+ All Categories
Home > Documents > Thermodynamic Cycles4

Thermodynamic Cycles4

Date post: 06-Apr-2018
Category:
Upload: karthiksugam
View: 218 times
Download: 0 times
Share this document with a friend
43
Diesel / Brayton Cycles  ASEN 3113
Transcript
Page 1: Thermodynamic Cycles4

8/3/2019 Thermodynamic Cycles4

http://slidepdf.com/reader/full/thermodynamic-cycles4 1/43

Diesel / Brayton Cycles

 ASEN 3113

Page 2: Thermodynamic Cycles4

8/3/2019 Thermodynamic Cycles4

http://slidepdf.com/reader/full/thermodynamic-cycles4 2/43

Diesel Cycle

Invented by Rudolf Christian Karl Diesel in1893

First engine was powered bypowdered coal

Achieved a compression ratioof almost 80

Exploded, almost killedDiesel

First working enginecompleted 1894 - generated13 hp

Page 3: Thermodynamic Cycles4

8/3/2019 Thermodynamic Cycles4

http://slidepdf.com/reader/full/thermodynamic-cycles4 3/43

Diesel Engine

Also known asCompressionIgnition Engine

(CI) Can this engine

³knock´?

Difference fromOtto Cycle?

Page 4: Thermodynamic Cycles4

8/3/2019 Thermodynamic Cycles4

http://slidepdf.com/reader/full/thermodynamic-cycles4 4/43

Thermodynamic Cycles for CI engines

In early CI engines the fuel was injected when the piston reached TDC

and thus combustion lasted well into the expansion stroke.

In modern engines the fuel is injected before TDC (about 15o)

The combustion process in the early CI engines is best approximated by

a constant pressure heat addition process Diesel Cycle

The combustion process in the modern CI engines is best approximated

by a combination of constant volume and constant pressure Dual Cycle

Fuel injection startsFuel injection starts

Early CI engine Modern CI engine

Page 5: Thermodynamic Cycles4

8/3/2019 Thermodynamic Cycles4

http://slidepdf.com/reader/full/thermodynamic-cycles4 5/43

Early CI Engine Cycle and the Thermodynamic Diesel Cycle

 AI

R

CombustionProducts

Fuel injectedat TC

Intake

Stroke

 Air 

 Air 

BC

Compression

Stroke

Power 

Stroke

Exhaust

Stroke

Qin Qout

Compression

Process

Const pressure

heat addition

Process

Expansion

Process

Const volume

heat rejection

Process

 Actual

Cycle

DieselCycle

Page 6: Thermodynamic Cycles4

8/3/2019 Thermodynamic Cycles4

http://slidepdf.com/reader/full/thermodynamic-cycles4 6/43

Process a b

Isentropic

compression

Process b

c Constant

pressure heat

addition

Process c d

Isentropic

expansion

Process d a

Constant volume

heat rejection

- a=1,b=2,etc«for 

book

Air-Standard Diesel cycle

r c!

vc

vb

!

v3

v2

( BOOK )

Cut-off ratio:

Page 7: Thermodynamic Cycles4

8/3/2019 Thermodynamic Cycles4

http://slidepdf.com/reader/full/thermodynamic-cycles4 7/43

m

V V  P 

m

Q

uu

in 232

23 )()(

!

 AIR

23 Constant Pressure Heat Addition

now involves heat and work

)()( 222333 v P uv P um

Qin!

)()( 2323 T T chhm

Q p

in !!

cr v

v

v

 RT 

v

 RT  P  !!p!!

2

3

2

3

3

3

2

2

Qin

First LawAnalysis of Diesel Cycle

Equations for processes 12, 41 are the same as those presented

for the Otto cycle

Page 8: Thermodynamic Cycles4

8/3/2019 Thermodynamic Cycles4

http://slidepdf.com/reader/full/thermodynamic-cycles4 8/43

)()( 34m

m

Quu out !  AIR

3 4 Isentropic Expansion

)()( 4343 T T cuum

W v

out !!

notev 4=v 

1 so cr 

v

v

v

v

v

v

v

v

v

v!!!

3

2

2

1

3

2

2

4

3

4

 P 

 P 

v P 

v P c!p!

3

4

3

4

3

33

4

44

11

4

3

3

4

¹ º ¸©

ª¨!¹¹

 º ¸©©

ª¨!

c

v

v

Page 9: Thermodynamic Cycles4

8/3/2019 Thermodynamic Cycles4

http://slidepdf.com/reader/full/thermodynamic-cycles4 9/43

23

1411hhuu

mQmQ

in

out 

cycle Diesel 

!!L

L Diesel con st cV  !1

1

r k 1

1

r c

k  1 r c 1

«

-¬¬

»

½¼¼

For cold air-standard the above reduces to:

Thermal Efficiency

1

11

!k 

Otto r 

Lrecall,

Note the term in the square bracket is always larger than one so for the

same compression ratio, r , the Diesel cycle has a lower thermal efficiency

than the Otto cycle

So why is a Diesel engine usually more efficient?

Page 10: Thermodynamic Cycles4

8/3/2019 Thermodynamic Cycles4

http://slidepdf.com/reader/full/thermodynamic-cycles4 10/43

Typical CI Engines

15 < r < 20

When r c 

(= v3/v

2)1 the Diesel cycle efficiency approaches the

efficiency of the Otto cycle

Thermal Efficiency

Higher efficiency is obtained by adding less heat per cycle, Qin,

run engine at higher speed to get the same power.

Page 11: Thermodynamic Cycles4

8/3/2019 Thermodynamic Cycles4

http://slidepdf.com/reader/full/thermodynamic-cycles4 11/43

k = 1.3

k = 1.3

The cut-off ratio is not a natural choice for the independent variable

a more suitable parameter is the heat input, the two are related by:

111

111¹¹

 º ¸©©

ª¨! k 

inc

r V  P Q

k k r  as Qin 0, r c 1

 ME  P ! W net V max V min

- compares performance

of engines of the samesize

Page 12: Thermodynamic Cycles4

8/3/2019 Thermodynamic Cycles4

http://slidepdf.com/reader/full/thermodynamic-cycles4 12/43

Modern CI Engine Cycle and the Thermodynamic Dual Cycle

 AI

R

CombustionProducts

Fuel injectedat 15o beforeTDC

Intake

Stroke

 Air 

 Air 

TC

BC

Compression

Stroke

Power 

Stroke

Exhaust

Stroke

Qin Qout

Compression

Process

Const pressure

heat addition

Process

Expansion

Process

Const volume

heat rejection

Process

 Actual

Cycle

DualCycle

Qin

Const volume

heat addition

Process

Page 13: Thermodynamic Cycles4

8/3/2019 Thermodynamic Cycles4

http://slidepdf.com/reader/full/thermodynamic-cycles4 13/43

Process 1 2 Isentropic compression

Process 2 2.5 Constant volume heat additionProcess 2.5 3 Constant pressure heat addition

Process 3 4 Isentropic expansion

Process 4 1 Constant volume heat rejection

Dual Cycle

Q in

Q in

Q out 

11

2

2

2.5

2.5

33

44

)()()()( 5.2325.25.2325.2 T T cT T chhuu

m

Q pv

in !!

Page 14: Thermodynamic Cycles4

8/3/2019 Thermodynamic Cycles4

http://slidepdf.com/reader/full/thermodynamic-cycles4 14/43

Thermal Efficiency

)()(115.2325.2

14hhuu

uu

mQ

mQ

in

out 

cycle Dual 

!!L

¼½»

¬-

«

!

1)1(

111

1  c

c

ccon st  Dual 

r k 

r v EE

E

L

1

11

!

k Ottor 

L ¼½

»¬-

«

! 1

1111

1c

k c

k con st c Diesel 

k r V 

L

Note, the Otto cycle (r c=1) and the Diesel cycle (E=1) are special cases:

2

3

5.2

3  andwhere P 

 P v

vr c !! E

Page 15: Thermodynamic Cycles4

8/3/2019 Thermodynamic Cycles4

http://slidepdf.com/reader/full/thermodynamic-cycles4 15/43

The use of the Dual cycle requires information about either:

i) the fractions of constant volume and constant pressure heat addition(common assumption is to equally split the heat addition), or 

ii) maximum pressure P3.

Transformation of r c  and E into more natural variables yields

¼½»¬

¹¹

 º ¸©©

ª¨!

11111

111 k r V  P 

Q

k r k 

inc

E

E1

31

 P 

 P 

r k 

!E

For the same initial conditions P1, V1 and the same compression ratio:

 Diesel  Dual Otto LLL ""For the same initial conditions P1, V1 and the same peak pressure P3

(actual design limitation in engines):

otto Dual  Diesel  LLL ""

Page 16: Thermodynamic Cycles4

8/3/2019 Thermodynamic Cycles4

http://slidepdf.com/reader/full/thermodynamic-cycles4 16/43

Page 17: Thermodynamic Cycles4

8/3/2019 Thermodynamic Cycles4

http://slidepdf.com/reader/full/thermodynamic-cycles4 17/43

Brayton Cycle

Introduced by George

Brayton (an

 American) in 1872

Used separateexpansion and

compression cylinder 

Constant Combustion

process

Page 18: Thermodynamic Cycles4

8/3/2019 Thermodynamic Cycles4

http://slidepdf.com/reader/full/thermodynamic-cycles4 18/43

18

Brayton Cycle

Page 19: Thermodynamic Cycles4

8/3/2019 Thermodynamic Cycles4

http://slidepdf.com/reader/full/thermodynamic-cycles4 19/43

Other applications of Braytoncycle

Power generation - use gas turbines togenerate electricity«very efficient

Marine applications in large ships

Automobile racing - late 1960s Indy 500STP sponsored cars

Page 20: Thermodynamic Cycles4

8/3/2019 Thermodynamic Cycles4

http://slidepdf.com/reader/full/thermodynamic-cycles4 20/43

Schematic of simple cycle

Page 21: Thermodynamic Cycles4

8/3/2019 Thermodynamic Cycles4

http://slidepdf.com/reader/full/thermodynamic-cycles4 21/43

Idealized Brayton Cycle

Page 22: Thermodynamic Cycles4

8/3/2019 Thermodynamic Cycles4

http://slidepdf.com/reader/full/thermodynamic-cycles4 22/43

22

Brayton Cycle

1 to 2--isentropiccompression

2 to 3--constant pressure

heat addition (replacescombustion process)

3 to 4--isentropicexpansion in the turbine

4 to 1--constant pressureheat rejection to return airto original state

Page 23: Thermodynamic Cycles4

8/3/2019 Thermodynamic Cycles4

http://slidepdf.com/reader/full/thermodynamic-cycles4 23/43

Brayton cycle analysis

in

net

q

w!L

com pturbnet www !

Efficiency:

Net work:

Because the Brayton cycle operates between two constantpressure lines, or isobars, the pressure ratio is important.

The pressure ratio is not a compression ratio.

Page 24: Thermodynamic Cycles4

8/3/2019 Thermodynamic Cycles4

http://slidepdf.com/reader/full/thermodynamic-cycles4 24/43

24

wcomp

! h2 h

1

1 to 2 (isentropic compression incompressor), apply first law

**When analyzing the cycle, we know thatthe compressor work is in (negative). It isstandard convention to just drop the negativesign and deal with it later:

Brayton cycle analysis

Page 25: Thermodynamic Cycles4

8/3/2019 Thermodynamic Cycles4

http://slidepdf.com/reader/full/thermodynamic-cycles4 25/43

25

2323in hhqq !!

2 to 3 (constant pressure heat addition -treated as a heat exchanger)

Brayton cycle analysis

or ,hhw 34turb !

43turb hhw !

3 to 4 (isentropic expansion in turbine)

Page 26: Thermodynamic Cycles4

8/3/2019 Thermodynamic Cycles4

http://slidepdf.com/reader/full/thermodynamic-cycles4 26/43

26

,hhq 41out !

14out hhq !

4 to 1 (constant pressure heat rejection)

We know this is heat transfer out of thesystem and therefore negative. In book,they¶ll give it a positive sign and then

subtract it when necessary.

Brayton cycle analysis

Page 27: Thermodynamic Cycles4

8/3/2019 Thermodynamic Cycles4

http://slidepdf.com/reader/full/thermodynamic-cycles4 27/43

Brayton cycle analysis

Substituting:

com pturbnet www

!

net work:

)h(h)h(hw 1243net !

Page 28: Thermodynamic Cycles4

8/3/2019 Thermodynamic Cycles4

http://slidepdf.com/reader/full/thermodynamic-cycles4 28/43

Thermal efficiency:

Brayton cycle analysis

in

net

qw!L

)h(h)h(h)h(h

23

1243

!

)h(h

)h(h1

23

14

!L

Page 29: Thermodynamic Cycles4

8/3/2019 Thermodynamic Cycles4

http://slidepdf.com/reader/full/thermodynamic-cycles4 29/43

Brayton cycle analysis

assume cold air conditions and manipulatethe efficiency expression:

)T(Tc

)T(Tc1

23 p

14 p

!L

1TT

1TT

T

T1

23

14

2

1

!L

Page 30: Thermodynamic Cycles4

8/3/2019 Thermodynamic Cycles4

http://slidepdf.com/reader/full/thermodynamic-cycles4 30/43

30

TT

 p p

k 2

1

2

1

1

! ¨ª© ¸

 º¹

; TT

 p p

 p p

k 4

3

4

3

1

1

2

1

! ¨ª© ¸

 º¹ ! ¨

ª© ¸

 º¹

Using the isentropic relationships,

Define:

4

3

1

2 p

P

P

P

Pratio pressurer  !!!

Brayton cycle analysis

Page 31: Thermodynamic Cycles4

8/3/2019 Thermodynamic Cycles4

http://slidepdf.com/reader/full/thermodynamic-cycles4 31/43

4

3k 1k  p

1

2

TTr 

TT !!

Brayton cycle analysis

Then we can relate the temperature ratios tothe pressure ratio:

Plug back into the efficiency

expression and simplify:

k 1k 

 pr 

11

!L

Page 32: Thermodynamic Cycles4

8/3/2019 Thermodynamic Cycles4

http://slidepdf.com/reader/full/thermodynamic-cycles4 32/43

32

Brayton cycle analysis

Page 33: Thermodynamic Cycles4

8/3/2019 Thermodynamic Cycles4

http://slidepdf.com/reader/full/thermodynamic-cycles4 33/43

Brayton cycle analysis

An important quantity for Brayton cycles isthe Back Work Ratio (BWR).

turb

com p

w

wBWR !

Page 34: Thermodynamic Cycles4

8/3/2019 Thermodynamic Cycles4

http://slidepdf.com/reader/full/thermodynamic-cycles4 34/43

The Back-Work Ratio is the Fractionof Turbine Work Used to Drive the

Compressor

The Back-Work Ratio is the Fractionof Turbine Work Used to Drive the

Compressor

Page 35: Thermodynamic Cycles4

8/3/2019 Thermodynamic Cycles4

http://slidepdf.com/reader/full/thermodynamic-cycles4 35/43

EXAMPLE PROBLEM

The pressure ratio of an air standard Braytoncycle is 4.5 and the inlet conditions to thecompressor are 100 kPa and 27rC. The

turbine is limited to a temperature of 827rCand mass flow is 5 kg/s. Determine

a) the thermal efficiency

b) the net power output in kWc) the BWR

Assume constant specific heats.

Page 36: Thermodynamic Cycles4

8/3/2019 Thermodynamic Cycles4

http://slidepdf.com/reader/full/thermodynamic-cycles4 36/43

Draw diagram

P

v

1

2 3

4

Page 37: Thermodynamic Cycles4

8/3/2019 Thermodynamic Cycles4

http://slidepdf.com/reader/full/thermodynamic-cycles4 37/43

Start analysis

Let¶s get the efficiency:

k 1k  pr 

1

1

!L

From problem statement, we know rp = 4.5

349.05.4

114.114.1

!!

L

Page 38: Thermodynamic Cycles4

8/3/2019 Thermodynamic Cycles4

http://slidepdf.com/reader/full/thermodynamic-cycles4 38/43

Net power output:

Substituting for work terms:

Ý Wnet ! Ý m w net ! Ý m w turb w com p Net Power:

Ý Wnet ! Ý m (h3h4 ) (h2 h1)

Ý Wnet ! Ý mc p (T3T4 ) (T2 T1)

Applying constant specific heats:

Page 39: Thermodynamic Cycles4

8/3/2019 Thermodynamic Cycles4

http://slidepdf.com/reader/full/thermodynamic-cycles4 39/43

Need to get T2 and T4

Use isentropic relationships:

T

T

 p

 p

2

1

2

1

1

!

¨

ª©

¸

 º¹

;

1k 

3

4

3

4

 p

 p

T

T

¹¹ º

 ¸©©ª

¨!

T1 and T3 are known along with thepressure ratios:

K 4614.5300T1.40.4

2 !!T2:

T4: K 7.7150.2221100T1.40.4

4 !!

Net power is then: kW1120Wnet

!

Ý Wnet ! Ý mc p (T3T4 ) (T2 T1)

Page 40: Thermodynamic Cycles4

8/3/2019 Thermodynamic Cycles4

http://slidepdf.com/reader/full/thermodynamic-cycles4 40/43

Back Work Ratio

43

12

turb

com p

hh

hh

w

wBWR 

!!

Applying constant specific heats:

42.0

7.7151100

300461

TT

TTBWR 

43

12!

!

!

Page 41: Thermodynamic Cycles4

8/3/2019 Thermodynamic Cycles4

http://slidepdf.com/reader/full/thermodynamic-cycles4 41/43

Brayton Cycle

In theory, as the pressure ratio goes up,the efficiency rises. The limiting factor isfrequently the turbine inlet

temperature. The turbine inlet temp is restricted to

about 1,700 K or 2,600 F.

Consider a fixed turbine inlet temp., T3

Page 42: Thermodynamic Cycles4

8/3/2019 Thermodynamic Cycles4

http://slidepdf.com/reader/full/thermodynamic-cycles4 42/43

Brayton Cycle

Irreversibilities

± Compressor and turbine frictional effects -cause increase in entropy

± Also friction causes pressure drops throughheat exchangers

± Stray heat transfers in components

± Increase in entropy has most significance

wc = h2 ± h1 for the ideal cycle, which wasisentropic

wt = h3 ± h4 for the ideal isentropic cycle

Page 43: Thermodynamic Cycles4

8/3/2019 Thermodynamic Cycles4

http://slidepdf.com/reader/full/thermodynamic-cycles4 43/43

Brayton Cycle

In order to deal with irreversibilities, weneed to write the values of h2 and h4 ash2,s and h4,s.

Then

s,43

act,43

s,t

a,tt

hh

hh

w

w

!!L

act,21

s,21

a,c

s,c

chh

hh

w

w

!!L


Recommended