-11*0.3 ; // R[MBabs439]= 'HO-CH2-CO-O2.' + HO2 ----> 'HOO-CO-CH2-OH' @ KAPHO2*0.71 ; // R[MBabs440]= 'HO-CH2-CO-O2.' + HO2 ----> 'HO-CO-CH2-OH' + O3 @ KAPHO2*0.29 ; // R[MBabs441]= 'HO-CH2-CO-O2.' + RO2 ----> 'H-CO-H' + HO2 @ 1.00E-11*0.7 ; // // R[MBabs433A]= 'HO-CH2-CO-O2.' + NO3 ----> 'H-CO-H' + HO2 + NO2 @KRO2NO3*1.6 ; // R[MBabs434A]= 'HO-CH2-CO-O2.' + NO ----> 'H-CO-H' + HO2 + NO2 @KAPNO ; // R[MBabs435A]= 'HO-CH2-CO-O2.' + NO2 ----> 'HO-CH2-CO-O-NO3' @KFPAN ; // R[MBabs436A]= 'HO-CH2-CO-O-NO3' ----> 'HO-CH2-CO-O2.' + NO2 @KBPAN ; // R[MBabs437A]= 'HO-CH2-CO-O-NO3' + OH ----> 'H-CO-H' + CO + NO2 @1.12E-12 ; // R[MBabs438A]= 'HO-CH2-CO-O-NO3' + CL ----> 'H-CO-H' + CO + NO2 + HCL @3.8E-14 ; // // HOCH2CO2H R[MBabs443]= 'HO-CO-CH2-OH' + OH ----> 'H-CO-CO-H' + HO2 @ 2.73E-12 ; // R[MBabs444]= 'HO-CO-CH2-OH' + CL ----> 'H-CO-CO-H' + HO2 + HCL @ 3.8E-14 ; // // HOCH2CO3H R[MBabs446]= 'HOO-CO-CH2-OH' + OH ----> 'HO-CH2-CO-O2.' @ 6.19E-12 ; // R[MBabs447]= 'HOO-CO-CH2-OH' + CL ----> 'HO-CH2-CO-O2.' + HCL @ 4.4E-11 ; // R[MBabs448]= 'HOO-CO-CH2-OH' -hv-> 'H-CO-H' + HO2 + OH @ j[COOH_to_HO2] ; // COOH(j41) // 2-2-3 R[MBabs450]= 'CH2(O2.)-C(CH3)(OH)-CO-CH3' + RO2 ----> 'HO-CH2-C(CH3)(OH)-CO-CH3' @2.0E-12*0.2 ; // 2-2-1 MIBKAOHBO2 R[MBabs451]= 'CH2(O2.)-C(CH3)(OH)-CO-CH3' + RO2 ----> 'H-CO-C(CH3)(OH)-CO-CH3' @2.0E-12*0.2 ; // 1-6-1-1 MIBKAOHBO2 R[MBabs452]= 'CH2(O2.)-C(CH3)(OH)-CO-CH3' + RO2 ----> 'CH2(O.)-C(CH3)(OH)-CO-CH3' @2.0E-12*0.6 ; // MIBKAOHBO2 R[MBabs453]= 'CH2(O.)-C(CH3)(OH)-CO-CH3' ----> 'CH3-CO-CO-CH3' + 'H-CO-H' + H2O @KDEC ; // R[MBabs454]= 'CH2(O.)-C(CH3)(OH)-CO-CH3' + HO2 ----> 'HOO-CH2-C(CH3)(OH)-CO-CH3' @KRO2HO2*0.770 ; // R[MBabs455]= 'HOO-CH2-C(CH3)(OH)-CO-CH3' + OH ----> 'CH2(O2.)-C(CH3)(OH)-CO-CH3' @1.90E-12*EXP(190/TK) ; // R[MBabs456]= 'HOO-CH2-C(CH3)(OH)-CO-CH3' + CL ----> 'CH2(O2.)-C(CH3)(OH)-CO-CH3'+ HCL @4.4E-11*0.5 ; // R[MBabs457]= 'HOO-CH2-C(CH3)(OH)-CO-CH3' + OH ----> 'H-CO-C(CH3)(OH)-CO-CH3' + OH @1.08E-11 ; // R[MBabs458]= 'HOO-CH2-C(CH3)(OH)-CO-CH3' + CL ----> 'H-CO-C(CH3)(OH)-CO-CH3' + OH+ HCL @4.4E-11*0.5 ; // R[MBabs459]= 'HOO-CH2-C(CH3)(OH)-CO-CH3' -hv-> 'CH2(O.)-C(CH3)(OH)-CO-CH3'+ OH @j[COOH_to_HO2] ; // COOH(j41) R[MBabs460]= 'HOO-CH2-C(CH3)(OH)-CO-CH3' -hv-> 'CH2(O.)-C(CH3)(OH)-CO-CH3'+ OH @j[HOCH2COCH3_to_CH3CO] ; // OHAcetone(j22) // R[MBabs439A]= 'CH2(O2.)-C(CH3)(OH)-CO-CH3' + NO3 ----> 'CH2(O.)-C(CH3)(OH)-CO-CH3' + NO2 @KRO2NO3 ; // MIBKAOHBO2 R[MBabs440A]= 'CH2(O2.)-C(CH3)(OH)-CO-CH3' + NO ----> 'CH2(O.)-C(CH3)(OH)-CO-CH3' + NO2 @KRO2NO*0.961 ; // MIBKAOHBO2 R[MBabs441A]= 'CH2(O2.)-C(CH3)(OH)-CO-CH3' + NO ----> 'CH2(NO3)-C(CH3)(OH)-CO-CH3' @KRO2NO*0.039 ; // MIBKAOHBO2

Page 71: THE PHOTOOXIDATION OF 2-METHYL-2-BUTENE …ufdcimages.uflib.ufl.edu/UF/E0/04/26/40/00001/im_y.pdfTHE EFFECTS OF ACTIVE CHLORINES ON PHOTOOXIDATION OF 2-METHYL-2 ... effects on both

71

R[MBabs442A]= 'NO3-CH2-C(CH3)(OH)-CO-CH3' + OH ----> 'H-CO-C(CH3)(OH)-CO-CH3' + NO2 @1.18E-12 ; // MIBKAOHNO3 R[MBabs443A]= 'NO3-CH2-C(CH3)(OH)-CO-CH3' + CL ----> 'H-CO-C(CH3)(OH)-CO-CH3' + NO2 + HCL @2.97E-11 ; // MIBKAOHNO3 // 2-2-4 R[MBabs462]= 'CH3-CO-C(CH3)(CL)-CH2-O2.' + RO2 ----> 'HO-CH2-C(CH3)(CL)-CO-CH3' @2.0E-12*0.2 ; // 1-6-3-1 R[MBabs463]= 'CH3-CO-C(CH3)(CL)-CH2-O2.' + RO2 ----> 'H-CO-C(CH3)(CL)-CO-CH3' @2.0E-12*0.2 ; // 2-2-4-2 R[MBabs464]= 'CH3-CO-C(CH3)(CL)-CH2-O2.' + RO2 ----> 'CH3-CO-C(CH3)(CL)-CH2-O.' @2.0E-12*0.6 ; // R[MBabs465]= 'CH3-CO-C(CH3)(CL)-CH2-O.' ----> 'CH3-CO-C(CL)(O2.)-CH3' + 'H-CO-H' @KDEC ; // 1-6-3-1-1 // R[MBabs444A]= 'CH3-CO-C(CH3)(CL)-CH2-O2.' + NO ----> 'CH3-CO-C(CH3)(CL)-CH2-O.' + NO2 @KRO2NO ; // MIBKAOHBO2 R[MBabs445A]= 'CH3-CO-C(CH3)(CL)-CH2-O2.' + NO3 ----> 'CH3-CO-C(CH3)(CL)-CH2-O.' + NO2 @KRO2NO3 ; // MIBKAOHBO2 R[MBabs446A]= 'CH3-CO-C(CH3)(CL)-CH2-O2.' + HO2 ----> 'HOO-CH2-CO-C(CH3)(CL)-CH3' @KRO2HO2*0.706 ; // MIBKAOHBO2 R[MBabs447A]= 'HOO-CH2-CO-C(CH3)(CL)-CH3' + OH ----> 'CH3-CO-C(CH3)(CL)-CH2-O2.' @1.08E-11 ; // MIBKAOHBO2 R[MBabs448A]= 'HOO-CH2-CO-C(CH3)(CL)-CH3' + CL ----> 'CH3-CO-C(CH3)(CL)-CH2-O2.' + HCL @4.4E-11 ; // MIBKAOHBO2 R[MBabs449A]= 'HOO-CH2-CO-C(CH3)(CL)-CH3' -hv-> 'CH3-C(CL)(O2.)-CH3' + OH @j[COOH_to_HO2]; // COOH(j41) // 2-2-4-2 R[MBabs467]= 'H-CO-C(CH3)(CL)-CO-CH3' + OH ----> 'CO(O2.)-C(CH3)(CL)-CO-CH3' @2.26E-11 ; // 1-6-3-1 CO2C43CHO R[MBabs468]= 'H-CO-C(CH3)(CL)-CO-CH3' + CL ----> 'CO(O2.)-C(CH3)(CL)-CO-CH3' + HCL @1.82E-11 ; // //2-3 R[MBabs470]= 'CH3-CH(OH)-C(CH3)=CH2' + OH ----> 'CH2(O2.)-C(CH3)(OH)-CH(OH)-CH3' @8.2E-11*0.65 ; // ATKINSON 1995 R[MBabs471]= 'CH3-CH(OH)-C(CH3)=CH2' + CL ----> 'CH3-CH(OH)-C(CH3)(CL)-CH2-O2.' @3.08E-10*0.5 ; // 2-3-2 ATKINSON 1997 R[MBabs472]= 'CH3-CH(OH)-C(CH3)=CH2' + OH ----> 'HO-CH2-C(CH3)(O2.)-CH(OH)-CH3' @8.2E-11*0.35 ; // 1-6 ATKINSON 1995 R[MBabs473]= 'CH3-CH(OH)-C(CH3)=CH2' + CL ----> 'CH3-CH(OH)-C(CH3)(O2.)-CH2-CL' @3.08E-10*0.5 ; // 2-3-4 ATKINSON 1997 R[MBabs474]= 'CH2(O2.)-C(CH3)(OH)-CH(OH)-CH3' + RO2 ----> 'HO-CH2-C(CH3)(OH)-CH(OH)-CH3' @2.00E-12*0.2; // 1-6-1 JENKIN 1997 R[MBabs475]= 'CH2(O2.)-C(CH3)(OH)-CH(OH)-CH3' + RO2 ----> 'H-CO-C(CH3)(OH)-CH(OH)-CH3' @2.00E-12*0.2; // 1-5-1 JENKIN 1997 R[MBabs476]= 'CH2(O2.)-C(CH3)(OH)-CH(OH)-CH3' + RO2 ----> 'CH2(O.)-C(CH3)(OH)-CH(OH)-CH3' @2.00E-12*0.6; // 2-3-1 JENKIN 1997 // R[MBabs450A]= 'CH2(O2.)-C(CH3)(OH)-CH(OH)-CH3' + NO3 ----> 'CH2(O.)-C(CH3)(OH)-CH(OH)-CH3' + NO2 @KRO2NO3 ; // C54O2 R[MBabs451A]= 'CH2(O2.)-C(CH3)(OH)-CH(OH)-CH3' + NO ----> 'CH2(O.)-C(CH3)(OH)-CH(OH)-CH3' + NO2 @KRO2NO*0.99 ; // C54O2 R[MBabs452A]= 'CH2(O2.)-C(CH3)(OH)-CH(OH)-CH3' + NO ----> 'NO3-CH2-C(CH3)(OH)-CH(OH)-CH3' @KRO2NO*0.01 ; // C54O2 R[MBabs453A]= 'CH2(O2.)-C(CH3)(OH)-CH(OH)-CH3' + HO2 ----> 'HOO-CH2-C(CH3)(OH)-CH(OH)-CH3' @KRO2HO2*0.706 ; // C54O2 R[MBabs454A]= 'NO3-CH2-C(CH3)(OH)-CH(OH)-CH3' + OH ----> 'H-CO-C(CH3)(OH)-CH(OH)-CH3' + NO2 @5.93E-12 ; // C54NO3 R[MBabs455A]= 'NO3-CH2-C(CH3)(OH)-CH(OH)-CH3' + CL ----> 'H-CO-C(CH3)(OH)-CH(OH)-CH3' + NO2 + HCL @8.27E-11 ; // C54NO3 R[MBabs456A]= 'HOO-CH2-C(CH3)(OH)-CH(OH)-CH3' + OH ----> 'H-CO-C(CH3)(OH)-CH(OH)-CH3' + OH @1.54E-11 ; // C54NOOH R[MBabs457A]= 'HOO-CH2-C(CH3)(OH)-CH(OH)-CH3' + CL ----> 'H-CO-C(CH3)(OH)-CH(OH)-CH3' + OH + HCL @4.4E-10*0.5 ; // C54NOOH R[MBabs458A]= 'HOO-CH2-C(CH3)(OH)-CH(OH)-CH3' + OH ----> 'CH2(O2.)-C(CH3)(OH)-CH(OH)-CH3' @1.90E-12*EXP(190/TK); // C54NOOH R[MBabs459A]= 'HOO-CH2-C(CH3)(OH)-CH(OH)-CH3' + CL ----> 'CH2(O2.)-C(CH3)(OH)-CH(OH)-CH3' + HCL @4.4E-11*0.5 ; // C54NOOH R[MBabs460A]= 'HOO-CH2-C(CH3)(OH)-CH(OH)-CH3' -hv-> 'CH2(O.)-C(CH3)(OH)-CH(OH)-CH3' + OH @j[COOH_to_HO2] ; //COOH(j41) //2-3-1 R[MBabs478]= 'CH2(O.)-C(CH3)(OH)-CH(OH)-CH3' ----> 'CH3-CH(OH)-CO-CH3' + 'H-CO-H' + HO2 @KDEC; // 2-3-2-2 88 //2-3-2 R[MBabs480]= 'CH3-CH(OH)-C(CH3)(CL)-CH2-O2.' + RO2 ----> 'HO-CH2-C(CH3)(CL)-CH(OH)-CH3' @2.00E-12*0.2; // 1-6-3-1JENKIN 1997 R[MBabs481]= 'CH3-CH(OH)-C(CH3)(CL)-CH2-O2.' + RO2 ----> 'CH3-CH(OH)-C(CH3)(CL)-CO-H' @2.00E-12*0.2; // 2-3-2-1JENKIN 1997 R[MBabs482]= 'CH3-CH(OH)-C(CH3)(CL)-CH2-O2.' + RO2 ----> 'CH3-CH(OH)-C(CH3)(CL)-CH2-O.' @2.00E-12*0.6; // 2-3-2-2JENKIN 1997 // R[MBabs461A]= 'CH3-CH(OH)-C(CH3)(CL)-CH2-O2.' + NO3 ----> 'CH3-CH(OH)-C(CH3)(CL)-CH2-O.' + NO2 @KRO2NO3 ; //C54O2 R[MBabs462A]= 'CH3-CH(OH)-C(CH3)(CL)-CH2-O2.' + NO ----> 'CH3-CH(OH)-C(CH3)(CL)-CH2-O.' + NO2 @KRO2NO*0.99 ; //C54O2 R[MBabs463A]= 'CH3-CH(OH)-C(CH3)(CL)-CH2-O2.' + NO ----> 'CH3-CH(OH)-C(CH3)(CL)-CH2-NO3' @KRO2NO*0.01 ; //C54O2 R[MBabs464A]= 'CH3-CH(OH)-C(CH3)(CL)-CH2-O2.' + HO2 ----> 'HOO-CH2-C(CH3)(CL)-CH(OH)-CH3' @KRO2HO2*0.706 ; //C54O2 R[MBabs465A]= 'CH3-CH(OH)-C(CH3)(CL)-CH2-NO3' + OH ----> 'CH3-CH(OH)-C(CH3)(CL)-CO-H' + NO2 @5.93E-12 ; //C54NO3 R[MBabs466A]= 'CH3-CH(OH)-C(CH3)(CL)-CH2-NO3' + CL ----> 'CH3-CH(OH)-C(CH3)(CL)-CO-H' + NO2 + HCL @3.62E-11 ; //C54NO3 R[MBabs467A]= 'HOO-CH2-C(CH3)(CL)-CH(OH)-CH3' + OH ----> 'CH3-CH(OH)-C(CH3)(CL)-CO-H' + OH @1.54E-11 ; //C54OOH R[MBabs468A]= 'HOO-CH2-C(CH3)(CL)-CH(OH)-CH3' + CL ----> 'CH3-CH(OH)-C(CH3)(CL)-CO-H' + OH + HCL @4.4E-11*0.5 ; //C54OOH R[MBabs469A]= 'HOO-CH2-C(CH3)(CL)-CH(OH)-CH3' + OH ----> 'CH3-CH(OH)-C(CH3)(CL)-CH2-O2.' @1.90E-12*EXP(190/TK) ; //C54OOH R[MBabs470A]= 'HOO-CH2-C(CH3)(CL)-CH(OH)-CH3' + CL ----> 'CH3-CH(OH)-C(CH3)(CL)-CH2-O2.' + HCL @4.4E-11*0.5 ; //C54OOH R[MBabs471A]= 'HOO-CH2-C(CH3)(CL)-CH(OH)-CH3' -hv-> 'CH3-CH(OH)-C(CH3)(CL)-CH2-O.' + OH @j[COOH_to_HO2] ; // COOH(j41)

Page 72: THE PHOTOOXIDATION OF 2-METHYL-2-BUTENE …ufdcimages.uflib.ufl.edu/UF/E0/04/26/40/00001/im_y.pdfTHE EFFECTS OF ACTIVE CHLORINES ON PHOTOOXIDATION OF 2-METHYL-2 ... effects on both

72

// 2-3-2-1 R[MBabs484]= 'CH3-CH(OH)-C(CH3)(CL)-CO-H' + OH ----> 'CH3-CH(OH)-C(CH3)(CL)-CO-O2.' @1.10E-11 ; // R[MBabs485]= 'CH3-CH(OH)-C(CH3)(CL)-CO-H' + CL ----> 'CH3-CH(OH)-C(CH3)(CL)-CO-O2.' + HCL @4.81E-11 ; // R[MBabs486]= 'CH3-CH(OH)-C(CH3)(CL)-CO-O2.' + RO2 ----> 'CH3-CH(OH)-C(CL)(O2.)-CH3' + HO2 @1.00E-11 ; // 2-3-2-2 H13C43CO3 // R[MBabs472A]= 'CH3-CH(OH)-C(CH3)(CL)-CO-O2.' + NO3 ----> 'CH3-CH(OH)-C(CL)(O2.)-CH3' + NO2 + HO2 @KRO2NO3*1.6 ; // H13C43CO3 R[MBabs473A]= 'CH3-CH(OH)-C(CH3)(CL)-CO-O2.' + NO ----> 'CH3-CH(OH)-C(CL)(O2.)-CH3' + NO2 + HO2 @KAPNO ; // H13C43CO3 R[MBabs474A]= 'CH3-CH(OH)-C(CH3)(CL)-CO-O2.' + NO2 ----> 'CH3-CH(OH)-C(CH3)(CL)-CO-O-NO3' @KFPAN ; // H13C43CO3 R[MBabs475A]= 'CH3-CH(OH)-C(CH3)(CL)-CO-O2.' + HO2 ----> 'HOO-CO-C(CH3)(CL)-CH(OH)-CH3' @KAPHO2 ; // H13C43CO3 R[MBabs476A]= 'CH3-CH(OH)-C(CH3)(CL)-CO-O-NO3' ----> 'CH3-CH(OH)-C(CH3)(CL)-CO-O2.' + NO2 @KBPAN ; // H13C43NO3 R[MBabs477A]= 'CH3-CH(OH)-C(CH3)(CL)-CO-O-NO3' + OH ----> 'CH3-CH(OH)-C(CL)(O2.)-CH3' + CO + NO2 @9.14E-12 ; // H13C43NO3 R[MBabs478A]= 'CH3-CH(OH)-C(CH3)(CL)-CO-O-NO3' + CL ----> 'CH3-CH(OH)-C(CL)(O2.)-CH3' + CO + NO2 + HCL @3.63E-11 ; // H13C43NO3 check R[MBabs479A]= 'HOO-CO-C(CH3)(CL)-CH(OH)-CH3' + OH ----> 'CH3-CH(OH)-C(CL)(O2.)-CH3' @1.27E-11 ; // H13C43CO3H R[MBabs480A]= 'HOO-CO-C(CH3)(CL)-CH(OH)-CH3' + CL ----> 'CH3-CH(OH)-C(CL)(O2.)-CH3' + HCL @4.4E-11 ; // H13C43CO3H R[MBabs481A]= 'HOO-CO-C(CH3)(CL)-CH(OH)-CH3' -hv-> 'CH3-CH(OH)-C(CL)(O2.)-CH3'+ HO2 + OH @j[COOH_to_HO2] ; // COOH(j41) // 2-3-2-2 R[MBabs488]= 'CH3-CH3(OH)-C(CH3)(CL)-CH2-O.' ----> 'CH3-CH(OH)-C(CL)(O2.)-CH3' + 'H-CO-H' @KDEC ; // JENKIN 1997 R[MBabs489]= 'CH3-CH(OH)-C(CL)(O2.)-CH3' ----> 'CH3-C(CL)(OH)-CH(OH)-CH3' @9.2E-14*0.3 ; // JENKIN 1997 R[MBabs490]= 'CH3-CH(OH)-C(CL)(O2.)-CH3' + RO2 ----> 'CH3-CH(OH)-C(CL)(O.)-CH3' @9.2E-14*0.7 ; // JENKIN 1997 R[MBabs491]= 'CH3-CH(OH)-C(CL)(O.)-CH3' ----> 'CH3-CH(OH)-CO-CH3' + CL @KDEC ; // R[MBabs492]= 'CH3-C(CL)(OH)-CH(OH)-CH3' + OH ----> 'CH3-C(CL)(OH)-CO-CH3' @3.10E-12 ; // ATKINSON 1995 R[MBabs493]= 'CH3-C(CL)(OH)-CH(OH)-CH3' + CL ----> 'CH3-C(CL)(OH)-CO-CH3' + HCL @3.63E-11 ; // ATKINSON 1997 R[MBabs494]= 'CH3-CH(OH)-CO-CH3' + OH ----> 'CH3-CO-CO-CH3' + HO2 @5.86E-12 ; // R[MBabs495]= 'CH3-CH(OH)-CO-CH3' + CL ----> 'CH3-CO-CO-CH3' + HO2 + HCL @3.18E-11 ; // R[MBabs496]= 'CH3-CH(OH)-CO-CH3' -hv-> 'H-CO-CH3' + 'CO(O2.)-CH3' @j[HOCH2COCH3_to_CH3CO]; // OHAcetone(j22) // R[MBabs482A]= 'CH3-CH(OH)-C(CL)(O2.)-CH3' + NO3 ----> 'CH3-CH(OH)-C(CL)(O.)-CH3' + NO2 @KRO2NO3 ; // R[MBabs483A]= 'CH3-CH(OH)-C(CL)(O2.)-CH3' + NO ----> 'CH3-CH(OH)-C(CL)(O.)-CH3' + NO2 @KRO2NO ; // R[MBabs484A]= 'CH3-CH(OH)-C(CL)(O2.)-CH3' + HO2 ----> 'CH3-C(CL)(OOH)-CH(OH)-CH3' @KRO2HO2*0.706 ; // R[MBabs485A]= 'CH3-C(CL)(OOH)-CH(OH)-CH3' + OH ----> 'CH3-CH(OH)-C(CL)(O2.)-CH3' @1.90E-12*EXP(190/TK) ; // BUT2OLOOH R[MBabs486A]= 'CH3-C(CL)(OOH)-CH(OH)-CH3' + CL ----> 'CH3-CH(OH)-C(CL)(O2.)-CH3' + HCL @4.4E-11 ; // BUT2OLOOH R[MBabs487A]= 'CH3-C(CL)(OOH)-CH(OH)-CH3' ----> 'CH3-CH(OH)-C(CL)(O.)-CH3' + OH @j[COOH_to_HO2] ; // COOH(j41) // 2-3-4 R[MBabs498]= 'CH3-CH(OH)-C(CH3)(O2.)-CH2-CL' ----> 'CL-CH2-C(CH3)(OH)-CH(OH)-CH3' @9.2E-14*0.3 ; // JENKIN 1997 R[MBabs499]= 'CH3-CH(OH)-C(CH3)(O2.)-CH2-CL' + RO2 ----> 'CH3-CH(OH)-C(CH3)(O.)-CH2-CL' @9.2E-14*0.7 ; // JENKIN 1997 R[MBabs500]= 'CH3-CH(OH)-C(CH3)(O.)-CH2-CL' ----> 'H-CO-CH3' + 'CL-CH2-CO-CH3' + HO2 @KDEC*0.5 ; // R[MBabs501]= 'CH3-CH(OH)-C(CH3)(O.)-CH2-CL' ----> 'CH3-CH(OH)-CO-CH3' + 'CL-CH2-O2.' @KDEC*0.5 ; // R[MBabs502]= 'CL-CH2-C(CH3)(OH)-CH(OH)-CH3' + OH ----> 'CL-CH2-C(CH3)(OH)-CO-CH3' + HO2 @8.63E-12 ; // C4ME3HO23 R[MBabs503]= 'CL-CH2-C(CH3)(OH)-CH(OH)-CH3' + CL ----> 'CL-CH2-C(CH3)(OH)-CO-CH3' + HO2 + HCL @8.84E-11 ; // R[MBabs504]= 'CL-CH2-C(CH3)(OH)-CO-CH3' + OH ----> 'CL-CH2-C(CH3)(O.)-CO-CH3' @1.38E-12 ; // MIPKAOH R[MBabs505]= 'CL-CH2-C(CH3)(OH)-CO-CH3' + CL ----> 'CL-CH2-C(CH3)(O.)-CO-CH3' + HCL @3.69E-11 ; // R[MBabs506]= 'CL-CH2-C(CH3)(O.)-CO-CH3' ----> 'CO(O2.)-CH3' + 'CL-CH2-CO-CH3' @KDEC ; // MIPKO // R[MBabs488A]= 'CH3-CH(OH)-C(CH3)(O2.)-CH2-CL' + NO3 ----> 'CH3-CH(OH)-C(CH3)(O.)-CH2-CL' + NO2 @KRO2NO3 ; // ME2BUOLO2 R[MBabs489A]= 'CH3-CH(OH)-C(CH3)(O2.)-CH2-CL' + NO ----> 'CH3-CH(OH)-C(CH3)(O.)-CH2-CL' + NO2 @KRO2NO*0.981 ; // ME2BUOLO2 R[MBabs490A]= 'CH3-CH(OH)-C(CH3)(O2.)-CH2-CL' + NO ----> 'CH3-CH(OH)-C(CH3)(NO3)-CH2-CL' @KRO2NO*0.019 ; // ME2BUOLO2 R[MBabs491A]= 'CH3-CH(OH)-C(CH3)(O2.)-CH2-CL' + HO2 ----> 'CL-CH2-C(CH3)(OOH)-CH(OH)-CH3' @KRO2HO2*0.706 ; // ME2BUOLO2 R[MBabs492A]= 'CH3-CH(OH)-C(CH3)(NO3)-CH2-CL' + OH ----> 'H-CO-CH3' + 'CL-CH2-CO-CH3' + NO2 @1.72E-12 ; // ME2BUOLNO3 R[MBabs493A]= 'CH3-CH(OH)-C(CH3)(NO3)-CH2-CL' + CL ----> 'H-CO-CH3' + 'CL-CH2-CO-CH3' + NO2 + HCL @3.24E-11 ; // ME2BUOLNO3 R[MBabs494A]= 'CL-CH2-C(CH3)(OOH)-CH(OH)-CH3' + OH ----> 'CH3-CH(OH)-C(CH3)(O2.)-CH2-CL' @1.90E-12*EXP(190/TK); //ME2BUOLOOH R[MBabs495A]= 'CL-CH2-C(CH3)(OOH)-CH(OH)-CH3' + CL ----> 'CH3-CH(OH)-C(CH3)(O2.)-CH2-CL' + HCL @4.4E-11 ; //ME2BUOLOOH R[MBabs497A]= 'CL-CH2-C(CH3)(OOH)-CH(OH)-CH3' -hv-> 'CH3-CH(OH)-C(CH3)(O.)-CH2-CL' + OH @j[COOH_to_HO2] ; //COOH(j41)

Page 73: THE PHOTOOXIDATION OF 2-METHYL-2-BUTENE …ufdcimages.uflib.ufl.edu/UF/E0/04/26/40/00001/im_y.pdfTHE EFFECTS OF ACTIVE CHLORINES ON PHOTOOXIDATION OF 2-METHYL-2 ... effects on both

73

// CH2CLCOCH3 R[MBabs508]= 'CL-CH2-CO-CH3' + OH ----> 'CL-CH(O2.)-CO-CH3' @3.68E-13 ; // R[MBabs509]= 'CL-CH2-CO-CH3' + CL ----> 'CL-CH(O2.)-CO-CH3' + HCL @1.07E-12*(TK/298)^2.41*EXP(-1762/8.314/TK) ; //CHECK R[MBabs510]= 'CL-CH2-CO-CH3' -hv-> 'CH3-O2.' + 'CO(O2.)-CH2-CL' @j[HOCH2COCH3_to_CH3CO] ; // OHAcetone(j22) //CH3COCCLO2 R[MBabs512]= 'CL-CH(O2.)-CO-CH3' + RO2 ----> 'CL-CH(O.)-CO-CH3' @8.80E-13 ; // R[MBabs513]= 'CL-CH(O2.)-CO-CH3' + HO2 ----> 'HOO-CH(CL)-CO-CH3' @3.30E-13*EXP(820/TK) ; // R[MBabs514]= 'CL-CH(O.)-CO-CH3' ----> 'CL-CO-H' + 'CO(O2.)-CH3' @KDEC ; // // R[MBabs498A]= 'CL-CH(O2.)-CO-CH3' + NO3 ----> 'CL-CH(O.)-CO-CH3' + NO2 @KRO2NO3 ; // R[MBabs499A]= 'CL-CH(O2.)-CO-CH3' + NO ----> 'CL-CH(O.)-CO-CH3' + NO2 @KRO2NO ; // //CH3COCLOOH R[MBabs516]= 'HOO-CH(CL)-CO-CH3' -hv-> 'CL-CH(O.)-CO-CH3' + OH @j[COOH_to_HO2] ; // COOH(j41) R[MBabs517]= 'HOO-CH(CL)-CO-CH3' + OH ----> 'CL-CH(O2.)-CO-CH3' @8.34E-12 ; // R[MBabs518]= 'HOO-CH(CL)-CO-CH3' + CL ----> 'CL-CH(O2.)-CO-CH3' + HCL @4.4E-11 ; // //CLETO3 R[MBabs520]= 'CO(O2.)-CH2-CL' + RO2 ----> 'HO-CO-CH2-CL' @1.00E-11*0.30 ; // R[MBabs521]= 'CO(O2.)-CH2-CL' + RO2 ----> 'CL-CH2-O2.' @1.00E-11*0.70 ; // R[MBabs522]= 'CO(O2.)-CH2-CL' + HO2 ----> 'HO-CO-CH2-CL' + O3 @KAPHO2*0.29 ; // R[MBabs523]= 'CO(O2.)-CH2-CL' + HO2 ----> 'HOO-CO-CH2-CL' @KAPHO2*0.71 ; // // R[MBabs500A]= 'CO(O2.)-CH2-CL' + NO3 ----> 'CL-CH2-O2.' + NO2 @KRO2NO3*1.6 ; // R[MBabs501A]= 'CO(O2.)-CH2-CL' + NO ----> 'CL-CH2-O2.' + NO2 @KAPNO ; // R[MBabs502A]= 'CO(O2.)-CH2-CL' + NO2 ----> 'NO3-O-CO-CH2-CL' @KFPAN ; // R[MBabs503A]= 'NO3-O-CO-CH2-CL'+ OH ----> 'CL-CO-H' + CO + NO2 @6.26E-13 ; // R[MBabs504A]= 'NO3-O-CO-CH2-CL'+ CL ----> 'CL-CO-H' + CO + NO2 + HCL @5.7E-15 ; // R[MBabs505A]= 'NO3-O-CO-CH2-CL' ----> 'CO(O2.)-CH2-CL'+ NO2 @KBPAN ; // // CLETO2H R[MBabs525]= 'HO-CO-CH2-CL' + OH ----> 'CL-CH2-O2.' @1.90E-12*EXP(190/TK) ; // R[MBabs526]= 'HO-CO-CH2-CL' + CL ----> 'CL-CH2-O2.' + HCL @5.7E-15; // //CLETO3H R[MBabs528]= 'HOO-CO-CH2-CL' -hv-> 'CL-CH2-O2.' + OH @j[COOH_to_HO2] ; // COOH(j41) R[MBabs529]= 'HOO-CO-CH2-CL' + OH ----> 'CO(O2.)-CH2-CL' @4.29E-12 ; // R[MBabs530]= 'HOO-CO-CH2-CL' + CL ----> 'CO(O2.)-CH2-CL' + HCL @4.4E-11 ; // //2-4 //R[MBabs532]= 'TRAN-CH2(O.)-C(CH3)=CH-CH3' ----> 'H-CO-CH3' + 'CO(O2.)-CH3' + 'H-CO-H' @KDEC ; // R[MBabs532]= 'TRAN-CH2(O.)-C(CH3)=CH-CH3' + O2 ----> 'TRAN-HO-CH2-C(CH3)=CH-CH3' @KROPRIM ; // R[MBabs533]= 'TRAN-HO-CH2-C(CH3)=CH-CH3' + OH ----> 'HO-CH2-C(CH3)(O2.)-CH(OH)-CH3' @1.39E-10*0.6; // 1-6 ATKINSON 1995 R[MBabs534]= 'TRAN-HO-CH2-C(CH3)=CH-CH3' + OH ----> 'HO-CH2-C(CH3)(OH)-CH(O2.)-CH3' @1.39E-10*0.4; // 1-6-1 ATKINSON 1995 R[MBabs535]= 'TRAN-HO-CH2-C(CH3)=CH-CH3' + CL ----> 'HO-CH2-C(CH3)(O2.)-CH(CL)-CH3' @4.06E-11*0.5; // 1-6-2 ATKINSON 1997 R[MBabs536]= 'TRAN-HO-CH2-C(CH3)=CH-CH3' + CL ----> 'HO-CH2-C(CH3)(CL)-CH(O2.)-CH3' @4.06E-11*0.5; // 1-6-3 ATKINSON 1997 // HOCH2CHO R[MBabs538]= 'HO-CH2-CO-H' + OH ----> 'HO-CH2-CO-O2.' @1.00E-11*0.8 ; // R[MBabs539]= 'HO-CH2-CO-H' + OH ----> 'H-CO-CO-H' +HO2 @1.00E-11*0.2 ; // R[MBabs540]= 'HO-CH2-CO-H' + CL ----> 'HO-CH2-CO-O2.' + HCL @8.39E-11*0.9 ; // 1987NIK/MAK2174 R[MBabs541]= 'HO-CH2-CO-H' + CL ----> 'H-CO-CO-H' +HO2 + HCL @8.39E-11*0.1 ; // R[MBabs542]= 'HO-CH2-CO-H' -hv-> HO2 + 'H-CO-H' + HO2 + CO @j[HOCH2CHO_to_RO2] ; // HOCH2CHO(J15) //GLYOX R[MBabs544]= 'H-CO-CO-H' -hv-> CO + CO + HO2 @j[GLY_to_HO2] ; // Gly_HO2(J31) R[MBabs545]= 'H-CO-CO-H' -hv-> 'H-CO-H' + CO @j[GLY_to_HCHO] ; // Gly_HCHO(J32) R[MBabs546]= 'H-CO-CO-H' -hv-> 2*(CO + HO2) @j[GLY_to_HO2] ; // Gly_HO2(J33) R[MBabs547]= 'H-CO-CO-H' + OH ----> CO + CO + HO2 @1.14E-11*0.6 ; // R[MBabs548]= 'H-CO-CO-H' + OH ----> 'CO(O2.)-CO-H' @1.14E-11*0.4 ; // R[MBabs549]= 'H-CO-CO-H' + CL ----> CO + CO + HO2 + HCL @3.8E-11*0.6;// ; // 1985NIK/MAK547 R[MBabs550]= 'H-CO-CO-H' + CL ----> 'CO(O2.)-CO-H' + HCL @3.8E-11*0.4 ; //

Page 74: THE PHOTOOXIDATION OF 2-METHYL-2-BUTENE …ufdcimages.uflib.ufl.edu/UF/E0/04/26/40/00001/im_y.pdfTHE EFFECTS OF ACTIVE CHLORINES ON PHOTOOXIDATION OF 2-METHYL-2 ... effects on both

74

// CLETAL R[MBabs552]= 'H-CO-CH2-CL' + OH ----> 'CO(O2.)-CH2-CL' @2.09E-11 ; // R[MBabs553]= 'H-CO-CH2-CL' + CL ----> 'CO(O2.)-CH2-CL' + HCL @3.2E-12*(TK/298)^1.42*EXP(4030/8.314/TK); //2005WAN/LIU329-339 R[MBabs554]= 'H-CO-CH2-CL' -hv-> 'CL-CH2-O2.' + HO2+CO @j[HCHO_to_HO2] ; // HCHOR(j11) // // CL ADDITION // A R[MBadd1]= 'CH3-C(CH3)=CH-CH3' + OH ----> 'CH3-CH(OH)-C(CH3)(O2.)-CH3' @1.92E-11*EXP(450/TK)*0.647 ; // A1 R[MBadd2]= 'CH3-C(CH3)=CH-CH3' + OH ----> 'CH3-C(CH3)(OH)-CH(O2.)-CH3' @1.92E-11*EXP(450/TK)*0.353 ; // A2 R[MBadd3]= 'CH3-C(CH3)=CH-CH3' + CL ----> 'CH3-CH(CL)-C(CH3)(O2.)-CH3' @3.06E-10*0.5 ; // A1 CL-= R[MBadd4]= 'CH3-C(CH3)=CH-CH3' + CL ----> 'CH3-C(CH3)(CL)-CH(O2.)-CH3' @3.06E-10*0.5 ; // CL-= //A1 R[MBadd6]= 'CH3-CH(OH)-C(CH3)(O2.)-CH3' + RO2 ----> 'CH3-C(CH3)(OH)-CH(OH)-CH3' @9.20E-14*0.3 ; // A1-1 R[MBadd7]= 'CH3-CH(OH)-C(CH3)(O2.)-CH3' + RO2 ----> 'CH3-CH(OH)-C(CH3)(O.)-CH3' @9.20E-14*0.7 ; // A1-2 R[MBadd8]= 'CH3-CH(OH)-C(CH3)(O2.)-CH3' + HO2 ----> 'CH3-C(CH3)(OOH)-CH(OH)-CH3' @KRO2HO2*0.706 ; // A1-2 R[MBadd9]= 'CH3-CH(CL)-C(CH3)(O2.)-CH3' + RO2 ----> 'CH3-C(CH3)(OH)-CH(CL)-CH3' @9.20E-14*0.3 ; // A1-3 R[MBadd10]= 'CH3-CH(CL)-C(CH3)(O2.)-CH3' + RO2 ----> 'CH3-CH(CL)-C(CH3)(O.)-CH3' @9.20E-14*0.7 ; // R[MBadd11]= 'CH3-CH(CL)-C(CH3)(O2.)-CH3' + HO2 ----> 'CH3-C(CH3)(OOH)-CH(CL)-CH3' @KRO2HO2*0.706 ; // A1-4 R[MBadd12]= 'CH3-CH(CL)-C(CH3)(O.)-CH3' ----> 'CH3-CO-CH3' + 'CL-CH(O2.)-CH3' @KDEC ; // //A1-10 R[MBaddA12]= 'CH3-CH(OH)-C(CH3)(O2.)-CH3' + NO ----> 'CH2-CH(OH)-C(CH3)(NO3)-CH3' @KRO2NO*0.019 ; // R[MBaddA13]= 'CH3-CH(OH)-C(CH3)(O2.)-CH3' + NO ----> 'CH3-CH(OH)-C(CH3)(O.)-CH3' + NO2 @KRO2NO*0.981 ; // R[MBaddA14]= 'CH3-CH(OH)-C(CH3)(O2.)-CH3' + NO3 ----> 'CH3-CH(OH)-C(CH3)(O.)-CH3' + NO2 @KRO2NO3 ; // R[MBaddA15]= 'CH3-CH(CL)-C(CH3)(O2.)-CH3' + NO ----> 'CH2-CH(CL)-C(CH3)(NO3)-CH3' @KRO2NO*0.019 ; // R[MBaddA16]= 'CH3-CH(CL)-C(CH3)(O2.)-CH3' + NO ----> 'CH3-CH(CL)-C(CH3)(O.)-CH3' + NO2 @KRO2NO*0.981 ; // R[MBaddA17]= 'CH3-CH(CL)-C(CH3)(O2.)-CH3' + NO3 ----> 'CH3-CH(CL)-C(CH3)(O.)-CH3' + NO2 @KRO2NO3 ; // //A1-1 R[MBadd14]= 'CH3-C(CH3)(OH)-CH(OH)-CH3' + OH ----> 'CH3-C(CH3)(OH)-CO-CH3' + HO2 @8.63E-12 ; // R[MBadd15]= 'CH3-C(CH3)(OH)-CH(OH)-CH3' + CL ----> 'CH3-C(CH3)(OH)-CO-CH3' + HO2 + HCL @1.10E-10 ; // R[MBadd16]= 'CH3-C(CH3)(OH)-CO-CH3' + OH ----> 'CH3-CO-C(CH3)(O.)-CH3' @1.38E-12 ; // R[MBadd17]= 'CH3-C(CH3)(OH)-CO-CH3' + CL ----> 'CH3-CO-C(CH3)(O.)-CH3' + HCL @5.74E-11 ; // R[MBadd18]= 'CH3-CO-C(CH3)(O.)-CH3' ----> 'CH3-CO-CH3' + 'CO(O2.)-CH3' @KDEC ; // //A1-2 R[MBadd20]= 'CH3-CH(OH)-C(CH3)(O.)-CH3' ----> 'CH3-CO-CH3' + 'H-CO-CH3' + HO2 @KDEC*0.7 ; // R[MBadd20B]= 'CH3-CH(OH)-C(CH3)(O.)-CH3' ----> 'CH3-CH(OH)-CO-CH3' + 'CH3-O2.' @KDEC*0.3 ; // R[MBadd21]= 'CH3-C(CH3)(OOH)-CH(OH)-CH3' + OH ----> 'CH3-CH(OH)-C(CH3)(O2.)-CH3' @1.90E-12*EXP(190/TK) ; // R[MBadd22]= 'CH3-C(CH3)(OOH)-CH(OH)-CH3' + CL ----> 'CH3-CH(OH)-C(CH3)(O2.)-CH3' + HCL @4.4E-11 ; // R[MBadd23]= 'CH3-C(CH3)(OOH)-CH(OH)-CH3' -hv-> 'CH3-CH(OH)-C(CH3)(O.)-CH3' @j[COOH_to_HO2] ; // A1-2-1 COOH(j41) R[MBadd24]= 'CH3-C(CH3)(OOH)-CH(OH)-CH3' + OH ----> 'CH3-C(CH3)(OOH)-CO-CH3' @8.85E-12 ; // R[MBadd25]= 'CH3-C(CH3)(OOH)-CH(OH)-CH3' + CL ----> 'CH3-C(CH3)(OOH)-CO-CH3' + HCL @1.10E-10 ; // ATKINSON 1997 //A1-2-1 R[MBadd27]= 'CH3-C(CH3)(OOH)-CO-CH3' + OH ----> 'CH3-CO-C(CH3)(O2.)-CH3' @4.98E-12 ; // R[MBadd28]= 'CH3-C(CH3)(OOH)-CO-CH3' + CL ----> 'CH3-CO-C(CH3)(O2.)-CH3' + HCL @4.4E-11 ; // R[MBadd29]= 'CH3-C(CH3)(OOH)-CO-CH3' -hv-> 'CH3-CO-C(CH3)(O.)-CH3' @j[COOH_to_HO2] ; // A1-1 COOH(j41) R[MBadd30]= 'CH3-C(CH3)(OOH)-CO-CH3' -hv-> 'CH3-CO-C(CH3)(O.)-CH3' @j[HOCH2COCH3_to_CH3CO] ; // A1-1 OHAcetone(j22) R[MBadd31]= 'CH3-CO-C(CH3)(O2.)-CH3' + RO2 ----> 'CH3-C(CH3)(OH)-CO-CH3' @9.20E-14*0.3 ; // A1-1 R[MBadd32]= 'CH3-CO-C(CH3)(O2.)-CH3' + RO2 ----> 'CH3-CO-C(CH3)(O.)-CH3' @9.20E-14*0.7 ; // A1-1 R[MBadd33]= 'CH3-CO-C(CH3)(O2.)-CH3' + HO2 ----> 'CH3-C(CH3)(OOH)-CO-CH3' @KRO2HO2*0.706 ; // //A1-2-10 R[MBaddA18]= 'CH3-CO-C(CH3)(O2.)-CH3' + NO ----> 'CH3-CO-C(CH3)(O.)-CH3' + NO2 @KRO2NO ; // R[MBaddA19]= 'CH3-CO-C(CH3)(O2.)-CH3' + NO3 ----> 'CH3-CO-C(CH3)(O.)-CH3' + NO2 @KRO2NO3 ; // //A1-3 R[MBadd35]= 'CH3-C(CH3)(OH)-CH(CL)-CH3' + OH ----> 'CH3-C(CH3)(OH)-C(CL)(O2.)-CH3' @9.50E-13 ; // ATKINSON 1995 R[MBadd36]= 'CH3-C(CH3)(OH)-CH(CL)-CH3' + CL ----> 'CH3-C(CH3)(OH)-C(CL)(O2.)-CH3' + HCL @1.37E-10 ; // R[MBadd37]= 'CH3-C(CH3)(OH)-C(CL)(O2.)-CH3' + RO2 ----> 'CH3-C(CL)(OH)-C(CH3)(OH)-CH3' @2.0E-12*0.3 ; // JENKIN 1997

Page 75: THE PHOTOOXIDATION OF 2-METHYL-2-BUTENE …ufdcimages.uflib.ufl.edu/UF/E0/04/26/40/00001/im_y.pdfTHE EFFECTS OF ACTIVE CHLORINES ON PHOTOOXIDATION OF 2-METHYL-2 ... effects on both

75

R[MBadd38]= 'CH3-C(CH3)(OH)-C(CL)(O2.)-CH3' + RO2 ----> 'CH3-C(CH3)(OH)-C(CL)(O.)-CH3' @2.0E-12*0.7 ; // JENKIN 1997 R[MBadd39]= 'CH3-C(CH3)(OH)-C(CL)(O.)-CH3' ----> 'CH3-CO-CH3' + 'CL-CO-CH3' @KDEC ; // JENKIN 1997 R[MBadd40]= 'CH3-C(CL)(OH)-C(CH3)(OH)-CH3' + OH ----> 'CH3-C(CH3)(OH)-C(CL)(O.)-CH3' @1.38E-12 ; // MIPKAOH R[MBadd41]= 'CH3-C(CL)(OH)-C(CH3)(OH)-CH3' + CL ----> 'CH3-C(CH3)(OH)-C(CL)(O.)-CH3' + HCL @5.96E-11 ; // // A1-30 R[MBaddA38]= 'CH3-C(CH3)(OH)-C(CL)(O2.)-CH3' + NO ----> 'CH3-C(CH3)(OH)-C(CL)(O.)-CH3' + NO2 @KRO2NO ; // R[MBaddA39]= 'CH3-C(CH3)(OH)-C(CL)(O2.)-CH3' + NO3 ----> 'CH3-C(CH3)(OH)-C(CL)(O.)-CH3' + NO2 @KRO2NO3 ; // //A1-4 R[MBadd43]= 'CH3-C(CH3)(OOH)-CH(CL)-CH3' + OH ----> 'CH3-CH(CL)-C(CH3)(O2.)-CH3' @1.90E-12*EXP(190/TK) ; // A1 R[MBadd44]= 'CH3-C(CH3)(OOH)-CH(CL)-CH3' + CL ----> 'CH3-CH(CL)-C(CH3)(O2.)-CH3' + HCL @4.4E-11 ; // A1 //A2 R[MBadd46]= 'CH3-C(CH3)(OH)-CH(O2.)-CH3' + RO2 ----> 'CH3-C(CH3)(OH)-CH(OH)-CH3' @8.80E-13*0.20 ; // A1-1 R[MBadd47]= 'CH3-C(CH3)(OH)-CH(O2.)-CH3' + RO2 ----> 'CH3-C(CH3)(OH)-CO-CH3' @8.80E-13*0.20 ; // A1-1 R[MBadd48]= 'CH3-C(CH3)(OH)-CH(O2.)-CH3' + RO2 ----> 'CH3-C(CH3)(OH)-CH(O.)-CH3' @8.80E-13*0.60 ; // A2-1 R[MBadd49]= 'CH3-C(CH3)(OH)-CH(O2.)-CH3' + HO2 ----> 'CH3-CH(OOH)-C(CH3)(OH)-CH3' @KRO2HO2*0.706 ; // A2-1 R[MBadd50]= 'CH3-C(CH3)(CL)-CH(O2.)-CH3' + RO2 ----> 'CH3-CH(OH)-C(CH3)(CL)-CH3' @8.80E-13*0.20 ; // R[MBadd51]= 'CH3-C(CH3)(CL)-CH(O2.)-CH3' + RO2 ----> 'CH3-CO-C(CH3)(CL)-CH3' @8.80E-13*0.20 ; // R[MBadd52]= 'CH3-C(CH3)(CL)-CH(O2.)-CH3' + RO2 ----> 'CH3-C(CH3)(CL)-CH(O.)-CH3' @8.80E-13*0.60 ; // R[MBadd53]= 'CH3-C(CH3)(CL)-CH(O2.)-CH3' + HO2 ----> 'CH3-CH(OOH)-C(CH3)(CL)-CH3' @KRO2HO2*0.706 ; // // A2-10 R[MBaddA53]= 'CH3-C(CH3)(OH)-CH(O2.)-CH3' + NO ----> 'CH3-C(CH3)(OH)-CH(NO3)-CH3' @KRO2NO*0.062 ; // R[MBaddA54]= 'CH3-C(CH3)(OH)-CH(O2.)-CH3' + NO ----> 'CH3-C(CH3)(OH)-CH(O.)-CH3' + NO2 @KRO2NO*0.938 ; // R[MBaddA55]= 'CH3-C(CH3)(OH)-CH(O2.)-CH3' + NO3 ----> 'CH3-C(CH3)(OH)-CH(O.)-CH3' + NO2 @KRO2NO3 ; // R[MBaddA56]= 'CH3-C(CH3)(CL)-CH(O2.)-CH3' + NO ----> 'CH3-C(CH3)(CL)-CH(NO3)-CH3' @KRO2NO*0.062 ; // R[MBaddA57]= 'CH3-C(CH3)(CL)-CH(O2.)-CH3' + NO ----> 'CH3-C(CH3)(CL)-CH(O.)-CH3' + NO2 @KRO2NO*0.938 ; // R[MBaddA58]= 'CH3-C(CH3)(CL)-CH(O2.)-CH3' + NO3 ----> 'CH3-C(CH3)(CL)-CH(O.)-CH3' + NO2 @KRO2NO3 ; // //A2-1 R[MBadd55]= 'CH3-C(CH3)(OH)-CH(O.)-CH3' ----> 'H-CO-CH3' + 'CH3-CO-CH3' @2.70E+14*EXP(-6643/TK) ; // R[MBadd56]= 'CH3-C(CH3)(OH)-CH(O.)-CH3' +O2 ----> 'CH3-C(CH3)(OH)-CO-CH3' @KROSEC ; // A1-1 R[MBadd57]= 'CH3-CH(OOH)-C(CH3)(OH)-CH3' + OH ----> 'CH3-C(CH3)(OH)-CH(O2.)-CH3' @1.90E-12*EXP(190/TK) ; // A2 R[MBadd58]= 'CH3-CH(OOH)-C(CH3)(OH)-CH3' + CL ----> 'CH3-C(CH3)(OH)-CH(O2.)-CH3' + HCL @4.4E-11*0.5 ; // A2 R[MBadd59]= 'CH3-CH(OOH)-C(CH3)(OH)-CH3' + OH ----> 'CH3-C(CH3)(OH)-CO-CH3' + OH @2.07E-11 ; // A1-1 R[MBadd60]= 'CH3-CH(OOH)-C(CH3)(OH)-CH3' + CL ----> 'CH3-C(CH3)(OH)-CO-CH3' + OH + HCL @4.4E-11*0.5 ; // A1-1 R[MBadd61]= 'CH3-CH(OOH)-C(CH3)(OH)-CH3' -hv-> 'CH3-C(CH3)(OH)-CH(O.)-CH3' + OH @j[COOH_to_HO2]; // COOH(j41) //A2-2 R[MBadd63]= 'CH3-CH(OH)-C(CH3)(CL)-CH3' + OH ----> 'CH3-CO-C(CH3)(CL)-CH3' @8.63E-12 ; // 2-2-1 R[MBadd64]= 'CH3-CH(OH)-C(CH3)(CL)-CH3' + CL ----> 'CH3-CO-C(CH3)(CL)-CH3' + HCL @4.06E-11 ; // 2-2-1 R[MBadd65]= 'CH3-C(CH3)(CL)-CH(O.)-CH3' ----> 'H-CO-CH3' + 'CH3-C(CL)(O2.)-CH3' @KDEC ; // 1-2-3 R[MBadd66]= 'CH3-CH(OOH)-C(CH3)(CL)-CH3' + OH ----> 'CH3-C(CH3)(CL)-CH(O2.)-CH3' @1.90E-12*EXP(190/TK) ; // A2 R[MBadd67]= 'CH3-CH(OOH)-C(CH3)(CL)-CH3' + CL ----> 'CH3-C(CH3)(CL)-CH(O2.)-CH3' + HCL @4.4E-11*0.5 ; // A2 R[MBadd68]= 'CH3-CH(OOH)-C(CH3)(CL)-CH3' + OH ----> 'CH3-C(CH3)(CL)-CO-CH3' @2.07E-11 ; // R[MBadd69]= 'CH3-CH(OOH)-C(CH3)(CL)-CH3' + CL ----> 'CH3-C(CH3)(CL)-CO-CH3' + HCL @4.4E-11*0.5 ; // R[MBadd70]= 'CH3-CH(OOH)-C(CH3)(CL)-CH3' -hv-> 'CH3-C(CH3)(CL)-CH(O.)-CH3' @j[COOH_to_HO2]; // COOH(j41) //A2-2-1 R[MBadd72]= 'CH3-CO-C(CH3)(CL)-CH3' + OH ----> 'CH2(O2.)-CO-C(CH3)(CL)-CH3' @1.00E-13 ; // R[MBadd73]= 'CH3-CO-C(CH3)(CL)-CH3' + CL ----> 'CH2(O2.)-CO-C(CH3)(CL)-CH3' + HCL @2.1E-12 ; // R[MBadd74]= 'CH3-CO-C(CH3)(CL)-CH3' + OH ----> 'CH3-CO-C(CH3)(CL)-CH2-O2.' @1.00E-13 ; // 2-2-4 R[MBadd75]= 'CH3-CO-C(CH3)(CL)-CH3' + CL ----> 'CH3-CO-C(CH3)(CL)-CH2-O2.' + HCL @4.34E-12 ; // 2-2-4 R[MBadd76]= 'CH2(O2.)-CO-C(CH3)(CL)-CH3' + RO2 ----> 'HO-CH2-CO-C(CH3)(CL)-CH3' @2.0E-12*0.2 ; // 1-2-3-1 R[MBadd77]= 'CH2(O2.)-CO-C(CH3)(CL)-CH3' + RO2 ----> 'H-CO-CO-C(CH3)(CL)-CH3' @2.0E-12*0.2 ; // 1-2-3-1 R[MBadd78]= 'CH2(O2.)-CO-C(CH3)(CL)-CH3' + RO2 ----> 'CH3-C(CL)(O2.)-CH3' @2.0E-12*0.6 ; // 1-2-3 // ACETONE R[MBadd83]= 'CH3-CO-CH3' + OH ----> 'CH2(O2.)-CO-CH3' @ 5.34E-18*TK^2*EXP(-230/TK) ; // R[MBadd84]= 'CH3-CO-CH3' + CL ----> 'CH2(O2.)-CO-CH3' + HCL @ 3.5E-12 ; // pitts R[MBadd85]= 'CH3-CO-CH3' -hv-> 'CO(O2.)-CH3' + 'CH3-O2.' @ j[CH3COCH3_to_CH3CO] ; // ACETONE(J21) // H3COCH2O2

Page 76: THE PHOTOOXIDATION OF 2-METHYL-2-BUTENE …ufdcimages.uflib.ufl.edu/UF/E0/04/26/40/00001/im_y.pdfTHE EFFECTS OF ACTIVE CHLORINES ON PHOTOOXIDATION OF 2-METHYL-2 ... effects on both

76

R[MBadd87]= 'CH2(O2.)-CO-CH3' + RO2 ----> 'H-CO-CO-CH3' @ 2.00E-12*0.2 ; // R[MBadd88]= 'CH2(O2.)-CO-CH3' + RO2 ----> 'HO-CH2-CO-CH3' @ 2.00E-12*0.2 ; // R[MBadd89]= 'CH2(O2.)-CO-CH3' + RO2 ----> 'CH2(O.)-CO-CH3' @ 2.00E-12*0.6 ; // R[MBadd90]= 'CH2(O2.)-CO-CH3' + HO2 ----> 'HOO-CH2-CO-CH3' @ 1.36E-13*EXP(1250/TK) ; // // CH3COCH2O R[MBadd92]= 'CH2(O.)-CO-CH3' ----> 'CO(O2.)-CH3' + 'H-CO-H' @ KDEC ; // // HYPERACET R[MBadd94]= 'HOO-CH2-CO-CH3' + OH ----> 'CH2(O2.)-CO-CH3' @ 1.90E-12*EXP(190/TK) ; // R[MBadd95]= 'HOO-CH2-CO-CH3' + CL ----> 'CH2(O2.)-CO-CH3' + HCL @ 4.4E-11*0.5 ; // R[MBadd96]= 'HOO-CH2-CO-CH3' + OH ----> 'H-CO-CO-CH3' + OH @ 8.39E-12 ; // R[MBadd97]= 'HOO-CH2-CO-CH3' + CL ----> 'H-CO-CO-CH3' + OH + HCL @ 4.4E-11*0.5 ; // R[MBadd98]= 'HOO-CH2-CO-CH3' -hv-> 'CH2(O.)-CO-CH3' + OH @ j[COOH_to_HO2] ; // COOH(j41) R[MBadd99]= 'HOO-CH2-CO-CH3' -hv-> 'CO(O2.)-CH3' + 'H-CO-H' + OH @ j[HOCH2COCH3_to_CH3CO] ; // OHAcetone(j22) // additional Nox and zone reaction R[NoxOzne1]= 'CH3-C(CH3)=CH-CH3' + NO3 ----> 'CH3-C(CH3)(O2.)-CH(NO3)-CH3' @9.37E-12*0.65 ; // ME2BUTENE R[NoxOzne2]= 'CH3-C(CH3)=CH-CH3' + NO3 ----> 'CH3-C(CH3)(NO3)-CH(O2.)-CH3' @9.37E-12*0.35 ; // ME2BUTENE R[NoxOzne3]= 'CH3-C(CH3)=CH-CH3' + O3 ----> 'CH3-CO-CH3' + 'H-C(=O-O)-CH3' @6.51E-15*EXP(-829/TK)*0.50 ; // ME2BUTENE R[NoxOzne4]= 'CH3-C(CH3)=CH-CH3' + O3 ----> 'H-CO-CH3' + 'CH3-C(=O-O)-CH3' @6.51E-15*EXP(-829/TK)*0.50 ; // ME2BUTENE // C4M2NO33O2 R[NoxOzne6]= 'CH3-C(CH3)(O2.)-CH(NO3)-CH3' + RO2 ----> 'CH3-C(CH3)(O.)-CH(NO3)-CH3' @6.70E-15*0.7 ; // R[NoxOzne7]= 'CH3-C(CH3)(O2.)-CH(NO3)-CH3' + RO2 ----> 'CH3-C(CH3)(OH)-CH(NO3)-CH3' @6.70E-15*0.3 ; // R[NoxOzne8]= 'CH3-C(CH3)(O2.)-CH(NO3)-CH3' + NO ----> 'CH3-C(CH3)(O.)-CH(NO3)-CH3' + NO2 @KRO2NO ; // R[NoxOzne9]= 'CH3-C(CH3)(O2.)-CH(NO3)-CH3' + HO2 ----> 'CH3-C(CH3)(OOH)-CH(NO3)-CH3' @KRO2HO2*0.706 ; // R[NoxOzne10]= 'CH3-C(CH3)(O2.)-CH(NO3)-CH3' + NO3 ----> 'CH3-C(CH3)(O.)-CH(NO3)-CH3' + NO2 @KRO2NO3 ; // // C4M2NO33O R[NoxOzne12]= 'CH3-C(CH3)(O.)-CH(NO3)-CH3' ----> 'H-CO-CH3' + 'CH3-CO-CH3' + NO2 @KDEC ; // M2BU2OLNO3 R[NoxOzne14]= 'CH3-C(CH3)(OH)-CH(NO3)-CH3' + OH ----> 'CH3-C(CH3)(OH)-CO-CH3' + NO2 @5.97E-13 ; // R[NoxOzne15]= 'CH3-C(CH3)(OH)-CH(NO3)-CH3' + CL ----> 'CH3-C(CH3)(OH)-CO-CH3' + NO2 + HCL @5.89E-11 ; // // C4M2NO3OOH R[NoxOzne17]= 'CH3-C(CH3)(OOH)-CH(NO3)-CH3' -hv-> 'CH3-C(CH3)(O.)-CH(NO3)-CH3' + OH @j[COOH_to_HO2] ; // COOH(j41) R[NoxOzne18]= 'CH3-C(CH3)(OOH)-CH(NO3)-CH3' + OH ----> 'CH3-C(CH3)(O2.)-CH(NO3)-CH3' @4.06E-12 ; // R[noxozne19]= 'CH3-C(CH3)(OOH)-CH(NO3)-CH3' + CL ----> 'CH3-C(CH3)(O2.)-CH(NO3)-CH3' + HCL @4.4E-11 ; // //C4M2NO32O2 R[noxozne21]= 'CH3-C(CH3)(NO3)-CH(O2.)-CH3' + RO2 ----> 'CH3-C(CH3)(NO3)-CH(O.)-CH3' @8.80E-13*0.6 ; R[noxozne22]= 'CH3-C(CH3)(NO3)-CH(O2.)-CH3' + RO2 ----> 'CH3-CO-C(CH3)(NO3)-CH3' @8.80E-13*0.2 ; R[noxozne23]= 'CH3-C(CH3)(NO3)-CH(O2.)-CH3' + RO2 ----> 'CH3-CH(OH)-C(CH3)(NO3)-CH3' @8.80E-13*0.2 ; R[noxozne24]= 'CH3-C(CH3)(NO3)-CH(O2.)-CH3' + NO ----> 'CH3-C(CH3)(NO3)-CH(O.)-CH3' + NO2 @KRO2NO ; R[noxozne25]= 'CH3-C(CH3)(NO3)-CH(O2.)-CH3' + HO2 ----> 'CH3-CH(OOH)-C(CH3)(NO3)-CH3' @KRO2HO2*0.706 ; R[noxozne26]= 'CH3-C(CH3)(NO3)-CH(O2.)-CH3' + NO3 ----> 'CH3-C(CH3)(NO3)-CH(O.)-CH3' + NO2 @KRO2NO3 ; //C4M2NO32O R[noxozne28]= 'CH3-C(CH3)(NO3)-CH(O.)-CH3' + O2 ----> 'CH3-CO-C(CH3)(NO3)-CH3' + HO2 @KROSEC ; R[noxozne29]= 'CH3-C(CH3)(NO3)-CH(O.)-CH3' ----> 'CH3-CO-CH3' + 'H-CO-CH3' + NO2 @4.00E+04 ; //C4M2NO3ONE R[noxozne31]= 'CH3-CO-C(CH3)(NO3)-CH3' + OH ----> 'CH3-CO-C(CH3)(NO3)-CH2-O2.' @3.41E-13 ; R[noxozne32]= 'CH3-CO-C(CH3)(NO3)-CH3' + CL ----> 'CH3-CO-C(CH3)(NO3)-CH2-O2.' + HCL @6.44E-12 ; // R[noxozne33]= 'CH3-CO-C(CH3)(NO3)-CH3' -hv-> 'CH3-CO-C(CH3)(O.)-CH3' + NO2 @j[CH3CHNO3COCH3_to_NO2]; // 3butanoneNO3(j56) R[noxozne34]= 'CH3-CO-C(CH3)(NO3)-CH3' -hv-> 'CO(O2.)-CH3' + 'CH3-CO-CH3' + NO2 @j[CH3CHNO3COCH3_to_NO2]; // 3butanoneNO3(j57) //MC4CONO3O2 R[noxozne36]= 'CH3-CO-C(CH3)(NO3)-CH3-O2.' + RO2 ----> 'CH3-CO-C(CH3)(NO3)-CH2-O.' @2.00E-12 ; R[noxozne37]= 'CH3-CO-C(CH3)(NO3)-CH3-O2.' + NO ----> 'CH3-CO-C(CH3)(NO3)-CH2-O.' + NO2 @KRO2NO ; R[noxozne38]= 'CH3-CO-C(CH3)(NO3)-CH3-O2.' + HO2 ----> 'CH3-CO-C(CH2(OOH))(NO3)-CH3' @KRO2HO2*0.706 ; R[noxozne39]= 'CH3-CO-C(CH3)(NO3)-CH3-O2.' + NO3 ----> 'CH3-CO-C(CH3)(NO3)-CH2-O.' + NO2 @KRO2NO3 ; //MC4CONO3O R[noxozne41]= 'CH3-CO-C(CH3)(NO3)-CH3-O.' + O2 ----> 'CH3-CO-C(CH3)(NO3)-CO-H' + HO2 @KROPRIM ; R[noxozne42]= 'CH3-CO-C(CH3)(NO3)-CH3-O.' ----> 'CH3-CO-CO-CH3' + 'H-CO-H' + NO2 @4.00E+04 ;

Page 77: THE PHOTOOXIDATION OF 2-METHYL-2-BUTENE …ufdcimages.uflib.ufl.edu/UF/E0/04/26/40/00001/im_y.pdfTHE EFFECTS OF ACTIVE CHLORINES ON PHOTOOXIDATION OF 2-METHYL-2 ... effects on both

77

//C4M22CONO3 R[noxozne44]= 'CH3-CO-C(CH3)(NO3)-CO-H' + OH ----> 'H-CO-CO-CH3' + 'CO(O2.)-CH3' + NO2 @1.51E-11 ; R[noxozne45]= 'CH3-CO-C(CH3)(NO3)-CO-H' + CL ----> 'H-CO-CO-CH3' + 'CO(O2.)-CH3' + NO2 + HCL @8.0E-12 ; // R[noxozne46]= 'CH3-CO-C(CH3)(NO3)-CO-H' -hv-> 'H-CO-CO-CH3' + 'CO(O2.)-CH3' + NO2 @j[CH3CHNO3COCH3_to_NO2]; // 3butanoneNO3(j56) R[noxozne47]= 'CH3-CO-C(CH3)(NO3)-CO-H' -hv-> 'H-CO-CO-CH3' + 'CO(O2.)-CH3' + NO2 @j[CH3CHNO3COCH3_to_NO2]; // 3butanoneNO3(j57) //C4MCNO3OOH R[noxozne49]= 'HOO-CH2-C(CH3)(NO3)-CO-CH3' + OH ----> 'CH3-CO-C(CH3)(NO3)-CH2-O2.' @1.90E-12*EXP(190/TK) ; R[noxozne50]= 'HOO-CH2-C(CH3)(NO3)-CO-CH3' + CL ----> 'CH3-CO-C(CH3)(NO3)-CH2-O2.' + HCL @4.4E-11*0.5 ; R[noxozne51]= 'HOO-CH2-C(CH3)(NO3)-CO-CH3' + OH ----> 'CH3-CO-C(CH3)(NO3)-CO-H' + OH @7.13E-12 ; R[noxozne52]= 'HOO-CH2-C(CH3)(NO3)-CO-CH3' + CL ----> 'CH3-CO-C(CH3)(NO3)-CO-H' + OH + HCL @4.4E-11*0.5 ; R[noxozne53]= 'HOO-CH2-C(CH3)(NO3)-CO-CH3' -hv-> 'CH3-CO-C(CH3)(NO3)-CH2-O.' + OH @j[COOH_to_HO2] ; //COOH(j41) //ME2BUOLNO3 R[noxozne55]= 'CH3-CH(OH)-C(CH3)(NO3)-CH3' + OH ----> 'H-CO-CH3' + 'CH3-CO-CH3' + NO2 @1.72E-12; R[noxozne56]= 'CH3-CH(OH)-C(CH3)(NO3)-CH3' + CL ----> 'H-CO-CH3' + 'CH3-CO-CH3' + NO2 + HCL @3.41E-11; // //C4NO3M2OOH R[noxozne58]= 'CH3-CH(OOH)-C(CH3)(NO3)-CH3' + OH ----> 'CH3-C(CH3)(NO3)-CH(O2.)-CH3' @1.90E-12*EXP(190/TK) ; R[noxozne59]= 'CH3-CH(OOH)-C(CH3)(NO3)-CH3' + CL ----> 'CH3-C(CH3)(NO3)-CH(O2.)-CH3' + HCL @4.4E-11*0.5 ; // R[noxozne60]= 'CH3-CH(OOH)-C(CH3)(NO3)-CH3' + OH ----> 'CH3-CO-C(CH3)(NO3)-CH3' + OH @7.08E-12 ; R[noxozne61]= 'CH3-CH(OOH)-C(CH3)(NO3)-CH3' + CL ----> 'CH3-CO-C(CH3)(NO3)-CH3' + OH + HCL @4.4E-11*0.5 ; // R[noxozne62]= 'CH3-CH(OOH)-C(CH3)(NO3)-CH3' -hv-> 'CH3-C(CH3)(NO3)-CH(O.)-CH3' + OH @j[COOH_to_HO2] ; //COOH(j41) // CH3CHOOC R[noxozne64]= 'H-C(=O-O)-CH3' ----> 'H-C(=O-O)-CH3(2)' @ KDEC*0.11 ; R[noxozne65]= 'H-C(=O-O)-CH3' ----> 'CH3-O2.' + CO + OH @ KDEC*0.89 ; //H3CHOO R[noxozne67]= 'H-C(=O-O)-CH3(2)' + H2O ----> 'HO-CO-CH3' @ 1.00E-17 ; R[noxozne68]= 'H-C(=O-O)-CH3(2)' + CO ----> 'H-CO-CH3' @ 1.20E-15 ; R[noxozne69]= 'H-C(=O-O)-CH3(2)' + NO ----> 'H-CO-CH3' + NO2 @ 1.00E-14 ; R[noxozne70]= 'H-C(=O-O)-CH3(2)' + H2O ----> 'H-CO-CH3' + H2O2 @ 6.00E-18 ; R[noxozne71]= 'H-C(=O-O)-CH3(2)' + NO2 ----> 'H-CO-CH3' + NO3 @ 1.00E-15 ; R[noxozne72]= 'H-C(=O-O)-CH3(2)' + SO2 ----> 'H-CO-CH3' + SO3 @ 7.00E-14 ; // CH3CCH3OOB R[noxozne74]= 'CH3-C(=O-O)-CH3' ----> 'CH3-C(=O-O)-CH3(2)' @ KDEC*0.11 ; R[noxozne75]= 'CH3-C(=O-O)-CH3' ----> 'CH2(O2.)-CO-CH3' + OH @ KDEC*0.89 ; //CH3CCH3OO R[noxozne77]= 'CH3-C(=O-O)-CH3(2)' + CO ----> 'CH3-CO-CH3' @ 1.20E-15 ; R[noxozne78]= 'CH3-C(=O-O)-CH3(2)' + NO ----> 'CH3-CO-CH3' + NO2 @ 1.00E-14 ; R[noxozne79]= 'CH3-C(=O-O)-CH3(2)' + H2O ----> 'CH3-CO-CH3' + H2O2 @ 6.00E-18 ; R[noxozne80]= 'CH3-C(=O-O)-CH3(2)' + SO2 ----> 'CH3-CO-CH3' + SO3 @ 7.00E-14 ; R[noxozne81]= 'CH3-C(=O-O)-CH3(2)' + NO2 ----> 'CH3-CO-CH3' + NO3 @ 1.00E-15 ; // // RO2 withk b[RO2] += n [ 'CH3-C(CH3)=CH-CH2-O2.']; withk b[RO2] += n [ 'CH2=CH-C(CH3)(O2.)-CH3']; withk b[RO2] += n [ 'CIS-CH2(O2.)-C(CH3)=CH-CH3']; withk b[RO2] += n [ 'CH2=C(CH3)-CH(O2.)-CH3']; withk b[RO2] += n [ 'TRAN-CH2(O2.)-C(CH3)=CH-CH3']; withk b[RO2] += n [ 'CIS-HO-CH2-CH=C(CH3)-CH2-O2.']; withk b[RO2] += n [ 'CIS-HO-CH2-CH=C(CH3)-CO-O2.']; withk b[RO2] += n [ 'HO-CH2-CH(OH)-C(CH3)(O2.)-CO-H']; withk b[RO2] += n [ 'HO-CH2-CH(CL)-C(CH3)(O2.)-CO-H']; withk b[RO2] += n [ 'CO(O2.)-CH3']; withk b[RO2] += n [ 'HO-CH2-CH(CL)-O2.']; withk b[RO2] += n [ 'CIS-HO-CH2-C(CH3)=CH-CO-O2.']; withk b[RO2] += n [ 'HO-CH2-C(CH3)(O2.)-CH(OH)-CO-H']; withk b[RO2] += n [ 'HO-CH2-C(CH3)(O2.)-CH(CL)-CO-H']; withk b[RO2] += n [ 'HO-CH2-C(CH3)(O2.)-CH(CL)-CO-H'];

Page 78: THE PHOTOOXIDATION OF 2-METHYL-2-BUTENE …ufdcimages.uflib.ufl.edu/UF/E0/04/26/40/00001/im_y.pdfTHE EFFECTS OF ACTIVE CHLORINES ON PHOTOOXIDATION OF 2-METHYL-2 ... effects on both

78

withk b[RO2] += n [ 'H-CO-CH(CL)-O2.']; withk b[RO2] += n [ 'H-CO-CH(OH)-C(CH3)(O2.)-CH3']; withk b[RO2] += n [ 'H-CO-CH(CL)-C(CH3)(O2.)-CH3']; withk b[RO2] += n [ 'CO(O2.)-CH=C(CH3)-CH3']; withk b[RO2] += n [ 'HO-CH2-CO-CH3']; withk b[RO2] += n [ 'CO(O2.)-CH(OH)-C(CH3)(OH)-CH3']; withk b[RO2] += n [ 'CO(O2.)-C(CH3)(OH)-CH3']; withk b[RO2] += n [ 'HO-CH2-CH(OH)-C(CH3)(O2.)-CH3']; withk b[RO2] += n [ 'HO-CH2-CH(O2.)-C(CH3)(OH)-CH3']; withk b[RO2] += n [ 'HO-CH2-CH(CL)-C(CH3)(O2.)-CH3']; withk b[RO2] += n [ 'HO-CH2-CH(O2.)-C(CH3)(CL)-CH3']; withk b[RO2] += n [ 'CH3-C(CH3)(OH)-CH(CL)-CO-O2.']; withk b[RO2] += n [ 'CH3-C(CH3)(OH)-CH(CL)-O2.']; withk b[RO2] += n [ 'CH3-C(CL)(O2.)-CH3']; withk b[RO2] += n [ 'CO(O2.)-C(CH3)(CL)-CH3']; withk b[RO2] += n [ 'CH3-C(CH3)(OH)-CO-O2.']; withk b[RO2] += n [ 'CO(O2.)-CH2-CL']; withk b[RO2] += n [ 'CIS-HO-CH2-C(CH3)=CH-CH2-O2.']; withk b[RO2] += n [ 'CIS-CO(O2.)-C(CH3)=CH-CH3']; withk b[RO2] += n [ 'CH3-CH(OH)-C(CH3)(O2.)-CO-H']; withk b[RO2] += n [ 'H-CO-C(CH3)(O2.)-CH(CL)-CH3']; withk b[RO2] += n [ 'CL-CH(O2.)-CH3']; withk b[RO2] += n [ 'HO-CH2-C(CH3)(O2.)-CH(OH)-CH3']; withk b[RO2] += n [ 'HO-CH2-C(CH3)(OH)-CH(O2.)-CH3']; withk b[RO2] += n [ 'HO-CH2-C(CH3)(O2.)-CH(CL)-CH3']; withk b[RO2] += n [ 'HO-CH2-C(CH3)(CL)-CH(O2.)-CH3']; withk b[RO2] += n [ 'CO(O2.)-C(CH3)(OH)-CH(CL)-CH3']; withk b[RO2] += n [ 'HO-CH2-C(CL)(O2.)-CH3']; withk b[RO2] += n [ 'CL-CO-CH2-O2.']; withk b[RO2] += n [ 'CH3-O2.']; withk b[RO2] += n [ 'CO(O2.)-C(CH3)(CL)-CO-CH3']; withk b[RO2] += n [ 'CO(O2.)-C(CH3)=CH2']; withk b[RO2] += n [ 'HO-CH2-C(CH3)(O2.)-CO-H']; withk b[RO2] += n [ 'H-CO-C(CH3)(O2.)-CH2-CL']; withk b[RO2] += n [ 'HO-CH2-C(CH3)(O2.)-CO-CH3']; withk b[RO2] += n [ 'CH3-CO-C(CH3)(O2.)-CH2-CL']; withk b[RO2] += n [ 'CH2(O2.)-C(CH3)(OH)-CO-CH3']; withk b[RO2] += n [ 'CH3-CO-C(CH3)(CL)-CH2-O2.']; withk b[RO2] += n [ 'CL-CH2-O2.']; withk b[RO2] += n [ 'CH2(O2.)-CO-CO-CH3']; withk b[RO2] += n [ 'CO(O2.)-CO-H']; withk b[RO2] += n [ 'HO-CH2-CO-O2.']; withk b[RO2] += n [ 'CH2(O2.)-C(CH3)(OH)-CH(OH)-CH3']; withk b[RO2] += n [ 'CH3-CH(OH)-C(CH3)(CL)-CH2-O2.']; withk b[RO2] += n [ 'CH3-CH(OH)-C(CH3)(O2.)-CH2-CL']; withk b[RO2] += n [ 'CH3-CH(OH)-C(CH3)(CL)-CO-O2.']; withk b[RO2] += n [ 'CH3-CH(OH)-C(CL)(O2.)-CH3']; withk b[RO2] += n [ 'CL-CH(O2.)-CO-CH3']; withk b[RO2] += n [ 'CH3-CH(OH)-C(CH3)(O2.)-CH3']; withk b[RO2] += n [ 'CH3-C(CH3)(OH)-CH(O2.)-CH3']; withk b[RO2] += n [ 'CH3-CH(CL)-C(CH3)(O2.)-CH3']; withk b[RO2] += n [ 'CH3-C(CH3)(CL)-CH(O2.)-CH3']; withk b[RO2] += n [ 'CH3-CO-C(CH3)(O2.)-CH3']; withk b[RO2] += n [ 'CH3-C(CH3)(OH)-C(CL)(O2.)-CH3']; withk b[RO2] += n [ 'CH2(O2.)-CO-C(CH3)(CL)-CH3']; withk b[RO2] += n [ 'CH2(O2.)-CO-CH3'];

Page 79: THE PHOTOOXIDATION OF 2-METHYL-2-BUTENE …ufdcimages.uflib.ufl.edu/UF/E0/04/26/40/00001/im_y.pdfTHE EFFECTS OF ACTIVE CHLORINES ON PHOTOOXIDATION OF 2-METHYL-2 ... effects on both

79

withk b[RO2] += n [ 'CL-CH(OH)-CO-O2.']; withk b[RO2] += n [ 'HO-CH2-C(CH3)(CL)-CO-O2.']; withk b[RO2] += n [ 'CO(O2.)-C(CL)(OH)-CH3']; withk b[RO2] += n [ 'CH2(O2.)-CH(OH)-C(CH3)(OH)-CH3']; withk b[RO2] += n [ 'CH3-C(CH3)(OH)-CH(CL)-CH2-O2.']; withk b[RO2] += n [ 'HO-CH2-CH(O2.)-CO-CH3']; withk b[RO2] += n [ 'CO(O2.)-CH(OH)-CO-CH3']; withk b[RO2] += n [ 'HO-CH2-CH(O2.)-CH3']; withk b[RO2] += n [ 'CH2(O2.)-CH(OH)-CH3']; withk b[RO2] += n [ 'CO(O2.)-CH(OH)-CH3']; withk b[RO2] += n [ 'CH2(NO3)-CH(O2.)-CH3']; withk b[RO2] += n [ 'CH2(O2.)-CH(NO3)-CH3']; withk b[RO2] += n [ 'CH2(O2.)-CH(OH)-CO-CH3'];

Page 80: THE PHOTOOXIDATION OF 2-METHYL-2-BUTENE …ufdcimages.uflib.ufl.edu/UF/E0/04/26/40/00001/im_y.pdfTHE EFFECTS OF ACTIVE CHLORINES ON PHOTOOXIDATION OF 2-METHYL-2 ... effects on both

80

APPENDIX B LIGHT CHARACTERIZATION

Light characterization is required to evaluate the photochemical reaction for

modeling gas phase kinetics of photolysis. Two measurements are needed to

determine the actinic flux of UV-visible lamp in the chamber: one is the spectral

distribution of the UV-Visible irradiation in the chamber and the other is the NO2

photolysis rate. Basically, the spectral distribution is a relative intensity spectrum. An

absolute intensity spectrum is obtained by correcting the relative intensity spectrum

with a factor obtained from the comparison of the relative NO2 photolysis rate against

the measured NO2 photolysis rate. NO2 photolysis rates are tested in an inorganic

chemistry model for NO2 actinometry experiments at the given initial NO and NO2

concentrations. The actual absolute NO2 photolysis rate is determined as the one

which provides the smallest deviation between the modeled and measured values

for the final NO and NO2 concentrations. In the present study, the spectral

distribution (Figure B-1) is measured directly using a spectroradiometer PS-300

(UV/NIR) (Apogee Inc.). The UV-Visible lamps were turned on 30 minutes earlier

before the chamber experiment began in advance to stabilize the lamps. The

spectroradiometer detector was centered on the bottom of the chamber. The

integration time of the detector was 350 ms and the number of scans was 10 on

average.

B.1. Experimental Measurement

The light characterization experiment is conducted in the presence of low

concentration of O2. The 300 L Teflon bag was flushed several times and filled with N2

from N2 gas tank.

The obtained NO2 photolysis rate was 0.147 min-1. The known amount of NO2

was added into the Teflon bag. NO, NO2, NOx, concentration was monitored with a

Page 81: THE PHOTOOXIDATION OF 2-METHYL-2-BUTENE …ufdcimages.uflib.ufl.edu/UF/E0/04/26/40/00001/im_y.pdfTHE EFFECTS OF ACTIVE CHLORINES ON PHOTOOXIDATION OF 2-METHYL-2 ... effects on both

81

Chemiluminescence NO/NO2 analyzer (Teledyne, model 200E). Ozone was

monitored with a photometric ozone analyzer (Teledyne, model 400E). UV lights

were turned on and off and NO, NO2, NOx were recorded.

B.2. Model Simulation

A model of inorganic gas phase chemistry is used to find the NO2 photolysis

rate that leads to simulation results with the smallest deviation from the measured

NO and NO2 concentrations. The model mechanism includes all possible reactions in

the chamber during the photolysis of NO2 (See A.1 Inorganic Reaction Mechanism

File ). The model is executed in a chemical solver-Morpho. The input for the model is

the initial concentrations of O2, NO and NO2. Because the experiment is performed

in the UV light on-off mode, the model is operated for both UV light and dark

conditions.

In this model, several things need to be modified according to experimental

conditions: (1) O2 concentration – in the original model, the O2 concentration is set at

20.946%. This value was changed to 0.05%. This change is done in the file

“StdVarNames.minc”. The mixing ratio of N2:O2 used in this study is 0.9995:0.0005.

(2) other parameters such as the deposition rate of H2O2 and O3 on the chamber wall

need to be updated for experimental condition accordingly in the file

“UFAuxMech09.rxn”. The H2O2 deposition rate is 1.1 x 10-3 s-1 and O3 deposition rate

is 6.93 x 10-5 s-1. Because the humidity in the Teflon bag is very low (~ 10%), the

deposition of N2O5, HNO3 and HONO on the wall is negligible. (3) Because the

organics in the chamber are negligible, all reactions involved with organics are

removed from the original mechanism (e.g. the reaction of background VOC).

The determined NO2 photolysis rate is 0.147 min-1. Figure B-2 shows

comparison results between the experiment measurements and the model

Page 82: THE PHOTOOXIDATION OF 2-METHYL-2-BUTENE …ufdcimages.uflib.ufl.edu/UF/E0/04/26/40/00001/im_y.pdfTHE EFFECTS OF ACTIVE CHLORINES ON PHOTOOXIDATION OF 2-METHYL-2 ... effects on both

82

simulations for NO2 actinometry experiments. The photolysis rates of compounds

(jtable) are generaged in Morpho using the absolute light intensity, quantum yields

and cross sections of compounds. Figure B-3 demonstrates a flow chart for

generation of photolysis rate files in Morpho.

Page 83: THE PHOTOOXIDATION OF 2-METHYL-2-BUTENE …ufdcimages.uflib.ufl.edu/UF/E0/04/26/40/00001/im_y.pdfTHE EFFECTS OF ACTIVE CHLORINES ON PHOTOOXIDATION OF 2-METHYL-2 ... effects on both

83

Figure B-1. Irradiance spectrum of UV-visible lamps in the chamber.

Page 84: THE PHOTOOXIDATION OF 2-METHYL-2-BUTENE …ufdcimages.uflib.ufl.edu/UF/E0/04/26/40/00001/im_y.pdfTHE EFFECTS OF ACTIVE CHLORINES ON PHOTOOXIDATION OF 2-METHYL-2 ... effects on both

84

Figure B-2. Time profile experimental data and model simulation of NOx / NO2 / NO /

O3 concentrations at low O2 condition in the Teflon bag under the controlled UV light. The dark box indicates the data with no light sources (light off)

Page 85: THE PHOTOOXIDATION OF 2-METHYL-2-BUTENE …ufdcimages.uflib.ufl.edu/UF/E0/04/26/40/00001/im_y.pdfTHE EFFECTS OF ACTIVE CHLORINES ON PHOTOOXIDATION OF 2-METHYL-2 ... effects on both

85

Figure B-3. A flow chart for generation of photolysis rate files in Morpho. Square box

denotes input files; ellipse, output files and rhombus, executable files.

Page 86: THE PHOTOOXIDATION OF 2-METHYL-2-BUTENE …ufdcimages.uflib.ufl.edu/UF/E0/04/26/40/00001/im_y.pdfTHE EFFECTS OF ACTIVE CHLORINES ON PHOTOOXIDATION OF 2-METHYL-2 ... effects on both

86

LIST OF REFERENCES

Albaladejo, J., Notario, A., Cuevas, C.A., Jimenez, E., Cabanas, B., Martinez, E., 2003, Gas-Phase Chemistry of Atmospheric Cl Atoms: A PLP-RF Kinetic Study with a Series of Ketones, Atmospheric Environment 37, 455-463.

Aranda, A., Martinez, E., de Mera, Y.D, Rodriguez, A., Rodriguez, D., Cuartero, J.,

2003, Low-pressure study of the reactions of Cl atoms with acrylic acid and allyl alcohol, Atmospheric Environment 37, 4361-4369.

Atkinson, R., and Aschmann, S.M., 1985, Kinetics of the Gas Phase Reaction of Cl

Atoms with a Series of Organics at 296 ± 2 K and and Atmospheric pressure, International Journal of Chemical Kinetics 17, 33-41.

Atkinson, R., 1990, Gas-Phase Tropospheric Chemistry of Organic Compounds: A

Review, Atmospheric Environment 24A, 1-41. Atkinson, R., 1997, Gas-Phase Tropospheric Chemistry of Volatile Organic

Compounds: 1. Alkanes and Alkenes, Journal of Physical and Chemical Reference Data 26, 215-290.

Atkinson, R., Baulch, D.L., Cox, R.A., Crowley, J.N., Hampson, R.F, Jr., Kerr, J.A.,

Rossi, M.J., Troe, J., 2001, Summary of Evaluated Kinetic and Photochemical Data for Atmospheric Chemistry, IUPAC Subcommittee on Gas Kinetic Data Evaluation for Atmospheric Chemistry Web Version December 2001, 1-56.

Ballesteros, B., Garzon, A., Jimenez, E., Notario, A., Albaladejo, J., 2007, Relative

and absolute kinetic studies of 2-butanol and related alcohols with tropospheric Cl atoms, Physical Chemistry Chemical Physics 9, 1210-1218.

Bellar, T.A., Lichtenberg, J.J., and Kroner, R.C., 1974, Occurrence Of Organohalides

In Chlorinated Drinking Waters, Journal American Water Works Association 66, 703-706.

Canosa-Mas, C.E., Cotter, E.S.N., Duffy, J., Thompson, K.C., Wayne, R.P., 2001,

The Reactions of Atomic Chlorine with Acrolein, Methacrolein and Methyl Vinyl Ketone, Physical Chemistry Chemical Physics 3, 3075-3084.

Cao, G., Jang, M., 2007, Effects of particle acidity and UV light on secondary organic

aerosol formation from oxidation of aromatics in the absence of NOx, Atmospheric Environment 41, 7603-7613.

Chang, S., Allen, D.T., 2006, Atmospheric Chlorine Chemistry in Southeast Texas:

Impacts on Ozone Formation and Control, Environmental Science and Technology 40, 251-262.

Cuevas, C.A., Notario, A., Martinez, E., Albaladejo, J., 2006, Temperature-

dependence study of the gas-phase reactions of atmospheric Cl atoms with a series of aliphatic aldehydes, Atmospheric Environment 40, 3845-3854.

Page 87: THE PHOTOOXIDATION OF 2-METHYL-2-BUTENE …ufdcimages.uflib.ufl.edu/UF/E0/04/26/40/00001/im_y.pdfTHE EFFECTS OF ACTIVE CHLORINES ON PHOTOOXIDATION OF 2-METHYL-2 ... effects on both

87

Davidson, C.I., Phalen, R.F., and Solomon, P.A., 2005, Airborne particulate matter and human health: review, Aerosol Science and Technology 39, 737-749.

Delcomyn, C.A., Bushway, K.E., and Henley, M.V., 2006, Inactivation of Biological

Agents using Neutral Oxone-chloride Solutions, Environmental Science and Technology 40, 2759-2764.

DeMore, W.B., Sander, S.P., Golden, D.M., Hampson, R.F., Kurylo, M.J., Howard,

C.J., Ravishankara, A.R., Kolb, C.E., Molina, M.J., 1997, Chemical kinetics and photochemical data for use in stratospheric modeling, Evaluation number 12, JPL Publication 97-4, 1-266.

Donaghy, T., Shanahan, I., Hande, M., Fitzpatrick, S., 1993, Rate constants and

atmospheric lifetimes for the reactions of OH radicals and Cl atoms with haloalkanes, International Journal of Chemical Kinetics 25, 273-284.

Ezell, M.J., Wang, W., Ezell, A.A., Soskin, G., Finlayson-Pitts, B.J., 2002, Kinetics of

Reactions of Chlorine Atoms with a Series of Alkenes at 1 atm and 298 K: Structure and Reactivity, Physical Chemistry Chemical Physics 1, 5813-5820.

Ferronato, C., Orlando, J.J., Tyndall, G.S., 1998, Rate and mechanism of the

reactions of OH and Cl with 2-methyl-3-buten-2-ol, Journal of Geophysical Research 103, 25579-25586.

Grosjean, D., 1990, Gas-phase reaction of ozone with 2-methyl-2-butene: dicarbonyl

formation from Criegee biradicals, Environmental Science and Technology, 24, 1428-1432.

Grosjean, D., Williams, E.L., II, 1992, Environmental persistence of organic

compounds estimated from structure-reactivity and linear free-energy relationships. Unsaturated aliphatics, Atmospheric Environment Part A 26, 1395-1405.

Hurley, M.D., Wallington, T.J., Bjarrum, M., Javadi, M.S., Nielsen, O.J., 2008,

Atmospheric chemistry of 3-pentanol: Kinetics, mechanisms, and products of Cl atom and OH radical initiated oxidation in the presence and absence of NOx, The journal of physical chemistry. A 112, 8053-8060.

Huybrechts, G., Narmon, M., Van Mele, B., 1996, The pyrolysis of CCl4 and C2Cl6 in

the gas phase. Mechanistic modeling by thermodynamic and kinetic parameter estimation, International Journal of Chemical Kinetics 28, 27-36.

Jang, J., Jang, M., Mui, W., Delcomyn, C.A., Henley, M.V. and Hearn, J.D., 2010,

Formation of Active Chlorine Oxidations in Saline-Oxone Aerosol, Aerosol Science and Technology 44, 1-9.

Jang, M., Kamens, R.M., 2001, Characterization of Secondary Aerosol from the

Photooxidation of Toluene in the Presence of NOx and 1-Propene. Environmental Sciences and Technology 35, 3626-3639.

Page 88: THE PHOTOOXIDATION OF 2-METHYL-2-BUTENE …ufdcimages.uflib.ufl.edu/UF/E0/04/26/40/00001/im_y.pdfTHE EFFECTS OF ACTIVE CHLORINES ON PHOTOOXIDATION OF 2-METHYL-2 ... effects on both

88

Jeffries, H.E., Gary, M.W., Kessler, M., Sexton, K.G., 1998, Morphecule reaction mechanism, MORPHO, ALLOMORPHIC simulation software, http://airsite.unc.edu/atmchemunc/morpho/intro.html.

Jenkin, M. E.; Saunders, S. M.; Wagner, V.; Pilling, M. J., 2003, Protocol for the

development of the Master Chemical Mechanism, MCM v3 (part B): Tropospheric degradation of aromatic volatile organic compounds. Atmospheric Chemistry and Physics 3, 181–193.

Jenkin, M.E., Saunders, S.M. and Pilling, M.J., 1997, The Tropospheric Degradation

of Volatile Organic Compounds: A Protocol for Mechanism Development, Atmospheric Environment 31, 81-104.

Kaiser, E.W., Wallington, T.J., 1996, Pressure dependence of the Reaction Cl + C3H6,

The journal of physical chemistry 100, 9788-9793. Kaiser, E.W., Donahue, C.J., Pala, I.R., Wallington, T.J., Hurley, M.D., 2007, Kinetics,

products, and stereochemistry of the reaction of chlorine atoms with cis- and trans-2-butene in 10-700 torr of N2 or N2/O2 diluents at 297 K, The journal of physical chemistry. A 111, 1286-1295.

Kleindienst, T.E., Shepson, P.B., Nero, C.M., Bufalini, J.J., 1989, The production of

chlorine atoms from the reaction of OH with chlorinated hydrocarbons, International Journal of Chemical Kinetics 21, 863-884.

Kwok, E.S.C. and Atkinson, R., 1995, Estimation of Hydroxyl Radical Reaction Rate

Constants For Gas-Phase Organic Compounds Using A Structure-Reactivity Relationship: An Update, Atmospheric Environment 29, 1685-1695.

Le Lacheur, R.M., Sonnenberg, L.B., Singer, P.C., Christman, R.F., Charles, M.J.,

1993, Identification of carbonyl compounds in environmental samples, Environmental Science and Technology 27, 2745-2753.

Nazaroff, W.W., Weschler, C.J., 2004, Cleaning products and air fresheners:

exposure to primary and secondary air pollutants. Atmospheric Environment, 38, 2841-2865.

Nelson, L., Rattigan, O., Neavyn, R., Sidebottom, H., Treacy, J., Nielsen, O.J., 1990,

Absolute and relative rate constants for the reactions of hydroxyl radicals and chlorine atoms with a series of aliphatic alcohols and ethers at 298 K, International Journal of Chemical Kinetics 22, 1111-1126.

Notario, A., Mellouki, A., Le Bras, G., 2000, Rate Constants for the Gas-Phase

Reactions of Chlorine Atoms with a Series of Ketones, International Journal of Chemical Kinetics 32, 62-66.

Odabasi, M., 2008, Halogenated Volatile Organic Compounds from the Use of

Chlorine-Bleach- Containing Household Products, Environmental Science and Technology 42, 1445-1451.

Page 89: THE PHOTOOXIDATION OF 2-METHYL-2-BUTENE …ufdcimages.uflib.ufl.edu/UF/E0/04/26/40/00001/im_y.pdfTHE EFFECTS OF ACTIVE CHLORINES ON PHOTOOXIDATION OF 2-METHYL-2 ... effects on both

89

Orlando, J.J., Tyndall, G.S., Apel, E.C., Riemer, D.D., Paulson, S.E., 2003, Rate Coefficients and Mechanisms of the Reaction of Cl-Atoms with a Series of Unsaturated Hydrocarbons Under Atmospheric Conditions, International Journal of Chemical Kinetics 35, 334-353.

Finlayson-Pitts, B.J. and Pitts, J.N, 2000, Chemistry of the upper and lower

atmosphere: Theory, Experiments, and Applications, Academic Press, New York. Pope, C.A. and Dockery, D.W., 2006, Health effects of fine particulate air pollution:

lines that connect, Journal of the Air and Waste Management Association 56, 709-742.

Ragains, M.L. and Finlayson-Pitts, B.J., 1997, Kinetics and mechanism of the

reaction of Cl atoms with 2-methyl-1,3-butadiene (isoprene) at 298 K, The journal of physical chemistry. A 101, 1509-1517.

Rodriguez, D., Rodriguez, A., Notario, A., Aranda, A., Diaz-de-Mera, Y., Martinez, E.,

2005, Kinetic study of the gas-phase reaction of atomic chlorine with a series of aldehydes, Atmospheric Chemistry and Physics 5, 3433-3440.

Rodriguez, D., Rodriguez, A., Soto, A., Aranda, A., Diaz-De-Mera, Y., Notario, A.,

2008, Kinetics of the reactions of Cl atoms with 2-buten-1-ol, 2-methyl-2-propen-1-ol, and 3-methyl-2-buten-1-ol as a function of temperature, Journal of Atmospheric Chemistry 59, 187-197.

Schauer, J.J., Kleeman, M.J., Cass G.R., and Simoneit, B.R.T., 2002, Measurement

of Emissions from Air Pollution Sources. 5. C1-C32 Organic Compounds from Gasoline-Powered Motor Vehicles, Environmental Science and Technology 36, 1169-1180.

Tanaka, P.L., Riemerc, D.D., Chang, S., Yarwood, G., McDonald-Bullera, E.C., Apel,

E.C., Orlando, J.J., Silva, P.J., Jimenez, J.L., Canagaratna, N.R., Neece, J.D., Mullins C.B., Allen, D.T., 2003, Direct evidence for chlorine-enhanced urban ozone formation in Houston, Texas, Atmospheric Environment 37, 1393–1400.

Taketani, F.,Matsumi, Y.,Wallington, T.J.,Hurley, M.D., 2006, Kinetics of the gas

phase reactions of chlorine atoms with a series of ketones, Chemical Physics Letters 431, 257-260.

Theven, R., Mellouki, A., Le Bras, G., 2000, Kinetics of OH and Cl Reactions with a

Series of Aldehydes, International Journal of Chemical Kinetics 32, 676-685. Treves, K., Shragina, L., Rudich, Y., 2002, Rate Coefficients for the Reactions of Cl

Atoms with a Series of C3-C6 Hydroxyalkyl Nitrates at 290±2 K, The journal of physical chemistry. A 106, 5902-5907.

Voicu, I., Barnes, I., Becker, K.H., Wallington, T.J., Inoue, Y., Kawasaki, M., 2001,

Kinetic and Product Study of the Cl-Initiated Oxidation of 1,2,3-Trichloropropane (CH2ClCHClCH2Cl), The journal of physical chemistry. A 105, 5123-5130.

Page 90: THE PHOTOOXIDATION OF 2-METHYL-2-BUTENE …ufdcimages.uflib.ufl.edu/UF/E0/04/26/40/00001/im_y.pdfTHE EFFECTS OF ACTIVE CHLORINES ON PHOTOOXIDATION OF 2-METHYL-2 ... effects on both

90

Wallington, T.J., Skewes, L.M., Siegl, W.O., 1989A, A relative rate study of the reaction of Cl atoms with a series of chloroalkanes at 295 K, The journal of physical chemistry 93, 3649-3651.

Wallington, T.J.; Gierczak, C.A.; Ball, J.C.; Japar, S.M., 1989B, Fourier transform

infrared study of the self reaction of C2H5O2 radicals in air at 295 K, International Journal of Chemical Kinetics 21, 1077-1089.

Wallington, T.J., Hinman, M.M., Andino, J.M., Siegl, W.O., Japar, S.M., 1990A, A

relative rate study of the reaction of Cl atoms with a series of alkyl nitrates and nitro alkanes in air at 295 ± 2 K, International Journal of Chemical Kinetics 22, 665-671.

Wallington, T.J., Andino, J.M., Japar, S.M., 1990B, FTIR product study of the self-

reaction of CH2ClCH2O2 radicals in air at 295 K, Chemical Physics Letters 165, 189-194.

Wang, W., Ezell, M.J., Ezell, A.A., Soskin, G., Finlayson-Pitts, B.J., 2002, Rate

Constants for the Reactions of Chlorine Atoms with a Series of Unsaturated Aldehydes and Ketones at 298 K: Structure and Reactivity, Physical Chemistry Chemical Physics 4, 1824-1831.

Wang, Y., Liu, J.Y., Li, Z.S., Wu, J.Y., Wang, L., Sun, C.C, 2005, Ab initio direct

dynamics studies on the reactions of chlorine atom with CH3nClnCHO (n=1-3), Chemical Physics 314, 329-339.

Winder, C., 2000, The toxicology of chlorine, Environmental Research 85, 105-114. Wu, H., Mu, Y., Zhang, X., Jiang, G., 2003, Relative Rate Constants for the Reactions

of Hydroxyl Radicals and Chlorine Atoms with a Series of Aliphatic Alcohols, International Journal of Chemical Kinetics 35, 81-87.

Yamanaka, T., Kawasaki, M., Hurley, M.D., Wallington, T.J., Schneider, W.F., Bruce,

J., 2007, kinetics and mechanism of the gas phase reaction of chlorine atoms with i-propanol, Physical Chemistry Chemical Physics 9, 4211-4217.

Yu, J., Jeffries, H.E., Le Lacheur, R.M., 1995, Identification airborne carbonyl

compounds in isoprene atmospheric photooxidation products by their PFBHA oximes using gas chromatography/ion trap mass spectrometry, Environmental Science and Technology 29, 1923-1932.

Zhao, Z., Huskey, D.T., Nicovich, J.M., Wine, P.H., 2008, Temperature-dependent

kinetics study of the gas-phase reactions of atomic chlorine with acetone, 2-butanone, and 3-pentanone, International Journal of Chemical Kinetics 40, 259-267.

Zepp, R. and Cline, D., 1977, Rates of direct photolysis in the aqueous environment,

Environmental Science and Technology 11, 359-366.

Page 91: THE PHOTOOXIDATION OF 2-METHYL-2-BUTENE …ufdcimages.uflib.ufl.edu/UF/E0/04/26/40/00001/im_y.pdfTHE EFFECTS OF ACTIVE CHLORINES ON PHOTOOXIDATION OF 2-METHYL-2 ... effects on both

91

BIOGRAPHICAL SKETCH

Yunseok Im was born in 1984 in Suwon, South Korea. He grew up mostly in

Yongin, graduating from Susung High School in 2002. He earned his B.E. in

Environmental Engineering from University of Seoul, Seoul, South Korea in 2006.

During his last two years of college, he received military training as a Reserved

Officer Training Corps (ROTC) Student. After graduation, he served in the military as

a lieutenant at artillery battalion in Gyeonggi for about 2 years. After finishing his

military service, he entered the Department of Environmental Engineering Sciences

at the University of Florida in fall 2009. He received his ME from University of Florida

in the fall of 2010. He has three family members; Father, Seongin Im, mother,

Eulseang Ahn, and sister, Yunju Im.


Recommended