+ All Categories
Home > Documents > (Thermal performance of multi micro channel PCHE)

(Thermal performance of multi micro channel PCHE)

Date post: 12-Jun-2022
Category:
Upload: others
View: 12 times
Download: 0 times
Share this document with a friend
30
다중 마이크로 채널 PCHE열전달 성능 다중 마이크로 채널 PCHE열전달 성능 (Thermal performance of multi micro channel PCHE) 정상권 김진혁 백승환 정상권 , 김진혁, 백승환 Cryogenic engineering laboratory, KAIST
Transcript
Page 1: (Thermal performance of multi micro channel PCHE)

다중 마이크로 채널 PCHE의 열전달 성능다중 마이크로 채널 PCHE의 열전달 성능

(Thermal performance of multi micro channel PCHE)

정상권 김진혁 백승환정상권, 김진혁, 백승환

Cryogenic engineering laboratory, KAIST

Page 2: (Thermal performance of multi micro channel PCHE)

Contents

I t d tiIntroduction

Proposed PCHE

Experimental apparatus

Experimental results

M lti h l PCHEMulti channel PCHE

Design modification

Conclusion

Page 2

Page 3: (Thermal performance of multi micro channel PCHE)

Introduction

PCHE : Printed Circuit Heat ExchangerChemical etching& Diffusion bonding(typically)

Type Channel Size Area Density

Shell & Tube 10-50 mm 100 m2/m3

Plate 5 mm 200 m2/m3

Plate fin 2 mm 1000 m2/m3Plate-fin 2 mm 1000 m2/m3

PCHE 1 mm 2000 m2/m3

Page 3

Page 4: (Thermal performance of multi micro channel PCHE)

PCHE fabrication

Easy fabrication process of PCHEEasy fabrication process of PCHE

Page 4

Page 5: (Thermal performance of multi micro channel PCHE)

Potential applications of PCHE

• Offshore LNG industryOffshore LNG industry

(LNG-FPSO)

C i li f ti l t• Cryogenic liquefaction plant

• Cryogenic refrigerator

• Space equipments

• Nuclear reactorCourtesy of Linde

Courtesy of Linde

• Chemical reactorsCourtesy of Linde

Page 5

Page 6: (Thermal performance of multi micro channel PCHE)

Conventional PCHE

Page 6

Page 7: (Thermal performance of multi micro channel PCHE)

Newly proposed PCHE interlayer mixing possible !

Bypass hole215

(b) Stacked plates

21516

00 5060

(a) Drawing (c) Flow channel configuration

Inclination angle

Page 7

(a) Drawing (c) Flow channel configuration

Page 8: (Thermal performance of multi micro channel PCHE)

Proposed PCHE : Dimensional parameters

DepthDepth

Etching depth

Etching width

Etching angle

Number of plates

Width

depth width angle plates

PCHE 1 26 μm 55 μm 45o 250

PCHE 2 26 μm 55 μm 45o 500μ μ

PCHE 3 200 μm 400 μm 30o 10

PCHE 4 200 μm 400 μm 45o 10

PCHE 5 200 μm 400 μm 60o 10

Page 8

Page 9: (Thermal performance of multi micro channel PCHE)

Proposed PCHE : Plates

Page 9

Page 10: (Thermal performance of multi micro channel PCHE)

Proposed PCHE : Transverse Bypass (CR)

Transverse bypass installation inside heat exchanger to alleviate flow mal distribution problemflow mal-distribution problemCross type (CR) transverse bypass– Fluid must go upper channel or lower channel at transverse bypass– Fluid must go upper channel or lower channel at transverse bypass.– Fluid ‘cannot’ go straight.

TransverseBypass

TransverseBypass

TOP

Bypass Bypass

Hot fluid in

BOTTOM

Cold fluid in

Page 10

BOTTOM

Vertical cross-section of stacked plates of the PCHE

Page 11: (Thermal performance of multi micro channel PCHE)

Proposed PCHE : Transverse Bypass (UC)

Uncross type (UC) transverse bypassUncross type (UC) transverse bypass– Fluid can go two upper layers or two lower layers at transverse bypass.– Most fluid can go straight.

TOP

TransverseBypass

TransverseBypass

TOP

Hot fluid in

Cold fluid in

BOTTOM

Page 11Vertical cross-section of stacked plates of the PCHE

Page 12: (Thermal performance of multi micro channel PCHE)

Experimental Apparatus

(a) For 80~300 K (b) For 30~80 K

Page 12

(a) For 80 300 K (b) For 30 80 K

Page 13: (Thermal performance of multi micro channel PCHE)

Experimental results : Pressure drop (1)

PCHE 1&2 (Dh=40x10-6m)

6

7 PCHE 1(250 layer)PCHE 2(500 layer)

40 PCHE 1(250 layer)PCHE 2(500 layer)

4

5

6 ( y )

(bar

)

810

20PCHE 2(500 layer)

or

2

3

4

ress

ure

loss

4

68

Fric

tion

fact

o0

1

2Pr

1

2

0.0 0.5 1.0 1.5 2.0 2.5 3.00

Mass flow rate (kg/s)1 2 4 6 8 10 20 40 60 80100

1

Re

Page 13

Page 14: (Thermal performance of multi micro channel PCHE)

Experimental results : Pressure drop (2)

PCHE 3-5 (Dh=250x10-6m)

6

7 PCHE 3(30o)PCHE 4(45o) 4

6

4

5

6 PCHE 4(45 ) PCHE 5(60o)

(bar

)

1

2

tor

2

3

4

ress

ure

loss

0.4

0.60.8

1

Fric

tion

fact

0

1

2Pr

0 1

0.2 PCHE 3(30o) PCHE 4(45o) PCHE 5(60o)

0.0 0.5 1.0 1.5 2.0 2.5 3.00

Mass flow rate (g/s)60 80 100 200 400 600 800

0.1

Re

Page 14

Page 15: (Thermal performance of multi micro channel PCHE)

CFD Simulation : Modeling

Simulation result comparison with experimental data

b ANSYS CFD V 12 (F UENT)

Page 15

by ANSYS CFD V.12 (FLUENT)

Page 16: (Thermal performance of multi micro channel PCHE)

CFD Simulation : Results

PCHE 1&2 (D =40x10-6m) PCHE 3 5 (D =250x10-6m)40

Exp.(PCHE 1)Exp.(PCHE 2)

2

PCHE 1&2 (Dh=40x10 6m) PCHE 3-5 (Dh=250x10 6m)

810

20p ( )

Cal.

or 0.6

0.8

1

or

4

68

Fric

tion

fact

o

0.4

Fric

tion

fact

o

Exp. (PCHE 3,30o)

20.2

p ( ) Exp. (PCHE 4,45o) Exp. (PCHE 5,60o) CFD (PCHE 3,30o) CFD (PCHE 4,45o

CFD (PCHE 5,60o)

1 2 4 6 8 10 20 40 60 801001

Re200 300 400 500 600 700 800 900 1000

0.1

Re

CFD (PCHE 5,60 )

Page 16

Page 17: (Thermal performance of multi micro channel PCHE)

CFD Simulation : Case study

Various diameters Various inclination angle

4060

20

40

Various diameters Various inclination angle

468

10

20

ctor 4

68

10

20

ctor

0.60.8

1

2

4

Fric

tion

fac

Dh=20X10-6m

Dh=40X10-6m

D 80X10-60.60.8

1

2

Fric

tion

fac

β=15o

β=30o

1 2 4 6 8 10 20 40 60 80100 2000.1

0.2

0.4Dh=80X10 6m

Dh=120X10-6m

Dh=160X10-6m

1 2 4 6 8 10 20 40 60 80100 2000.1

0.2

0.4β

β=45o

β=60o

β=75o

1 2 4 6 8 10 20 40 60 80100 200

Reynolds number

1 2 4 6 8 10 20 40 60 80100 200

Reynolds number954.0964.0663.0 Re)()(129 −−=

hr

h

rcor D

Dfββ

Page 17

hrrβ)150Re,1040,101601020,45,7515( 555 ≤×=×≤≤×=≤≤ −−− mDmDm hrh

orββ

Page 18: (Thermal performance of multi micro channel PCHE)

Thermal performance model

Simple counter flow heat exchanger

( )[ ] ⎫⎧ ++=−

λNTU1λNTU/λ11ε1

1/2

Th,in

T t ( )[ ]⎭⎬⎫

⎩⎨⎧

+++

+λNTU1

λNTU1λNTU/λ1NTU1

/ LkA U A

Tc,out

empe

ratu

re

( )minp

cond /λcm

LkA&

= 0NTU U AC

=

1 1 1R

Th,out

Te

,0 ,0

1 1 1cond

h HT c HT

RUA h A h A

= + +

Nu 1T T

HEX direction

Tc,in

HeNu

H

hA kD

= 1

SUS

Rk S

=, ,

, ,

c out c in

h in c in

T TT T

ε−

=−

Page 18

Page 19: (Thermal performance of multi micro channel PCHE)

Axial conduction in PCHE

HOT Ch l flHeat Exchanger body

HOT Channel flow

Heat transfer through BODY(Axial Conduction)

Hot environment

ColdEnvironment

Heat transfer between Fluid

(NTU)

COLD Ch l FlCOLD Channel Flow

Page 19

Page 20: (Thermal performance of multi micro channel PCHE)

Experimental results : Ineffectiveness (1)

at 80~300 K

0.100.10

PCHE 1 (250 layers) PCHE 2 (500 layers)

0.08

s

1-ε : 500 layered exp. 1-ε : 500 layered est. 1/(1+NTU) : 500 layered est. λ : 500 layered est.

0.08

ss

1-ε : 250 layered exp. 1-ε : 250 layered est. 1/(1+NTU) : 250 layered est. λ : 250 layered est.

0.04

0.06

effe

ctiv

enes

s

0.04

0.06

effe

ctiv

enes

0.02

Ine

0.02

In

0.0 0.5 1.0 1.5 2.0 2.5 3.00.00

Helium Mass flow rate (g/s)0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.00

Helium Mass flow rate (g/s)

Page 20

Page 21: (Thermal performance of multi micro channel PCHE)

Experimental results : Ineffectiveness (2)

at 30~80 K

PCHE 1 (250 layers) PCHE 2 (500 layers)

0.10 0.10

0.08

ss

1-ε : 250 layered exp. 1-ε : 250 layered est. 1/(1+NTU) : 250 layered est. λ : 250 layered est.

0.08

ss

1-ε : 500 layered exp. 1-ε : 500 layered est. 1/(1+NTU) : 500 layered est. λ : 500 layered est.

0.04

0.06

neffe

ctiv

enes

0.04

0.06

neffe

ctiv

enes

0.02

In

0.02

In

0.0 0.5 1.0 1.5 2.0 2.5 3.00.00

Helium Mass flow rate (g/s)0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.00

Helium Mass flow rate (g/s)

Page 21

Page 22: (Thermal performance of multi micro channel PCHE)

Multi channel PCHE : Proposed design

3stream with 2 types of plates

Page 22

Page 23: (Thermal performance of multi micro channel PCHE)

Multi channel PCHE : Photo of fabricated PCHE

Etched plates PCHE

Page 23

Page 24: (Thermal performance of multi micro channel PCHE)

Multi channel PCHE : Thermal performance

0.20

0.16

0.18Exp.

Cal. λ1/(1+NTU)

0.12

0.14( )

ss (1

-ε)

0 06

0.08

0.10

effe

ctiv

enes

0 02

0.04

0.06

Ine

0.0 0.5 1.0 1.5 2.0 2.50.00

0.02

Mass flow rate (g/s)

Page 24

Mass flow rate (g/s)

Page 25: (Thermal performance of multi micro channel PCHE)

Design modification : Concept

5 mm -> 3 mm

To reduce axial conduction area

5 mm -> 3 mm

Page 25

Wire-cutting

Page 26: (Thermal performance of multi micro channel PCHE)

Design modification : Concept

Axial conduction area can be remarkably reduced

Page 26

Page 27: (Thermal performance of multi micro channel PCHE)

Design modification : Weak points

weak points

Unnecessary zone

Page 27

27

Page 28: (Thermal performance of multi micro channel PCHE)

Design modification : Half etching

Half etching for week pointHalf etching for week pointflow area

half etching

Increase in pressure drop -> negligible !

Page 28

Page 29: (Thermal performance of multi micro channel PCHE)

Design modification : Thermal performance

Axial conduction can be ignored!

0 09

0.10calculation

Axial conduction can be ignored!

0.07

0.08

0.09 1/(1+ntu) λ

0.05

0.06

ctiv

enes

s

0.02

0.03

0.04

Inef

fec

0 0 0 5 1 0 1 5 2 0 2 5 3 00.00

0.01

0.02

Page 29

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Mass flow rate (g/s)

Page 30: (Thermal performance of multi micro channel PCHE)

Conclusion

Newly type (flow configuration) PCHEs are proposed.

Pressure drop characteristics are validated with CFD simulationPressure drop characteristics are validated with CFD simulation.

Heat transfer characteristics are highly affected by axial conduction at low Re.

PCHE design was modified for reducing axial conduction using wire-cutting.

Page 30


Recommended