+ All Categories
Home > Documents > The Poisson–Boltzmann Theory and Variational Implicit...

The Poisson–Boltzmann Theory and Variational Implicit...

Date post: 26-Jun-2020
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
43
The Poisson–Boltzmann Theory and Variational Implicit Solvation of Biomolecules Bo Li Department of Mathematics and NSF Center for Theoretical Biological Physics (CTBP) UC San Diego FUNDING: NIH, NSF, and CTBP PDE/Applied Math Seminar Department of Mathematics, UC Santa Barbara March 5, 2013
Transcript
Page 1: The Poisson–Boltzmann Theory and Variational Implicit ...bli/presentations/PBE_UCSB_March2013.pdf · JCP 2007 & 2009, JCTC 2009, 2012, & 2013, PRL 2009, J. Comput. Phys. 2010. OUTLINE

The Poisson–Boltzmann Theory andVariational Implicit Solvation of Biomolecules

Bo LiDepartment of Mathematics and

NSF Center for Theoretical Biological Physics (CTBP)UC San Diego

FUNDING: NIH, NSF, and CTBP

PDE/Applied Math SeminarDepartment of Mathematics, UC Santa Barbara

March 5, 2013

Page 2: The Poisson–Boltzmann Theory and Variational Implicit ...bli/presentations/PBE_UCSB_March2013.pdf · JCP 2007 & 2009, JCTC 2009, 2012, & 2013, PRL 2009, J. Comput. Phys. 2010. OUTLINE
Page 3: The Poisson–Boltzmann Theory and Variational Implicit ...bli/presentations/PBE_UCSB_March2013.pdf · JCP 2007 & 2009, JCTC 2009, 2012, & 2013, PRL 2009, J. Comput. Phys. 2010. OUTLINE

Solvation

protein folding host-guest system

Page 4: The Poisson–Boltzmann Theory and Variational Implicit ...bli/presentations/PBE_UCSB_March2013.pdf · JCP 2007 & 2009, JCTC 2009, 2012, & 2013, PRL 2009, J. Comput. Phys. 2010. OUTLINE

Molecular Modeling: Explicit vs. Implicit

Molecular Dynamics(MD) Simulations

Statistical Mechanics

P(X ,Y ) = P0e−U(X ,Y )/kBT

U(X ,Y ) = Uuu(X ) + Uvv(Y ) + Uuv(X ,Y )

P(X ) =

P(X ,Y ) dY = P0e−W (X )/kBT

W (X ) : Potential of Mean Force

Page 5: The Poisson–Boltzmann Theory and Variational Implicit ...bli/presentations/PBE_UCSB_March2013.pdf · JCP 2007 & 2009, JCTC 2009, 2012, & 2013, PRL 2009, J. Comput. Phys. 2010. OUTLINE

A Variational Implicit-Solvent Model (VISM)

Dzubiella, Swanson, & McCammon, PRL & JCP, 2006.

n

boundarydielectric

xQi

iΩw Ωm

ε =80ε =1

w

m

Γ

Free-energy functional

Gtotal[Γ] = P Vol (Ωm) + γ0

Γ(1− 2τH) dS

+ ρw

ΩwUvdW dV + Gele[Γ],

where UvdW(x) =N∑

i=1

U(i)LJ(|x − xi |).

The level-set method: Vn = −δΓGtotal[Γ]

δΓGtotal[Γ] = P + 2γ0(H − τK )− ρwUvdW + δΓGele[Γ]

This talk: the PDE aspect of Gele[Γ] and δΓGele[Γ].

Page 6: The Poisson–Boltzmann Theory and Variational Implicit ...bli/presentations/PBE_UCSB_March2013.pdf · JCP 2007 & 2009, JCTC 2009, 2012, & 2013, PRL 2009, J. Comput. Phys. 2010. OUTLINE

JCP 2007 & 2009, JCTC 2009, 2012, & 2013, PRL 2009, J. Comput. Phys. 2010.

Page 7: The Poisson–Boltzmann Theory and Variational Implicit ...bli/presentations/PBE_UCSB_March2013.pdf · JCP 2007 & 2009, JCTC 2009, 2012, & 2013, PRL 2009, J. Comput. Phys. 2010. OUTLINE

OUTLINE

1. The Poisson–Boltzmann Equation

2. A Size-Modified Mean-Field Theory

3. Dielectric Boundary Force

4. Motion of a Cylindrical Dielectric Boundary

5. Discussions

Page 8: The Poisson–Boltzmann Theory and Variational Implicit ...bli/presentations/PBE_UCSB_March2013.pdf · JCP 2007 & 2009, JCTC 2009, 2012, & 2013, PRL 2009, J. Comput. Phys. 2010. OUTLINE

1. The Poisson–Boltzmann Equation (PBE)

∇ · ε∇ψ +M∑

j=1

qjc∞

j e−βqjψ = −f

Poisson’s equation:

Charge density:

Boltzmann distributions:

∇ · ε(x)∇ψ(x) = −ρ(x)ρ(x) = f (x) +

∑Mj=1 qjcj(x)

cj(x) = c∞j e−βqjψ(x)

ε: dielectric coefficient

f : Ω → R: given, fixed charge density

cj : Ω → R: concentration of jth ionic species

c∞j : constant bulk concentration of jth ionic species

qj = Zje: charge of jth ionic species

β: inverse thermal energy

Page 9: The Poisson–Boltzmann Theory and Variational Implicit ...bli/presentations/PBE_UCSB_March2013.pdf · JCP 2007 & 2009, JCTC 2009, 2012, & 2013, PRL 2009, J. Comput. Phys. 2010. OUTLINE

PBE ∇ · ε∇ψ +M∑

j=1

qjc∞

j e−βqjψ = −f

The linearized PBE (the Debye–Huckel approximation)

∇ · ε∇ψ − εκ2ψ = −f

Here κ > 0 is the ionic strength or the inverse Debyescreening length:

κ2 =β∑M

i=1 q2j c

j

ε

“Derivation”: use the Taylor expansion and

Electrostatic neutrality:∑M

j=1 qjc∞

j = 0

The sinh PBE for 1:1 salt (q2 = −q1 = q, c∞2 = c∞1 = c∞)

∇ · ε∇ψ − 2qc∞ sinh(βqψ) = −f

Page 10: The Poisson–Boltzmann Theory and Variational Implicit ...bli/presentations/PBE_UCSB_March2013.pdf · JCP 2007 & 2009, JCTC 2009, 2012, & 2013, PRL 2009, J. Comput. Phys. 2010. OUTLINE

I [φ] =

Ω

[

ε

2|∇φ|2 − f φ+ β−1

M∑

j=1

c∞j e−βqjφ]

dV

Theorem (Li, Cheng, & Zhang, SIAP 2011). The functionalI : H1

g (Ω) → R has a unique minimizer ψ ∈ H1(Ω) ∩ L∞(Ω) whichis also the unique solution to the PBE.

Proof. Step 1. By “shifting”, one may assume f = g = 0.

Step 2. Existence and uniqueness by the direct method.

Step 3. Key: The L∞-bound. Let λ≫ 1 and define

ψλ(x) =

− λ if ψ(x) < −λ,ψ(x) if |ψ(x)| ≤ λ,

λ if ψ(x) > λ.Then ψλ is also a minimizer. Uniqueness =⇒ ψ = ψλ.

Step 4. Routine calculations. Q.E.D.

Page 11: The Poisson–Boltzmann Theory and Variational Implicit ...bli/presentations/PBE_UCSB_March2013.pdf · JCP 2007 & 2009, JCTC 2009, 2012, & 2013, PRL 2009, J. Comput. Phys. 2010. OUTLINE

Electrostatic free-energy functional

G [c] =

Ω

1

2ρψ + β−1

M∑

j=1

cj[

ln(Λ3cj)− 1]

−M∑

j=1

µjcj

dV

ρ(x) = f (x) +∑M

j=1 qjcj(x)

∇ · ε∇ψ = −ρ and ψ = 0 on ∂Ω

Equilibrium conditions

(δG [c])j = qjψ+β−1 ln(Λ3cj)−µj = 0 ⇐⇒ Boltzmann distributions

Minimum electrostatic free-energy (note the sign!)

Gmin =

Ω

−ε2|∇ψ|2 + f ψ − β−1

M∑

j=1

c∞j

(

e−βqjψ − 1)

dV

Page 12: The Poisson–Boltzmann Theory and Variational Implicit ...bli/presentations/PBE_UCSB_March2013.pdf · JCP 2007 & 2009, JCTC 2009, 2012, & 2013, PRL 2009, J. Comput. Phys. 2010. OUTLINE

G [c] =

Ω

1

2ρψ + β−1

M∑

j=1

cj[

ln(Λ3cj)− 1]

−M∑

j=1

µjcj

dV

Theorem (B.L. SIMA 2009).

G has a unique minimizer c = (c1, . . . , cM). Moreover,∃ θ1 > 0, θ2 > 0 : θ1 ≤ cj(x) ≤ θ2 a.e. x ∈ Ω, j = 1, . . . ,M.

Boltzmann distributions: cj(x) = c∞j e−βqjψ(x), j = 1, . . . ,M.

The potential ψ is the unique solution to the PBE.

Proof. By the direct method in the calculus of variations, using:

the convexity of G ;

the lower boundedness of s 7→ s(log s + α) with α ∈ R;

the superlinearity of s 7→ s log s; and

a lemma (cf. next slide). Q.E.D.

Page 13: The Poisson–Boltzmann Theory and Variational Implicit ...bli/presentations/PBE_UCSB_March2013.pdf · JCP 2007 & 2009, JCTC 2009, 2012, & 2013, PRL 2009, J. Comput. Phys. 2010. OUTLINE

G [c] =

Ω

1

2ρψ + β−1

M∑

j=1

cj[

ln(Λ3cj)− 1]

−M∑

j=1

µjcj

dV

ρ(x) = f (x) +∑M

j=1 qjcj(x)

∇ · ε∇ψ = −ρ and ψ = 0 on ∂Ω

Lemma (B.L. SIMA 2009). Given c . There exists c satisfying: c is close to c in L1(Ω) ∩ H−1(Ω); G [c] ≤ G [c]; ∃ θ1 > 0, θ2 > 0 : θ1 ≤ cj(x) ≤ θ2 a.e. x ∈ Ω, j = 1, . . . ,M.

Proof. By construction using the fact that the entropic change isvery large for cj ≈ 0 and cj ≫ 1. Q.E.D.

O s

slns

Page 14: The Poisson–Boltzmann Theory and Variational Implicit ...bli/presentations/PBE_UCSB_March2013.pdf · JCP 2007 & 2009, JCTC 2009, 2012, & 2013, PRL 2009, J. Comput. Phys. 2010. OUTLINE

2. A Size-Modified Mean-Field Theory

G [c] =

Ω

1

2ρψ + β−1

M∑

j=0

cj[

ln(a3j cj)− 1]

−M∑

j=1

µjcj

dV

ρ(x) = f (x) +∑M

j=1 qjcj(x)

∇ · ε∇ψ = −ρ and ψ = 0 on ∂Ω

c0(x) = a−30

[

1−∑Mi=1 a

3i ci (x)

]

Theorem (B.L. Nonlinearity 2009). G has a unique minimizer(c1, . . . , cM) characterized by

Bounds: There exist θ1, θ2 ∈ (0, 1) such that

θ1 ≤ a3j cj(x) ≤ θ2 ∀x ∈ Ω ∀j = 0, 1, . . . ,M;

Equilibrium conditions (i.e.,δG [c] = 0)

aj3a0

−3 log(

a30c0)

−log(

a3j cj)

= β (qjψ − µj) ∀j = 1, . . . ,M,

which determine uniquely cj = cj(ψ) (j = 1, . . . ,M).

Page 15: The Poisson–Boltzmann Theory and Variational Implicit ...bli/presentations/PBE_UCSB_March2013.pdf · JCP 2007 & 2009, JCTC 2009, 2012, & 2013, PRL 2009, J. Comput. Phys. 2010. OUTLINE

(

aj

a0

)3

log(

a30c0)

− log(

a3j cj)

= β (qjψ − µj) ∀j = 1, . . . ,M.

The general case: Implicit Boltzmann distributions

Set DM = u = (u1, . . . , uM) ∈ RM : uj > 0, j = 0, 1, . . . ,M

u0 = a−30

(

1−∑Mj=1 a

3j uj

)

fj(u) = a3j a−30 log

(

a30u0)

− log(

a3j uj

)

, j = 1, . . . ,M.

Lemma. The map f : DM → RM is C∞ and bijective.

Proof. It is clear that f is C∞.

f is injective. det∇f 6= 0, use det(I + v ⊗ w) = 1 + v · w .

f is surjective. Note: fj(u) = rj ⇐⇒ ∂jz = ∂z/∂uj = 0, where

z(u) =M∑

j=0

uj[

log(

a3j uj)

− 1]

+M∑

j=1

rjuj .

Construction: minDMz < min∂DM

z . So all ∂jz = 0. Q.E.D.

Page 16: The Poisson–Boltzmann Theory and Variational Implicit ...bli/presentations/PBE_UCSB_March2013.pdf · JCP 2007 & 2009, JCTC 2009, 2012, & 2013, PRL 2009, J. Comput. Phys. 2010. OUTLINE

Set g = (g1, . . . , gM) = f −1 : RM → DM

Bj(φ) = gj (β(q1φ− µ1), . . . , β(qMφ− µM))

B0(φ) = a−30

[

1−∑Mj=1 a

3j Bj(φ)

]

Define B(φ) = −M∑

j=1

qj

∫ φ

0Bj(ξ) dξ ∀φ ∈ R

Assume∑M

j=1 qjBj(0) = 0 (electrostatic neutrality)

Lemma. The function B is strictly convex. Moreover,

B ′(φ) = −M∑

j=1

qjBj(φ)

> 0 if φ > 0,

= 0 if φ = 0,

< 0 if φ < 0,

and B(φ) > B(0) = 0 for all φ 6= 0. o ψ

B

Proof. Direct calculations using the Cauchy–Schwarz inequality toshow B ′′ > 0. Also, use the neutrality. Q.E.D.

Page 17: The Poisson–Boltzmann Theory and Variational Implicit ...bli/presentations/PBE_UCSB_March2013.pdf · JCP 2007 & 2009, JCTC 2009, 2012, & 2013, PRL 2009, J. Comput. Phys. 2010. OUTLINE

Computational Validation

Zhou, Wang, & Li, PRE, 2011. Wen, Zhou, Xu, & Li, PRE, 2012.

5 10 15 20 25 300

5

10

15

20

25

Distance to the charged surface (A)

Concentratio

nofcounterio

n(M

)

z1=+1, R

1=3.0, N

1=100

z2=+2, R

2=2.5, N

2=100

z3=+3, R

3=3.5, N

3=100

0 5 10 150

5

10

15

20

25

30

35

40

Distance to the charged surface (A)R

adia

lpartic

ledensity

(M

)

z1=+1, R

1=3.0, N

1=100

z2=+2, R

2=2.5, N

2=100

z3=+3, R

3=3.5, N

3=100

The stratification of counterions near a highly charged surfacedetermined by valence-to-volume ratios.Left: Mean-field theory. Right: Monte Carlo simulations.

Page 18: The Poisson–Boltzmann Theory and Variational Implicit ...bli/presentations/PBE_UCSB_March2013.pdf · JCP 2007 & 2009, JCTC 2009, 2012, & 2013, PRL 2009, J. Comput. Phys. 2010. OUTLINE

3. Dielectric Boundary Force (DBF)

Dielectric coefficient

εΓ =

εm in Ωm

εw in Ωw

Typical: εm = ε0 and εw = 80ε0.

Write G = Gele.

n

boundarydielectric

xQi

iΩw Ωm

ε =80ε =1

w

m

Γ

PBE ∇ · εΓ∇ψ − χwB′(ψ) = −f

PB free energy G [Γ] =

Ω

[

−εΓ2|∇ψ|2 + f ψ − χwB(ψ)

]

dV

B(ψ) = β−1M∑

j=1

c∞j

(

e−βqjψ − 1)

Γ =⇒ εΓ =⇒ ψ = ψΓ =⇒ G [Γ] =⇒ Fn := −δΓG [Γ]

Page 19: The Poisson–Boltzmann Theory and Variational Implicit ...bli/presentations/PBE_UCSB_March2013.pdf · JCP 2007 & 2009, JCTC 2009, 2012, & 2013, PRL 2009, J. Comput. Phys. 2010. OUTLINE

Let V ∈ C∞

c (R3,R3). Define x : [0,∞)× R3 → R

3 by

x = V (x) for t > 0,

x(0,X ) = X .

Then Tt(X ) := x(t,X ) ≈ X + tV (X ) if |t| ≪ 1. Define

δΓ,VG [Γ] = limt→0

G [Γt ]− G [Γ]

t=

Γw(X )[V (X ) · n(X )] dSX

for some w : Γ → R by the Structure Theorem.

Shape derivative δΓG [Γ](X ) = w(X ) ∀X ∈ Γ

Page 20: The Poisson–Boltzmann Theory and Variational Implicit ...bli/presentations/PBE_UCSB_March2013.pdf · JCP 2007 & 2009, JCTC 2009, 2012, & 2013, PRL 2009, J. Comput. Phys. 2010. OUTLINE

Theorem (Li, Cheng, & Zhang, SIAP 2011). Let n point from Ωmto Ωw and f ∈ H1(Ω). Let ψ be the unique solution to theboundary-value problem of PBE. Then

δΓG [Γ] =1

2

(

1

εm− 1

εw

)

|εΓ∇ψ · n|2

+1

2(εw − εm) |(I − n ⊗ n)∇ψ|2 + B(ψ).

Corollary. If εw > εm, then −δΓG [Γ] < 0.

n

boundarydielectric

xQi

iΩw Ωm

ε =80ε =1

w

m

Γ

B. Chu, Molecular Forces Based on the Baker Lectures of PeterJ. W. Debye, John Wiley & Sons, 1967:

“Under the combined influence of electric field generatedby solute charges and their polarization in the surroundingmedium which is electrostatic neutral, an additional potentialenergy emerges and drives the surrounding molecules to thesolutes.”

Page 21: The Poisson–Boltzmann Theory and Variational Implicit ...bli/presentations/PBE_UCSB_March2013.pdf · JCP 2007 & 2009, JCTC 2009, 2012, & 2013, PRL 2009, J. Comput. Phys. 2010. OUTLINE

Proof of Theorem. Let V ∈ C∞

c (R3,R3) be local, Γ0 = Γ, and

G [Γt ] = G [Γt , ψt ] = maxφ∈H1

g (Ω)G [Γt , φ].

Note ψ0 = ψ. Define z(t, φ) = G [Γt , φ T−1t ]. We have

G [Γt ] = maxφ∈H1

g (Ω)z(t, φ).

Step 1. Easy to verify that

z(t, ψ0)− z(0, ψ0)

t≤ G [Γt ]− G [Γ]

t≤ z(t, ψt Tt)− z(0, ψt Tt)

t.

Hence

∂tz(ξ, ψ0) ≤G [Γt ]− G [Γ]

t≤ ∂tz(η, ψt Tt), ξ, η ∈ [0, t].

Page 22: The Poisson–Boltzmann Theory and Variational Implicit ...bli/presentations/PBE_UCSB_March2013.pdf · JCP 2007 & 2009, JCTC 2009, 2012, & 2013, PRL 2009, J. Comput. Phys. 2010. OUTLINE

Step 2. Direct calculations lead to

∂tz(t, φ) =

Ω

[

−εΓ2A′(t)∇φ · ∇φ+ ((∇ · (fV )) Tt)φJt

− χwB(φ)((∇ · V ) Tt)Jt

]

dV .

Replacing t by η and φ by ψt Tt , respectively, we obtain

limt→0

∂tz(η, ψt Tt) = ∂tz(0, ψ0)

and henceδΓ,VG [Γ] = ∂tz(0, ψ0),

provided thatlimt→0

‖ψt Tt − ψ0‖H1(Ω) = 0.

Page 23: The Poisson–Boltzmann Theory and Variational Implicit ...bli/presentations/PBE_UCSB_March2013.pdf · JCP 2007 & 2009, JCTC 2009, 2012, & 2013, PRL 2009, J. Comput. Phys. 2010. OUTLINE

Step 3. The limit

limt→0

‖ψt Tt − ψ0‖H1(Ω) = 0

follows from:

Weak form of the Euler–Lagrange equation for themaximization of z(t, ·) by ψt Tt for t > 0 and by ψ0 fort = 0, respectively;

Subtract one from the other;

Use the properties of Tt(X ) and the convexity of B .

Step 4. We now have

δΓ,VG [Γ] = ∂tz(0, ψ0).

Direct calculations complete the proof. Q.E.D.

Page 24: The Poisson–Boltzmann Theory and Variational Implicit ...bli/presentations/PBE_UCSB_March2013.pdf · JCP 2007 & 2009, JCTC 2009, 2012, & 2013, PRL 2009, J. Comput. Phys. 2010. OUTLINE

4. Motion of a Cylindrical Dielectric BoundaryCheng, Li, White, & Zhou, SIAP, 2013.

8R

Γ: r=u(z)

LO

x

y

zΩ_

Ω+

8R

Γ: r=u(z)

LOz

Ω_

Ω+

r

Page 25: The Poisson–Boltzmann Theory and Variational Implicit ...bli/presentations/PBE_UCSB_March2013.pdf · JCP 2007 & 2009, JCTC 2009, 2012, & 2013, PRL 2009, J. Comput. Phys. 2010. OUTLINE

Free-energy functional

F [Γ] = γ0 Area (Γ) +

Ω

1

2f ψΓ dV

∇ · εΓ∇ψΓ = −f in Ω

ψΓ = 0 on r = R∞

γ0 > 0 : a given constant f = f (r , z) : Ω → R: a given function, L-periodic in z dielectric coefficient

εΓ(x) =

ε− if x ∈ Ω−

ε+ if x ∈ Ω+

8R

Γ: r=u(z)

LOz

Ω_

Ω+

r

Page 26: The Poisson–Boltzmann Theory and Variational Implicit ...bli/presentations/PBE_UCSB_March2013.pdf · JCP 2007 & 2009, JCTC 2009, 2012, & 2013, PRL 2009, J. Comput. Phys. 2010. OUTLINE

Equivalent elliptic interface problem (ψ = ψΓ)

ε−∆ψ = −f in Ω−

ε+∆ψ = −f in Ω+

JψK = 0 on Γ

JεΓ∂nψK = 0 on Γ

ψ = ψ(r , z) is L-periodic in z

ψ(R∞, z) = 0 ∀z ∈ R

Notation: JwK = w |Ω+ − w |Ω−.

Page 27: The Poisson–Boltzmann Theory and Variational Implicit ...bli/presentations/PBE_UCSB_March2013.pdf · JCP 2007 & 2009, JCTC 2009, 2012, & 2013, PRL 2009, J. Comput. Phys. 2010. OUTLINE

Consider the electrostatic energy

E [Γ] =

Ω

1

2f ψΓ dV

∇ · εΓ∇ψΓ = −f in Ω

ψΓ = 0 on r = R∞

Assume n points from Ω− to Ω+. Then

δΓE [Γ] =1

2

(

1

ε−− 1

ε+

)

|εΓ∇ψΓ · n|2 +1

2(ε+ − ε−) |(I − n ⊗ n)∇ψΓ|2

=1

2

(

1

ε−− 1

ε+

)

[εΓ (ψr − u′ψz)]2

1 + u′2+

1

2(ε+ − ε−)

(u′ψr + ψz)2

1 + u′2

Page 28: The Poisson–Boltzmann Theory and Variational Implicit ...bli/presentations/PBE_UCSB_March2013.pdf · JCP 2007 & 2009, JCTC 2009, 2012, & 2013, PRL 2009, J. Comput. Phys. 2010. OUTLINE

Steepest descent: Vn = −δΓF [Γ]

ut = γ0

(

uzz

1 + u2z− 1

u

)

− 1

2

(

1

ε−− 1

ε+

)

[

εΓ(t) (ψr − uzψz)]2

1 + u2z

− 1

2(ε+ − ε−)

(uzψr + ψz)2

1 + u2z∀(z , t) ∈ (−∞,∞)× (0,T ]

u(z , t) is L-periodic in z for each t ∈ [0,T ]

u(z , 0) is given for all z ∈ (−∞,∞)

∇ · εΓ(t)∇ψ = −f in Ω

ψ(r , z , t) is L-periodic in z for each (r , t) ∈ [0,R∞)× [0,T ]

ψ(R∞, z , t) = 0 ∀(z , t) ∈ (−∞,∞)× [0,T ]

Page 29: The Poisson–Boltzmann Theory and Variational Implicit ...bli/presentations/PBE_UCSB_March2013.pdf · JCP 2007 & 2009, JCTC 2009, 2012, & 2013, PRL 2009, J. Comput. Phys. 2010. OUTLINE

Linear Stability Analysis for the Case ε− > ε+

8R

Γ: r=u(z)

LO

x

y

zΩ_

Ω+

Water molecules deep in a protein.

Competition: surface energy vs. electrostatic energy.

Stability of an equilibrium dielectric boundary.

Page 30: The Poisson–Boltzmann Theory and Variational Implicit ...bli/presentations/PBE_UCSB_March2013.pdf · JCP 2007 & 2009, JCTC 2009, 2012, & 2013, PRL 2009, J. Comput. Phys. 2010. OUTLINE

Step 1. Steady-state solutions: u = u0 and ψ = ψ0(r).

u0 =1

η0

(∫ u0

0sf (s) ds

)2

ψ0(r) =

− 1

ε−

∫ r

0

[

1

s

∫ s

0τ f (τ) dτ

]

ds + C2 if r < u0

− 1

ε+

∫ r

u0

[

1

s

∫ s

u0

τ f (τ) dτ

]

ds + C3 log r + C4 if r > u0

C2 − C3 log u0 − C4 =1

ε−

∫ u0

0

[

1

s

∫ s

0τ f (τ) dτ

]

ds

C3 = − 1

ε+

∫ u0

0sf (s) ds

C3 logR∞ + C4 =1

ε+

∫ R∞

u0

[

1

s

∫ s

u0

τ f (τ) dτ

]

ds

η = 2γ0

(

1

ε+− 1

ε−

)

−1

> 0 and ηR∞ <

(∫ R∞

0sf (s) ds

)2

Page 31: The Poisson–Boltzmann Theory and Variational Implicit ...bli/presentations/PBE_UCSB_March2013.pdf · JCP 2007 & 2009, JCTC 2009, 2012, & 2013, PRL 2009, J. Comput. Phys. 2010. OUTLINE

Step 2. Linearization.

u = u(z , t, τ) = u0 + τu1(z , t) + · · · ,ψ = ψ(r , z , t, τ) = ψ0(r) + τψ1(r , z , t) + · · · ,u(z , 0, τ) = u0 + τu1(z , 0).

∂tu1 = γ0∂2zu1 +

[

γ0u20

−(

1

ε−− 1

ε+

)

ε2+ψ′

0(u+0 )ψ

′′

0(u+0 )

]

u1

−(

1

ε−− 1

ε+

)

ε2+ψ′

0(u+0 )∂rψ1(u

+0 , z , t) ∀z , t,

∆ψ1 = 0 if 0 < r < u0,

∆ψ1 = 0 if u0 < r < R∞,

ψ1(u+0 , z , t)− ψ1(u

0 , z , t) = −u1(z , t)[

ψ′

0(u+0 )− ψ′

0(u−

0 )]

∀z , t,ε−∂rψ1(u

0 , z , t) = ε+∂rψ1(u+0 , z , t) ∀z , t,

ψ1(R∞, z , t) = 0 ∀z , t.

Page 32: The Poisson–Boltzmann Theory and Variational Implicit ...bli/presentations/PBE_UCSB_March2013.pdf · JCP 2007 & 2009, JCTC 2009, 2012, & 2013, PRL 2009, J. Comput. Phys. 2010. OUTLINE

Step 3. Dispersion relations.

Assume

u1(z , t) = Aeωte ikz with k = 2πk ′/L, k ′ ∈ Z,

ψ1(r , z , t) = u1(z , t)φk(r).

Then the dispersion relation ω = ω(k) is given by

ω = −γ0k2 +γ0u20

−(

1

ε−− 1

ε+

)

ε2+ψ′

0(u+0 )

[

ψ′′

0(u+0 ) + φ′k(u

+0 )

]

,

φ′′k(r) +1

rφ′k(r)− k2φk(r) = 0 if 0 < r < u0,

φ′′k(r) +1

rφ′k(r)− k2φk(r) = 0 if u0 < r < R∞,

φk(u+0 )− φk(u

0 ) = −[

ψ′

0(u+0 )− ψ′

0(u−

0 )]

,

ε−φ′

k(u−

0 ) = ε+φ′

k(u+0 ),

φk(R∞) = 0.

Page 33: The Poisson–Boltzmann Theory and Variational Implicit ...bli/presentations/PBE_UCSB_March2013.pdf · JCP 2007 & 2009, JCTC 2009, 2012, & 2013, PRL 2009, J. Comput. Phys. 2010. OUTLINE

The modified Bessel differential equation

x2y ′′(x) + xy ′(x)− x2y(x) = 0.

The modified Bessel functions

I0(x) =∞∑

s=0

1

(s!)2

(x

2

)2sand K0(x) =

0

cos(xs)√1 + s2

ds.

φk(r) =

µε+[

ψ′

0(u+0 )− ψ′

0(u−

0 )]

I0(kr)[

K0(kR∞)I ′0(ku0)− I0(kR∞)K ′

0(ku0)]

if 0 < r < u0,

µε−[

ψ′

0(u+0 )− ψ′

0(u−

0 )]

I ′0(ku0)

[K0(kR∞)I0(kr)− I0(kR∞)K0(kr)] if u0 < r < R∞,

1

µ= ε−I1(ku0) [I0(kR∞)K0(ku0)− I0(ku0)K0(kR∞)]

+ ε+I0(ku0) [I1(ku0)K0(kR∞) + I0(kR∞)K1(ku0)] .

ω(k) = −γ0k2 +γ0u20

−(

1

ε−− 1

ε+

)

ε2+ψ′

0(u+0 )

[

ψ′′

0(u+0 ) + φ′k(u

+0 )

]

Page 34: The Poisson–Boltzmann Theory and Variational Implicit ...bli/presentations/PBE_UCSB_March2013.pdf · JCP 2007 & 2009, JCTC 2009, 2012, & 2013, PRL 2009, J. Comput. Phys. 2010. OUTLINE

1 2 3 4 5k

-1.5

-1.0

-0.5

0.5

Ω2

Ω1

Ω

ω(k) = ω1(k) + ω2(k)

ω1(k) = −(

1

ε−− 1

ε+

)

ε2+ψ′

0(u+0 )

[

ψ′′

0(u+0 ) + φ′k(u

+0 )

]

ω2(k) = −γ0k2 +γ0u20

Conclusions: linearly stable if and only if k > kc .

Page 35: The Poisson–Boltzmann Theory and Variational Implicit ...bli/presentations/PBE_UCSB_March2013.pdf · JCP 2007 & 2009, JCTC 2009, 2012, & 2013, PRL 2009, J. Comput. Phys. 2010. OUTLINE

Numerical results: The case ε− < ε+

0 π

2π 3π

22π

1.5

1.6

1.7

1.8

1.9

2

2.1

z

r

t = 0

t = 1

t = 32

t = 12

ε− = 2, ε+ = 80, and u(z , 0) = 2.025 + 0.1 sin(5z).

Page 36: The Poisson–Boltzmann Theory and Variational Implicit ...bli/presentations/PBE_UCSB_March2013.pdf · JCP 2007 & 2009, JCTC 2009, 2012, & 2013, PRL 2009, J. Comput. Phys. 2010. OUTLINE

Numerical results: The case ε− > ε+

0 1 2 3 4 5 6

1.342

1.344

1.346

1.348

1.35

1.352

1.354

1.356

1.358

1.36

t = 0

t = 2

t = 4

t = 6

z

r

ε− = 80, ε+ = 2, u0 ≈ 1.35,, u(z , 0) = u0 + 10−3 sin z , k = 1 andω(k) > 0.

Page 37: The Poisson–Boltzmann Theory and Variational Implicit ...bli/presentations/PBE_UCSB_March2013.pdf · JCP 2007 & 2009, JCTC 2009, 2012, & 2013, PRL 2009, J. Comput. Phys. 2010. OUTLINE

0 1 2 3 4 5 6

1.349

1.3495

1.35

1.3505

1.351

1.3515

t = 0

0 1 2 3 4 5 6

1.349

1.3495

1.35

1.3505

1.351

1.3515

t = 10

0 1 2 3 4 5 6

1.349

1.3495

1.35

1.3505

1.351

1.3515

t = 20

0 1 2 3 4 5 6

1.349

1.3495

1.35

1.3505

1.351

1.3515

t = 30

u(z , 0) = u0 + 10−3 sin(5z), k = 5 and ω(k) < 0.

Page 38: The Poisson–Boltzmann Theory and Variational Implicit ...bli/presentations/PBE_UCSB_March2013.pdf · JCP 2007 & 2009, JCTC 2009, 2012, & 2013, PRL 2009, J. Comput. Phys. 2010. OUTLINE

0 2 4 6 8 10 12 14 16 18 20−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x 10−3

Time

Cha

nge

in e

nerg

y

Electrostatic energy Surface energy Total energy

u(z , 0) = u0 + 10−3 sin(5z), k = 5 and ω(k) < 0.

Page 39: The Poisson–Boltzmann Theory and Variational Implicit ...bli/presentations/PBE_UCSB_March2013.pdf · JCP 2007 & 2009, JCTC 2009, 2012, & 2013, PRL 2009, J. Comput. Phys. 2010. OUTLINE

0 2 4 60

1

2

3

Init ial inter face u(z ) = u 0 + ǫ

0 2 4 60

1

2

3

Init ial inter face u(z ) = u 0 − ǫ

t = 30

t = 27

t = 16u 0u 0 t = 16

t = 27

t = 25

z z

rr

u(z , 0) = u0 + 10−3 u(z , 0) = u0 − 10−3

Page 40: The Poisson–Boltzmann Theory and Variational Implicit ...bli/presentations/PBE_UCSB_March2013.pdf · JCP 2007 & 2009, JCTC 2009, 2012, & 2013, PRL 2009, J. Comput. Phys. 2010. OUTLINE

5. Discussions

(1) Validity of the PB theory.

∆ψ = V ′(ψ) inside walls/outside balls

ψ = const. on the walls

ψ = const. on bdry of balls

V ′′ > 0 and V ′(0) = 0

The electrostatic surface force is given by

F =1

2

∂(balls)(∂nψ)

2n dS

F · the unit horizontal vector toward the center < 0.

PBE does not predict the like-charge attraction.

Page 41: The Poisson–Boltzmann Theory and Variational Implicit ...bli/presentations/PBE_UCSB_March2013.pdf · JCP 2007 & 2009, JCTC 2009, 2012, & 2013, PRL 2009, J. Comput. Phys. 2010. OUTLINE

(2) The competition between the surface and electrostaticenergies, crucial in hydrophobic interactions.

Given f : R3 → R. In the large-εw limit modeling a perfectconducting solvent, one considers the energy functional

E [Ω] = Area (∂Ω) +

Ω

Ω

f (x)f (y)

|x − y | dxdy .

It is expected that E does not have a minimizer.

The motion of a boundary driven by the mean curvature andthe dielectric boundary force: Well-posedness? Singularityformation?

Fluctuation of a dielectric boundary.

Page 42: The Poisson–Boltzmann Theory and Variational Implicit ...bli/presentations/PBE_UCSB_March2013.pdf · JCP 2007 & 2009, JCTC 2009, 2012, & 2013, PRL 2009, J. Comput. Phys. 2010. OUTLINE

(3) The Poisson–Nernst–Planck system.

∂ci∂t

−∇ · [Di (∇ci + βqici∇ψ)] = 0, i = 1, . . . ,M,

∇ · ε∇ψ = −M∑

i=1

qici .

Formally, Boltzmann distributions ci = c∞i e−βqiψ

(i = 1, . . . ,M) are steady-state solutions. Boundaryconditions?

Energy decay and bounds on concentration.

Consider the boundary conditions ci = 0 on ∂Ω for some i

and estimate the reaction rates

Ri =1

c∞i

∂Ω

∂ci∂n

dS .

Page 43: The Poisson–Boltzmann Theory and Variational Implicit ...bli/presentations/PBE_UCSB_March2013.pdf · JCP 2007 & 2009, JCTC 2009, 2012, & 2013, PRL 2009, J. Comput. Phys. 2010. OUTLINE

Thank you!


Recommended