+ All Categories
Home > Documents > Toler Ancing State

Toler Ancing State

Date post: 03-Jun-2018
Category:
Upload: vinaya-almane-dattathreya
View: 238 times
Download: 0 times
Share this document with a friend

of 117

Transcript
  • 8/12/2019 Toler Ancing State

    1/117

    STAT 498 B

    Statistical Tolerancing

    Fritz Scholz

    Spring Quarter 2007

  • 8/12/2019 Toler Ancing State

    2/117

    Objective of Statistical Tolerancing

    Concerns itself with mass production, not custom made items.

    Dimensions and properties of parts are not exactly what they should be.

    Worst case tolerancing can be quite costly.

    Manage variation in mechanical assemblies or systems.

    Take advantage of statistical independence in variation cancelation.

    Also known as statistical error propagation.

    Useful when errors and system sensitivities are small.

    It is more in the realm of probability than statistics (no inference).

    1

  • 8/12/2019 Toler Ancing State

    3/117

    Exchangeability of 757 Cargo Doors

    At issue were the tolerances of gaps and lugs of hinges and their placement on the

    hinge lines of aircraft body and door.

    10 hinges with 12 lugs/gaps each.

    That means that a lot of dimensions have to fit just about right.

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    0

    0

    The Root Sum Square (RSS) paradigm does not work here!

    2

  • 8/12/2019 Toler Ancing State

    4/117

    IBM Collaboration: Disk Drive Tolerances

    A

    H

    C

    B

    D

    S

    3

  • 8/12/2019 Toler Ancing State

    5/117

    Coordination Holes for Aligning Fuselage Panels

    ideal

    perturbed holes

    first hole aligned

    third hole rotated

    4

  • 8/12/2019 Toler Ancing State

    6/117

    Main Ingredients: Mean, Variance & Standard Deviation

    The dimension or property of interest,X, is treated as a random variable.

    X f(x) (density), CDF F(x) = P(Xx) =Z x

    f(t) dt.

    Mean: =X= E(X) =Z

    x

    t f(t) dt

    Variance: 2 =2X= var(X) = E((X)2) = E(X2)2 =Z x

    (t)2 f(t) dt

    Standard Deviation: =

    var(X)

    5

  • 8/12/2019 Toler Ancing State

    7/117

    Rules forE(X)andvar(X)For constantsa1, . . . , akand random variablesX1, . . . ,Xk

    we have forY=a1X1 + . . . + akXk

    E(Y) =E(a1X1 + . . . + akXk) =a1E(X1) + . . . + akE(Xk)

    For constantsa1, . . . , akandindependentrandom variablesX1, . . . ,Xkwe have

    2Y=var(Y) =var(a1X1 + . . . + akXk) =a21var(X1) + . . . + a

    2kvar(Xk)

    It is this latter property that justifies the existence of the variance concept.

    Y=

    a21var(X1) + . . . + a

    2kvar(Xk)

    6

  • 8/12/2019 Toler Ancing State

    8/117

    Central Limit Theorem (CLT) I

    Suppose werandomlyand independently draw random variables X1, . . . ,Xnfromn possibly different populations with respective means andstandard deviations1, . . . ,n and1, . . . ,n

    Suppose further that

    max21, . . . ,2n

    21 + . . . +

    2n

    0, as n

    i.e., none of the variances dominates among all variances

    Then Yn= X1+ . . . +Xn has an approximate normal distribution with meanand variance given by

    Y=1 + . . . +n and 2Y=

    21 + . . . +

    2n.

    7

  • 8/12/2019 Toler Ancing State

    9/117

    CLT: Example 1

    standard normal population

    x1

    Density

    2 0 2 4

    0.0

    0.2

    0.4

    uniform population on (0,1)

    x2

    Density

    0.0 0.2 0.4 0.6 0.8 1.0

    0.0

    0.4

    0.8

    1.2

    a lognormal population

    x3

    Density

    0.0 0.5 1.0 1.5

    0

    1

    2

    3

    4

    5

    Weibull population

    x4

    Density

    0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

    0.0

    0.2

    0.4

    0.6

    0.8

    8

  • 8/12/2019 Toler Ancing State

    10/117

    CLT: Example 2

    Central Limit Theorem at Work

    x1 + x2 + x3 + x4

    Density

    2 0 2 4 6

    0.0

    0

    0.0

    5

    0.1

    0

    0.1

    5

    0.2

    0

    0.2

    5

    0.3

    0

    9

  • 8/12/2019 Toler Ancing State

    11/117

    CLT: Example 3standard normal population

    x1

    Density

    4 2 0 2 4

    0.0

    0.2

    0.4

    uniform population on (0,1)

    x2

    Density

    0.0 0.2 0.4 0.6 0.8 1.0

    0.0

    0.6

    1.2

    a lognormal population

    x3

    D

    ensity

    0.0 0.5 1.0 1.5

    0

    2

    4

    Weibull population

    x4

    D

    ensity

    0.0 0.5 1.0 1.5 2.0 2.5 3.0

    0.0

    0.4

    0.8

    Weibull population

    x5

    De

    nsity

    0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

    0.0

    0

    .4

    0.8

    10

  • 8/12/2019 Toler Ancing State

    12/117

    CLT: Example 4

    Central Limit Theorem at Work

    x1 + x2 + x3 + x4

    Density

    2 0 2 4 6

    0.0

    0

    0.1

    5

    0.30

    Central Limit Theorem at Work

    x2 + x3 + x4 + x5

    Density

    1 2 3 4 5 6 7

    0.0

    0.2

    0.4

    11

  • 8/12/2019 Toler Ancing State

    13/117

    CLT: Example 5

    standard normal population

    x1

    Density

    4 2 0 2 4

    0.0

    0.2

    0.4

    uniform population on (0,1)

    x2

    Density

    0.0 0.2 0.4 0.6 0.8 1.0

    0.0

    0.4

    0.8

    1.2

    a lognormal population

    x3

    Density

    0 5 10 15

    0.0

    0.2

    0.4

    Weibull population

    x4

    Density

    0.0 0.5 1.0 1.5 2.0 2.5 3.0

    0.0

    0.4

    0.8

    12

  • 8/12/2019 Toler Ancing State

    14/117

    CLT: Example 6

    Central Limit Theorem at Work (not so good)

    x1 + x2 + x3 + x4

    Density

    0 10 20 30 40

    0.0

    0

    0.0

    5

    0.1

    0

    0.1

    5

    0.2

    0

    13

  • 8/12/2019 Toler Ancing State

    15/117

    CLT: Example 7

    standard normal population

    x1

    Density

    4 2 0 2 4

    0.0

    0.2

    0

    .4

    uniform population on (0,1)

    x2

    Density

    0 5 10 15 20

    0.0

    0

    0.0

    2

    0.0

    4

    0.0

    6

    a lognormal population

    x3

    Density

    0.0 0.5 1.0 1.5

    0

    1

    2

    3

    4

    5

    Weibull population

    x4

    Density

    0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

    0.0

    0.4

    0.8

    14

  • 8/12/2019 Toler Ancing State

    16/117

    CLT: Example 8

    Central Limit Theorem at Work (not so good)

    x1 + x2 + x3 + x4

    Density

    20 10 0 10 20 30 40

    0.0

    0

    0.0

    2

    0.0

    4

    0.0

    6

    0.0

    8

    15

  • 8/12/2019 Toler Ancing State

    17/117

    What is a Tolerance?

    Tolerances recognize thatpart dimensions are not what they should be.

    should be= nominal or exact according to engineering design

    Exact dimensions allow mass production assembly using interchangeable parts

    Variationsaround nominal are controlled by tolerances.

    Typical two-sided specification: [Nominal Tolerance, Nominal + Tolerance]

    Specifications can beone-sided:[Nominal, Nominal+ Tolerance] or [Nominal Tolerance, Nominal]

    Specifications can be asymmetric: [Nominal Tolerance1, Nominal +Tolerance2]

    16

  • 8/12/2019 Toler Ancing State

    18/117

    Simple Examples

    Example 1: A disk should have thickness 1/8 with .001 tolerance, i.e.,the disk thickness should be in the range

    [.125 .001, .125 + .001] = [.124, .126].

    Example 2: A stack often disksshould be1.25high with .01tolerance,i.e., the stack height should be in the range

    [1.25 .01, 1.25 + .01] = [1.24, 1.26].

    17

  • 8/12/2019 Toler Ancing State

    19/117

    Disk Stack

    1 8 == 0.125 0.001

    1.25 0.01

    18

  • 8/12/2019 Toler Ancing State

    20/117

    Worst Case or Arithmetic Tolerancing

    The tolerance specification in Example 1,if adhered to,

    guaranteesthe tolerance specification in Example 2.

    The reasoning is based onworst case or arithmetic tolerancing

    The stack ishighestwhen all disks are asthickas possible..126per disk= stack height of10 .126 =1.26.

    The stack islowestwhen all disks are asthinas possible..124per disk= stack height of10 .124 =1.24.

    This gives the total possible stack height range as[1.24, 1.26].

    19

  • 8/12/2019 Toler Ancing State

    21/117

    disk stack/tolerance stack

    .02''

    1.25''

    .125''

    worst case

    low stack

    worst casehigh stack

    20

  • 8/12/2019 Toler Ancing State

    22/117

    Worst Case or Arithmetic Tolerancing in Reverse

    This reasoning can be reversed.

    If the stack height has specified end tolerance .01,

    and if the disk tolerances are to be the same for all disks (exchangeable),

    then we should, by the worst case tolerancing reasoning, assign

    .01/10= .001

    tolerances to the individual disks (item tolerances).

    End tolerances can create very tight and unrealistic item tolerances. Costly!

    21

  • 8/12/2019 Toler Ancing State

    23/117

    Worst Case Analysis or Goal Post Mentality

    nominal

    nominaltol nominal+tol

    tol

    Add some structure, aim for the middle

    = Statistical Tolerancing

    22

  • 8/12/2019 Toler Ancing State

    24/117

    Statistical Tolerancing Assumption

    Statistical tolerancingassumes that disks are chosenat random,not deliberately to make a worst possible stack, one way or the other.

    The disk thickness variation within tolerances is described by a distribution.

    Thehistogram, summarizing these thicknesses, is often assumed to be

    normalor Gaussianwith centerD at the middle of the tolerance rangeand with standard deviation such that

    3standard deviations = tolerance.or

    D= 13

    TOLD so that [D 3D, D + 3D] = tolerance interval

    The normality assumption is a simplification, butis not essential.

    23

  • 8/12/2019 Toler Ancing State

    25/117

    Normal Histogram/Distribution of Disk Thicknesses

    Histogram of 10,000 Thicknesses

    disk thickness

    Density

    0.1235 0.1240 0.1245 0.1250 0.1255 0.1260 0.1265

    0

    200

    400

    600

    800

    1000

    1200

    18 16

    99.73% .135%.135%

    24

  • 8/12/2019 Toler Ancing State

    26/117

    Why Does Statistical Tolerancing Work

    Under the normal population model= we will seeabout13.5out of10, 000disks with thickness .126.

    The chance of randomly selecting such a fat or fatter disk is .00135 = 13.5/10, 000

    The chance of having such bad (thick) luckten times in a row is

    .00135 . . . .00135= (.00135)10 =2.01 1029 (!!!)

    Choosing thicknesses at random from this normal population we (justifiably)hope thatthick and thin will averageout to some extent.

    Makeindependentvariationwork for you, not against you!If life gives youlemons, makelemonade! Turn a negative into a positive!

    25

  • 8/12/2019 Toler Ancing State

    27/117

    The Insurance Principle of Averaging

    We look forward to the day when everyone will receivemore than the average wage.

    Australian Minister of Labour, 1973

    The etymology of average derives from the Arabic: awaryahmeaning shipwreck, damaged goods, and linking it to the custom

    of averaging the losses of damaged cargo across all merchants

    You get the good with the bad

    Havarie in German means: shipwreck

    Awerij in Dutch/Afrikaans means: average, damage to ship or cargo

    26

  • 8/12/2019 Toler Ancing State

    28/117

    Distribution of Stack Heights

    Choosing many stacks S=D1 + . . . +D10 of ten disks eachwe get anormalpopulation of stack heights,

    with meanE(S) =E(D1) + . . . + E(D10) =10 .125 =1.25,

    and standard deviationS=

    2D1+ . . . +

    2D10

    =

    10D=

    10 .001/3=.00105

    thusSranges over

    1.25 3 10 .001/3=1.25 10 .001 =1.25 .00316

    .00316 =

    10 .001 10 .001 =.01

    27

  • 8/12/2019 Toler Ancing State

    29/117

    Normal Histogram/Distribution of Stacks

    Histogram of 10,000 Stack Heights

    stack height of 10 disks

    Density

    1.240 1.245 1.250 1.255 1.260

    0

    100

    200

    300

    400

    28

  • 8/12/2019 Toler Ancing State

    30/117

    Root Sum Square (RSS) Method

    ForS=D1 + . . . +D10, with independentdisk thicknessesDi, we have

    S=

    var(D1 + . . . +D10) =2D1+ . . . +2D10

    Interpreting TOLi=TOLDi= 3Di andTOLS=3Swe have

    TOLS=3S = 32

    D1+ . . . +2D10= (3D1)

    2 + . . . + (3D10)2

    =

    TOL21 + . . . + TOL210=

    10 TOLD

    S 3Scontains99.73%of theSvalues, becauseSN(S,2S).

    This is referred to as theRoot Sum Square (RSS) Methodof tolerance stacking.

    Contrast with arithmetic or worst case tolerance stacking

    TOLS=TOL1 + . . . + TOL

    10=10 TOLD

    29

  • 8/12/2019 Toler Ancing State

    31/117

    Some Comments on Notation

    NumericallyTOLi=TOLi are the same, they are just different in what they

    represent: statistical variation range versus worst case variation range.

    Again,TOLSandTOLSrepresent statistical and worst case variation ranges,

    but they are not the same since

    TOL21 + . . . + TOL

    210=

    (TOL1)

    2 + . . . + (TOL10)2 TOL1 + . . . + TOL10

    We get= only in the trivial cases when n=1 or

    when n>1 and TOL1=. . .=TOLn=0.

    30

    S i i l T l i B fi

  • 8/12/2019 Toler Ancing State

    32/117

    Statistical Tolerancing Benefits

    = stack height variation is much tighter than specified

    could try to relax the tolerances on the disks,

    relaxed tolerances= lower cost of part manufacture

    take advantage of tighter assembly tolerances= easier assembly

    31

    RSS f G l

  • 8/12/2019 Toler Ancing State

    33/117

    RSS for Generaln

    When we stackn disks, replace10 by n above:

    TOLS= n TOLD or TOLD= 1n TOLS

    As opposed to the worst case tolerancing relationships

    TOLS=n

    TOLD or TOL

    D=

    1

    n TOLS

    More generally when theTOLDi are not all the same

    TOLS=

    TOL21 + . . . + TOL

    2n or TOL

    S=TOL

    D1

    + . . . + TOLDn

    Reverse engineering TOLS TOLDi or TOLS TOLDi not so obvious.

    Reduce the largestTOLDi to get greatest impact on TOLS. TOL

    Di???

    32

  • 8/12/2019 Toler Ancing State

    34/117

    B d i i

  • 8/12/2019 Toler Ancing State

    35/117

    Benderizing

    As much as RSS gives advantages over worst case or arithmetic tolerancing

    it was found that the RSS tolerance buildup was often optimistic in practice.

    A simple remedy was proposed by Bender (1962) and it was called Benderizing.

    It consists in multiplying the RSS expression by 1.5, i.e., use

    TOLS=1.5 TOL21 + . . . + TOL2nThis still only grows on the order of

    n, but provides a safety cushion.

    The motivation? When shop mechanics were asked about the dimension accuracy

    they could maintain, they would respond based on experience memory.

    It was reasoned that a mechanics experience covers mainly a 2range.To adjustTOLi=2ito TOLi=3ithe factor3/2=1.5was applied.

    34

    U if P t V i ti

  • 8/12/2019 Toler Ancing State

    36/117

    Uniform Part Variation

    Suppose that the normal variation does not adequately represent

    the variation of the manufactured disks.

    Assume that disk thicknesses varyuniformlyover

    [nominalTOLD, nominal + TOLD] = [TOLD, + TOLD] due to tool wear.

    E(D) = and2D =

    Z +TOLDTOLD

    1

    2TOLD(t)2 dt substituting(t)/TOLD=x

    = TOL2D

    Z 1

    1

    1

    2x2 dx with dt/TOLD=dx

    = TOL2D

    x3

    6

    1

    1=TOL2D

    13

    6 (1)

    3

    6

    =

    TOL2D3

    = D=TOLD/

    3 or 3D=

    3 TOLD=cTOLD, c=

    3=1.732.

    35

    U if P t V i ti I t TOL

  • 8/12/2019 Toler Ancing State

    37/117

    Uniform Part Variation Impact onTOLS

    Forn 3the distribution ofS is approximately normal, i.e.,SN(S,2S)see next slide.

    Thus most ( 99.73%) of theSvariation is withinS 3S

    TOLS=3S= (3D1)2 + . . . + (3Dn)

    2

    S=

    n D = TOLS=3S=

    n3 D=

    n

    3 TOLD=

    ncTOLD,

    i.e., we have a uniform distributionpenalty factorc=

    3=1.732.

    Recall that under normal part variation we had: TOLS=

    nTOLD.

    Here the inflation factor is motivated differently from Benderizing.

    36

    CLT f S f U if R d V i bl

  • 8/12/2019 Toler Ancing State

    38/117

    CLT for Sums of Uniform Random Variables

    U1 ++U2 ++U3

    Density

    0.0 0.5 1.0 1.5 2.0 2.5 3.0

    0.0

    0.2

    0.4

    0.6

    0.8

    U1 ++++U4

    Density

    0.5 1.0 1.5 2.0 2.5 3.0 3.5

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    37

    Uniform Part Variation Comparison ith Worst Case

  • 8/12/2019 Toler Ancing State

    39/117

    Uniform Part Variation: Comparison with Worst Case

    Compare this to the worst case tolerancing

    TOLD=TOLS

    nor TOLS=n TOLD,

    TOLS=

    3

    nTOLD < TOLS=nTOL

    D when3

  • 8/12/2019 Toler Ancing State

    40/117

    Motivating the 3 cT LinkBothT and capture the variability/scale of a distribution.

    Increasing that scale by a factor should increase andTby that same factor.

    Tcaptures (almost) all of the variation range.

    is a mathematically convenient scale measure, because of RSS rule.

    For a normal distribution 3captures almost all of the variation range.There it makes sense to equateT=3.

    For other distributions we need a factor c to make that correspondence T=3/c,i.e., 3/ccaptures (almost) all of the variation in the distribution.

    = 3 =cT. The penalty or inflation factorc is found via calculus.39

    Distribution Inflation Factors 1

  • 8/12/2019 Toler Ancing State

    41/117

    Distribution Inflation Factors 1

    normal density

    c = 1

    uniform density

    c = 1.732

    triangular density

    c = 1.225

    trapezoidal density: k = .5

    c = 1.369

    elliptical density

    c = 1.5

    half cosine wave density

    c = 1.306

    40

    Distribution Inflation Factors 2

  • 8/12/2019 Toler Ancing State

    42/117

    Distribution Inflation Factors 2

    Student t density: df = 4

    c = 1

    Student t density: df = 10

    c = 1

    beta density

    = = 3

    c = 1.134

    beta density

    = = .6

    c = 2.023

    beta density (parabolic)

    = = 2c = 1.342

    DIN - histogram density

    c = 1.512

    p = .7 , g = .4

    41

    Details on Distribution Inflation Factors 1

  • 8/12/2019 Toler Ancing State

    43/117

    Details on Distribution Inflation Factors 1

    The factorsc are chosen such that for finite range densities we have3 D=c TOLD

    cnormal=1

    Finite range densities can always be scaled to a range[1, 1],except for beta where[0, 1]is the conventional standard interval.

    cuniform=

    3, ctriangular=

    1.5, celliptical=1.5, ccos=3 1 8/

    2

    ctrapezoidal=

    3(1 + k2)/2 where2kis the range of the middle flat part.

    42

    Details on Distribution Inflation Factors 2

  • 8/12/2019 Toler Ancing State

    44/117

    Details on Distribution Inflation Factors 2

    The beta density takes the following form:

    f(z) = (a + b)(a)(b)

    za1(1 z)b1 for 0 z 1, andg(z) =0 else

    Fora=b the beta density is symmetric around.5 cbeta=3/

    2a + 1.

    The histogram or DIN density takes the following form

    f(z) =

    p2g for |z| g,

    1p2(1g) forg< |z| 1

    0 else

    cDIN=

    3[(1 p)(1 + g) + g2]

    43

    RSS with Mixed Distribution Inflation Factors

  • 8/12/2019 Toler Ancing State

    45/117

    RSS with Mixed Distribution Inflation Factors

    Assume that disk thicknessesDihave different tolerance specifications

    i TOLi, i=1, . . . , n and with possibly different distribution factorsc1, . . . , cn

    Again the stack dimensionS=D1 + . . . +Dn is approximately normally distributed

    with mean and standard deviation given by

    S=1 + . . . +n and S=

    21 + . . . +

    2n

    By way of3i=ciTOLiwe get for Sthe tolerance rangeS TOLS, where

    TOLS=3S=

    (31)

    2 + . . . + (3n)2 =

    (c1TOL1)

    2 + . . . + (cnTOLn)2

    44

    Statistical Tolerancing by Simulation

  • 8/12/2019 Toler Ancing State

    46/117

    Statistical Tolerancing by Simulation

    Randomly generate part dimensions according to appropriate distributionsover respective tolerance ranges

    Calculate the resulting critical assembly dimension, i.e., draw ten thicknessesfrom a distribution of thicknesses and compute the stack height (sum).

    Repeat the above many times, Nsim=1000(or Nsim 1000) times.

    Form the histogram of the 1000(or more) critical dimensions.

    Compare histogram with specified limits on the critical assembly dimension(stack height).

    45

    Statistical Tolerancing by Simulation & Iteration

  • 8/12/2019 Toler Ancing State

    47/117

    Statistical Tolerancing by Simulation & Iteration

    If histogram has lots of room within assembly specification or tolerance limits

    relax tolerances on the aggregating parts.

    If histogram violates assembly specification or tolerance limits significantly,tighten tolerances on the aggregating parts.

    Repeat process until satisfied. Opportunity for Experimental Design.

    Vectorize part dimension generation= critical dimension generation.

    All this can be done on a computer (e.g.,using R) in a matter of seconds

    and can save a lot of waste and rework.

    There are commercial tools, e.g., VSA

    46

    Is Linear Tolerance Stack Special?

  • 8/12/2019 Toler Ancing State

    48/117

    Is Linear Tolerance Stack Special?

    height=thickness1 + . . . + thicknessn or Y=X1 + . . . +Xn

    From here it is a little step to Y=a0 + a1 X1 + . . . + an Xn,where a0, a1, . . . , an are known multipliers or coefficients.

    They are constant as opposed to the random quantities Xi.

    For example, Y=16 + 3 X1 + 2 X2 + 7 X3 + (2)X4

    Call X1, . . . ,Xn inputs or input dimensions and Y output dimension.

    47

    Crankcase Tolerance Chain

  • 8/12/2019 Toler Ancing State

    49/117

    Crankcase Tolerance Chain

    G

    L2

    L1

    L3

    L4

    L5

    L6

    G=L1 L2 L3 L4 L5 L6=L1 (L2 + . . . +L6)

    48

    Input/Output Black Box

  • 8/12/2019 Toler Ancing State

    50/117

    Input/Output Black Box

    Of more general interest and applicability would be I/O relationsof the following type Y= f(X1, . . . ,Xn)

    Input/Output Black Box

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    X1 ...

    Xn

    Y= f(X1, . . . ,Xn)

    fdescribes what you have to do with the inputs Xito arrive at an output Y.

    The propagation of variation in theXicauses what variation in the output Y?

    49

    Smooth Functions f

  • 8/12/2019 Toler Ancing State

    51/117

    Smooth Functions f

    When the outputYvaries smoothly with small changes in theXi, then

    Y a0 + a1 X1 + . . . + an Xnfor all small perturbations in X1, . . . ,Xnaround1, . . . ,n.

    The above approximation forY= f(X1, . . . ,Xn)comes fromthe one-term Taylor expansion of f around1, . . . ,n.

    Y= f(X1, . . . ,Xn) f(1, . . . ,n) +n

    i=1

    f(1, . . . ,n)

    i(Xi i)

    using

    ai=f(1, . . . ,n)

    iand a0= f(1, . . . ,n)

    n

    i=1

    f(1, . . . ,n)

    ii

    50

    Good Linearization Example

  • 8/12/2019 Toler Ancing State

    52/117

    Good Linearization Example

    x

    y

    1.0 1.2 1.4 1.6 1.8 2.0

    2

    3

    4

    5

    6

    7

    51

    Medium Linearization Example

  • 8/12/2019 Toler Ancing State

    53/117

    Medium Linearization Example

    x

    y

    1.0 1.5 2.0 2.5

    0

    2

    4

    6

    52

    Poor Linearization Example

  • 8/12/2019 Toler Ancing State

    54/117

    Poor Linearization Example

    x

    y

    1.0 1.5 2.0 2.5 3.0 3.5 4.0

    4

    2

    0

    2

    4

    6

    53

    The Sensitivity Coefficients or Derivatives

  • 8/12/2019 Toler Ancing State

    55/117

    The Sensitivity Coefficients or Derivatives

    The sensitivity coefficientaican then be determined by calculus or

    numerically by experimenting with the black box, making small changes in Xineariwhile holding the otherXs fixed at their s and assessing

    the rate of change inYin each case, i.e., for each i=1, . . . , n.

    The previous analysis can proceed, once we realize that

    2aiXi= a2i2Xi= (aii)

    2 and 2a0= 0.

    2Y = 2a0+a1X1+...+anXn

    = 2a0+2a1X1+ . . . +

    2anXn=

    a1X1

    2+ . . . +

    anXn

    254

    The General Tolerance Stack Formula

  • 8/12/2019 Toler Ancing State

    56/117

    The General Tolerance Stack Formula

    and by 3 Xi= ciTXi

    (3Y)2 =

    3a1X1

    2+ . . . +

    3anXn

    2=

    a1c1TX1

    2+ . . . +

    ancnTXn

    2CLT= YN(Y,2Y), i.e., most variation of Yis withinY 3Y

    TOLY=3Y=

    a1c1TOLX1

    2+ . . . +

    ancnTOLXn

    2

    I have seen engineers applying

    TOLY=3Y=

    TOL21 + . . . + TOL

    2n

    regardless of theaiandci. RSS was a magic bullet they did not understand.

    55

    Simulation for General f

  • 8/12/2019 Toler Ancing State

    57/117

    Simulation for General f

    Simulation ofY= f(X1, . . . ,Xn)is an option as well.

    A normal distribution for the inputs Xiis not essential.

    The CLT still gives us normal outputs, most of the time.

    The latter depends on the sensitivities/derivatives of fand the relative variations of the inputs.

    56

    Sensitivities and CLT

  • 8/12/2019 Toler Ancing State

    58/117

    Sensitivities and CLT

    Recall the crucial condition forY=X1 + . . . +Xn N(Y,2Y)

    max21, . . . ,

    2n

    21 + . . . +

    2n

    0, as n

    ForY=a0

    + a1X

    1+ . . . + a

    nX

    n N(

    Y,2

    Y)this translates to

    max

    a2121, . . . , a

    2n

    2n

    a21

    21 + . . . + a

    2n

    2n

    0, as n

    A largeaican mess things up, i.e., makea2i

    2i dominant.

    A smallaican dampen the effect of a large or otherwise dominant 2i.

    57

    Mean Shifts

  • 8/12/2019 Toler Ancing State

    59/117

    Mean Shifts

    So far we have assumed that the distributions of part dimensions

    were centered on the middle of the tolerance interval.

    Why should there be that much precision in centering when the

    actual inputs or part dimensions can be quite variable?

    It makes sense to allow for some kind of mean shift or targeting error

    while still insisting on having all or most part dimensions within

    specified tolerance ranges.

    58

    Two Strategies of Dealing with Mean Shifts

  • 8/12/2019 Toler Ancing State

    60/117

    Two Strategies of Dealing with Mean Shifts

    Two strategies of dealing with mean shifts:

    1. stack these shifts in worst case fashion arithmetically

    2. stack these shifts statistically via RSS

    In either case combine this in worst case fashion or arithmetically with the

    RSS part variation stack.

    The reason for the last worst case stacking step is that the mean shifts

    represent persistent effects that do not get played out independently and

    repeatedly for each produced part dimension.

    59

    Mean Shifts Stacked Arithmetically

  • 8/12/2019 Toler Ancing State

    61/117

    ea S ts Stac ed t et ca y

    probability

    density

    0.6 0.4 0.2 0.0 0.2 0.4 0.6

    part dimensionX1

    part dimensionX2

    part dimension

    X3

    assembly stack

    Y == X1 ++ X2 ++ X3

    mean shifts add

    in worst case fashion

    60

    Mean Shifts Stacked via RSS

  • 8/12/2019 Toler Ancing State

    62/117

    probability

    density

    0.6 0.4 0.2 0.0 0.2 0.4 0.6

    part dimensionX1

    part dimensionX2

    part dimension

    X3

    assembly stack

    Y == X1 ++X2 ++X3

    mean shifts add

    in RSS fashion

    61

    Mean Shifts within Tolerance Interval

  • 8/12/2019 Toler Ancing State

    63/117

    For the part variation to stay within tolerance there has to be a tradeoff

    between variability and mean shift.

    62

    Mean Shifts, Variability & Cpk

  • 8/12/2019 Toler Ancing State

    64/117

    , y pk

    The capability indexCpkmeasures the distance of the mean to the closest tolerance limit in relation to 3.

    If the tolerance interval is given by[L, U]then

    Cpk=minU

    3 ,

    L

    3

    Cpk= 1 means that we have somewhere between .135% to .27% of partdimensions falling out of tolerance.

    However, this does not control the mean shift. We could have U andCpk=1. Then all part dimensions would be nearU= worst case stacking.

    63

    Bounded Mean Shifts

  • 8/12/2019 Toler Ancing State

    65/117

    Bound the mean shifti, typically as a fraction of the tolerance Ti:

    i= iTi 0

    i

    1.

    But maintainCpk 1

    iTi + 3i Ti = 3i (1 i)Ti

    64

    Arithmetically Stacking Mean Shifts

  • 8/12/2019 Toler Ancing State

    66/117

    y g

    = Hybrid tolerance stacking formulaarithmeticallycombiningarithmetically combined mean shiftsand

    statistical tolerancing

    TOLY= 1|a1|TOLX1+ . . . +n|an|TOLXn

    +

    (1 1)2

    a

    2

    1c

    2

    1TOL

    2

    X1+ . . . + (1 n)2

    a

    2

    nc

    2

    nTOL

    2

    Xn

    This grows on the order ofn and not n, but with a reduction factor.

    1=. . .= n=0 = RSS stacking.

    1=. . .= n=1 = Worst case arithmetical stacking.

    65

    RSS Stacking of Mean Shifts

  • 8/12/2019 Toler Ancing State

    67/117

    g

    = Hybrid tolerance stacking formula

    arithmeticallycombiningRSS combined mean shiftsand

    statistical tolerancing

    TOLY=21c

    21a

    21TOL

    2X1

    + . . . +2nc2na

    2nTOLXn

    2

    +

    (1 1)2

    a21c

    21TOL

    2X1+ . . . + (1 n)

    2

    a2nc

    2nTOL

    2Xn

    The ciare the penalty factors for the distributions governing the mean shifts.Theciare the penalty factors for the distributions governing part variation.

    What is the interpretation of1=. . .= n=1?Consistent part dimensions with system outputY=E(Y) TOLY.

    66

    Distributions with Mean Shift I

  • 8/12/2019 Toler Ancing State

    68/117

    shifted normal density

    c = 1

    shifted uniform density

    c = 1.732

    shifted triangular density

    c = 1.225

    shifted trapezoidal density: a = .5

    c = 1.369

    shifted elliptical density

    c = 1.5

    shifted half cosine wave density

    c = 1.306

    67

    Distributions with Mean Shift II

  • 8/12/2019 Toler Ancing State

    69/117

    shifted Student t density: df = 4

    c = 1

    shifted Student t density: df = 10

    c = 1

    shifted beta density

    = = 3

    c = 1.134

    shifted beta density

    = = .6

    c = 2.023

    shifted beta density (parabolic)

    = = 2

    c = 1.342

    DIN - histogram density

    p = .7 , g = .4

    c = 1.512

    68

    Other Variants

  • 8/12/2019 Toler Ancing State

    70/117

    So far we have accommodated mean shifts at the price of reduced part

    dimension variability in order to maintainCpk 1.

    Rather than dividing upTOLinto mean shift and a3range (by squeezing

    down3 to maintain Cpk 1) we can increaseTOLto the sum of the originalTOL =3plus the mean shift represented as a fraction of the increasedTOL, i.e.,

    TOLi=3i +iTOLi or TOLi= 3i1

    i

    = TOLi1

    i

    .

    For details on how the stacking formulas change see the provided reports.

    69

    Actuator

  • 8/12/2019 Toler Ancing State

    71/117

    70

    Actuator Case Study

  • 8/12/2019 Toler Ancing State

    72/117

    The following geometric problem arose in an actuator design situation.

    In the abstract: we have a triangle with legsA,R and B.

    The angle betweenA and R is denoted by.

    We have the following tolerance specificationsA

    A0

    TA andR

    R0

    TR.

    The legB, representing the actuator, can be adjusted such that the angle agrees

    exactly with a specified value0.

    Once = 0

    is achieved the actuator is in its neutral position.

    From thereB can extend or contract by an amount thus changing the angleto a maximum and minimum value maxandmin, respectively.

    71

    The Question of Interest

  • 8/12/2019 Toler Ancing State

    73/117

    A=A0andR=R0= nominal values formaxandmin, denoted bymax,0andmin,0, respectively.

    The question of interest is:

    How much variation ofmaxandminaroundmax,0andmin,0can we expect

    due to the variations inA and R over their respective tolerance ranges

    A0 TAandR0 TR?

    72

    Geometric Considerations

  • 8/12/2019 Toler Ancing State

    74/117

    GivenA,R and 0the length of the (neutral position) actuator length is

    B=B(A,R) =

    A2 +R2 2AR cos(0).Extending/contracting the actuator byx= from the neutral position

    =

    x=2 arctan

    (sx A)(sx R)sx(

    sx

    Bx)

    ,whereBx=B(A,R) +xand sx= (A +R +Bx)/2.

    Note that corresponds tomaxandcorresponds tomin.

    xis affected byA and R in quite a variety of ways

    = max= max(A,R) and min= min(A,R).

    73

    Statistical Tolerancing via Simulation

  • 8/12/2019 Toler Ancing State

    75/117

    The simplest way of dealing with the variation behavior of= maxand

    = mindue to variation inA and R is through simulation =

    R.

    GetN-vectors ofA and R values from N(A, (TA/3)2)and N(R, (TR/3)

    2).

    Calculate the correspondingly adjustedB=B(A,R)vector and from that

    theN-vectors ofmaxandmin, respectively.

    HereA=A0,R=R0andA=TA/3,R=TR/3normal distribution.

    The results usingN= 1, 000, 000simulations is shown on the next slide.

    It usedtheta.simNNand took just a few seconds to run.

    Vertical bars on either side of the histograms = estimated 3 = T limits.

    It is easy to change the distributions describing the variation in A and R.

    74

    (A,R) (N,N)Simulation Output, Nsim=106

  • 8/12/2019 Toler Ancing State

    76/117

    ( , ) (N ,N ) p , sim

    max 0

    Den

    sity

    15.0 15.2 15.4 15.6 15.8

    0.0

    1.0

    2.0

    3.0 T1 ==0.359

    omax,, 0 0 ==15.325

    o

    0 ==55o

    min 0

    Density

    16.6 16.4 16.2 16.0 15.8 15.6 15.4

    0.0

    0.5

    1.0

    1.5

    2.0

    2.5

    T2 ==0.467o

    min,, 0 0 ==15.999o

    0 ==55o

    75

    Statistical Tolerancing via RSS

  • 8/12/2019 Toler Ancing State

    77/117

    T1=a2max,A T2A+ a

    2max,R

    T2R and T2=a2min,A

    T2A+ a2min,R

    T2R,

    where

    amax,A=maxA

    , amax,R=maxR

    , amin,A=minA

    , and amin,R=minR

    All derivatives are evaluated at the nominal values(A0,R0)of (A,R).

    These RSS formulae come from the linearization ofx(A,R)near(A0,R0), i.e.,

    x(A,R) = x(A0,R0) + (AA0)x

    AA=A0,R=R0 + (RR0)

    x

    RA=A0,R=R0 ,

    which is then taken as an approximation forx(A,R)near(A,R) = (A0,R0).

    76

    Approximation Quality

  • 8/12/2019 Toler Ancing State

    78/117

    The approximation quality depends on the smoothness of the functionx

    with respect toA andR at (A0,R0).

    The approximation quality also depends on the tolerances TAandTR.

    TAandTRdetermine over what rangexis approximated.

    WhenTAorTRget too large, quadratic terms may come into play normality???

    All this assumes of course that x is differentiable near(A,R) = (A0,R0).

    There are tolerance situation where differentiability is an issue and in that case the

    RSS paradigm does not work.

    77

    The Derivatives

  • 8/12/2019 Toler Ancing State

    79/117

    x

    A

    = 1

    1 +(sx

    A)(sx

    R)

    sx(sxBx)

    A

    (sx A)(sx R)

    sx(sx Bx)and

    x

    R=

    1

    1 +(sxA)(sxR)

    sx(sxBx)

    R

    (sx A)(sx R)

    sx(sx Bx) .

    Next we have

    A

    (sx A)(sx R)

    sx(sx Bx) =

    2

    (sx A)(sx R)

    sx(sx Bx)

    1

    A

    (sx A)(sx R)sx(sx Bx)

    and

    R

    (sx A)(sx R)

    sx(sx Bx) =2

    (sx A)(sx R)

    sx(sx Bx)

    1

    R

    (sx A)(sx R)sx(sx Bx) .

    78

    More Derivatives

  • 8/12/2019 Toler Ancing State

    80/117

    We also have the following list of derivative expressions

    BxA

    = A R cos(0)A2 +R2 2AR cos(0)

    and BxR

    = R A cos(0)A2 +R2 2AR cos(0)

    (sx A)A

    =1

    2

    A R cos(0)

    B 1

    and

    (sx R)A

    =1

    2

    A R cos(0)

    B+ 1

    (sx A)R

    =1

    2

    R A cos(0)

    B+ 1

    and

    (sx R)R

    =1

    2

    R A cos(0)

    B 1

    sxA

    =1

    2

    A R cos(0)

    B+ 1

    and

    sxR

    =1

    2

    R A cos(0)

    B+ 1

    (sx Bx)A

    =1

    2

    1 A R cos(0)

    B

    and

    (sx Bx)R

    =1

    2

    1 R A cos(0)

    B

    .

    79

    And More Derivatives

  • 8/12/2019 Toler Ancing State

    81/117

    A

    (sx A)(sx R)sx(sx

    Bx)

    = 1

    s2x(sx Bx)2

    (sx R) A

    (sx A) + (sx A) A

    (sx R)

    sx(sx Bx)

    (sx A)(sx R)

    (sx Bx) A

    sx + sx

    A(sx Bx)

    R

    (sx A)(sx R)sx(sx Bx)

    = 1

    s2x(sx Bx)2 (sx R)

    R

    (sx

    A) + (sx

    A)

    R

    (sx

    R)sx(sx Bx)(sx A)(sx R)

    (sx Bx)

    Rsx + sx

    R(sx Bx)

    .

    80

    And More Derivatives

  • 8/12/2019 Toler Ancing State

    82/117

    Rather than just using these expressions as they are it is advisable to simplify them

    somewhat to avoid significance loss in the calculations.

    Thus we obtained the following reduced expressions:

    (sx

    R)

    A(sx

    A) + (

    sx

    A)

    A(sx

    R) =

    R

    2 [1

    cos(

    0)] +

    x

    2B[A

    R cos

    (

    0)]

    (sx Bx) A

    sx + sx

    A(sx Bx) = R

    2[1 + cos(0)]

    x

    2B[A R cos(0)]

    (sx

    R)

    R

    (sx

    A) + (sx

    A)

    R

    (sx

    R) =

    A

    2

    [1

    cos(0)] +

    x

    2B

    [R

    A cos(0)]

    (sx Bx) R

    sx + sx

    R(sx Bx) = A

    2[1 + cos(0)]

    x

    2B[R A cos(0)].

    81

    RSS Calculations

  • 8/12/2019 Toler Ancing State

    83/117

    The R function deriv.theta produced the following derivatives for A0= 12.8,

    R0=6,0=55, and =1.6

    maxA

    = .00006636499 and minA

    = .004038650and

    maxR

    = 0.04473785 and minR

    =0.05810921.

    The RSS calculation using normal variation for A and R then gives the following

    values forT1andT2based onTA=.12and TR=.14

    T1=0.3588609 and T2=0.4669441,

    which agree remarkably well with the simulated quantities.

    The derivatives ofmaxandminwith respect toA are smaller than

    the derivatives with respect to R by at least an order of magnitude.

    Important when considering other distributions governing the variation of A and R.

    82

    Numerical Differentiation

  • 8/12/2019 Toler Ancing State

    84/117

    The derivation of the derivatives was quite laborious, but R code is compact.

    Useful in understanding the variation propagation in the tolerance analysis.

    An obvious alternative approach is numerical differentiation.

    It requires the evaluation of the function x, used in the simulation anyway.

    The respective derivatives are approximated numerically at(A,R) = (A0,R0)by

    difference quotients for very small values of

    xA

    A=A0,R=R0

    x(A0 +,R0)x(A0,R0)

    xR

    A=A0,R=R0

    x(A0,R0 +)x(A0,R0)

    .

    83

    Numerical Differentiation Example

  • 8/12/2019 Toler Ancing State

    85/117

    For =.00001the R functionderiv.numericgives

    maxA

    A=A0,R=R0

    .00006636269 and minA

    A=A0,R=R0

    .004038651

    and

    maxR

    A=A0,R=R0

    0.04473777 and minR

    A=A0,R=R0

    0.05810908 .

    These agree very well with the derivatives obtained previously via calculus.

    84

    Revisit RSS for Linear Combinations

  • 8/12/2019 Toler Ancing State

    86/117

    A linear combinationYof independent, normal variation terms Xi

    Y=a0 + a1X1 + . . . + anXn with known constantsa0, a1, . . . , an,

    is normally distributed.

    Most of the Yvariation falls within 3Yof its meanY= a0 + a1X1+ . . . + anXn.

    2Y= 2a1X1

    + . . . +2anXn= a21

    2X1

    + . . . + a2nXn2 .

    ForXi N equate3Xi= Ti, i.e., most of theXivariation falls withini 3Xi

    = general RSS tolerance stacking formula

    TY=3Y=

    a21(3X1)2 + . . . + a2n(3Xn)

    2 =

    a21T2

    1 + . . . + a2nT

    2n

    applicable for linear approximations to smooth functions of normal inputs.

    85

    CLT and Adjustment Factors

  • 8/12/2019 Toler Ancing State

    87/117

    Y=a0 + a1X1 + . . . + anXn with known constantsa0, a1, . . . , an,

    is approximately normally distributed provided

    max

    a21

    2X1

    a212

    X1+ . . . + a2n

    2Xn

    , . . . ,a2n

    2Xn

    a212

    X1+ . . . + a2n

    2Xn

    is small,

    i.e., none of the a2i 2i terms dominates the others.

    Making use of adjustment factors, chosen such that 3i=ciTi, get

    TY=3Y=

    a21(3X1)

    2 + . . . + a2n(3Xn)2 =

    c21a

    21T

    21 + . . . + c

    2na

    2nT

    2n .

    applicable for linear approximations to smooth functions of any random inputs,subject to above CLT condition.

    TheTishould be small for linearization to be reasonable.

    86

    Simulations with Other Distributions forAandR

  • 8/12/2019 Toler Ancing State

    88/117

    The next few slides show simulations with0=55and =1.6and

    (A,R) (U(12.8 .12, 12.8 + .12),N(6, (.14/3)2)usingsim.thetaUN

    (A,R) (N(12.8, (.12/3)2),U(6 .14, 6 + .14))usingsim.thetaNU

    (A,R) (U(12.8 .12, 12.8 + .12),U(6 .14, 6 + .14))usingsim.thetaUU

    (A,R) (U(12.8.012, 12.8+.012),U(6.014, 6+.014)) using sim.thetaUU

    87

    (A,R) (U,N)Simulation Output, Nsim=1064

  • 8/12/2019 Toler Ancing State

    89/117

    max 0

    Density

    15.0 15.2 15.4 15.6 15.8

    0

    1

    2

    3

    4

    T1 ==0.359o

    max,, 0 0 ==15.325o

    0 ==55o

    min 0

    Density

    16.6 16.4 16.2 16.0 15.8 15.6 15.4

    0.0

    1.0

    2.0

    3.0

    T2 ==0.469o

    min,, 0 0 ==15.999o

    0 ==55o

    88

    (A,R) (N,U)Simulation Output, Nsim=106

  • 8/12/2019 Toler Ancing State

    90/117

    max 0

    Density

    14.5 15.0 15.5 16.0

    0.0

    0.5

    1.0

    1.5

    2.0

    T1 == 0.622o

    max,, 0 0 == 15.325o

    0 == 55o

    min 0

    Density

    17.0 16.5 16.0 15.5 15.0

    0.0

    0.5

    1.0

    1.5

    2.0

    T2 == 0.809o

    min,, 0 0 == 15.999o

    0 == 55o

    89

    (A,R) (U,U)Simulation Output, Nsim=106

  • 8/12/2019 Toler Ancing State

    91/117

    max 0

    Density

    14.5 15.0 15.5 16.0

    0.0

    0.5

    1.0

    1.5

    2.0

    T1 == 0.622o

    max,, 0 0 == 15.325o

    0 == 55o

    min 0

    Density

    17.0 16.5 16.0 15.5 15.0

    0.0

    0.5

    1.0

    1.5

    2.0

    T2 == 0.81o

    min,, 0 0 == 15.999o

    0 == 55o

    90

    (A,R) (U,U)Simulation Output, Nsim=106

  • 8/12/2019 Toler Ancing State

    92/117

    max 0

    Density

    15.25 15.30 15.35 15.40

    0

    5

    10

    15

    20

    T1 == 0.0622o

    max,, 0 0 == 15.325o

    0 == 55o

    min 0

    Density

    16.10 16.05 16.00 15.95 15.90

    0

    5

    10

    15

    20

    T2 == 0.0809o

    min,, 0 0 == 15.999o

    0 == 55o

    91

    RSS Calculation with Inflation Factors

  • 8/12/2019 Toler Ancing State

    93/117

    Applying the RSS formula assuming a uniform distribution for both A and R we get

    T1=

    (.00006636269)2

    3 .122

    + (.04473777)2

    3 .142

    360

    2 = 0.6215642and

    T2=

    (.004038651)2 3 .122 + (.05810908)2 3 .142 360

    2 =0.8087691

    using the inflation factor c=

    3and the numerical derivatives in both cases.

    Reasonable agreement with the values.622and.81from simulation.

    Not surprising when linearization is good. We are simply using the variance rules.

    However, T1andT2do not capture the variation range of x, since the CLT fails.

    Tightening the tolerances in last case= echoes the uniform distribution ofR.Linearity was not good with wider tolerances= tilted uniform.

    92

    theta.simUUUU

  • 8/12/2019 Toler Ancing State

    94/117

    Here we let 4 inputs vary with result shown on next slide.

    A U(12.8 .22, 12.8 + .22)

    R

    U(6

    .15, 6 + .15)

    U(1.6 .05, 1.6 + .05)

    0

    U(55

    .5, 55 + .5)

    Try other tolerances in these uniform distributions.

    93

    VaryingA,R,0andUniformly

  • 8/12/2019 Toler Ancing State

    95/117

    max 0

    Density

    14 15 16 17

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    T1 == 1.38o

    max,, 0 0 == 15.325o

    0 == 55o

    min 0

    Densit

    y

    18 17 16 15 14

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    T2 == 1.59o

    min,, 0 0 == 15.999o

    0 == 55

    o

    94

    Final Comments

  • 8/12/2019 Toler Ancing State

    96/117

    This actuator example has been very instructive. It showed

    the importance of dominant variability by a single input

    the effect of the CLT when sufficiently many contributing inputs are involved

    the importance of simulation

    the importance of derivatives

    the effect of the variability ranges on the linearization approximation quality.

    95

    Voltage Amplifier

  • 8/12/2019 Toler Ancing State

    97/117

    96

    Output Voltage V0

  • 8/12/2019 Toler Ancing State

    98/117

    The amplified output voltage is a function of 6 variables,

    2 input voltagesE1, andE2and 4 resistances R1, . . . ,R4

    V0= f(E1,E2,R1,R2,R3,R4) =

    E1

    1 +R2R1

    1 +R3R4

    E2

    R2R1

    Nominal values:

    E1=1V,E2= 1V,R1=10,R2=100,R3=10, andR4=100.

    = V0=20V.97

    The Derivatives

  • 8/12/2019 Toler Ancing State

    99/117

    V0

    E1 =

    1 +R2R1

    1 +R3R4 ,

    V0

    E2 = R2

    R1

    V0

    R1=

    E1

    1 +R3R4 R2

    R21

    +E2 R2

    R21

    , V0

    R2=

    E1R1

    1 +R3R4 E2

    R1

    V0

    R3

    =

    E1

    1 +R2R11 +R3R4

    2 1

    R4

    , V0

    R4

    =E1

    1 +R2R1

    1 +R3R42

    R3

    R24

    98

    V.amp.simN2U4(del=.1)

  • 8/12/2019 Toler Ancing State

    100/117

    > V.amp.simN2U4(del=.1)

    $V0

    [1] 20

    $delta

    [1] 0.1

    $derivatives

    [1] 10.000000000 -10.000000000 -1.909090909 0.190909091

    + -0.090909091 0.009090909

    $sigmas

    [1] 0.33314890 0.33326565 1.10195837 1.10243208

    + 0.05248074 0.05246410

    $nominals

    [1] 1 -1 10 100 10 100

    99

    V.amp.simN2U4(del=.1)

  • 8/12/2019 Toler Ancing State

    101/117

    V0

    Density

    14 16 18 20 22 24 26

    0.0

    0

    0.0

    5

    0.1

    0

    0.1

    5

    0.2

    0

    0.2

    5

    Ei~N((i,, ((i))2)), Ri~U((i i , i ++ i))

    == 0.1

    100

    V.amp.simN2U4(del=.05)

  • 8/12/2019 Toler Ancing State

    102/117

    > V.amp.simN2U4(del=.05)

    $V0

    [1] 20

    $delta

    [1] 0.05

    $derivatives

    [1] 10.000000000 -10.000000000 -1.909090909 0.190909091+ -0.090909091 0.009090909

    $sigmas

    [1] 0.16657056 0.16676230 0.55079156 0.55108759

    + 0.02627634 0.02624854

    $nominals

    [1] 1 -1 10 100 10 100

    101

    V.amp.simN2U4(del=.05)

  • 8/12/2019 Toler Ancing State

    103/117

    V0

    Density

    17 18 19 20 21 22 23

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    Ei~N((i,, ((i))2)), Ri~U((i i , i ++ i))

    == 0.05

    102

    V.amp.simU6(del=.1)

  • 8/12/2019 Toler Ancing State

    104/117

    > V.amp.simU6(del=.1)

    $V0

    [1] 20

    $delta

    [1] 0.1

    $derivatives

    [1] 10.000000000 -10.000000000 -1.909090909 0.190909091+ -0.090909091 0.009090909

    $sigmas

    [1] 0.57739282 0.57698360 1.10221137 1.10199967

    + 0.05251682 0.05253420

    $nominals

    [1] 1 -1 10 100 10 100

    103

    V.amp.simU6(del=.1)

  • 8/12/2019 Toler Ancing State

    105/117

    V0

    Densit

    y

    14 16 18 20 22 24 26

    0.0

    0

    0.0

    5

    0.1

    0

    0.1

    5

    0.2

    0

    Ei~U((i i , i ++ i)) , Ri~U((i i , i ++ i))

    == 0.1

    104

    V.amp.simN6(del=.1)

  • 8/12/2019 Toler Ancing State

    106/117

    > V.amp.simN6(del=.1)

    $V0

    [1] 20

    $delta

    [1] 0.1

    $derivatives

    [1] 10.000000000 -10.000000000 -1.909090909 0.190909091

    + -0.090909091 0.009090909

    $sigmas

    [1] 0.33348276 0.33332256 0.63653780 0.63714909

    + 0.03031808 0.03029352

    $nominals

    [1] 1 -1 10 100 10 100

    105

    V.amp.simN6(del=.1)

  • 8/12/2019 Toler Ancing State

    107/117

    V0

    Density

    16 18 20 22

    0.0

    0.1

    0.2

    0.3

    0.4

    Ei~N((i,, ((i))2)), Ri~N((i,, ((i))

    2))

    == 0.1

    106

    V.amp.simN6(del=.05)

  • 8/12/2019 Toler Ancing State

    108/117

    > V.amp.simN6(del=.05)

    $V0

    [1] 20

    $delta

    [1] 0.05

    $derivatives

    [1] 10.000000000 -10.000000000 -1.909090909 0.190909091

    + -0.090909091 0.009090909

    $sigmas

    [1] 0.16656830 0.16669687 0.31840687 0.31774622

    + 0.01514106 0.01513453

    $nominals

    [1] 1 -1 10 100 10 100

    107

    V.amp.simN6(del=.05)

  • 8/12/2019 Toler Ancing State

    109/117

    V0

    Density

    18 19 20 21

    0.0

    0.2

    0.4

    0.6

    0.8

    Ei~N((i,, ((i))2)), Ri~N((i,, ((i))

    2))

    == 0.05

    108

    Some Final Comments

  • 8/12/2019 Toler Ancing State

    110/117

    R3andR4appear to have negligible effect.

    Normal variations on all 6 inputs produce approximately normal V0distributions.

    The linearizations appears to be a mild issue here.

    Ei N andRi Ushow much stronger deviations from normality,but not too bad as far as the TV0= 3V0 range is concerned.Distributions appear nearly triangular, because of dominance of R1andR2.

    ForEi UandRi U the distribution seems similar to previous case.The main termsR1andR2are not as dominant compared to E1andE2.

    109

    References on Statistical Tolerancing

  • 8/12/2019 Toler Ancing State

    111/117

    Altschul, R.E. and Scholz, F.W. (1994). Case study in statistical tolerancing. Man-

    ufacturing Review of the AMSE7, 52-56.

    ASME Y14.5M-1994, Dimensioning and Tolerancing, The American Society of Me-

    chanical Engineers.

    ASME Y14.5.1M-1994, Mathematical Definition of Dimensioning and Tolerancing

    Principles, The American Society of Mechanical Engineers.

    Bates, E.L. (1947). How to increase tolerances and obtain closer fits. The Iron

    Age, July 3rd.

    Bates, E.L. (1949). Specifying design tolerances. Machine Design, March.

    Bender, A. Jr. (1962). 6 2.5= 9, Benderizing tolerancesa simple practicalprobability method of handling tolerances for limit-stack-ups. Graphic Science, 17-

    21.

    110

    References on Statistical Tolerancing

  • 8/12/2019 Toler Ancing State

    112/117

    Bjrke, , (1989). Computer-Aided Tolerancing, ASME Press, New York.

    Bowker, A.H. and Lieberman, G.J. (1959). Engineering Statistics, Prentice Hall,Englewood Cliffs, N.J., 51-64.

    Creveling, C.M. (1997). Tolerance Design, A Handbook for Developing Optimal

    Specifications, Addison-Wesley, Reading Massachusetts.

    Cox, N.D. (1986). Volume 11: How to Perform Statistical Tolerance Analysis. Amer-

    ican Society for Quality Control, 230 West Wells Street, Milwaukee, Wisconsin

    53203.

    Epstein, B. (1946). Tolerances on assemblies. The Machinist, April 20th.

    Ettinger & Bartky (1936). Basis for determining manufacturing tolerances. The

    Machinist, October 3rd.

    111

    References on Statistical Tolerancing

  • 8/12/2019 Toler Ancing State

    113/117

    Evans, D.H. (1974). Statistical tolerancing: The state of the art. Part I. Back-

    groundJournal of Quality Technology6, 188-195.

    Evans, D.H. (1975). Statistical tolerancing: The state of the art. Part II. Method for

    estimating moments. Journal of Quality Technology7, 1-12.

    Evans, D.H. (1975). Statistical tolerancing: The state of the art. Part III. Shifts anddrifts.Journal of Quality Technology7, 72-76.

    Evans, D.H. (198?/9?). Probability and its Application for Engineers, Chapter 9:

    Tolerancing , Error Analysis, and Parameter Uncertainty.

    Fortini, E.T. (1967). Dimensioning for Interchangeable Manufacture. Industrial

    Press Inc., New York, N.Y.

    112

    References on Statistical Tolerancing

  • 8/12/2019 Toler Ancing State

    114/117

    Gilson, J. (1951). A New Approach to Engineering Tolerances, The Machinery

    Publishing C. LTD, 83-117 Euston Road, London, NW1.

    Gladman, C.A. (1945). Drawing office practice in relation to interchangeable com-

    ponents. Proc. I. Mech. E. 152, No. 4, p. 388, paper and discussion.

    Greenwood, W.H. and Chase, K.W. (1987). A new tolerance analysis method for

    designers and manufacturers. Trans. ASME, J. of Engineering for Industry109,

    112-116.

    Gramenz, K. (1925). Die Dinpassungen und ihre Anwendungen. Dinbuch 4.

    Harry, M.J. and Stewart, R. (1988). Six Sigma Mechanical Design Tolerancing.

    Motorola Government Electronics Group, 8201 E. McDowell Rd., Scottdale, AZ

    85257, Ph. (602) 990-5716.

    113

    References on Statistical Tolerancing

  • 8/12/2019 Toler Ancing State

    115/117

    Henzold, G. (1995). Handbook of Geometrical Tolerancing, Design, Manufacturing

    and Inspection, John Wiley & Sons, New York, N.Y.

    Kirschling, G. (1988).Qualit atssicherung und Toleranzen, Springer-Verlag, Berlin.

    Loxham, J. (1947). An experiment in the use of a standard limit system. Proc. I.

    Mech. E.156, No. 2, p. 103, paper and discussion.

    Mansoor, E.M. (1963). The application of probability to tolerances used in engi-

    neering designs. Proc. of the Institution of Mechanical Engineers178, 29-51 (with

    discussion).

    Nielson, L.M. (1948). Shop run tolerances. Product Engineering, May.

    Nigam, S.D. and Turner, J.U. (1995). Review of statistical approaches to tolerance

    analysis.Computer-Aided Design27, 6-15.

    114

    References on Statistical Tolerancing

  • 8/12/2019 Toler Ancing State

    116/117

    Rice, W.B. (1944). Setting tolerances scientifically. Mechanical Engineering, De-

    cember.

    Scholz, F.W. (1995). Tolerance stack analysis methods, a critical review. ISSTECH-

    95-021Boeing Information & Support Services.

    Scholz, F.W. (1995). Tolerance stack analysis methods. ISSTECH-95-030BoeingInformation & Support Services.

    Scholz, F.W. (1996). Hole Pinning Clearance. ISSTECH-96-028Boeing Informa-

    tion & Support Services.

    Scholz, F.W. (1999). Hole Alignment Tolerance Stacking Issues. ISSTECH-99-

    025Boeing Information & Support Services.

    115

    References on Statistical Tolerancing

  • 8/12/2019 Toler Ancing State

    117/117

    Shapiro, S.S. and Gross, A.J. (1981). Statistical Modeling Techniques, Marcel

    Dekker, Chapter 7, Analysis of Systems, 268-326.

    Srinivasan, V. (2004), Theory of Dimensioning, An Introduction to Parameterizing

    Geometric Models, Marcel Dekker Inc., New York.

    Srinivasan, V., OConnor, M.A., and Scholz, F.W. (1995). Techniques for compos-

    ing a class of statistical tolerance zones. ISSTECH-95-022Boeing Information &Support Services.

    Wade, O.R. (1967). Tolerance Control in Design and Manufacturing, Industrial

    Press Inc., 200 Madison Avenue, New York 10016

    Wadsworth, H.M., Stephens, K.S., and Godfrey, A.B. (1986). Modern Methods for

    Quality Control and Improvements, Chapter 11, 408-433. John Wiley & and Sons,

    New York.


Recommended