+ All Categories
Home > Documents > Theory of Optical Waveguides-A

Theory of Optical Waveguides-A

Date post: 03-Jun-2018
Category:
Upload: biko5555
View: 237 times
Download: 1 times
Share this document with a friend

of 18

Transcript
  • 8/13/2019 Theory of Optical Waveguides-A

    1/18

    1

    Lih Y. Lin

    EE 539B1a-

    EE 539B

    Integrated Optics and Nanophotonics

    1 Theory of Optical Waveguides1.1 Modes in planar waveguides

    1.2 Ray-optic approach to optical waveguidetheory

    Guided-wave Optoelectronics, T. Tamir, ed., Sec. 2-1, Springer Verlag.

    Integrated Optics, by R. G. Hunsperger, Chapter 2, Springer Verlag.

  • 8/13/2019 Theory of Optical Waveguides-A

    2/18

    2

    Lih Y. Lin

    EE 539B1a-

    E-M Field in a Planar Waveguide

    Warm-up question: What kind of structure can be a waveguide?

    Assuming a monochromatic wave propagating in z-direction:tjzjtj eeyxet == ),()(),( ErErE

    (We will deal with some Maxwells

    equations, but dont be afraid of this.)0)()()( 222 =+ rErrE nk

    Region I:

    0),()(),( 2222

    2

    2

    =+

    yxEnkyxE

    x

    0),()(),( 2212

    2

    2=+

    yxEnkyxEx

    Region II:

    0),()(),( 2232

    2

    2

    =+ yxEnkyxEx

    Region III:

  • 8/13/2019 Theory of Optical Waveguides-A

    3/18

    3

    Lih Y. Lin

    EE 539B1a-

    Modes in a Planar Waveguide

    Modal solutions are sinusoidal or exponential, depending on the sign of )( 222 inkBoundary conditions:

    x

    yxEyxE

    ),(and),(

    132 nn >>

    must be continuous at the interface between layers.

    Assuming n , lets draw possible waveguide modes:

    kn3 kn2kn10x

    n1

    n2

    n3

    (The technique you learned from solving optical waveguide modes can be applied

    to the design of many photonic components.)

  • 8/13/2019 Theory of Optical Waveguides-A

    4/184

    Lih Y. Lin

    EE 539B1a-

    Guided Modes in a Planar Waveguide

    Examples of guided modes in a symmetrical waveguide.

    m: Mode order

    Q: How to define the mode order?

    Only discrete values of are allowed in a waveguide.(This is the center of the optical waveguide theory.)

  • 8/13/2019 Theory of Optical Waveguides-A

    5/185

    Lih Y. Lin

    EE 539B1a-

    Experimental Observation of Waveguide Modes

    Q1: How to choose the laser wavelength?

    Q2: How to create different modes?

    Q3: How to measure the modal profile?

    Q4: How to tell which side is air, which side is the substrate?

  • 8/13/2019 Theory of Optical Waveguides-A

    6/186

    Lih Y. Lin

    EE 539B1a-

    Do things in simple ways first.

    Geometrical optics.

  • 8/13/2019 Theory of Optical Waveguides-A

    7/187

    Lih Y. Lin

    EE 539B1a-

    Ray Patterns in the

    Three-Layer Planar Waveguide

    Remember that only discrete values of are allowed. How to solve for allowable ?Step 1:

    Determine the relation between and the angle of the optical ray. Different modeshave different angles.

    )sin( + hxE 22

    222 nkh =+

    For the m-th mode,

    =

    m

    m

    h1tan

    Overall

    propagation

    constant

    Propagation constant in z

    Propagation constant in x

    In the guided region,

    Lower-order mode has smaller m and larger m.

  • 8/13/2019 Theory of Optical Waveguides-A

    8/188

    Lih Y. Lin

    EE 539B1a-

    Ray Patterns for Different Modes

    2

    2

    11

    2

    12 sinsin

    n

    n

    kn

    =

    2

    312 sin

    nn

    2

    32

    2

    1 sinnn

    nn

    kn3

    kn2

    kn10 Higher-order

    Lower-order

  • 8/13/2019 Theory of Optical Waveguides-A

    9/189

    Lih Y. Lin

    EE 539B1a-

    Reflection and Refraction

    2211

    2211

    coscos

    coscos

    +

    =nn

    nnrTE TETE rt +=1

    1213 , tEErEE ==

    Step 2:

    Determine phase changes at the interfaces.

    For TE wave:

    )exp(||,)exp(|| TMTMTMTETETE jrrjrr ==2112

    2112

    coscos

    coscos

    +

    =nn

    nnrTM )1(

    2

    1TMTM r

    n

    nt +=For TM wave:

    Phase change accompanies reflection.

    Ref: Saleh and Teich, Fundamental of Photonics, Sec. 6-2.

  • 8/13/2019 Theory of Optical Waveguides-A

    10/1810

    Lih Y. Lin

    EE 539B1a-

    Total Internal Reflection for TE Wave

    11

    221

    221

    1

    21

    2

    cos

    sin

    cos

    sinsin

    2tan

    =

    =

    n

    nncTE

    2

  • 8/13/2019 Theory of Optical Waveguides-A

    11/1811

    Lih Y. Lin

    EE 539B1a-

    Total Internal Reflection for TM Wave

    11

    221

    221

    22

    21

    21

    21

    2

    cos

    sin

    sincos

    sinsin

    2tan

    =

    =

    n

    nn

    n

    n

    c

    cTM

  • 8/13/2019 Theory of Optical Waveguides-A

    12/1812

    Lih Y. Lin

    EE 539B1a-

    Dispersion Equation

    Transverse resonance condition:

    = mhkn scf 222cos2coshknf

    )(2 ,TMTEc =

    )(2 ,TMTEs =

    m

    Dispersion equation ( vs. ):

    = mhkn scf cos

    Step 3:

    Define transverse resonance condition.

    : mode number

    : phase shift for the transverse passage through the film

    : phase shift due to total internal reflection from film/cover interface

    : phase shift due to total internal reflection from film/substrate interface

    Solve for .

    = sinfnkN fs nNn

  • 8/13/2019 Theory of Optical Waveguides-A

    13/1813

    Lih Y. Lin

    EE 539B1a-

    Graphical Solution of the Dispersion Equation

    Symmetrical waveguide, s = c

    Asymmetrical waveguide, s c

    For fundamental mode (m = 0), there is always a solution (no cut-off) for symmetrical waveguide.

    Increasing h (and/or decreasing ) will support more modes.

  • 8/13/2019 Theory of Optical Waveguides-A

    14/18

    14

    Lih Y. Lin

    EE 539B1a-

    Typical diagram

    Cut-off

    knfkns

    Lower-order

    Higher-order

  • 8/13/2019 Theory of Optical Waveguides-A

    15/18

    15

    Lih Y. Lin

    EE 539B1a-

    Numerical Solution for Dispersion Relation (I)

    Define:Normalized frequency and film thickness

    22sf nnkhV

    22

    22

    sf

    s

    nn

    nNb

    Normalized guide index

    b = 0 at cut-ooff (N = ns), and approaches 1 as N nf.

    Measure for the asymmetry

    TMforTE,for22

    22

    4

    4

    22

    22

    sf

    cs

    c

    f

    sf

    cs

    nn

    nn

    n

    na

    nn

    nna

    a = 0 for perfect symmetry (ns = nc), and a approaches infinity for strong asymmetry (ns nc, ns ~ nf).

  • 8/13/2019 Theory of Optical Waveguides-A

    16/18

    16

    Lih Y. Lin

    EE 539B1a-

    Numerical Solution for Dispersion Relation (II)

    For TE modes, dispersion relation

    b

    ab

    b

    bmbV

    +

    +

    += 1

    tan1

    tan1 11= mhkn scf cos

    m= : Mode number(Normalized) cut-off frequency:

    +=

    =

    mVV

    aV

    m 0

    10 tan

    # of guided modes allowed:

    222sf nn

    hm

    =

    AlGaAs/GaAs/AlGaAs double heterostructure

    n = 3.55/3.6/3.55

  • 8/13/2019 Theory of Optical Waveguides-A

    17/18

    17

    Lih Y. Lin

    EE 539B1a-

    The Goos-Hnchen Shift

    =

    d

    dz ss

    = tan)( 2/122 ss nNkz

    +

    =

    1

    tan)(

    2

    2

    2

    2

    2/122

    fs

    ss

    n

    N

    n

    N

    nNkz

    For TE modes

    For TM modes

    The lateral ray shift indicates a penetration depth:

    = tans

    s zx

  • 8/13/2019 Theory of Optical Waveguides-A

    18/18

    18

    Lih Y. Lin

    EE 539B1a-

    Effective Waveguide Thickness

    Effective thickness:

    cseff xxhh ++=

    Normalized effective thickness:

    22sfeff nnkhH

    For TE modes:

    abbVH

    +++=

    11

    Minimum H Maximum confinement

    Effective waveguide thickness cannot be zero,

    even for symmetrical waveguide (a = 0).

    Example:

    Sputtered glass, ns = 1.515, nf= 1.62,nc = 1, a = 3.9


Recommended