+ All Categories
Home > Documents > Thermal Volcano

Thermal Volcano

Date post: 26-Feb-2018
Category:
Upload: camilo-esteban-munoz-zapata
View: 224 times
Download: 0 times
Share this document with a friend

of 5

Transcript
  • 7/25/2019 Thermal Volcano

    1/5

    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/248811337

    Thermal survey of Mount Etna Volcano fromspace

    ARTICLE in GEOPHYSICAL RESEARCH LETTERS APRIL 1992

    Impact Factor: 4.2 DOI: 10.1029/92GL00580

    CITATIONS

    19

    READS

    34

    2 AUTHORS, INCLUDING:

    Alain Bonneville

    Pacific Northwest National Laboratory

    113PUBLICATIONS 1,359CITATIONS

    SEE PROFILE

    All in-text references underlined in blueare linked to publications on ResearchGate,

    letting you access and read them immediately.

    Available from: Alain Bonneville

    Retrieved on: 13 January 2016

    https://www.researchgate.net/?enrichId=rgreq-8af148f3-6781-4508-aac0-f20b1571461b&enrichSource=Y292ZXJQYWdlOzI0ODgxMTMzNztBUzo5ODU0MDgyMjk5MDg1NEAxNDAwNTA1MzcxMTgx&el=1_x_1https://www.researchgate.net/profile/Alain_Bonneville?enrichId=rgreq-8af148f3-6781-4508-aac0-f20b1571461b&enrichSource=Y292ZXJQYWdlOzI0ODgxMTMzNztBUzo5ODU0MDgyMjk5MDg1NEAxNDAwNTA1MzcxMTgx&el=1_x_7https://www.researchgate.net/institution/Pacific_Northwest_National_Laboratory?enrichId=rgreq-8af148f3-6781-4508-aac0-f20b1571461b&enrichSource=Y292ZXJQYWdlOzI0ODgxMTMzNztBUzo5ODU0MDgyMjk5MDg1NEAxNDAwNTA1MzcxMTgx&el=1_x_6https://www.researchgate.net/profile/Alain_Bonneville?enrichId=rgreq-8af148f3-6781-4508-aac0-f20b1571461b&enrichSource=Y292ZXJQYWdlOzI0ODgxMTMzNztBUzo5ODU0MDgyMjk5MDg1NEAxNDAwNTA1MzcxMTgx&el=1_x_5https://www.researchgate.net/profile/Alain_Bonneville?enrichId=rgreq-8af148f3-6781-4508-aac0-f20b1571461b&enrichSource=Y292ZXJQYWdlOzI0ODgxMTMzNztBUzo5ODU0MDgyMjk5MDg1NEAxNDAwNTA1MzcxMTgx&el=1_x_4https://www.researchgate.net/?enrichId=rgreq-8af148f3-6781-4508-aac0-f20b1571461b&enrichSource=Y292ZXJQYWdlOzI0ODgxMTMzNztBUzo5ODU0MDgyMjk5MDg1NEAxNDAwNTA1MzcxMTgx&el=1_x_1https://www.researchgate.net/publication/248811337_Thermal_survey_of_Mount_Etna_Volcano_from_space?enrichId=rgreq-8af148f3-6781-4508-aac0-f20b1571461b&enrichSource=Y292ZXJQYWdlOzI0ODgxMTMzNztBUzo5ODU0MDgyMjk5MDg1NEAxNDAwNTA1MzcxMTgx&el=1_x_3https://www.researchgate.net/publication/248811337_Thermal_survey_of_Mount_Etna_Volcano_from_space?enrichId=rgreq-8af148f3-6781-4508-aac0-f20b1571461b&enrichSource=Y292ZXJQYWdlOzI0ODgxMTMzNztBUzo5ODU0MDgyMjk5MDg1NEAxNDAwNTA1MzcxMTgx&el=1_x_2
  • 7/25/2019 Thermal Volcano

    2/5

    GEOPHYSICALESEARCHETTERS,OL.19,NO.7, PAGES25-728,PRIL , 992

    THERMAL URVEY FMOUNT TNA OLCANOROM PACE

    A. Bonneville and P. Gouze

    C.N.R.S.Centre6ologiquetGophysique,niversit6ontpellierI, France

    Abstract.Surveys of ground thermal anomaliesand the

    monitoringf theirevolution re of great mportancen the

    study f volcanoes. hermalmonitoringechniquesould

    beusedn conjunction ith classicalmonitoringools i.e.

    seismologicalnd deformationnetworks), o give better

    predictionsf the onsetof a volcanic vent. n order o

    detect and emphasize small anomalies in the surface

    temperaturef the ground,we have developed new

    method asedon the oint use of two satellite adiometers:

    the NOAA-AdvancedVery High ResolutionRadiometer

    (AVHRR) or the qualityof its thermalbandcalibration nd

    theLandsat hematicMapper TM) for its high spatial

    resolution. his method is applied to the Mount Ema

    volcano, icily, and revealsseveral hermalanomalies.One

    anomalys already known, and is associatedwith the

    permanentlyctivecraters f the summit one.The second

    is a largerarea where an eruptionoccurredone week after

    thedata acquisition 10/23/86). The general rend of the

    thermalanomalies eads to recognition of a large,

    semi-circularntrusive onecorrespondingo the borders f

    the we l-known Valle del Bore.

    Introduction

    Temperatures one of the most logical physical

    parameterso monitor on an active volcano becauseof the

    relationshipetween he volumeof hot intrusivemagma

    and he groundsurface emperaturee.g. Francis,1979].

    However,he large thermalgradientshat prevailat the

    soil-air oundary revent large hermalsignaturerom

    appearingt theground urface, xceptn thecase f strong

    groundwateronvection etween he magmatic ntrusion

    and urface,r, of course, uring n eruption.Wherestrong

    groundwateronvectionoccurs, hermal anomaliescan be

    detectedt hesurfacendareoften xpressedy umarolic

    emissionsFigure1). The imeevolution f these nomalies

    couldea good ndication f magninmovementoward he

    ground urface.

    Thermalmapping an be achieved y remote ensing

    from naircraft r froma satellite. he wavelengthf the

    maximumnergy ecorded t the radiometer n-boardhe

    remoteensing latformdepends n the temperaturef the

    emittingurface. his mplieshatwe have o usedifferent

    spectral indows or studyingphenomena ccurring t

    differentemperatures.or example,high temperature

    phenomenaike lava lakes or lava flows can be studied n

    short avelenghtnfraredwindows 1.2-2.5 gin) [e.g.

    Francisnd othery,987; otheryta .,1988; ieri tal.,

    1990] hereasow temperaturehenomenauch ssmall

    Copyright992y heAmericaneophysicalnion.

    Paperumber2GL00580

    00t)4-8534/92/92GL-0050503.00

    groundhermal nomaliesustbe studiedn t th-eriiaai

    infraredwindow (8-14 grn) [Bonneville f al., 1985;

    Bonneville ndKerr, 987].

    There have been few studies f low-terpeulre

    phenomenaecauseheonly hermalR sensorsv'ailableo

    thecivil sector avea low spatialesolutione.g.1- 0 km

    forweatheratellites).incehe aunchingf Landsat, we

    havehad at our disposal igh resolutionhermal nfrared

    data image izeof 185x185 m with a pixel si of

    120x120 ) whichs better uitedor studyingolcanoes

    However, he small amplitude f the observedhermal

    anomalies requires highly accurate radiometric

    temperatures,hichmust e determinedromnight:time

    data n ordero minimizehe direct olai' eating.o

    achieve his g9al, well-calibratednsmmientafionnd

    atmosphericorrectionsiaust e made.Theseattereffects

    could e of the same rder f magnitude.s he expec.t

    anomai.'esue o the arge ltitticleariationseneral

    presentedy volcoes. n view of thesediffibulties, e

    have ev61opedmethodhat imultarieo/as ,mployswo

    satelliteadiometers:he NOAA-Advancedery High

    ResolutionadiometerAVHRR), hichaks di.antag

    of highprecisionhermal ensors,nd heLdsat Thematic

    MapperTM) .with highspatialesolutiofi..Weresenthe

    resultsrom heprocessingf data athe.redverMount

    Etna (Figure 2) on October,23 1986, one month after a

    summit ruption ndoneweekbeforea flankeruption.

    Activity of Mount Etna

    MountEtnavolcano asbeencharacterizedn recent

    historicalimesby persistent,ctivity r0m the summit

    craters, mosfiy consistingof mild strombolianand

    hydromagmaficutgassing,nd by flank eruptions,

    frequenfiy occurring on its upper-to-middleslopes.

    FollowingArmientiet al. [1989], the eruptiveactivity

    observed etween1971 and 1987 can be described sing

    the classificationf Ritmmnn1965]. Amongdie flank

    eruptions,hreeypes f eruptive vents anbe ound:

    (1) Subterminal effusions, Which consist O[ shallow

    (1) Subterminal effusions, which consist of shallow

    magmaticnjectionsriginatingrom heuppermostartof

    themaineedingonduit.he ava s hotami luidand

    flowsuiefiyromhallowissuresthat.x.teld0mslope.

    (2) Lateraleruptions, hich originate roi radial dike

    injectionshatpropagatepwardo thesurfacendproduce

    both ava effusionand outgassing ctivity. Transition rom

    subterminalo lateralstages ftenoccurs urin the same

    eruption.

    (3) Eccentric ruptions,Whichare of deep origin and not

    related o themain eeding onduit.

    For heperiod f time n whithwe are nterested,ount

    Ema had experienced lateral type empfi0n dinSrig

    Septemberof 1986, and a transitionalevent between

    725

    https://www.researchgate.net/publication/248747185_Infrared_techniques_for_volcano_monitoring_and_prediction--a_review?el=1_x_8&enrichId=rgreq-8af148f3-6781-4508-aac0-f20b1571461b&enrichSource=Y292ZXJQYWdlOzI0ODgxMTMzNztBUzo5ODU0MDgyMjk5MDg1NEAxNDAwNTA1MzcxMTgxhttps://www.researchgate.net/publication/248747185_Infrared_techniques_for_volcano_monitoring_and_prediction--a_review?el=1_x_8&enrichId=rgreq-8af148f3-6781-4508-aac0-f20b1571461b&enrichSource=Y292ZXJQYWdlOzI0ODgxMTMzNztBUzo5ODU0MDgyMjk5MDg1NEAxNDAwNTA1MzcxMTgxhttps://www.researchgate.net/publication/248747185_Infrared_techniques_for_volcano_monitoring_and_prediction--a_review?el=1_x_8&enrichId=rgreq-8af148f3-6781-4508-aac0-f20b1571461b&enrichSource=Y292ZXJQYWdlOzI0ODgxMTMzNztBUzo5ODU0MDgyMjk5MDg1NEAxNDAwNTA1MzcxMTgxhttps://www.researchgate.net/publication/248747185_Infrared_techniques_for_volcano_monitoring_and_prediction--a_review?el=1_x_8&enrichId=rgreq-8af148f3-6781-4508-aac0-f20b1571461b&enrichSource=Y292ZXJQYWdlOzI0ODgxMTMzNztBUzo5ODU0MDgyMjk5MDg1NEAxNDAwNTA1MzcxMTgx
  • 7/25/2019 Thermal Volcano

    3/5

    726 Bonneville ndGouze: hermalSurvey f Mt Etna

    ,,,

    .:icratr furnerolic

    I"v.low',', (. field

    VOLCANO// 1,/';/ intrulion'0 J

    Fig. 1. Sketchof thermal xchangesn a volcano. is the

    temperature, 0 is the difference etween ir temperature

    and surfaceground emperature. o a fn'st approximation

    and n normalconditions 0--0;butwith a largeheatsupply

    (magmatic xtrusion r naturalconvectionn a porousor

    fracturedmedium), A0 becomes tronglypositive.This

    temperature nomalycan be detected y a satellite nfrared

    radiometer.

    subterminalnd ateral ypesstarting ctober, 0 1986.The

    September 986 eruption tarted n the 14thandended10

    days ater,coming rom heNortheast raterandproducing

    a small amount of lava, estimated to be 1 m3 in volume.

    The October 1986 event started on the 30th and ended 4

    months later. The eastern and nor,h-eastern flanks of the

    volcano were involved between the altitudes of 2900 and

    2200 m. During hateruptionmore han60x10 m3 of lava

    were produced.

    Methodology

    onlyone hermal and TM6), prevents s romusing uch

    processing.However, this is possible with NOAA

    meteorologicalatellites hichhave radiometer,VHRR,

    with two thermalbands 4 and 5). AVHRR data, taken90

    minutesbefore he TM image, at 20:30 local time, showno

    clouds nd a smallvapourplume rom the volcano. irst,

    these data are corrected or geometrical distortionsand

    re-sampled, sing he nearest eighbor echnique,n order

    to coincidewith the LandsatTM image pixels.We thenuse

    a linearcombination f band4 (10.3 - 11.3 I. m) andband

    (11.5 -12.5 I. m) accordingo the Split WindowAlgorithm

    to correct or atmospheric bsorptionsDeschampsnd

    Phulpin, 980;Price,1984].Using hisprocess, e obtain

    real emperaturemapat the AVHRR spatial esolution.

    Knowinghe ealground urfaceemperature,goa,n

    eachpixel of the mageand the brightnessemperature,4,

    in AVHRR channel (10.3 - 11.3 gm), we may compute n

    atmosphericffectiveabsorption oefficientK, valid for

    the correspondingandsatTM spectralwindow (band6=

    10.42 - 11.66 I. m):

    04

    Kat Ogrotmd

    (2) The most mportant tmosphericffect s due o

    adiabaticcooling with altitude which is indicated o first

    order by surfaceground emperature. his stronggradient

    masks he underground hermal contribution.For the TM6

    image, his effectmay be estimated y a stat/stical pproach

    which consistsof determining he correlationbetween he

    absolutepixel temperature nd its altitude, zx.. We then

    determine regionaladiabaticcoolinggradient:

    Our fn'st step in reducing the data was to remove

    atmospheric ffects.

    (1) One atmosphericffect s due o the absorptionf

    energy t somediscretewavelengthsy active omponents

    suchas H20 and CO2.Since his absorptionependsn

    wavelength,we can use multispectral lgorithmsor

    modeling he atmosphericffectsand thus compute

    real-at-groundemperature.he TM radiometer,aving

    d0ground

    grad dz

    which s veryclose o the heoreticalne 0.006 C.m4).A

    225 km2 digital errainmodel,accurateo 10 metersn

    elevationhas beencompiled.Thus, for eachTM6 pixel at

    temperature 6, the resultingcorrectedsurface emperam

    may be expressed s:

    O,,10m'&e:

    A

    Fig. 2. Simplified opographic apof MountEtnawith the

    locationof the TM image ndicatedby the box.

    d0ground

    0crKatm' 6 + 'lz ' ZPmm

    This temperature ould be considered s the best

    estimate f AO Figure1), thequantitywe have o dealwith

    in our survey.

    Results

    The efficiency f thismethods shown y therelative

    enhancementof thermal anomalies from the uncalibrated

    TM image Figure ) to the final image Figure ). The

    mostsignificantesult s the evidenceor five anomalous

    thermal ields abeledA1 throughA5:

    AI: In the summit one, hreehigh-amplitude-sm

    spatial-extent nomaliescorrespond o the north-east,

    central, and south-east ctive cratersof Mount Etna, very

    accuratelyated. The lava flowsextendingrom he

    Northeastratern a north-westirectionSeptember986

  • 7/25/2019 Thermal Volcano

    4/5

    BonnevillendGouze:hermalurveyfMt Etna

    727

    clouds

    Fig. . Thematic apper and (TM6) image f Mount

    Etna olcano atherednOctober 3, 22:00 ocal ime.The

    data re not calibrated nd are represented y color evels

    fromdark blue (cold) to pink (warm). Note the noise

    betweenines and the two saturated ixels n the centerof

    the mage hat correspondo activesummit raters. he

    pixel ize s 120x120m.

    eruption;canBulletin, 1986a]as well as those rom the

    Southeastrater are identified. The conesare particularly

    evident as hot areas around all the craters.

    The mean emperature nomaly eaches bout3'C with

    respecto the surrounding rea. The total anomalous eat

    flow on the summit zone between altitude levels 3000 and

    3300m (1 km ) canbe estimatedt 200 MW using n

    empiricalmethod[Sekioka and Yuhara, 1974].This heat

    budget aybe a good ndicator f the MountEtna activity

    in its all.

    A2: This anomaly s related o a lava field extending

    throughhehigher artof ValledelBove.Previous orkby

    Piefi t al. [1990],using M bands and7 data,hasclearly

    shown he thermalsignature f a 1984 ava flow in this

    zone.

    A3: This anomalous one on the northern dge of Valle

    clelBovehas a shortmaximumspatialextension100-

    200m) o the east,close o the 2000 m altitude evel, This

    zone xperienced large fissureactivity [Scan Bulletin,

    1986b]on October30, 1986, one week after the data

    acquisition.hese issure ones reknownasbeingareas f

    eruptive ventscomparableo the Hawaiianrift zones

    [Kieffer,975].

    A4:Thisanomalyn thesoutherndge f ValledelBove

    isnot ssociatedithany ecentolcanicctivity,ut t is

    elated o known issurezones ike anomaliesA2 and A3.

    AS:This arge nomalyround ifugio apienza aybe

    linkedorecentava ieldseruptionsf 1983), igcinder

    conesike MountSilvestri, ndnumerousracture ones.

    For heseast woanomalousones, emayaskwhether

    Fig. 4. Final TM6 image corrected for atmospheric

    absorption nd adiabaticair cooling with altitude. All the

    temperaturesavebeen educed o sea evel usinga Digital

    Terrain Model. Each color level conespond o I'C from

    dark blue (14.50'C) to pink (27'C). Five positive

    anomalous zones are evidenced A1, A2, A3, A4 and A5

    (see text for explanations). he jagged line represent he

    edgesof Valle del Bove; heavy lines are roads and fine

    lines are the altitude contours. TR= Torre del Filosofo;

    NEC=Northeast Crater; SEC= SoutheastCrater, BN=Bocca

    Nova Crater;PR=Piccolo ifugio;RS=RifugioSapienza.

    there s a real thermaleffect, or whetherwe are observing

    slopeeffects,or differential hermal nertial effects. f the

    zones are indeed not thermal anomalies, then we must

    explain several eatures:Why are the zonesso closely

    linked with volcano-structuraleatures?Why are there no

    anomalies bservable n the westernand northern lopesof

    the volcano?What has caused he disappearance f the

    anomalous zone in the north detected during 1981

    [Bonnevilleet al., 1985] which was strongly inked to

    eruptive ctivityn themonths efore heobservationsook

    place?For these easons, e assume hat the anomalies

    really do represent ot-spots,ven hougha minor part of

    themcouldalwaysbe attributedo surface ffects.

    Theseanomalies, xcept he summit anomaliesA1, are

    onlydetectablefter healtitude orrectionescribedbove

    andpresent minimum mplitude f 2'C with respecto

    the environment,which s significantowing to the applied

    processing.hey correspond,o a fin'st pproximation,o

    heat low anomaliesf about 30Wm 2. The anomaly 3

    with its short extension maximum could be considered as a

    thermal forerunner of the October 30, 1986 event, even

    though nly a repetitive urveywouldhavepermittedhe

    assessmentf thissituation. ote that the ack of vegetation

    within these zones (altitude above 2000 m) allows an

    interpretationitha great egree f confidence.

    https://www.researchgate.net/publication/248786643_Heat_Flux_Estimation_in_Geothermal_Areas_Based_on_the_Heat_Balance_of_the_Ground_Surface?el=1_x_8&enrichId=rgreq-8af148f3-6781-4508-aac0-f20b1571461b&enrichSource=Y292ZXJQYWdlOzI0ODgxMTMzNztBUzo5ODU0MDgyMjk5MDg1NEAxNDAwNTA1MzcxMTgxhttps://www.researchgate.net/publication/248786643_Heat_Flux_Estimation_in_Geothermal_Areas_Based_on_the_Heat_Balance_of_the_Ground_Surface?el=1_x_8&enrichId=rgreq-8af148f3-6781-4508-aac0-f20b1571461b&enrichSource=Y292ZXJQYWdlOzI0ODgxMTMzNztBUzo5ODU0MDgyMjk5MDg1NEAxNDAwNTA1MzcxMTgx
  • 7/25/2019 Thermal Volcano

    5/5

    728 Bonneville ndGouze: hermal urvey f Mt Ema

    Conclusion

    We presentevidence hat some thermal anomalies re

    linked to volcanic activity. However, only a continuous

    surveyover a long time (3 to 4 years)would prove the

    efficacy of the method for forecasting olcaniceventsas

    well as give betterclues or the thermalorigin of the large

    and apparentlypermanentanomalies.Our application

    suggestshat significant rogressn the methodologyill

    be achievedwhen voleanologists ave at their disposal

    frequentnight-timepasses ver volcanoes ith a wide

    rangeof spectralwindows.This couldbe a reality n the

    near future due to the US Earth ObservationSatellite EOS)

    program Mouginis-Market al., 1991], and perhaps t a

    later date, when the EuropeanPolar Platform becomes

    operational.

    Acknowledgements.his work has been supported y the

    C.N.R.S. and the C.N.E.S. (A.T.P. TldOection Spatiale

    1985). The authorswish to thank Y. Kerr, G. Macedonio

    and J. VandeMelbrouk or their help n obtaining he data;

    P. Filmer, P. Francis,D. Pieri andone anonymouseviewer

    for their careful comments.

    References

    Armienti, P., F. Innocenti,R. Petrini,M. Pompilioand L.

    illari, Petrology and Sr-Nd isotopegeochemistry f

    recent lavas from Mount Etna: bearingon the volcano

    feeding system, . Volcanol. Geoth.Res., 39, 315-327,

    1989.

    Bonneville, A., G. Vasseur and Y. Kerr, Satellite thermal

    infrared observations of mount Etna after the 17th March

    1981 eruption,J. Volcanol. Geoth.Res., 36, 209-232,

    1985.

    Bonneville, A., and Y. Kerr, A thermal forerunnerof the

    28th March 1983 Mount Etna eruption rom satellite

    thermal nfrareddata,J. of Geodynamics, , 1-31, 1987.

    Deschamps, . Y., and T. Phulpin,Atmosphericorrection

    of infrared measurements f sea surface emperature

    using channels t 3.7, 11 and 12 microns,Boundary-

    Layer Meteorol., 18, 31-143, 1980.

    Francis,. W., nfra-redechniquesor volcano onitoring

    andprediction- review,J.Geol. $oc. Lond., 136, 355-

    359, 1979.

    Francis,P. W., andD. A. Rothery,Using LandsatThematic

    Mapper to detect and monitor active volcanoes: n

    exampleromLascar olcano, orthern hile,Geology,

    15, 614-617, 1987.

    Kieffer,G., Sur 'existence'une ift-zone t l'Ema,Sicfie,

    CR. Acad. $ci. Paris, D, 280, 263-266, 1975.

    Mouginis-Mark,P., S. Rowland, P. W. Francis, T.

    Friedman,. Gradie,S. Self, L. Wilson,J. Crisp, .

    Glaze, K. Jones, A. Kahle, D. Pieri, H. Zebker, A.

    Kreuger,L. Waiter, C. Wood,W. Rose,J. Adams ndR.

    Wolff, Analysis of active volcanoes rom the Earth

    Observing System, Remote $ens. Environ. 36, 1- 2

    1991.

    Pieri, D.C., L. S. Glaze and M. J. Abrams, Thermal

    radiance bservationsf an active ava flow during he

    June 1984 eruptionof Mount Ema, Geology,18, 1018-

    1022, 1990.

    Price, J. C., Land surface emperaturemeasurementsrom

    the split window channelsof the NOAA7 Advanced

    Very High Resolution adiometer, . Geophys. es.,89,

    7231-7237, 1984.

    Rittmann,A., Notizie sull'Ema,$uppl. Nuovo Cimento, ,

    1117-1123, 1965.

    Rothery,D. A., P. W. Francisand C. A. Wood, Volcano

    monitoringusing short wavelength nfrared data from

    satellites,J. Geophys.Res., 93, 7993-8008, 1988.

    ScanBulletin, 9, 4-8, 1986a.

    Scan Bulletin, l O, 8-9, 1986b.

    Sekioka, M., and K. J. Yuhara, Heat flux estimation n

    geothermal reasbasedon the heatbalance f the ground

    surface, . Geophys.Res., 79, 2053-2058, 1974.

    Alain Onnevillend hilippeouze,.N.R.S.Centre

    Gologique t Gertphysique,niversitMontpellier i,

    PlaceE.Bataillon, 4095MontpellierCdex 05, France.

    (Received December 9, 1991;

    accepted ebruary12, 1992.)


Recommended