+ All Categories
Home > Documents > Total Company Process Eng Design Manuall

Total Company Process Eng Design Manuall

Date post: 02-Nov-2014
Category:
Upload: chetan-patel
View: 146 times
Download: 14 times
Share this document with a friend
Popular Tags:
312
PROCESS ENGINEERING DESIGN MANUAL Uml TOTAL 1111
Transcript
Page 1: Total Company Process Eng Design Manuall

PROCESS ENGINEERING DESIGN MANUAL

U m l TOTAL 1111

Page 2: Total Company Process Eng Design Manuall

The purpose of this manual is to present in a practical way the process design methods to be

used by TEP personnel lor quick calculations as well as detailed ones. They have been careluliy

selected by the most experienced engineers of the Process and Operations Department

ITEPlDDPtDiPlEXPlSUR).

I

The physical presentation i s different from that of the other TEP/DDP/DIP manuals i n order to

get an easily transportable docurncnt as well as one whlch 1s convenient for photocopies.

TOTAL TEPIDPIEXPtSUR -

I Most methods are illustrated by seleeted examples.

I Chapter 15 gives a selection of basic data which is sufficient for most calculations. I

I

FOREWORD TO REVISION 0

Chapters 16 and 17 consist of blank calculation sheets and Process data sheets that can easily be photocopied.

I Blank pa& : are scattered along the chapters for personal notes. I

Revisiot~ : 0

Date: 2/85

In addition, blank pages are placed at the end of the manual. They arc to be used !or comments

regarding the content as well as the typing and prcsentation and should be sent back to

TEP/DDP/DIP/EXP/SUR in Paris to be incorporeted in the next rcvislon. Use them plea= : they

will be part of our feedback.

Page Nu. :

The following persons have cooperated to the revlsion 0 of t h t manual : MM. J.L. BAGGIO,

P. BERLIN, Ph.BOURGEOIS, J.C. FORESTIER, B.K. MARSHALL, A. MINKKINEN,

J.P. LUCIANI, M. LE METAIS, R. ODELLO, B. PERISSE, U. WEBER, Mmc K. COTTIN,

fl. LEGRAND

Page 3: Total Company Process Eng Design Manuall

. Plate exchangers . Furnaces

, Steam turblnes

. A P through valves and fittings . Control valves - sizing and sdection

. Gas sweetening

Page No. :

. Air , Drainage

...

I. DESIGN CONDITIONS

2. VESSELS (vapwr-liquid separators)

. HorizontaI . Vertical

3. COLUMNS

. Tray . Packed

4. HEAT EXCHANGERS

. Shell + tube . Air cmlers

5 PUMPS

. Centrifugal . Reciprocating

6. DRIVERS

. Gas turbines . Electric drivers

7. COMPRESSORS

8. EXPANDERS

9. FLARE SYSTEMS

10. PIPES VALVES + FITTINGS

. Line sizing . Piplng classes

11. PIPELINES

, Pressure and temperature drops

12. PACKAGE UNITS

. Dehydration , Refrigeration

13. UTILITIES

. Watw . Nitrogen

10.COMPUTER PROGRAMS

15. DATA

16. PROCESS CALCULATION SHEETS

L7. PROCESS DATA SHEETS

2 u -

urnvision '

Date :

TOTAL TEPIDPEXPISUR

I N D E X

Page 4: Total Company Process Eng Design Manuall

Pave No :

1. D E S I G N CONDITIONS

R ~ Y ~ S ~ O I I ;

Date : 2/85

r u BML TEPIDPIEXPISUR

r-rtucthh r lubI Iut l r l t lNlr UtSltiN MANUAL

Page 5: Total Company Process Eng Design Manuall

TOTAL TEPIDPl€XPISUR

I. APPLICABILITY

The f~l lowing design cri teria are applicable far both feasibility studies and pre-project

studie:.

2. PRESSURES

The design pressure of a vessel shall be taken as of the following ;

Operating pressure Desinn pressure bar13 - bark

0 - 10 MOP + 1 bar MOP z Maximum Process Operating

10 - 50 MOP t 10 % Pressure

50 - I00 MOP + 5 barg

) LO0 MOP+5%

. Vesscls subject to vacuum during operation shall be designed for the maxlmurn external

operating pressure plus a margin of 0.15 bar.

11 the internal pressure Is 0.35 bara or less the vessel will be designed lor full vacuum.

. Deslgn pressure for pump discharges shall be calculated by taking 120 % ofithe nvrmal

pump AP)when operating at design conditions.

3-0 DESIGN TEMPERATURES

. Design vessel temperatures shall be as lollows :

Maximum design temperature = max. operating Ternp t I5 *C

Minimum design temperature = min. operating Temp - 5 "C

or minimum ambient temperature.

. Consideratian for t l ~ rninlrnurn dcsign temperature must take lnro a a u n t W d s @ f s s a u r m 4f Lhe v t s s ~ l that m a y GCWE durLng e m - e r w 9r&t d o ~ n . & ~ a l h S . (Set sectlon on flaring).

4.0 MATERIAL OF CONSTRUCTION

. Details of the required material of c o n s t r ~ t i o n for various tcrnperatures are given in

Table I.

. Details on corrosion allowances and wal l thirkness a r t given in the vessel design section.

5

DEIGN CONDITIONS

Revls~on : 0

Date : 2fg5

Page No

1.1

Page 6: Total Company Process Eng Design Manuall
Page 7: Total Company Process Eng Design Manuall

1

TOTAL TEPlDPlE> :UR

2 , VESSELS

7

t R e E a ENGINEERIND DPIGN MANUAL Revision :

Data : 2f85

Pws No ;

Page 8: Total Company Process Eng Design Manuall

TOTAL. TEPIDPIEXPISUR

1. APPLICABILITY

Virtually sll procers zchernes use phase scpararlan. The deslgn and sizing of a separator with

acceptable accuracy b required for both the feasibility and pre-projet phases.

Consideration is given in this section lo the spccifkatian of vertical and harlzontal

separators for vapow-liquid and vapour-llquid-liquid separation. Details are also given

concerning vessel internals,

Separation of solida from gas or Bquids is not cavcred in this design guide. Gencraliy a vendor will be cmsultcd for details af a proprlctory designed vessel.

2. SEPARATOR APPLICATIONS AND COPWOERATEONS

2.1. 2 PHASE SEPARATORS (uwaly unless stated)

. Compres~lr a d Fwl G u KO drums

Efficient sepretbn of liquid from vapour rtqulred. Always consider a mlae

elimina-. Provide sufficbmtirurge t1me)ll to 2 minutes) between ttte HLL and t r l p p i q the compressor.

. R d l d Syrm KO drum - See =tian 9 4 F1are Sys%erns

- Udt ~ma#oaumP

R q h d u p t ~ a m of acid gas ahsorbtrs, glycol conmetors and dcrslcant bed

dehydratws. Can ba incarporated into base of towcr for weight and spa= saviw.

Always USE dcrnuter pads.

. Produetian W r a t o r s (Vertical or horizontal)

Liquid separation from eas not as critical as compr-lor KO drum unless a ewnpreswr is located immediately downstream of separator. Always C O ~ ~ W

stpr_t* - - d m and prvcas slu&s when des-

2.2. 3 P W E -TORS

. 3 production separators are g ~ ~ l l y h o r i ~ @ l . If good liquid-vapour dc

entraimntnt is rqulrad dmisters arc usualjy stated. Oil scparatfon kom the water.- must be sufficient sa as not to overload water treatment units Chemkd additives (demulsiflers, anti-Enam, pour point dcprasants) may be added

to aid m a t i o n .

9

Page NO. :

2.1

VAPOUR - LIQUID SEPARATORS

neuisioh : 0

Date: 2f85

Page 9: Total Company Process Eng Design Manuall

I

PDTAL, TEPIOPIEXPISUR

YAPOUR - LIQUID SEPARATORS

3. HORIZONTAL OR VERTICAL DESIGN

. Vapwr velacity! in a horizontal drum can exceed the llquld scttIlng velocity provided

LID ) 1. Far vertical drums the velocity cannot.

H . Horizontal drums arc more effective and geometrically more practical for a heavy liquid phase removal than vertical drums.

y . A rising liquid level in a vertical drum dces not alter the vapaur f k w area.

Cmsqucntly vertical drums are preferred for compresmr and fuel gas KO drums.

y , Vtrtlcal drums utilise a smalkr plot and arc easier to instrument with alarms and

shutdown controls. For (floating installatiom) they are preferred as less "sloshing"

occurs.

. Each design case must be evaluated separately but in general the Iollowlng can be u9ed

as a guideline :

- Qwtlcal drums Cm~~pre~sar KO drum Degassing boots

Fuel gas KO drums Absorber fctd KO drums

FCwtlfq instellatlmm '?

- Horizontal drums Prducthn sqwatars HP Reihrr drums

3-pharc separation Flare KO drums

. Try to avold v e s ~ l s with wall thickness grea#r than 100 mm as th- require special

Revis~on : 0

Date: 2/85

I

Page NO. .

2.2

fabrication and can prwe expensive.

6- CALCULATION THEORY AND EQUATIONS (for use in calcuIation sheets) (Valid only for pure gravity settlers with no intcrnals to enhance qarat ion)

4.1. LIQUID-YAPOUR SETTLING VELOCITY

s = K [yp pv - liquid or yap- density kglrn3

V$ - settling velocity m/s

K r correlating parameter mls

(2) K' = 0.003616(g) k D - particle diameter -microns C - drag cocfficicnt

% P - vapour viscosity - centipoise

P - PJ la vs = o.oo3616(ff[ rv J

10 A

Page 10: Total Company Process Eng Design Manuall

For medium and low pressure with gases af viscosity less than 0.01 cp Figure 1

can be used to estimate Vs.

TOTAL TEPIOPIEXPISUR

- For higher pressures (> 50 bar) or viscosities in excess of 0.01 cp it i s necessary to

calculate Vs. The drag coefficient C 1s calculated using Figure 2 (curve 2) where t

( 8 ) CRe 2 = f . ~ O ~ ~ , ~ o ~ " - ~ ~ ~ ~ ' ~ ( ~ - ~ v )

PL Equation 3 1s then used to calculate Vs.

VAPOUR - LIQUID SEPARATORS

- 2 LIQUID-LIQUID SETTLING VELOCITY

(based on Stokes law of terminal settling)

The fallowing equation can be used for calculating the settling velocity of water in

oi l or the upwards "settling" of o i l in water. The important fact is to use the viscosity

of the continuous phase 1.e : for oll s e t t l i q upwards through water use the water

v~scoslty, for water settling in oil use the oil viscosity.

Revisiori :O

Date : 2/g5

Ut = terminal velocity 4 s

L E gravitation accet rnls2 Ut = 8.D a (p- - fL) f h = densIty heavy fluid kglrn3

18 *PC p l = density light fluid kglm3

Page No. :

2.3

c = viscosity (continuous) kg1m.s

D = particle diameter m

Setting the particle size 7 0 125 microns and using more useful units gives :

I (3 ) U t = O . ~ ~ O S ( P;I ?-) Ut in mm/min

)& in centipoise

The above equatlon 1s valid lor REYNOLDS number of 0.1 - (1.3

. If calculated settling velocity is > 250 rnmlmin use 250 rnax

I 3 VESSEL VOLUMES

. Partial volumes of a l~orlzontal cylinder can be calculated using the partial

valurnt charts in Figure 3 or estimated using the following equations :

(for vessels with a diameter < 1.2 rn ignore head volumes)

Page 11: Total Company Process Eng Design Manuall

TOTAL TEPtDPlEXPlSlJR

(see p a ~ c 2.13 for sketch) A ~ = D ' A ~ C C D S 9 -(;-h)PK"Z rn2 7

HORIZONTAL CYLINDER Vc = A1.L m3 Arccos in radians

2 DISHED HEADS Vdh = 0.21543 h2 (1.5 D - h) m3

2 ELLIPTICAL HEADS Veh = 0.52194 hZ (1.5. D - h) my (most common)

2 HEMISPHERICAL HEADS Vhh = 1.047 h2 (1.5 D - h) rn3 (gives extra vol)

VOLUME UP TO BAFFLE (see page 2.23)

for depth h 0.52194 hf (1.50-h) + AL.B

Ielltptical heads) 2

. These formula are accurate enough for general design and are easily programmed

on to 4 calculator for time saving.

. More accurate formula are available, ace ref list, but are often too complicated

to be useful for multip1e calculations.

. For greater accuracy the lengt l~ L should bc the tan-tan length and not the

flowpath length between nozzles. This is especially true w i t h large vessels and a

tight design.

4.4. CALCULATION PROCEDURE VERTICAL VESSEL (vapour-liquid separation)

A guide for filling In the attached calculation sheet.

. Decide i f Figure 1 can be applied i.c P < 10 bata, < 0.01 cp Y

. lpplicable use the 500 micron curve to evaluate settling velocity (this assume?

a inist eliminator wil l be installed) or 150 micron wi th no mist cllrrilnator. I t is

recommended to install a mist clirninator for most applications. I f not calculate

Vs using equ 3.

. Derate the calculated settling velocity by 85 % design margin to give a

maximum allowable vapour velocity.

. Calculate drum internal diameter and round to nearest 50 mmb (further

adjustment of ID : OD can be made to l u i t standard head dirncnsions).

. Check if wall thickness i s less than I00 mm (See para b.8).

t2 -

VAPOUR - LIQUID SEPARATORS

Revision : 0

Oste : 2/85

Page No. :

2.4

Page 12: Total Company Process Eng Design Manuall

TOTAL TEPIDPIEXPISUR

VAPOUR - LIQUID SEPARATORS

. calculate vesxl height based on following criteria :

h l : max (15 % of C or 400 rnrn)

n h2 r 100 rnm i f mesh selected

Rev~sron : 0

D ~ t c : 2/85

h l

h2

h3

hl

hS

h6

- h7 . he

i

Page Mo. :

2 J

- product drums 5 min with pump

L 3 rnin no pump

- heater feed 8 rnin

- HP sep. to LP sep. Y min

h7 : 1-2 rnin residence tlme (rnin~rnurn 150 mm)

h8 : 150 mrn tor bottom connected LC

300 mm for side connecred LC

Note : Far compressor suction drums that are normally dry set HLL at b 5 O mm

above tan line and u x bottom connected LC. This will reduce vessel

height if required. No specific HLL-ILL hold up t~rne required.

I a

- -

7 -

.L F&

~

-

TL

-

I / / / / /; a - .

ma

mu - - - -nLL u 7

WL -

150 mrn for compressor KO

h3 : max (SO % of 0 or 600 mm)

I f no mesh use h l + h2 + h3 = 60 % d or 800 mm

h~ : 900 mrn + dl2 = inlet nozzle

h5 : calculate based on 1-2 minutes residence time at

maximum liquid inflow (rnin 200 rnm)

h6 ! base on follow~ng hold up times r (min 350)

- rcflux drums 4 min

Page 13: Total Company Process Eng Design Manuall

TOTAL TEP~DP~EXP~SUR

4.5. CALCULATlON PROCEOURE HORIZONTAL VESSEL (2 phase)

A guide on how to fill in the attached calculatEon sheet.

1. Calculate settllng velocity Vs far partic4Ksize 5 0 0 ~ (use Fie 1 or equ. 3.)

2. Ckrate this by F = 0.85 and calculate required vapour vclwit~ Vmm/s

Vm = P x Y s x (LID) mls use LID of 3 to 4 max (3 first est)

3- Evaluate required vapout cross sectional area, Av

4. Assume drum is 70 % full i.c h/D = .I and evaluate drum 0 to give required Av

(to nearest 50 mm). For "dry" vwwls use h/D = .3>

5. For required(Jiqold surge volume) calculate vol at HLL, 1X insufficient adjust D or

L (note 11 L/D changes signliicantly recheck Av using new Vm).

6. Set position of LLL in drum and confirm required surge vol between HLL-LLL, If

volume & Insufficient increase 9, L or h. Include volumes in heads.

7 , When setting LLL height take into account any LSLL, LSL alarms and vortex

breakers which may set mlnimum value usable. Usually 300-350 mm.

8 , ~t iona l i se all heights and dimensions to nearest 10 mm.

NOTLA : - . For high volumetric flows of gas with small liquld volurnes consider using split

flow arrangement. Design ia as above but with half vapour volurnc Haw.

Normal design is with top entry, exit nozzles, However if spacc is limiting

(primarily offslrorc) head mounted nozzles can be used to increase flowpath.

. L i 3 daignated as the flow path length i.e distance between inlet and outlet

nozzle. L' is the tangent-tangent length. For 1st estitnates L' = I + 1.5 9i + 1.5 82

Q i = inlet nozzle diameter 02 c outlet nozzle diameter

- "Normal" liquid levels are taken as midway between the high-and low levels.

r 4

Page No. :

2.6

YAPOUR - LlQUlD SEPARATORS

Revision: 0

mate: 2/85

Page 14: Total Company Process Eng Design Manuall

TOTAL TEPIDPlEXPISUR

~evision :O

Datm: 2fb5

-

VAPOUR - LlQUlD SEPARATORS

Page No. :

2.7

4.6. CALCULATION PROCEDURE HORIZONTAL VESSEL 3 PHASE (See Figure 4)

. Sufficient residence time to allow separation of the ail-water mixt!trc as well as

the o i l surge and vapour f low areas must be provided.

1. Proceed with steps 1 t o 0 as for a two phase separation. Use L/D = 3 (1st

estimate) and evaluate L.

2. Provision now has to be made ta accommodate both oi l and water surge volumes.

Use Tan-Tan Jength 1' and not rrozz-nozz distance L.

3. Calculate L'LL required to give approx 4 rnins oil surge capacity (minimum).

Inspection wi l l reveal whether sufficient height exists below LLL to include the

interface levels. I f not, adjust the vessel Qor L to give sufficient room.

Note: If the water cut is very small, consideration may be given t o using a water boot instead of a baffle arrangement ace step 10.

Having dstkrnined HLL and LLL now set both position and height 01 b f f l c .

Calculate terminal settling velocity of watcr droplet (equ 5 sect b.2) and settling

t i m t at both HLL and LLL; Volumetric flqw of llquld h i n both cases the ol l plus

the water. Calculate fall distance of a droplet across length of the drum. Baffle

height and positlon can now be set noting :

- the baffle should be at least 75 rnm below the LLL - the baffle should be at least 213 down the length of thc drum Irotn the inlet - In some cases the water droplets wi l l settle to the f l m r in a short distance.

The baffle should s t i l l be se t at a minimum a1 213 along the vessel.

. kl the HIL a t baffte height - 7 5 mm. The LIL according to height determined by

vortex breaker + LSLL use a minimum of 300-390 mm.

6. Check If an oil droplet wi l l r ise through the water layer (from drurn floor) to LIC

before reaching water outlet. Use area at LlL with normal oil + water flowratcs.

(Thls criteria is very rarely governing but must he checked).

7. Calculate water surge time betwt tn HI1 and LIL, snd residence time between NIL and outlet. Remember t o use only one head volume, and length 01 drum upto

baffle. Minimum acceptable times are '4-5 rnins. I f calculated times are very long

consider using a watcr boot arrangement.

8 . Rationalise all dimensions and "tidytt levels to standard values if possible i.e :

150 mm, 200,250, 300 etc. This allows use of standard displacers.

9. Rtcalcutate a l l residence times based on "tidicd" levels (if required).

Note : in calculating the final residence times make sure that the vcsscl tan-

tan length is used and n g the nozzle to nozzle distance L.

/ 5

i

Page 15: Total Company Process Eng Design Manuall

10. Boot calcuIatian (See Fig. 5)

. If the water volumetric flow is 50 $mail as to not warrant a separate belflcd

settling campartement as detailed above a water boot should be used instead.

70 design prwecd as follows :

Page No. :

2.8

1. Prmeed as previaua upto step 3.

L.

Revision : 0

Oate : 2/85

TOTAL TEPIOPIEXPfSUR

2. Calculate settling distance of water droplet when vesstl Is operating at LLL.

Water droplet should reach floor gf drum before 011 wt le t . Remember that

the al l e r l t nozzle wi l l be raised above the floor as a standpipe. Adjust drum

fl or C to achieve &ttling.

VAPOUR - LIQUID SEPARATORS

3. Check that ~ t t i i n g is aim possible when operating at HLL, droplet to fall below drawdf nozzle level.

4 Size water drawoff boot fl ( try to use standard pipe diameters). Celculate

rising vcloclty of the oil in water, set downward velocity of water in boot at

90 % of this and evaluate bwt q. Boot length b y inspection (use standard

displacers).

Note Boot fl must be less than 35 % of vessel 0 - When heavy walled vessels are used a remote boot may be more

economical to prevent large cuts in the main vessel.

4.7. NOZZLE SIZING (see section 10.0 also)

Inlet nozzle

Size bawd on normal volumetric Ilow + 10 % (liquid + vapour flow)

L imi t inlet vclocity t o 7 - 13 rnls . Round nozzle diameter up or down to nearest standard sire

Can outlet Liquid outlet

Size an normal flow , Normal flaw + 10 %

. Velocity l imit 15-30 m/s . Velocity l imit 1-3 m/s HC 2-4 m/s water

Manholes : 450 mm or 600 , Min. diameter = 2" (avoid plugging)

4.8- VESSEL WALL THICKNESS

Calculate vessel wall thickness usin8 the ASME VIl1 div. I formula. The wall

thlckness should be calculated immediatly after D is knowtr to confirm if

t < 100 mm.

Page 16: Total Company Process Eng Design Manuall

(TOTAL[ I Revision :O Page NO. :

VAPOUR - LIQUID SEPARATORS 1 I Date : a185 2.9

Di = diameter m m

t : wall thickness rnm

P = design pressure barg

E = jolnt etficlency

ure 1 for seamless shells -85 otherwise

S 3 rnax. allowable stress bar

C z corrosion allowance mm use 1220 bar for CS plate - use 3 mm unless stated 1000 bar for 55 plate

oth,erwise by EXP/TRT for t C I00 mrn ; no fabrication problems 100 < t < 150 mm c vendor advkc may be needed

t > 130 mm : Major labrication problems

In order to meet standard vessel head sizes and wall thicknesses the followlns ranges shwld be

observed :

Vessel diameter : 250 - I250 n m in increments of SO m m i.e. 250, 300. 350...

1300 - 4000 mm in increments of 100 mm i.c. 1300, 1400, 1500 ... Srandhrd wall : 1 - 30 mm in increments of 1 mrn i.e. 1,2, 3;4...

thlckn=tser 30 - 60 mm in increments of 2 rnm i.e. 30, 32, 3(r, 36..,

60 - 140 rnrh in increments of 5 mm i.e. 65, 70, 75, SO...

Vessel weights either MdsontaI or vertical can bc estimated udng Flg. 6. 'This tigurt

is for the steel shell Including manholes, nozzles, Iittings etc but nut the removable

internal5 or support skid. The heads can be estimated by using weight of 2 heads z e2 I (m2) x wall thickness (mm) x 20 ks. I I 5. VESSEL INTERllALS I 1, 1.1. MIST ELIMINATORS I

, Mist tlirninatars or mesh pads are located under the vapwr outlet nozzles at all

compressor sucrion drums and fuel gas KO drums. For production separators it i s

slways good practlce to install an exit mesh pad.

Page 17: Total Company Process Eng Design Manuall

TOTAL tEPIDPIEXPlSUR

. Mesh is usually made from 304 SS. YORK DATA as follows :

Types of pad : York ng Thickness Residual* mm - entrain~nent PPM

General purpose 43 1 144 100 1.L- 1.2

High efficiency 021 192 100 . I5 - -61

326 115 1 DO .I7 - 0.19 Dirty service 931 80 110 1.6 - 1.8

604 150 -8 - -87

. The engineer should speciiy type, diameter and thickness of pad required on

the vefisel data sheet.

. For particle sizes of 5 microns or less use two pads spaced 300 mm apart eg :

glycol contactor.

5.2. - INLEl 'TERNALS

Inlet internals can be specified l o aid feed distrlbulion and promotc uspour-liquid

separation. Generally for prt-project stage dctalla are not required.

5.3. LIQUID PHASE INTERNAL5

. Vortex breakers should be dctalled for each oiIlcondensate nnd produced water

outlet where the oulet flow direction is vertical.

. Vendors wlLI sometimes specify internal packs of tilted plates or baffles or other

arrangements to promote phase separation.

- Sand jetting facilities should be provided for on services where there is a rBk of silting or sediment build up in the vessel. Generally jetting facilities are not

requlred On gas-condcnsatc systems.

6.0. SHORTCUT METHOD FOR HORIZONTAL DRUM SlZlNG (2 w 3 phases)

1 Y

- ..--

YAPOUR - LIQUID SEPARATORS

Rru~ritrr~ : 0

Date: 2/85 A

Page NQ. :

2.10

Page 18: Total Company Process Eng Design Manuall

- 2.1 1

EQUtPMENT N*

I ] Calculate settling velocity Vs

2) Calculate vessel diameter required lor drapltts separation :

s 3) Calculate vessel dlamcter reqdlred for sufficient liquid residence time :

"2 ' 16 QI fres c 4) Select D = max (Dl, 02). Round ro upper value

Qg = gas flowrate at P,T m3/s

Ql z total liquid [lowrate m?s

Vs I settling velocity m/s

D z vessel diameter m

LID = vessel design ratio (L/D = 3-41 - F security factor (0.85) -

ires : liquid residence tilne 5:

' 7 mIL3 PROCESS CnCCULATlON SHEET .. TOTAL IC17

T ~ P ~ O W W P ~ I X P ~ I U R

nv 1 I CHU I

SHORT CUT METHOD HORIZONTAL DRUM

ITEM

Na

OAT€ 1 1108 I I ~ L E IOUNO 1 REV I

Page 19: Total Company Process Eng Design Manuall

Page HI .

2.12

7.0 REFERENCES AND USEFUL LITERATURE

7.1. LUDWIG VOL I CHAPTER 4

7.2. PERRY CHAPTER 6

7.3. Program calculates partial volumes Pierre Koch

OC3 Dec. 3 1983

2u

Rovitio~l : 0

Oat% : 2/85

TOTA' TEPtDPIEXPISUR

YAPOUR - LIQUID SEPARATORS

Page 20: Total Company Process Eng Design Manuall

CALCULATION SHEET FOR VERnCfiL TWO PHASE SEPARATOR

EQUIPMENT NO D - 1 e 3 ~ BEWSS;N~ &oor

Operatinp data :

Pressure (operating) bare = ~ . W I Temperature (operating) 'C = 31, Gas MW = 51.4 Liquid description : C l l ~ b L D;L

Gas flow rate k d h = ?PI0 Liquid flow rate k g h r 10290

Gas densi ty (T,P) k g h 3 = 3.1 Liquid density (T,PI kg/m3 c 2 10 Actual volume f low Qg m3ts - 6-97 Actual volume flow m3/min = 0. t 3

Plrticle size microns = !So

Mesh pad : . Esdmate Vs usin8 Figure 1 and 500 micron curve

No : , If P < 50 bar and p < 0.01 u x Fig. l and 150 microns

1. Yapour-liquid ~ t t l i n p . vclocltv : from Fig 11- ' VS = & m / ~

. c : vs = rnls * Delete as applicable

2. berating % = 85 maximum velocity ~m 1 1.7 m/s

3. Actual volumetric. Drum flow area = 0. 57 m2

as f low = ~ . q q m3/s Calculated drum 6 = 2s: mm

5. Required liquid hold-up tiines

h > : H L A - H L L = e min 0 . L 6 d . 700 mrn

h 6 : H L L - L L L = mi" = ( . 1 c m 3 = lgoc mm

h 7 : L L L - L L A = min r ~ . . / , 6 m3 = 700 mm

5. Mesh pad: @no thickness = 3 0 mm 2 1 1 . m a 3

TOTAL a TLFIOOP'O~P~IKP SVLl

PROCE~S CALCULATlOM S H E E T Sheet 1 of 2

VERTICAL YAPOUR-LIQUID SEPARATOR

IrrM: : . c.".--

w, , D I ,: i;. 101 NO R t Y 1 lbl1111€ I S A M * ? ~ L I Y C H K Q S r t

Page 21: Total Company Process Eng Design Manuall

h l : I5 % of fl or lr00 mm (Use mar) h2 : mesh pad

h3 : 50 % of d or 600 mrn

With mesh : h l + h l + h3

hJ N o mesh : hJ + hZ + h3 1 60 % @ or 800

h4 a 400 mrn + d/2 t d = inlet nozz fl h5 a From step 4 or 200 mrn

h6 : From step I or 350 mm h7 : From step 4 or 150 rnrn

ha : 150 mm for bottorn LC

300 mrn for side LC

For ''dry" vessel

h6 + h7 + h8

TOTAL VESSEL HT TANITAN

- - rnm

e 5SO mm

= 7 0 0 mm

= I mm

I S mrn

= $650 rnm

L L

7. Wall thickness

. DESIGN PRESSURE P c 2.5 . barg Diameter D = ?OO mm

* CORt ;ION ALLOWANCE C = 3 mm

Max st1 :s :

5 =,I220 bar CS

1000 bar CS S = 1?r:3

Joint eiflciency f.85) E = C l.j

. Vessel weight (Fig. 6)

t = 5 mrn She11 weight r IPCO kg

L = 6 m (s+I) Head weight = 80 kg D = s.-I m (t x d x 20)

TOTAL WEIGHT r 1340 kg

t I P x D + c Z A . 1

2 x s x E - 1 . 2 P

22

TOTAL - 7 1

TIP'DWOR.IXP.SUR

PROCESS CALCULATION SHEET Sheet 2 of Z

I r

VERTICAL VAWUR-LIQUID SEPARATOR

ma IE l ~ O Q ~ I ~ L I t 1:. L cnn

- 1TEM. ! \ I : .dv ' * J . - ..<?-

NO . I .

IOU uo a t v I

Page 22: Total Company Process Eng Design Manuall

-.

2+1J

CALCULATION SHEET FOR HORIZONTAL 2 PHASE SEPARATOR

Head type elliptic all^ . EQUIPMENT Nu ! v$oio

Indicate on sketch if demister mesh requlred DESCRIPTION : I""'AS~ S f Prtplf! l o *

I Delete as applicable

Omrating data :

Operating pressure bara = %a Operating temperature .C = I g

Gas molecular weight = h.,4 Liquid nature : 0 ; ~ .

Gas mass f low rate kdh = 14qSo Liquid flowrate kgfh !?b6iu

Gas density T, P kglm3 = 1f.u ~ l ~ u i d dendry T,P kgfln3 = 7CS ' ~g actual vol flow m'f5 = 0 . !y? ~1 actual vol flow m3/rnin = 2 . e.O\o?r Particle size microns z Gas viscosiry CP

- 1

L. Vapour-lquid settling velocity : frorn Fig. 11- * v 5 = G . c ~ n l s

C =

* Delete as applicable

2. Max. vapwrr velocity V m = Y s x F x L vm= 1.8 mls

LID = 3 B

3. Actual vapour ~olurnetric flow Q g = 6-2-77 m3/5 Av a = 3.'sh m2 V rn

2'5 - -1 TOTAL

ITJT7 TE~~O~P,~IWEIPIZUR

#I CM*

PROCESS CALCULATION SHEET Sheet 1 01 3

CALCULATfOH FOR HORIZONTAL z PHASE SEPARATOR

' I f L ~ I . - . d l , : , r * " ' " ' ' No r to

,on rlrLr 1 r o S 3 106 no 1 R I Y od r t

Page 23: Total Company Process Eng Design Manuall

4. Nozzle sizing I velocity limits (rnls) 8 Inlet : 7-13, Gas outlet : 15-30, liquid outlet 1 - 3

B i : Inlet flow = 0.31' m3/s Nozzle ID = 8 I' Actual vcl = lo- 5 tn/s (+ 1 %) c . 3 b

82 : Gas c. 'let = 9.2 $ m3/s NozzIe ID = " Actual vcl = I T mls Liquid outlet = a.Ci. m3/s Nozzle ID t & " Actual vel = .'. 1 m/s

5. Drum sizing

For trial I t,,, = 4 mln vol required = 4 x Q1 = ID,^ m3 I TRIAL I I

I " Selected h/D

I 0 . i 0 . c I

Vapour area A v 17-12 I 1 a* 4 I

I I 1

% f otal area {Fig. 31 1 I

Total area I If 1 3 1 1 I I

At m2 I c . G r C I Liquid area A1

1 I I mZ a . f t 6 2 I I I

I I

I Calculated drum 1 t I

I m rn

I I Selected drum fi D mrn

2 I I I I :ro I t c n ~ 3 1 I I

LID O - 41 I 1 I I 1 I 3 1 I

L mm 1 3 1 . C ~ j LO--3 I I 1

Flowpath length I I

TanlTan length L' cs 30 I 1 I

mm 1 !1'34 1 I I I I

HLL height I I I I I

rnm 1 8 0 r 1 l t 0 0 I Volume at HLL

I m3

I LLL height m rn

I 2.68 1 l?.q% I I 1 t I 3 5 0 I 1 Volume at LLL m3 I

I 1 1.36 1 I 1

Surge volume (HLL - LLL) m3 I I I I..SC I I I I I 1 I

Calculated tres d n I 3 . 3 E 1 I 1

I I I I

I I NOTES :

I I . I of. I I I I 1 I I I

SELECTED DRUM : DIAMETER 0 ?o.v mm x ;Z: , mrn tadtan

a1 f anltan length L' i L + l + x bi + I t 62 (ignore this correctidn if D C 1.2 m and use L for volume calcs. For trial I uae t and ignore heads). .

b) If VOL HLL is less than required surge increase D, L or h/D or reduce ires (by Inspection).

' 2 4 I I

E Z 3 TOTAL 1717

rEPIDDPrDIP.EXP~SuR

I Y I I ctix l

PROCESS CnlcuintloN SHEET Sheet 2 of 3 -_ CALCULATION FOR HORIZONTAL

2 PHASE SEPARATOR

onrr I I 100 TI ~ L C . ..n ,. . 'rtM ' Uo

100 wo I R L v

Page 24: Total Company Process Eng Design Manuall

6. Wall thickness

, DESIGN PRESSURE P = 22 barg Max stress CS = 1220 bar

, CORROSION ALLOWANCE C = 3 mrn 55 = 1000 bar 5 . l2:o

Joint efficiency E = 0. f l

t. i g mm Shell weight = I l 0 0 0 kg

L r C . 5 3 m Head weight = JdaO k~

D rn (t x D=X 20)

TOTAL WEIGHT = 1 3 OOc kg

.. -

PROCESS cnLCU1ATtON SHEET 5heet 3 of 3 , ~ ~ p . q , b!' L,qp.pi 1 f.:! t ' !. ,...

CALCULATION FOR HORIZONTAL ltP'DDP,DIPtt XC'SUU 2 PHASE SEPARATOR n o L'!: t o

1 ntv 1

Page 25: Total Company Process Eng Design Manuall

I - TXEllfAN'tENCTH L' ; $00 - I - FLOW PATH LENGTH L = +*am

. Amend ske~eh if h o t requitad inrtwd of baffle

. Indicate on sketch if mesh rqulrtd

. Heads : 2 : 1 elliptical

EQUIPEMENT No : D 5010

DESCRIPTION : 0F-y- TLS7 SLIAMT*&

Operating data.

Operating pressure barn : A d CONDENSATE Flowrate kg/h = 3 1 ~ 3 3

' Operating temperature 'C = so PC Density T,P k d m 3 - 719.h

Ql Val flow T,P rn3/min x 0.3 I

CAS MW PC Viscosity cp = 6 . 7 S kglh = bi04 Mass flowrate

Density T,P kglm3 = 31. o WATER CUT Flowrate kg/h 44fs

Qg Vol flow m3/h = PW Density T,P kg/m3 = S t %

Y = 0.0I03 Qw Vat flow TIP m31min = o. 16P Particle size microns= I :a rw Viscosity cp = 17.54

1. Vapour-liquid s e t t l i n ~ velocity t from Fig, llc- Vs = 0.17 r 1n/5

C - * Delete as applicable

2. Maximum vapour Vm = V s x 0.85 r L - velocity LID = 3 I3

3. Liquid-lit: I settling

Oil in water Ut = 0.110l[&lf?] rnrn/min Utall = rnmlmin P w

Wa~er In oil &water - \IT mrnlmin

2 6 PROCESS CALCULATION SHEET - Sheer 101 4

CALCULATION FOR HONZONTAL ITEM o r c ~ ~ : , ~ .-- ~r ,,I 1

3 PHASE SEPARATOR no > So10

D A T E j rosrlr~t E nnrrr t i 108 wo I RIV

mZY TOTAL a

L P I W P : ~ r t Y P 5ua

v C M K

Page 26: Total Company Process Eng Design Manuall

9- 2.19

I . * O l z ~ a : qelocity , ... .

I . Inlet [low :

(+ I0 %)

2. Gas outlet :

3. HC outlet :

4. Water outkt : 0.6

. .- 5. Vessel siring 1

trial 1 tres oil (HLL-LLL) = 4 mln r 1. f 4 "

OIL SECTION

I TRIAL I I I I

I I 0.7 Selected h/D

I I rn2 I I 1 0 . 3 8 1

calculated (QglVm) I

Av Av as % AT (Fig. 3)

1 r r I S r 1 r4.r I I m2 I n - 3 L I \.u+ \ 3 I I

Total area A t A1 mZ I o . Z k I o-6bh I 1.383 1

Liquid area I I I I 1 Calculated Q mm I 6So 1 I I I ,, 1 1ObO 1 \IIQ 1 if00 I I Selected P - D

I 1 1 1 1 1 3 I 1 3 . 2 I I

LlD 13 - 41 mm 1 1 CO-Q I lFPo I I Flowpath length L

mm I j L S 0 ( 0 1 io -0 I TanlTan Length L'

I 1 1 1 mm I goo 1 1100 1 1

HLL height h 1 , . I b.63 I 7.- . I I Vblume' at HLL rn 3

mm I 1 LOO 1 3 0 0 LLL height ' I I hZ

m3 I I \ .q I I I Volume at LLL

m3 I I I t l k I I I I t I Surge volu~nc (HLL - LLL)

I I

Calculated tres rnin I I 1 I 1

Notes or comments : I I

,) ,-,. I.,,@ c = L + H + h) mm - Ignore if < ' - 2

27 ~ROCESS CALCULATIOH SHEET Sheet 2 of 9

' I.fifi**': 8':

If PIOOPIMI~~XP'TUR

UY CHI:

CA~.CULATION FOR HORIZONTAL ITEM: orftwvt TI!' a

3 PHASE SEPARATOR wo.. D iolo I Rtu 1

)tostnu i * f i i t ; . r - 100 NO OAT€

Page 27: Total Company Process Eng Design Manuall

WATEK SECTION

Trial I B = 213 x L = 3 f 3 mm (rounded)

T TRIAL I 1 I 2 I 3 I 4 1 Total liquld vol flowrate 1 I I

Q w * QI i n 1 O P S I I I I I I I I

Baffle distance I

B mm I3.Ago I J C l a o I Liquid area at HLL A1 m2

I I I b.S$L, I 1 . J t t I I I

Horizontal vel at HLL V l mmlmin I l o f f I CSI I I I Ut water (step 3) rnrnlmin I 191.r I I7q.r I I I Verticdl fall from HLL 1 I I f I

= B X Ut /V I mrn f S P d I 9 5 r I mm

1 HLL - vertical fall

1 I 0 I tra I I I

I Liquid area at LLL

I A1 rnZ

1 I I I Q 4 l - t I a.82f I I I

Horizontal vel at LLL VZ ' rnmtrnin 1 d l 1 0 1 loC? I I 1 UJ water (step 3) mmfrnin 1 I??.$ I 1 I I I Vertical tall'from LLL I I I I I

mrn = 0 x UtiV2 1 2 4 0 I n I I I I

h3 rnm I I I I

Selected baffle height I ,400 I Clf I I I Selected HIL level hq mm [ 3fo I ST0 I 1 I [adjust h3 and B if necessary) 1 I I I I

I I I I I Chw.k oil r i w : I I 1 I I Horizontal vel at LLL Y2 rnmlrnin 1 0 1 1 ~ I 1 0 0 I I I Ut oil (step 3) rnmlmin I fk+ 1 2L7 1 I Vertical rise within dist B 1 I I I I I

mm m B x UtlV2 I boo I qcT I I I = max. outlet htlght I I I I I

I I I I rnm

I h5 selected LIL level I SO 1 ? r 0 I I I

1 I I I I h6 selected outlet height m rn I Za3 I -0 I I I

I 1 I I I q l water vol at HIL (upto baffle) m3 I l . a \ 1 ?.I& 1 f I

1 I I I I 92 water vol at LIL (upto bmfflt) m3 I 0 . 6 L I 0.69 I I I

I I I I I q3 water vol a t NIL (upto ba l f l e ) m3 l 0 . 0 1 I 1-3c I I I

I I I I m3

I qU water vol at outlet ( 1 1 0 . 1 o I I I

I I I I 1 q Eurge = vol (ql - q2) m 3 1 0.&5 t 1 I I

I I I I t surt 'irne q surgelQw min I . I ?r I I

9 I i.17 1 I

r c s i ~ ce time q3-qQIQw rnin i I I I I I I

calculated oil residence time (upto baffle) I I 1 . s I A I I I

Yo1 (NLL - NIL)/QI .. min 1 I 1 -*a Y~XC 0 Y -

2 2?'

TOTAL m T LP'OOPlOIPltaPlIUR

I I I CHK I

PROCESS CALCULATION SHEET Sheet 3of 4. CALCULATION FOR HOR~~ONTAL,

3 PHASE SEPARATOR

oArc 1 I ~ ~ T I ~ L F < KAI r n ~

, : 1 r :: 5 1 ,:+t .', 11

U O . ~ ~ r01o ,nm W- I aru i

Page 28: Total Company Process Eng Design Manuall

6. Wall thidntss

, DESLGN PRESSURE P = bf.9 barg Ma* stress CS = 1220 bar

. CORROSION ALLOWANCE C = 3 mm 55 a lD00 bar 5 . I'll0

Joint cf llcicncy E = o . rJ

t . 3 l o Shell wclght e lo Po0 kg L = m Head weight = k c P k& D = 1.r m (t x D'X 20)

TOTAL WEIGHT = 12 me) kg

24

a m r c ~ ~ n n m ~ n m m ~ r ~ o c11n

PROCESS CALCULATION SHEET 5heet 4 of 4 -.

CALCULATION FOR HORIZONTAL 3 PHASE SEPARATOR

: C ~ ( i r . c r ; . r Tf4T ~ C ~ P ~ ' , ~ . ~ < I L

r v a . 3 ~ 0 1 3

Page 29: Total Company Process Eng Design Manuall

Pmgc NO : fhviliol! : U TOTAL PROCESS ENGINEERING DESIGN MANUAL

V A W U R AND LlQUrD SEPhRATOAS

Page 30: Total Company Process Eng Design Manuall

FIGURE 2 DRAG COEFFICIENT iCI

vs RI or c ( ~ 4 2

TOTAL TEPIOPJEXPISUR

PROCESS ENGINEERING UESlLiN MAIUU-L

VAPOUR AND LIQUID SEPARATORS

I , L ~ B . . W ~ . .

Date : 2/85 2 . 2 3

Page 31: Total Company Process Eng Design Manuall
Page 32: Total Company Process Eng Design Manuall
Page 33: Total Company Process Eng Design Manuall
Page 34: Total Company Process Eng Design Manuall

3 , COLUMNS

Page 35: Total Company Process Eng Design Manuall

-

TOTAL TEPIDPRXPISUR

1. p.pP~1chBfLlTY

It is not expected that a hand calculatjon of a tray distillation or absorbtion column be

performed by the engineer. For the purpose at a feasibility or pre-project rtudy any required

r igorws column sizing would be performed using SSI PROCESS simulator, or similar.

Should, however, a quick tstlrnati~n of tower diameter and height b e required one of the

most common methods of hand calculation for valve trays is the "GLITSCH METHOD". An

example of the procedure for this method is given in Section 3.

A detailed mechanical design of a tray column is beyond the scope of this ~uide. For details

on ~ ~ l y c o ) towers, see package units.

2. DESCRIPTION AND NOTE5

2.1. TRAYS - There arc basically three types of tray used Ln dl3tlllation columns ; sieve, bubble cap

and valve trays. Each type has specific applications and f lcxibi l i t ies dependant an the

process criteria. Some of the major aspects a r t detailed as follows :

Bubble caps

Operation : V s p w r passes through "risers" in to the bubble cap then bubbles into

the surrounding liquid on the tray. Bubbling action effects liquid-

vapwr contact. The liquid ex i ts the tray via outlet weir and

downcomer arrangement to the tray below.

Capacity i Moderately high t l l i c i e w y (minimum 50 861 is maintained at varying

rates due to weir maintaining liquid head.

Etficiency : For many years was the most common type of tray-consequently

many publlahed tray eifielencies are available from vendor aources. Note : most expensive type of tray.

Application : A l l major services excepts coking. pmlymer formation or other high

fouling conditions. Ideal lor use i n low f low conditions where tray

must remain flooded to maintain a v a p u r seal.

Tray spacing : 18" Is normal. Consider 24" to 36" for vacuum conditions.

2 q

TRAY COLUMNS

Revision : 0

Oate : 2/83

Page NO.

3.1

Page 36: Total Company Process Eng Design Manuall

- TOTAL

TEPIDPIEXPISUR

Sieve trays

Wlth downcorners Wl thwt downcorners

Operation : Vapwr rises through 118" to 1" Vapour rises through holes in

holes and bubbles through and bubbles through liquid.

liquid. Liquld flows across tray Liquid head forces liquid

over weir v ia downcomer to countercurrent through Jarnc

tray below. holes to tray below. Flow is

generally random and does not

form continuous streams from

each hole.

Capacity 1 As high as or higher than bubble cap trays for design rates or down

t o 60 % o i design. A t lower rates cfi iciency falls and performance

h poor. Generally unacceptable to operate below 60 % capaclty. ,

Efficiency : As high as bubble caps at design capacity. Efficiency becomes

unacceptable below 60 % design capacity. Not5ultablc lor variable

load columns.

Application : Syste~ns where high capaclty near design rates are to be

maintained in continuous service. Handler wspendtd solld particles

we11 flushing them down t o tray below. Can be problem to run with

salt ing-wt sysxerns where trays run hot and dry, holes may plug.

Not recommended for oil t gas rervice due to paor flexibility.

Tray spacing : 15" average, 9" to 12" accep- 12" average, 9" to 18" acctp-

table. Use 20" to 30" for table. Use I S " to 30" for

vacuum. vacuum.

Vaive trays/ballast cap

Generally the same aspects as [or sieve trays. Most valve trays are specialist

proprietry design for specific operation problems and capacities. Specialist vendors

include GIitsch, Koch (flexitray), Nutter, Union Carbide. Best choice of tray for

distillation application.

Tray layouts

Not only may the type of bubble caplvalvefsieve hole be specified for a particular

design but also the tray hydrauljcs by liquid path. Common arrangements are shown

in Figure I.

0

Pago No. :

3.2

f RAY COLUMNS

~ a u i s i a l ~ : 0

oate: 2/85

Page 37: Total Company Process Eng Design Manuall

TOTAL TEPIOPIEXP/~UR

Tray eliiciencies

General tray cfflclencles to use :

Absorbers Stripping

Hydrocarbon oils + vapour 33-50 % Hydrocarbon oils + vapour 50-80 %

Amine units 15-20 % (Arnine towers ucually have 20 actual

Dlstlllatlon columns , 60-80 % trays)

2.2. CONDENSERS

. Condensers are usually installed on the overhead of fractionation towers to

recover llquid product and provldc internal tower reftux. Design of condensers is covered in shell + tube exchanger section.

. Basically two types of overhead condcnscr txlat, partial and total. When uslng a

total condenser the heat load is equal to the latent heat of the saturated overhead

vapour. The resultant bubble point liquid is split with some returning as reflux and the remaining portion as distillate product.

For a partial condenser the vapour withdrawn from the accumulator is in

equillbrhm with the returning reflux arfd consequently the condenser is acting as

an "external" additional tray. The vapwr is normally withdrawn under pressure

control with al l or part 01 the llquld returning aa rttlux to the column.

2.3. REBOILERS

. Generally three types of reboiler exist for light hydrocarbon iractionarars.

Internal rehoiler therrnosyphons

external "kt?t l tn type

external "heat exchanger" type furnace, electrical

rnmt cases the "heat exchanger".type is preferred for elficiency. - . The heat cxchanger should be located 2-3 rn below the exit nozzle from the

column so that sufficient head is available lor thermal circulation.

- Reboilera may be heated by direct lire. electrical coil, steam, closed !>eating

medium or process fluid exchange.

. Values of U overall (lncl. fouling factor) for various types 01 reboller and deslgn

tnethods are given in the heat exchanger design guides*

4 / -

Revision : 0

Dale: 2/85 TRAY COLUMNS

---~~

Page NO. :

3.3

Page 38: Total Company Process Eng Design Manuall
Page 39: Total Company Process Eng Design Manuall

TRAY CALCULArtOlJ SHEET

~ o l u m m item : a b\G Name :

ray number : 8 Number 01 passes : L to = \AaC Po = I f b a r a

1 I. VAPOUR AND LIQUID TO TRAY

I 1 I 1 I I I I I I FLUID I kglh I MW I kmolfh 1 T,: I PC / d I5 1 I I I I I I *K I bera I b / m S I I I 1

I 1 LIQUID I

I VAWUR ii6rtoQi 31 L i s i 304 i i - i I I I I I I I I

I I I I TOTAL I I I 1 I I I I I I 1 I 1 I I I I

Comprcssibillty factor Z

Reduced temperature Tr Redur~d Prt!shure Pr

From charts Flgure 1, 2 or 3 - Z = 0 . 6 7 page 15- 1 5

Yapour density

12.03 x MW xP 12.03 r 3 1 . L * Ld DV = - -

Z x (to + 273) 0.6't r

Vapour actual rate

7 PROCESS CALCULATION SHEET Sheet 1 of 4

a3 TRAY COLUMNS ITEM 3 21d \ i

rc ~ ' D D l ~ b l P , i XP.$,JR uo

BI CHU DATE I ~ o r r ~ r ~ t I * f i r f ? t C ran NO 1 t i

Page 40: Total Company Process Eng Design Manuall

3.6

2. LlQUlO FROM TRAY

to = i a .c use flgure 10 page 15-20

= 384 kglm3 DL at to =kt \ kg/m3

Liquid flowrate = 4 F b s ~ kgth

C, = k& = -- qgooo = 239 m3fh DL A l l

3. WWNCOMER DESIGN VELOCITY YO bE

n TS =\? =hfo mrn "TRAY SPACING"

DL - D, = 3% kg/m3

YD drgo = 3b rn3fh/rnZ From ilgure 2 P a ~ e 3.10

System factor KI - 1.0 from table 1 Page 3.9

VD dsg = VD dsgo Y K1 =3 to rn3/hlrn2

4. Y APOUR CAPACITY FACTOR CAF

T!j .,4.hmm

CAF 0 50 38 f r ~ m (Fig.3) on page 3.10

System factor K2 = from (Table 1) page 3-9

CAF = CAF x K 2 , l 0 ,u.~t. o. IB

5. VAPOUR EFFECTIVE LOAD V L w d

v Load = c . J ~ = m . . DL - Dv 3 r6

= x =I164 m3/h

6. APPROXIlAATE COLUMN DIAMETER DT =!.S-m from (Fig.4) page 3.1 1 _-__-----I----

__II_______I----------

4Y

TOTAL m ~EPIWPIOIPIIIIP'SUR

6 I CUY

PROCESS CALCULATION SHEE1 st!cel 2 01 4

TRAY COLUMNS

O h f E 1 IOB tart€ <~411i-L

ITEM 4 !, wo

100 N O

Page 41: Total Company Process Eng Design Manuall

-.-.

3.7

3.2. COL ,:1N HEIGHT ESTIMATION 7

1

"a

lnnlilion

a. H1 : See design details on vertical vapour-liquld separalots.

Minimum distance for H I will be one tray spacing. Minimum distance between

inlet nozzk and top tray 300 mm.

selected HI = 6 0 0 mm

b. HZ:

H2 : Tray spacing x (number of actual trays - 11

No.actua1 trays = theoretical traysltray efficiency

far tray efficiency see section 2.1 page 3.3. Assume = 50%

Actual trays = 16

Note : i f the column diameter changes over the length, the transition piece will be - ht = q ( # l - long and H2 will increase by this amounl

Selected HZ = Cqro mrn

$5

PROCESS CALCULATION SHEET .-.....----.-.-

Sheet 3 ut 4 _ ___. ___ --,. - . btrM 3 :crG

TRAY COLUMNS

1 '1 .

I

- i 62 1 1-1

I

' I 5 \ -

[LI 1 I I I

Page 42: Total Company Process Eng Design Manuall

H3 c h i t h2 = 3 7 e 0 rnrn

-.

3.8

c. H3:

H3 = hl + h2

h l = tray spacing x 2 = 900 rnrn

h2 = h6 + h7 + h8 (see vertical separatar sizing]

h6 = hold up time

For production flowing to :

. another column t = 15 min

. storage 2

. a furnace 10

. anorher unii 5 a . reboiler/heat exchanger I

hb :to00 mm h7 = ip0 mm h8 = 300 mm

4 h2 = 2500rnrn

4 6

Selected H3 = 37 0 a rnm

TOTAL COLUMN HEIGHT = H I t HZ + H3 = I I 0 f 0 m m

Ex3 TOTAL m2Y

ItPOOPrblP E I I P I S U ~

Cmv I I CuK I

PROCESS CALCULATION SHEET Slieet 4 of 4 ____I.. - - ___I_ _ ....- - -

11IM > l C l < TRAY COLUMNS

oAtr 1 ronrlttt i r n t - * r i 1100 Ha I ntv 1 TNQ

Page 43: Total Company Process Eng Design Manuall

Column diameter mln

TABLE 1

SYSTEM FACTORS

TABLE 2

Minimum recommended Tray spacing : 7 5 mm

~ s q c NU. :

3.9

Service System Factor

Non foaming, regular systems .............................................................. 1.00

Fluorine systems, e.g., BFj. Freon ...................................................... 0.9

Moderate foaming, e.g., oil absorbers, amine and glycol regenerators.,.... .85

Heavy foamlng, e.g., nmine end glycol absorbers ................................... .f 9

........................................................... Severe foaming, e.g., MEK units .60

Foam-stable systems, e.g-, caustic regenerators ..................................... -30

< 1 zoo 1 200 C Q < a roo 2 100 < < 4 200

g s 4 200

I 4 3.

Hev~siurr :

Wale: 2/85

TOTAL TEPlDPlEXPlSUR

TRAY COLUMNS

Page 44: Total Company Process Eng Design Manuall
Page 45: Total Company Process Eng Design Manuall

TOTAL TEPID PI EX PIS^^^

l leVlsJYll

Date : 2/85

P R ~ L S ENGINEEH~NC YESIGN MANUAL

TRAY COLUmS

I .ye m r u .

3.11

Fig. ~ O A L L A S I T R A V OlAUCTEl

- I W

ISL

- 110

- *$O

- ODD

- ssa

- ma

- 4 s

- m v

- >w

- a00

- Z l O

-am

- ISP

- ?W

- * - l

(FOR APPROYlMlTlON PURPOSCL OULI) .a,. LrnUlO

44

Y L O 8 0

low- * -

- - - - -

21M - - - - - - - .

ma4 - - - - -

Ism - - - - -

IOaa - - - d

5- -

0

-=Ch

mass : T t - * D m PI- - r? -.I%

: ror r w n oars r n ~ v s 11 Dlrldr Y Lm.4 k l II LnPY LmmL h l 1, D.l.l. dl.n*lW llr k*.L*.l h.7 Ik*

41 MWIUI,~, li.-r.r w

.

-

- - - * -

Page 46: Total Company Process Eng Design Manuall

TOTAL TEP/DPAXPISIJR

1. APPLICARILITY

FEASIBILITY;STUDY : PRE-PROIECT

Under normal elrcumstances the deslgn of a packed tower would be detailed by a vendor

based on process data supplied by the engineer. The detailed design of packed towers is complex and requires spcclljc information regarding both packing type and size and mass

transfer data for the fluids contacted.

For the purpose of this design guide detalls are given on the general arrangement of packed

towers, various types of packing and loading and pressure drop correlations.

The determination of the height of a packed tower should be evaluated by a vendor or

determined by the engineer I! required using methods outlined in design literature (set

references). A detalled description is beyond the scope of this guide end is normally

unnecessary tor Ieasibility and pre-project level.

2. PACKED TOWER DESCRIPTION + NOTES

A general arrangement of a packed tower is shown in Figure I .

Packing

The correct selection of a tDWe1 packing wi l l normally be made by the vendor M d on the

required process, klowrates and fpressurt drops srated~ Details on pecking are given in :

Table 1 - Packing service applications.

NOTES AND GUIDELINES

. Carbon steel towers rnay be lined for corrosive service with rubber, plastic or brick deptnding

an the nature at the iluids being processed and the temperatures encountered.

. Towers are generally loaded by dumping' the packing rather then stacking. Stacking is !nore

expensive and gives inferlo; liquid distribution but smaller pressure drap. Certain packing types wil l be stacked at vendor request.

70

PACKED TOWERS

Revision . 0

2/%5

Pege Na. :

3.12

Page 47: Total Company Process Eng Design Manuall

---.. . .

P a q ~ Nn. .

3.13

TOTAL TEP/DP!EXPISUR

. Packing heights per suppwt platelgrid should not cncted 12' (3,6 rn) for Raschig rings a!

15-20' (4.5 - 6 rn) lor other packing types. Individual bed heights are normally limited to 8

column diameters or 6 m msxlmum.

. GoOd llquld distrlbution over the packing is necesssry to promote adequate p h w cmtact

within the bed. The streams of llquld should enter the bed on! 3" - 6" square .centres for small

towers with D < 36". For larger towers the number of streams s h l d not be legs than (01612.

. Llquld re1 tributors should be installed after approx. 3 tower diameters for Raxhlg rings

and 5-10 d: ~neters for other packing types. Redistributors are not generally required for

stacked packing as the downward liquid flow Is vertical.

. In order to reduce ceramic errd carbon packing breakage accuring durlng flow surges hold- down or floating 'bed limiters are installed on top of the packing. The limiter must be heavy enough t o hold down the bed and be able to resettle as the bed mavts.

For plastic or metal packing the bed limiter i s boIted i n place and doca not rest on the

packing.

Packed towers are not recommended for dirty service fluids nor for glycol dehydration.

Packed tower should be considcrcd in preference to tray towers tor :

i l srnall columns with fl'< 2 f t

ii) acids or corrosive liquids

ii i) highly foaming liquids

iu) low hold up times

v ) law pressure drop requirement

5 1 .

PACKED TOWERS

.

----- I I~vi~inl l : 9

Date t 2 1 ~ 5

Page 48: Total Company Process Eng Design Manuall

LUDWIG

.

PageNo ,

3.14

TOTAL TEPIDPIEXPISUR

6. REFERENCES AND USEFUL LITERATURE

4.1 Applied Process Design for chemical + Petrochemical plants - VOL I1 pp 129-239

4.2 Design I ormation for Packed Towers NORTON Co.

Blrllctln DC-I I

4.3 Tower Packlngs Bulletin TF-78 "

Packed Tower Internqls TA-8OR I.

Hy-Pack MY-bO to

Interlox saddles CI-78

4.4 Dcslgn Techniques for sizing John 5. ECKERT Packtd Towers Chcrn. Eng. Progress Scpt. I961 VOL 57

4.5 No mystery in packed bed Design John S. ECKEKT

Oil and Gas Journal Auk. 24 1970

4.6 Calculator Program for Deaignlng V,I. PANCUSKA

Packed f owera Chcm. Eng. May 5 19110

4.7 Packed column Design an a Pocket T.J. HtXSON

Calculator Chem. Eng- Fcb. 6 198U

kd Packed Columns Ptrry Chemical Eng. Handbook

pp 18.19 4 18.47

f 2 J

PACKED TOWERS

Revisloti 0

Date : 2/85

Page 49: Total Company Process Eng Design Manuall

-- -wh eartsct t&iiney; mudly, the tmdlrr psk;q " - ewient; hrr-t, p m u r c dm? in.

TOTAL TEPIDPIE WISVR

( 0, 0.1111

Ir twllhlhw 0- F r r l * M cnlv mt.l.re hrplr *M Pmribdw .mu W l u ' a hnl TUN

?h.lH b.. vtw C Irar ilk *I- I.(t*.

PROCESS ENGINCt+ia~u r--

f)KlrBD %xm3 D8te : 2/85

Page 50: Total Company Process Eng Design Manuall

Techniques

TOTA TEPIDP/EXP/SUR

for Sizing Packed Towers

3,o

P ~ O C E S S ENGINE~R~ND DESIGN YAWL

PACKED m W

Reproducer 'rom NORTW 'Design 111, -matLon for Packed muera ' B u l l e t i n DC-11

-.- hsMIrKw

.- .- F - -

0 0 W 01Y M 01 02 0.4 06 tO ZQ 40 W

k K Packing Factors (DUMPED PACKING)

~ w ~ t i a : o

Dl10 ; 2 /85

P-a No :

3 ,16

Page 51: Total Company Process Eng Design Manuall

2. bnw c m k u m ~ q th. vrlw d K comull th. ElrrrmLTmd p m n w ~ drop m h m n .ban. It -I! br noled that h+rm m r r.rin oc m 4 . d pavam*tm PBWLnl tRnn 0.m m 1.5 Imhlln 01 mior pusurn dmp #r lwl at pmcW d.Mh (4 rn 123 mm oi *mrar pmrwe dm@ Wr nwtu d p c h M

E%,w. . pcmo m m *mu k Owlnod to, at nudmum uonorrJU1 pruswa dm& Th. d n s n mu- n m m w a a t d n m Un b W b . l m m m W w n n h i m a p r b l hrrlrnmni n bnt m m m t rsllt i n IO*. p ~ . bun drap ban. and law clOlul Lmwh~M r*. h4h.r m m ~ u can iw imwn r p n w u wan- p . l r u n a&, O;binmriI,, ~ c h m U - mn.W -1.a a m 1.0 huh d n h r o r m m dme F MI d rcW d*Wh (W mm el wrbr pr+uun amp c mmtm q mchd 0mL.pth). HMht pnsnun #OM In pn* rMn rmbMnlaimn is wcn an to mJnWm a mm~lnl mrvsrum amp. -1 rb e n and rclmmrrlan bm W m d la h m w t r

opiabm, ir. br- am bns g.00 IMU d w a r prrun d.l. p fw QI wehd kpM (17 a d SO nwn el - M u lmrm d m m d u 01 ~ J m d wptnl. mmmpk.nc w m m v n d ~ r i l h n a m d..isrwd h r F..lum dr4m ai 0.50 IO 1.0 Wkr rllU gr4llun d w p.r W d p l e k d Moth (a2 mn rn U mm 01 *tar pfwlun d m mr rrulm d p.ehmV dm*). Y . o l u h dhaib !Am nm U!a cmplr lr mnm .I pnwn dmp mnd l awndud an rh.1 tw Um .5cmpllshad .nd w M h u tk l w u m b a d m l ) k ~ g l o * . d u p n n . n o r * h a u k k a mduer I m p n a m d s*mntan b h n m produd qua*. f h m a n y w r uu m p in m W mrt m. prumurm 8-0 parrm.hn S#J * m tho renu8 l l r . d prruun drop wr- mb- in in tm M rbtmr (mm d rbhr l . fh.rdorr. M n an ign lq ~dnrmr rlh OUn M ~ a s . *P d m 1 eom~arntlon s h a m bo m-n. n & a k wlrn lk. saell[c imvltv d tM b i d h suwunn.Yr i ns ih.m tkrt

3. anr* hdn# ddmined tha mlu4 oi X 1s D. mbrchu *r U.p 1. m d uMld mn o#rrt iy wrrm amp in f e p 2. ar mku at Iha erdlrrrm. I. m q b. datnrmiw by lhr urr gT IM #a~nUrmd mwre or- -Ua. Locrtm thw -rum d me m b ~ l s ~ an lhil C- rn * . ( t~~ny umtu the ppmr prbsnum a- pramrtur a Centme*d: IkW m -tmlV hem rn, paint b (h. WI iund +qr d ttm ehrt m d nM ma v u w 01 w mdir~tm. 1411 r n ~ nkn q - I m this smuv d *.firbin:

Th. dlul al r l u 8 h h n l i m n ere*# Iu lha nswrty Of r M YqW, 1 l u mckhq lacla r m d inn nr nle a. tho viraq c4 Ihr hldd a n C. dat.rmimd FtanNm. uwrlmtm or m m r r m w a Th. W U r Innon d bI1 YI.L 61 naelim am i m n m tna an* on pea 4. Orordb I W a W W U n * mmlkr Uun 1 imh .In m 4 m t l d . d lor tw.n om trrr or s m l k r dm*-, p r h t n p 1 ,men w L'H inch in un b r ton- mr ow M lo t n m hi 10.3 a 0.9 m a w ) m Mrrnwr urd z ot 3 rwh W P I . I ~ ~ arm u n d la l a r m n Ulrn or mole In( (0 9 m u n l in awm- HN Thc d.rrlrm rnouY urn tha m m i raa of erkmn. a n d thanlora lk p.~pr p u h u n ~ fmor 10 lkrs Rst ..C.,,..lr

tna nublishma the aibmrt.r 01 the tmr *nich. whm nrw ~h lh. ).Chin[ srtuned nnd oprrrtrd r t aaaI#m lkuid earn rmf- d d*rmIb# tnr re1cet.d mnaaurr amp.

4 mr arplh d h m bw r w u l r d mltl bm dmndmt upan thr, a#prwch Ia mml man trOn*fnr nsurnd r l l h lW% mlr. tnnllY tfmrrlk.lly rmuMI* r b d d innnil* depth.! Rm(ara 1R.m 18. IMPS dnr8n.d 10 owmtm mt m a : nun -1 m m lr*nsIaf. In (re abwrutbn pmblam~. thm, b.d h uwmlw ~lleueyllled lmm the mala mmln c*, *I&

bream4 thr dnw H from th. r u I 0 Mm Hauld ph8n. Or d dnpprn# aperatan m lnrOhM h n i h m ma$¶ tm-8. mar c v ~ r m l becanal:

bccm~~. thm d r ~ il I- *. v q ~ d la rnq #IS phma. Thm M n i l k t u ol tho t e r n tor the v b v a qumlknl lor w nna I.. r n r n f0IfC-w k m t M.U tnmia co-.mtient lb. rnom/n.a nr. ~ t m . h m M H ~ mmfn c m m d m t m. rnowlfl.) nr )I s b. - tmnsRrdlHr. H n h c ~ droth of towr wchbmL ft. 4 = tcwruwar -1 wmr, Ity C r hm r r u u r h 4tmorWarn v, ;-&tr;pniu%h ItdG. cmupanmnf i I,. i tn eh.se m e h m h n of m m w m i Ln

~sui#lrrivn d t h liguid bulk H a w mom lr8dm d &rnpm-d l XB

X, t liqul4 ohms# WI rraetipn. eunpovnl i X.* = * I d mas* mob Irmctbn m i tornpnnmnt i I*

qrriHtiurn rlth E n bulk phrra motr mmm ar CpmW"."t I. I 0

mrrr mu rwbstriptr 1 4nd 2 nlrr to thm mp rM bonffn mi tlw wkrnn rc rpd iw*E l Thm qwllon 01 &XI. ir .n.)qOu¶ ro itm q u r ~ b r r lor av~. i l w n r m . b a d hr dm* a r m Wmilmbh fof malt abarDlbn and -ping omnfkm. b K l ~ 8 m Ih. I a U On ahamtbn M COI wilh ~ l u 8 t k rod. Mlutlmn mrm w mmvMt* tw mm v-riaua p e w , N k ire( #I all unusual tm me ttm -10 ma I mllo in-m wunm tor orlrgn wilh whar p c Y n p 04 MMr nln wn tha. W rmeh OI& inlOmtiOiOn nfltl. Pdlilnlbn unth m ganwrlb d n i p M m tM b.bh ul M T P tnaifh~ .~U~Y.IWI 10 I ~ ~ C O I ~ T ~ I @.I*). numind. d -11. barn n w l r n m l r l studlrs h r w u u r d UI lo cMLa ihbt tnr d n # 8 apturn mu ml. a * rtlh tlw HIT? *I&. (rmacd ihmt jcd d l l t n b u t i in nmntlimd and iha WebM w m ammtao wth p m w n wow d rl hmrt 0.20 mrm @ u r a r pfnwe amp mi IW .I prrkdm (17 rnm ot r ~ n ornrun amv uw m& at WeUd mpch). Mars mns lu tmkl~## elm m p c M Oms. whmR m ) r lubrmmial am- d msuvm dmp aalwF.. -11 aecw i ndmrMl * f # I r mull d brbuhnl t0-i .I p a am %tid miner man 4r 1 df ismnl 00.rvlmn gwmrwd by Rlm mlutmnCn 11 lhm n l M l e u . .. --. om. ma told ~ . d dgmn hmw bt.n amtarm~md. t h damn or ~-&rhur Owr must be rstab1,shd. O1Mral(l. hdlndua4 Dtd damn D hcu 10 csIumn d~metarr r fO n.. *nhoucn .----.-.. C l O O l lOrw bnimmlls br* rmur4d to r*ll ltD 1111 lull p l e n

3. Har that mH vmrublll hew rmsqnod vrlues. O mar k tirlol lhm p ~ ~ u n a m any .por!crlion. (3.. [email protected] rnanu.1 clkUktW mnd me u~arnelur d ikm te-w aet.rmlnM by T A . W . 1

Page 52: Total Company Process Eng Design Manuall

4, HEAT EXCHANGERS

Page 53: Total Company Process Eng Design Manuall

Rcv~s~on : u r r y : + + r .

TEPIOPtEXPISUI Date: 2/85 4.1

1. APPLICABILITY

It is not expected that a hand calculatian of shell and tube exchangers be performed by the

engineer. For the purpose of a feasibility or pre-project study any required rigorous

calculation would be performed using computer pr%rams HTRI or HTFS.

A qulck estimation of heat exchange area, shell diameter and tube length should be h e by

hand calculation. An example of the procedure is given in Section 3.

A detailed mechanical design is beyond the scope of this guide.

2. DeSCRlPTlON AND NOTES

2.1. DESCRIPTION

The flow of fluids inside the txchanger varies according to requirements and can be single or multi-pass on elther tube or shell side. Figure 1 shows the types of tubular

heat exchanger manufactured to TEMA standards ;

The following types are irequently found t

- Exchengers (Heaters) - Candenserr - Reboilers [Therrno~yphon or forced circulation)

- Evaporators (Kettle) - Chillers luring refrigerants)

2.2. SELECTION OF SHELL OR TUBE 510L FOR THE FLUIDS

a. Tube side :

- Most of t ime highest pressure fluid - Cooling water, steam - Fwl lng or corrosive f luid - Sea water (it ir always recommanded t o install the sea water on tube aide)

b. She11 side :

- Fluid with the highest viscosity - Condensa tian

- Evaporation (refrigerants in chiller) - Lcagt fouling Iluid

- Most of time lawest pressure Iluid

3 SELECTION OF TUBES

. Standard length : 12'. Ib', 201 but longer tube lengths are possible {upto 00')

. Diameter commonly used : 3/0", 1"

. Pitch commonly u x d : triangular or square. E~tcrnal tube cleaning is possible

with square pitch only.

2.9. TUBE SIDE VELOCITIES & . IIK tube side velocity for most materials and services should be held bcrwecn

abour 1.3 to 2.5 mls. . Below 1 to 1.2 mi5 fouling w1I1 be cxcessivt, much above 2.5 m/d erosion can

become a problem,

5 q

Page 54: Total Company Process Eng Design Manuall

TOTAL TWIOPIEXPIW~

>

5 CHARACTERISTICS OF TUBM

BWG = BrRMlNtHAM WIRE CAGE

I External I 1 I lnmM1 SECTION I 1 THICKNESSl R E / 1

1 dlamcter I (in el mm) I I BWGj lmml (cm) I (cm21 1 External [nlond I (kg/rnl l 1

1 I I I I I I

I I 1 l Z i n I 14 I 2.10 I 0 . U 1 0.563 1 0.0399 I 0.0266 I 0 .W I 1 (12.7 mm) I 16 I 6 1 0.950 1 0.694 I I 0.0295 I 0.b90 I I 1 18 I I I l a 2 1 1 0.819 I I 0.0321 I 0.384 1 I I I I 1 I I I I I 3jU in I 10 1 3.40 1 I.2Zu I 1.177 1 0.0598 1 0.0384 1 1.416 I 1 (19.05 mm) I 12 1 2.77 I 1.351 1 1.435 1 I 0.0424 I 1.216 I I I 10 1 2.10 I 1 1 1.727 1 1 0.0166 I 0.963 1 I 1 16 1 1.65 1 1.575 1 1.998 1 I 0.0495 I 0.772 I f I & 1.2P I 1.6% 1 2.159 1 I 0.OSZO I 0397 I I I I I I 1 t I I I in 1 10 1 3.40 1 Id39 I Z.7lb 1 0.0798 1. 0.0584 1 2.021 1 1 (25.4mml 1 I2 1 2.77 1 1.986 1 3.098 1 I

1 0.0621 1 1.696 I I 14 I 2.10 I 2.118 1 3.523 1 1 0.0665 1 1.321 1

1 I

I 16 I 1 . 6 I 2.210 I 3.136 1 I 0.0694 I lart I I 18 I i.20 I 2.291 1 9.122 1

I I o.orm I 0.~11 I

I I I I I I I I 1 11 I4 in 1 10 1 ?.PO I 2.994 1 4 0.0997 0.0783 1 2.609 1 1 (31.75 mm) I I2 1 2.77 I 2.616 1 3 7 I I

1 0.0822 1 2.158 1 1 4 1 2.10 I 2.743 f 5.909 I

I I 0.862 I 1.682

I I6 I 1.65 1 2.845 I 6.357 I I

1 0.0894 I 1.340 I 18 I 1.2@ I 2.921 I 6.701 I I 0.0918 I I d 2 4

1 I I I I i I I i I

I 1l/Z in 1 10 1 3.40 I 3.120 1 7.661 1 0,1197 I 0.0981 1 3.185 1 ,

1 (38.1 mml I 12 1 2.77 1 3.251 1 8.300 1 I

I 0.102t 1 2.635 I k4 I 2.10 1 3.378 L 8.962 1

I I 0.1061 I 2.039

I I 6 I 1-65 1 3.4110 1 9.5t2 I U.1093 1 1.622 I 1 18 f 1.20 1 3.556 1 9.931 1 1 0.1171 1 1.237

l i I I 1 I I I I

2-6- TEMPERATURE APPROACH AND PINCH

mlnimum temperature approach 5 'C. minimum pinch for condenser or chiller 3 'C,

2.7. DESIGN MARGlN

. 10 % on area in recommended.

2 3 - PRESSURE DROP

n!Jawablc A P varier with the total system pressure and the phase of fluid.

. id pressure drops of 0.7 t o 1.0 bar per exchanger arc common. The

cquilralent gas drop is about 0.2 to 0.5 bar.

. hrne cxchangerr have low pressure losses and as rcboiler and condenser tless

than 0.1 bar) trpccially those in vacuum system.

&J

SHELL AND TUBE EXCHANGERS

Rc~ls ion. 0

2/89

pap* M~ : ' 4.2

Page 55: Total Company Process Eng Design Manuall

TOTAL ~w/DP/cxPISUR

2.9. CHOICE OF HEAT EXCHANGER TYPE (Figure 11

a. Front endstationary head types

. Type A : Used for frequent tube sldt cleaning due to the easc o f dismantling

the cover. . Type B : Cheaper than Type A but the dismantling of the bonnet is more

difficult. To be used for clean products.

. Type C : Cheaper than Type A for low pressure. The price increases quickly

with the pressure. This type Is pracrically never used.

Type D ; Special for hlgh pressure P > 200 bar.

b. She11 types

. Type E r . In general the most commonly used.

. Type F : . Advantage ; Fluids flow at perfect counter current (F = 1).

. Disadvantage : - Leakage between the longitudial befile and

shell decreases in value.

- Mechanical problems from expansion. - Low prcsmre drop t g : < 1 bar (risk of dama~e

01 the longitudinal baffle).

This typt should be avoided. A greater number oI Type E shells in Series is preferred.

. Type G 4 H : Used tor low AP J. 50 mbar as lor thermosyphon reboiler.

Vertical balfics are not installed lor thcx types and due to that

the length of the shell must be limited. , Type 3 : Uaed for high flow or high AP for Type E and also sometimes on

condtnsates to avoid the use of vapor belt.

. Type K : Used for vapor separation i s required ie chiller, some reboiltrs...

c. Rear end, head types

- Types L, M and N : Fixed tube sheet, used for clean fluid on shell ride and lor Iow A T < 30 'C. i f AT > 30 *C use other head types or install an expansion joint on the sheil. Typc L and N will be used for dirty fluid on tube side. For the other cases the type M wlll be urcd it is the cheapest.

. Typc P : Generally not uscd.

Type 5 : Used very frequcnlly, no restriction&

. Type T : For frequent dismantling, enpensive, she11 diameter larger than t y p t S far same number of tubes generally not used. . Typc U z For ckan fluids on tubrsidc no other restrictions, low cost.

Type W : Generally not uscd.

d. Conclusion

Tot most frequently uscd types are I BES, BEW, AES, BEM, divided [low,

6 1' 7

SHELL AND TUBE ~XCHANGERS

Oat* : 2/85 1.3

Page 56: Total Company Process Eng Design Manuall

P.g. No

4 . 4 .

k.i*' : 0

a : 2/85

- .

TOTAL TEPIDPIE"~~SUR

--"- ..- - m u . "

PROCESS ENGINEERING DESIGN HANWL

SllELL htJD RlBE EXCHAWSRS

Page 57: Total Company Process Eng Design Manuall

3 DETERMINATION OF ESTIMATED HEAT TRANSFER &REA

ITEM : I I I I I VALUE I NOTES : I

I 6 I

I DUTY Q I kcallh I O . f r 1 0 I Indicate temperature I I I I I HOT FLUlD

I I I

I Inlet temperrturc T I I ' C I a & I Outlci temperature T2 I 'c I tr

I I I I I COLD FLUID I I I I

I 8 I Inlet temperature t l 1 'C I I I Outlet temperature t2 4 *C 1 16 I i? I

I I *C 1 3 J - ? S = g I I 1 I I I 1 -C ( f r - 1 B r + I T 2 - t l I I

I I I I I . LMTD from formula (1)

I I *c 1 3 - r I I

I 1 I I I I t 2 - t l I 'C I ? & - t i = ? 1 1 I 1 I I f I T 1 - t l I *C I s t . 1 9 = 1 6 1 1 I 1 I 1 I

I ' C 1 3 b - t 5 - 4 I T I - T 2 I 1 I I P - U - t l

I I 1 I TI-tl

I 2/11 - o , f I I I I I I

I I R ~ T I - T Z

I I I I I tZ-tl I I q/l = l . l l f I I

I I I I ~TNK-BFROFS~ELLS-- -,---[ L r T - c-[

----- ~-FT~- !D carrection -I- t I factor (3) t I I r-- --- I- . 7----- , - r - I

I CORRECTED LMTD CORR. I I 1 r - - - - r - ---- ---I----- I

i HEAT TRANSFER COEFF. u i kcal/h i i including foulin8 i I TABLE 3 Page 4.10 I m2 *C I I factor I r----- - I------ r ----------- I

I HEAT TRANSFER AREA I 1 I I I I A = + I 1 sea a .0

I - 2 i f I F = D.111

I I U.LM D CORR

1 mZ 1 ( LOO r S.cC

I I I I

13hlI ruh* L I ESTIMATED TUBE LENGTH I CT(m) 2 0 (c. 1 1 ' Y I I ~ T ~ M A T E D SHELL DlAM Iinr(rnm) I 3 1 [ t q o ) I& t d 6 ; C 17 tA*s 1

I 1 I 1 ESTIMATED WEIGHT Bundle I tonnes I 3 .C) I Shell J tannes I L . o - - - - I Total I tonne~ I q .o 1 I t ------- I I -- l - --_ __-- - . - - - ---- I

~ W Q O ? MR~KP'SUI

1 I CII. I

PROCESS U L C U U ~ O H SHEET 6 3

SHELL AND f UBE HEAT EXCHANGER

n ~ t r i I lnm rartr . a .tz ,?t L

ITEM ; i l - ; < . . L . , - L*t* ' , .* .a%.

no ,I I! , ~ n n un i rrv I

Page 58: Total Company Process Eng Design Manuall

Page No. :

4.6

(1) Use following formula

LMTD. (T2 - tl) - 1T1 - tZ) i f T2 - t l > TI - t2 LnT2 - t l

T1-t2

LMTD . (T I - t2) - (T2 - t l ) if T i - t2 > T2 - t1 LnTt - t2

'12-tl

Remark : If tht htat exchange curves are not linear the LMTD should be determined step

by step wlth the lintarisation of the curves and with the ponderation of the

partial LMTD by the partial duty on tach Iincar step.

(2) For total condensing

TEwmnPJ .c 3y

2 6 5 hmpratur. * W W + h

I

I / r 0

I*m l - 2 Dm > %.tm 1

D.np.h*ariw Eond.amlnp I d l l Y

In this case -alculatc the heat transfer area for each zone, the sum of these areas is the

surface for the exchanger.

(3) See LMTD correction factor (Figures 2 )

the number of shells should be chosen in order to have 0.8 < F < 1

If F ( 0.8 add shells (2 exchangers in service)

1. ESTIMATION OF SHELL DIAMETER

With the heat transfer area, selected tube sits, pitch, tubes Iength' i t is possible to

determine the number of tubes and. w i t h table 1 or 2 hereafter the approximate shell

diameter.

Take maximum shell diameter abwt 60 inches.

6 q

Revhion ; 0

Date: 2/89

TOTAL T€PR)Pf€XPlSUR

SHELL AND TUBE EXCHANGERS

Page 59: Total Company Process Eng Design Manuall

( TOTAL I IROCESS,ENGINErnlNG DESIGN MANUAL Revl$inm : 0 I I Papa No .

Page 60: Total Company Process Eng Design Manuall

TEP - SHELL AND TU8E E X C W W M

1IOPIEXPISUR Dl t l : 2/05 4.B

Page 61: Total Company Process Eng Design Manuall

a I7

$7

6 1

14

I a3

110

In I 6 b

nr ).I

m 171

J> l

I10

6lh

tbb

9m

I O > I

IIH

l l O I

l l JS IIS?

1 TOTAL T E ~ ~ D P ~ E X P ~ S U ~ ~

I b

>a .I

37

I C

Ill

11Q

I77 115

151 I Ma

,n a31 117 *I

131

*? I

Y I lo la

In, I%*

If*?

P R O C E S ENGINEEAINII DESIGN MANUAL

SHELL 7WBE E ~ ~ ~ ~ G E R S

,- TLWLI k MI' 1

I PITCU u I- I C I T ~ A 1- I

R 4 n . m : . a i ayr I V U

OLtm : 2/05 L

1 I, s

I

4.9

111 301 110 1071 1017 1011

lo lb i O J I 3lJ LrM l l t l 1129

1110

rni 111J I nr 1172 1/15

t 2 l Z 1111 ZDI? 1111 1Yl t W . 1

I 0 2JY m 9 8117

I rruusr~ o r v ~ r r r s ruar )IDL NVMOLIOF C ~ S r u m SIDE

I

I

10

11 IS ~f i

IS I I ~ 11 I/* ZJ l i b

13

I?

n $1

II II

I

!I >1

I ?

95

I J I

111

1% Z7*

JIJ

a0 I

19 I 113 1.0

I?>

r I 3

n 31

Tb

+n 12.

1 U

120 ??a 111

W LbU

J I C ILL-

712 1 1 1

H

17

76

M

I17

111

2.1 ln 3 s * I9

*If

1%

477

77:

UY

1

I? %

82 104

1% lm 13 MS W l

*A 1% WI 111

a10 917

* 10

10

$8

az LIb

131

am 186

301

$70 + J l

119 m UY 170

I

TABLE I

p

I

Y

64 W

161 146

111

nm JID

H1 111

3%

bm

7SJ

199 I67

Page 62: Total Company Process Eng Design Manuall

kdh. m? Y

(includinp foul LW factors) . nrn#ndtmUq

kc.l/hrm2'~ x 0.2047 ' ~ ~ i p f t ~ * ~ r 1 .I62 W/m *x

r n r r l * vsr.rl*rtr "h.l I< rs C ~ ~ , S S w-i n r r *

C&3 chlllrr d

I.~MI~I HL. wircsrlr 0 3 c P v.le,...r.,e H.C 0.9 cp c vw-ill 1 C p r.tsh...,n.C . -1wsltr ' I C P

p u t k m l l . *

rnhmb-v *il Itrsmlral*l

*.dlu ,U,,,,/U'bi nx. Y'Y""~ * " C" sl.~.rrr.le n.c.0.9 CP ( *imW 1 CP slE.&nr, n.c. wbc-ibr 1 l C P

W-1100 2-0 - Y P .. I t 0 - w rm. 190

11 110

a30 -61n

H - m 100 - bm m - x 4 > O - ) W

9 0 - I IW

13 - 1M m-1- a m - w w.m

Page 63: Total Company Process Eng Design Manuall
Page 64: Total Company Process Eng Design Manuall

TYPE BEU WEIOHT ESTIMATE

TpTAL PROCESS ENGINEERING DESIGN MANUAL SHELL AWD TUBE EXCIIANCERS

TEPIDPIEXPISVR

FIOURE 4

Revhion : o

Dale : 2 / B S

pwe N. :

9 . 1 2

Page 65: Total Company Process Eng Design Manuall

TOTAL TEPtDFIEXPISUR

1. APPLICABILITY

For both the feasibility and preprojcct study i t would gentrally be required to state the requlrrd duty of the air -let, the overall dimensionn yld weight and an estimate of

required fan power.

A calculation prmedurc sufficient for a preliminary estimatt is given In section 3.0.

2. DESCRIPTION AND GUIDELINE NOTES

Water or Alr Gaoling ?

. Air cooling offshore is sometimes prohibited due to the modular layout 01 the platform.

This may require installation of the air cmler 1na rcrnoke from the associated

equipment. Use clorcd loop watcr cooling.

. Air caaling ia cheaper, simple and fkxible when compared to rumter cooling. The cost and

nulsancc of water treating Ii eliminated If air coolers are used.

. h warm climates gg&ng wi l l not be as tffcctlve as watcr which will produce a cooler product stream. Air cooling is apprax 50-70 % as effective as water.

Fwced on induced draft ?

. 'Forced draft, pushes the air at lowest available temperaturc~~highcst f hence lower

pow-. requirement.

. Acces billty to motor and driver are better on lorced. Structural and maintenance cmts

arc lower.

. PassIbllity with forced draft ai hat alr recirculating into suction of fan thereby reduclng

efficiency.

. Induced draft gives better air distribution due to lower inlet velocity with less chance of

rtcirculatlng of hat air.

. Indudd draft coolers can be easily installed 4hvc piperacks or orher equipment.

Protection is given by induced draft coolers from effccts(oll rain, wind mawlpn&md tubes. Important i f fluid in tubes is sensitive to suddsn tamp change also freezing 0f

tubes can occur in cold ckirnates or heavy snowfal!.

AIR COOLERS

Revision : 0

h t c :

P8gs ?Jn '

1.13

Page 66: Total Company Process Eng Design Manuall

-

Finned tube elements (see Table I)

. I" OD tubing t most common wi th 0.5" to 0.625" fins* Fin spacing 7 to 11 per inch.

Exten. ' surface area is 7 to 20 times bare area.

. Standard tube lengths from 6 f t to SO It I2 m to 15 m). Lonser tube designs are less

costly than short ones.

. Bundle depth may vary from 9 rowr so 30 rows of tubes, 4 or 6 rowr is common lor

smaller units. U l c U as first estimate.

. Fin material most commonly AL. Adequate vpto 400 ' C operating. Use steel for higher . temps.

Fans and motors

. Fans arc axial-flow large volume low OP devices Use l o b 1 fan efficiency 65 %. Driver efficiency 95 %.

- Fan 0 equal to w slightly less than bundle width. Normally 2 Ians preferred. Fans have 4

to 6 blades. Max fan diameter 14'-16'.

. Distanct between fan +.bundle 0.4-0.5 01 inn diameter. Ratio of tan ring area to bundle

area must nat be less than 0.4.

. Fans may be electric, steam, hydraulic or gssoline driven. lndlvlduaf driver site usually

lirnlted to 30 hp, (80 Kw), 3110 V.

. Face velocity of air across a bundle is 300-700 LVmin (1.5-3.6 ms-11.

A 10 % change in alr f low rate results in * 35 % change in power used.

Temperature control (Fig. I )

. For c l o ~ control of process outlet temperature auto-variable pitch fans, top louvers Or

variable spe@ rno.tws.are required.

. Vmrlablc pltch fans are more efficient than louvers.

Louvers can be manually adjusted for winter or night time operation.

. For p r a c l s fluids that i recre or gel at temperatures above the winter amblent a recirculation system is necessary to maintain air temp enreriw the tube bundle.

- General approach temp to ambient air is - 20-28 'C. Absolute min is - 10-12 'C.

Note I Air coolers are noisy. Keep fan speed as low as posslble and consider relative 1ayOUt - carefully.

72

Rcvirion : 0

2 ~ 5

SHELL AND TUBE EXCHANGERS

I Page No. :

S.l I

TOTAL TLP~DWEXPI~UR

Page 67: Total Company Process Eng Design Manuall

TOTAL f EPIOPIEXPI~UI .

4.0 REFERENCES AND USEFUL LITERATURE

5.1. Air cw lcd heat exchangers PERRY pp 11.23 - 11.25

13. Air cooled heat exchangers LUDWIG pp 1 7 7 - 193

3 . A i r cwled heat exchangers GPSA chapter 9

1.4. Aerial coolers CAMPBELL pp 207-209

4 . Design of air coolers - A R. BROWN

Prcrcedure for estimation Chem. Eng, Mar 27 1978, p 109

1.6. b t imatc air cooler size N. SHAIKH

HP QICV program Chern. Eng, Dee 12 19S3, p 61-70

73 >

AIR COOLERS

~ P U I ~ I I I ~ I : {J

: 2/65

I*.rcJr c d r j

4.15

Page 68: Total Company Process Eng Design Manuall

4-16

OPERATING CONDITIONS AND NATURE OF PLLriD :

Duty I Q = 11 w to6 kcaIih 1 Fluid inlet temperature I T l = l 1 0 0 ,C I Fluid outlet temperature I T 2 = I r0 *C I FLUID Ar t = TI - TZ = SO -C Fluid iniet pressure lP= 1 10 barabr I Air ambiant temperature I t ] = t 3a *C IINLETPI = T I - t l s 7-0 C Overall k a t transfer cgeff. l U = I zoo

Table f andlor aruchcd kcalfh m2 *C I

wwk sheer) (Based on bare tube area) I NOTES

STEP - t * ~ptirnrrm number oi tube I N = I 8 I (curve N* 4) P:?.

rows fat U selected 2 R = dt airldt m I R - I 0.8 I {curve N. 4)

3. TI - TZ/Tl - tl 1 ' q j n 1 Q.2IA *C 1 4. Y = A t a i r / T i - t l . , I Y = I 8.35 I (curve N' I)

5 btair r % ( T I - t i ) Idtair.1 1 . 6. Exlt air temp t 2 =Atair + t1 I t2 = I S .C I 7. Average dillerentlal temp. 1 I I

d t m .* Idtrn.1 30 .d ' C t

I I 1 1- Bare tube surface A z &- I A : I 326 mz I

1 I I 9. Bare tube areafraw Fa=AlN 1 Fa = 1 i, r m2 1 10. Tube length I L = I 7 s m 1 3, 4, 1, 6, 7.5 or 9 m are common

1 1 fubcslrow TR = Fa/LnO.OS 1 TR = I L 8 I (1" 00 tubing)

12. Cooler width V=TRx0.0635 ) w - I j l , l m 1 3. T otel lan power ~ F W . 7 9 5 ( Fp = 1 3t I, kw i 4 Number of fans I N F * I t I man. fan diam = 4.6 rn

1 Fan diameter I F 0 . l 3.r m 1 16. Powerllan FQ~NF 1 PF r l L kW I 17. Estimated wclsht I M r I i l r f i o k g ( (including motors)

4.88 (36.bX9.35 NIxwxL I I I

Notes : Curves numbers refer to Process Design Manual Chap. 4.

70

f I t f W C Q M X L IUI.

av CWN .

PROCCSS CILCUCATION SHEET

AIR COOLER

DATE 1 IN ttrit L I ( A ~ ? P C ~ -

H * h l & @ , c r * . ,L '2 Li'-.

UO - 100 NO R E V 1 .

Page 69: Total Company Process Eng Design Manuall

- 4.17

1. rlQUUCOQLlNG

LIQUlD VISCOSITY AT 1 1 + T2 --T-

i;

GLOBAL HEAT TRANSFER COEFFICIENT r U e (Read curve n* I)

2. GAS COOLING

MOLECULAR MASS : MU' =

GLOBAL HEAT' TRANSFER COEFFICIENT r U = (Read curve no 2)

3. TOTAL CONDENSATION

71-T2 = ' C

GLOBAL HEAT f RANSFER COEFFICIENT : U = (Read curve ng 3)

4. PARTIAL CONDENSATlON

I . w1Tnou-r L~QLJID AT INLET

inlet gas flowratc WGl =

outlet gas flowrate WC2 - - outlet liq flowrate WLZ - - T I - T2 - - GAS MOLECULAR WEIGHT AT T i + 1 2 = 2

HEAT TRANSFER COEFF. Uc - - (Read curve n' 3)

HEAT TRANSFER COEFF. Ua I

(Read curve n' 2)

GLOBAL HEAT TRANSFER COEFF.

U. W L ~ X U C + W G ~ X ug m I

p r t l

SELECTED GLO8AL HEAT TRANSFER COEFF. r U =

? z PROCESS CALCWPTION SHEET

AIR COOLERS HEAT TRANSFER COEFFICIENT

108 TITLE

ITEM

no.

100 no r tv I

Page 70: Total Company Process Eng Design Manuall

k l a

4.2. WlTH LIQUID AT INLET

Inlet liquid flaw rate WLI - - kglh

outlet 11quld flow rate WLZ I k g l h

LIQUID MOLECULAR WEIGHT AT =

LIQUID SPECIFIC HEAT AT CPl = kcaVkg *C

QL = I-) x CPl x IT1 - T2) - - kcallh

inlet gas flow rate WG1 - - k g h

outlet gar f low rate WC2 I kgrh

GAS MOLECULAR WEIGHT AT TL + TZ = 2

GAS SPECIFIC HEAT AT v. CPg * kcallkg *C

QC c (WGI wG2) x CPg x (TI - T2) kcallh

CONDENSATlON HEAT

Qc=Q-QL-QC - kcallh

LIQUID VISCOSITY AT T I - - CPB

LIQUID HEAT TRANSFER COEFF. UI = kcal/h rn2 ' C (Read curve c* 2)

GAS HEAT TRANSFER COEFF. Ug = kcallh rn2 *C (Read curve n* 2)

CONDENSATION HEAT TRANSFER COEFF. UC = kcallh m2 'C (Read curve n* 3)

GLOBAL HEAT TRANSFER COEFF.

" = & U = kcalfh rn2 'C

UI Ug Uc

SELECTED GLOBAL HEAT TRANSFER COEFF. : U = kcal/h m2 *C

76

&- lI?IDD?'M?lIW3VR

#I CHk

PROCESS CALCULATION SHEET

nru

106 No I arv I

AIR CQOLERS HEAT TRANSFER COEFFtClENf

OAIE 10I llllt .

Page 71: Total Company Process Eng Design Manuall
Page 72: Total Company Process Eng Design Manuall

TOTAL TEPIDPIEXPISUR

C L r ~ I - ceoune IIYD~WIRUOH LIWIDS

P- NO :

4,ZO

P I Q E P ENGINEERING DESIGN MANUAL

fix4 COOLUIS

I l m v i ~ h : 0

Date I 2 / 8 S

Page 73: Total Company Process Eng Design Manuall

snr/hrft2*r

- 2 Fintub. 1.h h r t-in. OD kb.1

. k h * ~ l l r h l l l(lk~ h*.h)I

APF. rq k/k 3.60 3 S8 AR, q k ~ h 14.5 11.1

tub. PI* 1 in.3 1% h a 2% m, A 2 % in, 3 A P Y 13 + 11.4 60 4 IQ I I0 1

,I4 nrrl 11.2 80.1 1 1 1 1 107.1 I . 114.0 101.0 i d 1 5 1 3 4 0 l b r r d 134.1 1 178 2 140.0

k ~ A p r t l u r t ~ u r r J w n d f i * r . k i n . ~ n r n . A# i.~. .- w u ~ I * u r b r ~ ~ 4 h ~ ~ o r k ~ ~ d I in 4Di.rrrd. *hid b u *.MI qRIfL APSCb lk nvrul a m in q hrb 01 b.nd& I- w.8,

-- TOTAL TEPIDPIEXPISUR

I *- 2 .. ". ", I,, r....,. I*#* -,> ......... -a *

U * . m 98.-1.2 u, I..",. 4-.1 %I,#

1m.1n- -. r - a I F I I

PRDSLS ENGIWEFRINO DTSIW MAMUL

AIR COOLERS

inision : o

Dotr : 2/85

PW* NO

I.? I

Page 74: Total Company Process Eng Design Manuall
Page 75: Total Company Process Eng Design Manuall

_. ___.- I-

TOTAL l ~ p ~ ~ ~ ~ E X P f S U n

C

1. ~~PPLICA~ILITY

FEASIBIL~TY STUDY r PRE-PROJECT

Under normal c i rcumsta~ts , the design wl plate type exchangers wwld be detailed by a

vendor b a d on process data supplied by the eqinaer.

Two types oi plate exchangers could be used z

. Plete i l n exchangers ;

. Plate exchangers.

or the purpose of this design guide, only a quick description and some charseteristlcs are

sivtn.

For plate fin exchsngtrs, the size could be done only by a vendor.

For plate eschanger3, the size could be estimated if some vendor {ALFA-LAVAL, APV,

VICARB) inlormation are available.

An estimation of the heat transfer area could be done i f the hcat tranrier coefficient is

known using the same formula as lor 8hil mnd tube hcat exchanger with 4 LMTD correction

factor = I. The heat transfer coelficient is difficult to clrtimate; it depcnds on many factors

as flow rate 01 different iluids, pressure drop, plate spacing, etc,..

2. DESCRIPTION AND NOTES

2.1 PLATE FIN EXCHANGERS

Thee exchangers consist of stacked cwruyttd shrcls (lins) separated by flat plates and

an outer irarne with openings for ihe inlet and outlet oi fluids. This core Is immersed In a

liquid salt bath to b r a z ~ all the separate parts together.

Flow in adjacent iluid passages can be coeurrent. counter current, or crossflow and

Sever? uids can be erchangin~ heat at the $am time.

In case of the inlet fluid & a two phases flow a drum is requlrtd to separate the two

phsses in order to hsve a good distribution.

These plate iin exchangers arc used only with clean fluids.

L 8 1

p~lr fE H. GK dric d a o k m

Revis~on : 0

Date: 2/gs

Page No. .

4.29

Page 76: Total Company Process Eng Design Manuall

TOTAL TEPTZIP#XP~UR

Figure I ahowr *t principle of coratruction of a platelin exchanger. A large amount of

surface can be accomodatcd in a small volumt (1,000 m2/m3).

Maximum design pressure r 59 bar&

Temperature range r - 195 'C t o t 6 1 'C

Size rnsx. I 1,220 mm x 6 096 mm x 1 340 mm

Ttmpersture approach 2 *C Applicability : LNG, LPG recovery, ... Prc~sur top as for she l l and t u b heat exchangers.

2.2 PLATE EXCHANGERS

Plete exchangers ar t an assembly of metal plates stparated by gaskets to give a small clearance between each plate. The two fluids pass in opporha directions each thrwgh

every alternate plate. Refer to flgure 2.

Tht exctmnger Is easily dismantled for cleaning ii required. A good overall heat tramfer

cotfiicicnt is obtained and small tempcraturc differences can be u e d .

The plates can be made from exotic malerials such as riianiurn which are redstant to

corrosion and u e used for sea water coolers. They are v t r y compact eschangerr find aeupy small i l w r area.

Maximum pressure : 10-20bars

Maximum temperature : 250 'C

(Need spcelal gaskets) Overall heat transfer cotfficint

Vatcrlwatcr : 2 000 - 5 000 kca lh m2 ' C Maximum surface : about 1 MO m2

Maximum ilow : 2 500 m31h

Applicability : Sea water - service water, water-TEG, TEG-TEG, .., . Prtswrt bops I allowable pressure drops vary according to the total system

pressure and the ~ r v i c t of the flulds.

- lor sea water - #ervict water r 0.5 to 2 &r (high A P increase the overall heat transfer caeflicitnt),

- lor water-TEG or TEG-TEG the dP cwId be very low such as 10 to 20 mbar.

3. REFERENCES AND USEFUL LITERATURE + Vendors iniormatlon.

2?2 >

AIR COOLERS Rwision : 0

Qstt : ~fif

Paga No.:

1.25

Page 77: Total Company Process Eng Design Manuall

Pwp tdo :

4.25

- PMTE FIN EXC-ILS

!

IIWCIPU OF mnstnucTKm 1. A . u * Z V d Y 1- 4. *.dm I. 1.- I. *m t slaw hrm I. LR) 1. P W W ovtW

10. El- ih.t i l . P * M I Z M U W ~ W *

I2.wmMbr 1 b . - I I

Llr**r

Y'3 i

Rwision : 0'

cww : ?IB5

/

~ 0 T f \ ' 1

~ ~ P ~ D P I E x P I S U R

PROCESS ENGINEERING DESIGN MANUAL

p=m U C n m C Z R S

Page 78: Total Company Process Eng Design Manuall

D r n I t S OF PU'PE TYPE EXCR*NECR

Page 79: Total Company Process Eng Design Manuall

Pmp. Nc. :

4.27

1, UPLlCABTr 'TY

i s not exy. -tcd that hand calculation of furnaces be performed by t h t engineer. It is

normally done by 4 manufacturer based on p rmus data suppllcd by the cn&inecr.

Furnaces are used to transfer heat directly to the process fluid md generally have a large

duty and produce high process tcrnpratures.

OESCRIFTION

2.L. A iurnact consists of the Iollowlng :

. A cornbustibn chamber lined with refractory shd burners

. Tubes which .re located within the combustion chamber and where heat is

transferred to tht process fluid by radiation

. Tuber which arc I ~ a t c d external to rhc cornbusion chamkr in a convcctian zone

which is also Iintd with refractory.

. Stack for dirpasal of flare gas.

. Alr supply system by tan ar induced drajt.

+ instruments and controls.

2.2. TYPES OF FURNACE

23.1. Cabin furnace

. This ifi a rectangular furnace and contain$ t u b a which can be horlzmtal or

v t r i i c~ l . The burners are rituated in the walls o r floor, and the cmvectlon

zone is laated above the furnace.

. Flue gaser discharge to a stadt tither directly ar arc driven by an induced

drait fan.

. Burners are normally arranged in raws on two wails and a r t spaced SO aj to

provide a rad~atlon zone of constant tcmpcratun a d avoid flame impingcment'on the Tubes. An alternative arrangement i s burners located

In the floor ai the furnace as shown in Figure I .

. The connection bsnk conbins raws of tubes acrms which the flue gas

leaving the lurnace 1s d i g e d to pass

. A small negative preswrt is maintained to prevent hat gas leskagc.

, There is a pressure lw in the flue 8as syste~n and this hls to be made up

either by we ot & fan discharging to a s b r t stack or by natural bwyancy creating drait in a tall stack.

$5 +

--- Rcvirlon : 0

Daa: 2/83

. TOTAL

~ ~ ~ ~ o P I ~ x ~ ~ S U ~

FURNACES

Page 80: Total Company Process Eng Design Manuall

TOTAL tEPIDPlEXPISUR

1.2.2- Cylindrical furnace (see Figure 1)

. These furnaces arc vertlcal and contain rndistion and convection zones or

KI~CIJ 4 tadistlon zone.

. The burners are h a t e d in the bottom and the radiation zone tubes can be

vertlcal or hcli&~dal. The convection bank is located above the radiation

zone and contains rows of horizontal tubes.

. Cenermlly the stack ls vertically above the convection bank wlth no f u k

2.3. BURNERS

. Two types nf burner are used in furnaces, induced air or natural draft burners

and lorccd drait burners.

2 . Induced air burners

These can burn gas or fuel oil simultane~usly or independently. Excess air

required 1s 15 % to 20 % for gar and 30 % t o h0 % lor liquidsl If fuel oI1 is

burned 0.3 k@g oil of steam is required for atomisi*

2 Pressure burners

The air far prrs8ure burners is supplied by fan. I t is therelore capable of control and the burner can operated wlth less excess air 5 to iS '16.

3. EXCESS AIR

. Determine the excess air recommended by the burner manufacturer and the type of burner air system proposed. k t 1 2.3.

. From thk determine the kg of flue 68s per kg of fuel fired remembering that air

contains 21 96 Vol 01 oxygen.

I. f T ACK GAS TEMPERATURE

This i s controlled by 2 iactors :

. The process fluid inlet temperature w i l l dewrminc the temperature of the gas Jeavhg

I h t convection bank.

. Condensation is to be avoided. If sulphur 1s prcaent in the fuel the stack temperature is

raised to avoid the possibility of production 01 corrosive sulphuraus wid. This would

result in a minimum exi t temperature of about 120 'C .

5?6

nrv~rion: 0

Date : 2/85

FURHACW ~ a g ~ ~ o . :

b.28

Page 81: Total Company Process Eng Design Manuall

t - \I EFFICIENCY

IOD - IOSWS, Hf - HC 3 -Tbb. Hf

I f Hc = flue gas enthalpy at exit

Hf = enthalpy of combustion (net calorific value + sensible heat in futl and air) + heat

bclng furnished by atornisalion steam if required.

Lasxs include radiation and unaccounted, e.g. unburned fuel (2 % is a good figure).

For a furnace which is all radiant duty the efficiency is of the order of 50 to 55 %.

. A furnace with a convection bank will be from 75 to 8 1 % efficient.

. P R W U R E LOSSES

Pressure is lost in :

. Burner air regulation : 3 - I 5 mm water Ducting : variable

. Convection bank : 5 - I $ mm water . Stack : variable

Pressure is gained by natural buoyancfof hot stack gas.

For r system using natural draft burners a low pressure loss is required across the burner and

the furnace operates under negative pressure.

FLUE GASES VELOCITY

The flue gases should leave the stack a t LO - 70 m/s velocity to ensure safe dispersal.

CHOICE OF TYPE OF FURNACE

. Above a capacity of 60 r 106 kcallh the cylindral furnace gives construction problems as

t he maximum diameter is about 10 - 11 m.

. A cabin furnace requires much more floor area fian a cylindrical furnace the length can

b t as much as 27 m. If the tubes are horizontal then a withdrawal space for tube

replacement will also be required. However for offshore applications the gpace

requirement tends not to favour the cabin furnace.

. With a cabin furnace it is possible to obtain a uniform heat reicasc across the radiatlon

Zone. The helght can be abwt I 5 m.

- With e cylindrical furnace it is not possible to obtain a uniform heat above release across

the radiation zone. The height can be about 25 m.

For remote locations in oil field sppljcations water bath fire tube cyl~ndrical heaters ar t

often used (consult vendors NATCO, 85 & B etc...)

g? -

Rev~sion : 0

Date: 2/85

TOTAL ITEPIDPIEXPISUR

P a g c ~ o . .

0.29

FURNACES

:

Page 82: Total Company Process Eng Design Manuall

The I o l l o ~ ~ ! is lor a very preliminary sizing

D in m

Qa = absorbed heat in 106 kcalfh

9 r D t l i n m

H 5 2.5 D in rn util radiation bank

Page 83: Total Company Process Eng Design Manuall

5 , PUMPS

/ TOTAL 1 ~EPIDPIEWBUR

I

PROCESS ENClnlERlNO DESIGN MANUAL Aarklsn :

Dmra :u85

Pwe No :

Page 84: Total Company Process Eng Design Manuall

Reciprocating

I. Piston

2. Plunger

3. Diaphragm

1

rOTAL TEPIDPIEXIISUR -

1.0 APPLICABILITY

For both the feasibility study and a pre-project study the engineer will be required to

cvJuate a pump selection and fill ln a data sheet with the basic Information.

In order to provide the basis of a good cost and layout estimate it is important to understand

the type and number of pumps-for the service in consideration, and the associated power

rquirements.

2.0 DESCRIPTION AND GUIDELINE NOTES

TYPES OF PUMPS

. Generally there are three classes of pumps :

Centrifugal Rotary

I . Centrifugal I . Cam

2. Propelkr 2. Screw

3. Mixed flow 3. Gear

4. Peripheral 4. Vane

5. Turbine S Lobe

. A pump select~on chart is shown in Figure 1.

GENERAL USAGE

Centrifuga! ~ U J (Process Pumps)

. Medlurn to high capacity far low to medium head requirements.

. Higher head requirements can be met by using multistage impclltrs.

. General service for all liquids, hydrocarbons, products, water, boiler feed.

. Simple, low cost, even flow, small floor space, quiet, easy maintenance.

s/

Revision: 0

Date: 2/83

PUMPS

Page Ho. :

XI

Page 85: Total Company Process Eng Design Manuall

TOTAL TEPIDPIEXP/SUR

Rotary pumps

. Many proprietary designs available for specific services.

. Essentialty can handle clean fluids only with small suspended solids if any. Can pump

liquids with dissolved gases or vapwr phase. . Can handle wide range of viscosities - upto 500 000 SSU at high pressures.

. Typical fluids pumped : mineral, vegetable, animal oils, grease, ~lucose, viscose* paints*

molasses, alcohol, mayonaise, soap, vlnegar and tomato ketchup 1

. Generally specialist pumps for specific requirtrnents.

Reciprocating pumps

. Pumps prduce virtually any discharge head upto limit of driver power and strength of

pbtonr: .d casings. . Overall ~.Iicicncy i s higher than centrifugal pumps. Flexibility is limited. . Piston pumps : can be single or double acting. Used for low pressure light duty or

intermittent services. Las expensive than plunger design but cannot handle gritty

fluids.

. Plunger pumps : high pressure, heavy duty or continuous service usage. Suitable tor

gri t ty or foreign material. Expensive.

. Diaphragm pump : driven parts arc scaled from fluid by plastic or rubber diaphragm. Ng seals no leakage. Ideal for toxic or hazardous rnaterlal. Can be pneumatically driven at

slow speeds for dellcate flulds. . Triplex pumps : commonly used for TEG circulation.

4. REFERENCES AND U S f f UL LITERATURE

4.1. LUDWIG VOL I CHAPTER 3

b.2. PERRY CHEM. ENG. HANDBOOK CHAPTER 6

1.3. CAMPBELL VOL 11 CHAPTER 14

4.4. "Centrifugal pumps and system Hydraulicsn

Ugor I. Karassik Chem. Engrng Oct O 1982

4.5. "New Program Speeds up Selection of r Pumping unit"

M. Seaman Oi l and Gas J. Nov. 12 1979

4.6. "Rapid eslculation of Centrifugal-pump hydraulics"

W. Blackwell Chem. Eng. Janv. 28 1980

f2

Revision : 0

Data : 2/85

PUMPS Pag4 No. :

5.2

Page 86: Total Company Process Eng Design Manuall

TOTAL TEPIDPIEXPISUR

1. FLU10 CHARACTERISTICS

. Always quote at pumping temperature ie : normal suction T.

2. SUCTION PRESSURE

, Evaluate at pump suction flange

Ps = Pop + Static head - line 1 0 s

Pop = minimum vessel operating pressure bara.

Static head : evaluate a t LLL always,take statjc head above pump centreline. s u l f ~ c ravlt

Static hcad (bar) : h2 (m) x w

Line loss I evaluate APline for bends, fittings, e tc I for estimate use 0.1 barl100 rn.

3. NET POSITIVE SUCTION HEAD

. NPSH available (NPSHA) is evaluated by the engineer. NPSHR required is stated by the

vendor. Always try to providdp.6 - 1)rn NPSH more than vendor states.

. Vapour correction is calculated by substracting the Vapour pressure of the fluid being

pumped from the calculated suction pressure. Convert this to rn head. For a fluid a t

bubble point the vapour pressure r Pop

head (m) = bar x 10.197/SC.

NPSHA : static hcad - line loss + vapour correction

. DISCHARGE PRESSURE

. Delivr pressure : use maximum Pop of destination vessel

. Static head h3 : height of delivery point above pump or if a submerged discharge into a vessel the height of the HLL.

. A P discharge line : calculation based on line length, fittings etc or use minimum of 0.5 bar.

D P exchangers, heaters, etc I use allowable AP from equipment data sheets. Estimate 0.7 - L.0 bar ii not available.

b P

PUMPS

Revision : 0

Date : 21g5

Page No. :

5.3

Page 87: Total Company Process Eng Design Manuall

TOTAL TE?IOP/E)[PISUR

. A P orifices I for flow meters use 0.2 - 0.4 bar.

. A P control valves : use maximum value of 0.7 bar, or 20 96 of dynamic Irlction l o s x s or

10 % of pump AP.

. TOTAL DISCHARGE PRESSURE : sum of ail above AP values.

5. DIFFERENTLAL HEAD

. Differential pressure -. discharge preswre - suction pressure

. Differential head = Dif ftrential pressure x 10.197 Spec, gr.

6. FLOWRATE

. Normal flowrate is maximum long term operating flow (rnllh)

. Design Ilowrate is normal flowrate + design margin.

. Design margin I

Use 10 % for feed pumps or transfer pumps

20 % ' r reflux pumps and boiler feed water pumps

7. POWER REQUIREMENTS

Note : although the term "horsepowtr" i s still used,power requirements a r e given in kW for

metric calculat lonr

. Hydraulic horsepower I theoretical fluid HP = design flow x Diff. press136 (kW)

Brake-horsepower (BHP) = hydraulic HPi q p pump efficiency IkW)

. Optrating load = electric& input to electric driver a t normal pump qxrating load = BHP/ vrn motor efficiency k W

. Connected load : electrical power to motor a t cated motor qize (kW1

+ Note pump s p e d are either 1 450 rpm or 2 900 rpm UO HZ electrics1 frequtficy)

8. MAXIMUM DISCHARGE PRESSURE (shut off pressure)

. Estimated shut off pressure t max suction preswre (design pressure of upstream item + head calcuiatdat HLL and SG maxi) + 120% x(norma1 pump AP)

9+ PUMP MINIMUM FLOW

. For an estimate use 30 % of normal flow.

10. PUMP WEIGHTS

. For an estimation purpose only Flgure 9 can be used to determine the welght of a

centrifugal pumv package.

$?f .

Rev~sioti : 0

Dale : 2/65

PUMPS

Page No. :

5.0

Page 88: Total Company Process Eng Design Manuall

. . - 6-5 -- HLL

5 0 4 .- ' , 7 . 4,3.4 :er c --

1 CCL-

~ ~ 3 . I4 m Kq!-i: rnr2

i ? ~ -~ i . i~ --A.w Pump CC-.X- - : : - a - -

Indicate pressure, elevations and system sketch

PUMP TYPE : ZLII-b : ~ ; r . :-:;= LUlD PUMPED : Liquld : CtuDE 3 i C Speed : 1 2 3 2 Z . i V

Pumping temperature T I 40 .C Viscosity at P, T ?, 2 CP .par pressure at T r 1 i , 0 4 bara Spccif ic gravity a1 8:: ._,_ 0 a?? {WC. cnnd 1 entity at P, f 305 kdm3 Normal flow Q at P, T : 151 m3lh

dpedfic gravity a t P, T : 0,395 Design margin . 25 % DcsignflowatP,T ( I ) : <8? m3/h

I I I I SUCTION PRESSURE I DISCHARGE PRESSURE I I

I I 1 I kin. Origin Pressure. baral l ,D! 1 Delivery pressure bsra 1 1,O.I I , Static head at LLL = rn 1 4 ,20 1 Static head bar I 1 , I (rn x sg x 0.09S11 bar1 0 3 I A P control valve(s) bar I 0,75 I L A P suction line bar I C , !O A P exchan efts) cP bar I 2 , Y I

1 1 APorific s) bar I 1 I AP PUMP SUCTION PRESSURE I 4 2 I dp bar I I

bar I 4 I I 1 Other ; :oht:r,;r-.%l) . - bar I 3.50 1

NET POSITIVE SUCTION HEAD I 1 1 I I I TOT DISCHARGE PRESS bara I 1

Static head at LLL' m 1 4,20 4.42 1 - L l m loss m I !,I7 I I + vapour pressure correction m I z I DIFFERENTIAL PRESSURE 1 I

I I I I 1 Suction pressure TOTAL AVAILABLE NPSH rn 1 1.43 1 bara <.Zb 1

bara 1 4 . d ? 1 I I I I

MAXIMUM SUCTION PRESSURE I I Pump AP bar 1 3.16 ((2) I I m 1 40,o I

Vessel PSV setting bard1 4,5Q 1 I I Static head at HLL bar1 Q,5? 1 1

I 1 POWER REQUIREMENTS I 1 net bara 1 5,03 1 I I

Brake Horse- wer = (t)x(Z) k W 1 2 3 1 1\31 MAXIMUM DISCHARGE PRESSURE j~+ I I , I I Max. suction pressure baral 5,03 1 Estimated motor slzc kW I 30 1141 Normalpump APx120% bar( 3 , 3 ~ 1 I I

1 1 Design operating laad (4)lrlmkWI 34 H51 net bara I 6 , 5 3 L (Fis3for 9,) I I

I I 1 1 I I Estimated weight kg I 1 4230 I I - 1

75

~ E P L W l i O l P l t V l S U m

PROCESS CALCULATION SHEET

v i

PUMP

D ~ I I 1 tor ~ITLE ~ - X A L : ~ : E CHX

lttM. T X b ~ , S T E i . PLlWF

NO. ' 2270 A l t

JOB ~o . I MU ( 0

Page 89: Total Company Process Eng Design Manuall

TOTAL PROCESS ENGINEERING DESIGN MANUAL n * ~ i ~ ~ n : 0

wm5 TEPlOPlEXPlSUR Datr : 2/85 5.c

C"I"LC.L *IC* Y I l O W I C Y I O * CI*IaHUCIL .LAN-. m m

loo. n n c w n w . l l a = ~ l l l r m a n r # rwf

7 b

b-* -_ - -* -.._ _ --._ ,a ..OTEY C Y Y l

2 #1bGESn 3-a a*m

. R X I Y NIYI I I I B C I I- ll.Y

z Y -

I. +

llD m 01- (96 I I0 w I l L l M I Y ' I H L

FIG. 1 - *&I A ~ ~ N C E S 0 s I P P C I C ~ ~ I O ~ FOR O l f f EeCnl PuuP 1 Y P U

FIG. 2 ESTIMATlON OF CENTRIFUGAL PUMPS EFFICIENCY

a I m m m n l I m I m m I DOTTED LINE FOR PUMPS WITH HI, 7 H III

Page 90: Total Company Process Eng Design Manuall
Page 91: Total Company Process Eng Design Manuall

TOTAL TEPlDPlEXPlSUR

r

701

Revision :

Data : 2/85

P A O C E U ENGINEERING DESIGN MANUAL Pwpa NO :

Page 92: Total Company Process Eng Design Manuall

--

OTAL WDPIEXPISUR

1. APPLICABILITY

Fearlbllity and Prc-Project study :

. The purpose o f this design guide is to give some information to the engineer in order t o be able to select a suitable gas turblne.

. The' gas turbines do not cover the fu l l range of power and sometimes the process is adapted t o the choice of the engines.

. The ioca bn is an important factor.

INDUSTRIAL APPLICAT!ONS OF GAS TURBINES

The two major industrial applicatior!s of gas turbkne drivers are power generation and gas

compression. The gas turbines are also used for liquid pumping [crude oil, water injection,

...I but these applications depend on thc rat io between power generation and pumping station

capacities.

In Industry, three types of gas turbines are available :

. heavy-duty (one shaft, suitable for power generation not recommend for comprtswrs or two shaft3)

. jet engines or aeraderivativc ( two shafts) turbines

. light industrial

Heavyduty turbines are generally used for large onshore plants where weight and space are

not a problem. Aeroderivative turbine or l ight industrial are predominant lor smaller

installation$ offshore where compact, light-weight drivcra are required.

BRIEF DE!5CRIPTION OF THE TURBINE

There arc two parts for the gas turbine :

a. main system b. auxilliary system.

3.1. MAIN SYSTEM - Figure I (two shaft machine gas generator)

It is composed of :

. the air f i l ter . HP turbine . air compressor . LP turbine combustion equipment . Exhaust

183 -

Revision : 0

Date: 2/85

--

GAS TURBINES

----- - Page Ho. :

6.1

Page 93: Total Company Process Eng Design Manuall

TOTAL TEPIDPIEXPlSUR

3-2- AUXlLLlARY SYSTEMS

These are : . fuel gas or liquid fuel system . hydraulic system

. lubrication 3yatem . start-up system

. air cooling system

3.2-1. Fuel aas system

. A gas turbine is designed for a certain heat release. It is recommended to

avoid large flaw fluctuatians (+ - 10 % magimum) of the design value.

. It i s also recommended t o provide a safety margin above the gas dew

point (generally + I5 *C) and to have a minimum temperature of + 5 'C.

. The fuel gas pressure depends on the gas turbine, a range of 15 to 20 bar g

a t turbine inlet flange is common. For the new generation of jet engines

which have high air compressor pressure rat io the pressure could be as

high as 30 bar g.

. Certain trace components must not be present i n the fuel gas in order to

avoid corrosion in the hot parts of the turbine :

- Vanadium : less than 1 ppm - Sodium and Potassium r less than 2 ppm - Calcium (not corrosivt but causes deposits) : less than 2 ppm - Lead: less than 1 ppm

Remarks : a. The fuel gas quality and net heating value range to be - specified to the vendor.

b. It is recommanded to install a K.O. pot and f i l trat ion

(10 F) at the fuel gas turbine inIet (most of time a rafety

filtration is included i n the vendor package)$ the basic

filtration is normally included in the fuel gas supply Skid.

3.2.2, Llquld fuel system

Fil trat ion is required depending on the gas rurblne type and manufacturer.

Generally the required level of filtration has a severity higher than for diesel

engines.

The liquid fuel pressure at the turbine flange is about 3 to 5 bw &

10 4

Page No. :

6 1

GAS TURBINES

Revision : 0

Date: 2/85

Page 94: Total Company Process Eng Design Manuall

--- Page No. :

6.3

3.2.3. Start-up system

A gas turbine cannot simply start-up by firing fuel i n the combustion section :

for i ts gas expansion power after combustion to be effective, the turbine must

attain a certain starting speed first using a starting motor.

There arc several kinds of drlvers whlch are used t o start the turbines:

. electric motor,

. pneumatic expansion turbine [air or gas)

. diesel engine or gasoline matar

. hydraulic expansion turbine

. hydraulic motor.

4 OPERATING ASPECTS

The powcr is generally defined in cataIogues by 13.0. that means power at t

. Temperature air in take I 5 ' C

. Atmospheric pressure 101.3 kPa (sea level)

No loss condition on intake and exhaust ducting

No auxillarics driven by the turbine (except lube oi l pump required by the turbine itself)

The main external criteria for the performance of a gas turbine are : the site conditions

(location, air temperature) losses on intake and exhaust ducting, operation of the machine at

conditions other than design, mechanical powcr to drive auxillarics.

4.1. AIR CONDITIONS

The compression powcr requirement lor the air increases as the air temperature

increases. The consequence is that the available power recovered from the LP turbine

decreases as the air temperature incrcaxs (+ 1 ' C 01 air = 0.8 % of power : average

value). See Flgurc 2 for an example*

4.2. LOCATION

If the turbine is located above sea level, the site pressure and the available power

decrease by about 1 % per 100 metres e lcvat im See Figure 3.

/Q6

-*

Revision : 0

Date : 2/85

- -

TOTAL TEPIDPIEXPISUR

GAS TURBINES

Page 95: Total Company Process Eng Design Manuall

I 4 3 LOSSES ON INTAKE AND EXHAUST DUCTING

TOTAL TEPIDPIEXPISUR

Under certain conditions plugging of the air intake t o the turbine may occur. This

w i l l result in a drop in available turbine power. A similar drop will be seen if the

exhaust duct pressure also changes average figures are :

. Inlet duct : pressure Increases by(l0o mm i-120)~ower falls by 1.4 %

. Exit duct : pressure increases by 100 mm H20 power falls by 0.6 %

CA5 TURBINES

For estimation take 100 mln HZ0 dp for inlet and exhaust ducts (2% losses)

I 4.4. DESIGN CONDITIONS

Aevlrio~i : 0

Date : 2/85

I f the power turbine Is running at 80 % of the design capacity, the reduction in

efficiency is about 6 %. If the turbine 1s running at 60 % design the reduction in

efficiency is about 17 96. Since fuel gas consumption is very much affected.

Pbgs NO. :

6.4

I Fir . tpproximate for t alnbiant > I 5 O C

P site = P lso x x 1 m 1*51~ l+O.OlH

I t - ambiant tempt ra t~~ te in -C

H = elevation above sea level i n metre divided by 100

I 5. IELECTiON OF C M TURBINE

For preliminary selection use table 1 which give 150 turbine shaft power. Table 1 gives the

commonly used gas turbines but for more information consult the "GAS TURBINE WORLD

PERFORMANCE SPEC" published each year.

I 6. THERMAL EFFlClENCY AT 1- RATUK.

Thermal efficiency depends on tlrc gas turbine but for a preliminary fuel gas estimation the

followjng v'alues could be taken t

7. REFERENCES AND USEFUL LITERATURE

7.1. CA5 TURBINE WORLD PCRFORMANCE SPEC each year 7.2. VENDOR documentation 7.3. CAMPBELL VOL 11 7.4. "Consider Gas Turbines for i lcavy loadp - K. MOL~CH Chem. Eng. August 23. L980

Page 96: Total Company Process Eng Design Manuall
Page 97: Total Company Process Eng Design Manuall

-. P q e NO :

6.6

1 FIGURE 4 3 .

R~** ion : 0

Dmte : 2/05

TOTAL TEPIDPIEXPISUR

P I O C E ~ ENGIHEE~ING DESIGN MANUAL

GAS 'NRB1m.S

Page 98: Total Company Process Eng Design Manuall
Page 99: Total Company Process Eng Design Manuall

-

1. APPLICABILITY

For either the feasibility study or the pre-project study the engineer may need to estimate

the required steam consumption of a steam turbine. Details of turbines for guidance and

consumptons art detailed in section 2 and 3.

2. DESIGN NOTES

. Single stage turbines eenerally used for small applications, multistage for larger.

. Conslder using steam turbines far pump drivers i f residual HPlMP steam from larger

drivers (compressors, gcntcators) is avallable.

. Standard size turbines : a w' Power Steam k ~ l h l k W kW

Small 1 0.5-190 350-30

Medium 1 or 2 9-2980 30-9

Large 2 + 370-7Q50 15-3

. Speed range : usual 2 000 rpm to 15 000 rpm

. Efficiencies : Power r a t i n ~ kW Efficiency % - kW - %

L -40 20 750-1500 60

40-250 30 1500-2250 65

250-375 40 2250-UP 70

375-750 50

3. CALCULATION OF REQUlRED STEAM LOAD

1. Theoretical w t = (hsr 860 kg,hikw = steam inlet en4halpy kcallk = steam outlet kcallkg ( !a

steam load tboritical urntropic ph brtwun

2. Actual steam load Was Wt r 100 inht a d outkt WW) EFfir ienq (%I

3. Required steam Ws = Wa x kW I d wh

4. USEFUL REFERENCES AND LITERATURE

4.1. LUDWIG VOL I11 CHAPTER 14 pp 422-435

4.2. "Use steam turbines as Process Drivers" - Richard F. Neerken

Chem. Eng. Aug. 25 19110

110

--.

STEAM TURBINES

**

TOTAL TEPIDPIEXPISUR

Revision 0

Date : 2/85

--*

Page NO :

6.8

Page 100: Total Company Process Eng Design Manuall

I 1. APPLICABILITY I

TOTAL TEPIDPIEXPISUR

I For both feasibility and prc-poject studies the engineer will be required to estimate

electric loadings for utility consumptions. Fig. I details motor efficiencies for varioufl pomp I horsepowerr.

2. POWER ESTlMATlON

PR~CEP'ENGINEERING DESIGN MANUAL

ELECTRIC MOTORS

-

I . For pumps the driver horsepower is estimated en the pump data sheet. I I . For rcsptciiying of drivers or checking purposes use Fig. 1 to rate power. I

R v i i : ' Oat* , , Z/ZS

. Power rating at 380 Y 3 phase 50 hz.

ffiUPf 1

~ C T R I T MOTOR* RECOMMLHOED azt a rmc~urcr (11

: P*. NO :

6.9

Pump RequCemcnr Prab.blr &YAW EIflcienq Pawcr ractsr(2) A t b a h n Mara % a l Cull LMd S oi full Lord ~ ~. - .. - ~ . - - -

Cdh?io;\r nl;is cap4c1r) OHP - BHP - 100 -

Norart ( I I Applies 14 tvtully cndor<d marorr o n l y (i..., ~xplorion pr-1) - ( 1 1 To be ucd m delrrmirulion ot KVA's i f deslrrd.

Page 101: Total Company Process Eng Design Manuall

7. COMPRESSORS

-- TOTAL TEP/DPfE)(P/sUR

113

PROCESS ENGINEERING DESIGN MANUAL Rwvirion r

08tr : 2/83

Paw No ;

Page 102: Total Company Process Eng Design Manuall

TOTAL TEPIDPIEXPISUR

7

1. APPLICABILITY

For both ftasibil ity and prt-project studies the engineer w i l l be required to evaluate a compressor selection, discharge temperature, power and complete a data sheet. To evaluate thc discharge temperature and power it i s more accurate to use 551 instead of the manual method presented here.

In order to estimate the basis of cost and layout i t i s important to understand the type of compressors for the service i n consideration, and the associated power requirements.

2. DESCRIPTION AND GUIDELINE NOTES

2.1, TYPES OF COMPRESSORS

The principal types used l n the 011 and gas processing industries are :

. reciprocating (volumetric) . ctntr i fugal

. rotary ~volumctric) . axial

A compressor selection chart is shown in Figure 1.

2.2. GENERAL USE

2.2.1. Reciprocating compressors

Reciprocating compressors arc widely used i n the oil and gas industry f o r s ~ d l i o medium gas flows and high carnpresrlon ratios. For example :

. Instrument and service air compressors

. Low capacity/high pressure gas compression for re-injection of field gas to maintain the gas l i f t capability.

2.2.2. Rotary compressors

The types o i rotary compressors most frequently employed in the petrolcum indudtry arc as follows :

. Lobe compressors ("ROOTS' type)

. Screw compressors

. The reliability factor is generally higher than reciprocating machines.

. "Roots" type compressors are used where a high f low rate wlth a relatively low-pressure is required.

. Screw compressors arc sometimes used in low flow gas service or for instrument and service air for instatlatlons of small to medium size.

2.2.3. Cent r i iu~a l cornpressars

. Thcse Centrifugal compressors have become very popular offering more pQw?r pcr gnit weight and esrcntlallv vwation-lrcc, lnit ial costs normally are %than rcciprocatlng comprtswrs but efficiency Is Its? and uti l i ty c W may be higher. Frequently used in the o i l and gas process industry.

COMPRESSORS

Reviyion : 0

Date : 2/85

Page No. :

7.1

Page 103: Total Company Process Eng Design Manuall

- TOTAL

TLPIDPIEXPISUR

2.2.0. Axlal compressors

Thew machines are particularly useful where a very high gas ilow at moderate pressure increase is required. Such applications remain relatively

rare in the industry, the exception being LNG plants.

2.3. DISCHARGE TEMPERATURE LIMITATION

, Discharge temperature is l imited either for reasons of gas stability, gas

condensation or compressor (or upstream equipment) mechanical resistance

limit.

. For reciprocating compresxrr the maximum gas outlet temperaturc to be d h d i s usually between 160 to 180 *C.

. For centrifugal compreswr used in gas and oil extraction industries the discharge

temperature is l imited to 1701190 *C.

. Normally intercoolers are used to maintain temperatures within t h t above limit$.

2 4 DESIGN MARGINS

I f the i low is constant, no margin, but i f the flow is coming from a production

eparator a margin of 10 % is recommended in order t o take in to account the

possible slugs at the inlet of these production separators.

5. WEIGHT AND SIZE

For weight and slzc wc rccomrnend to ask the manufacturer as vendor catalogues detail

only the size and weight of the compressor itself. As the compressor package also includes

also the seal and lube oi l console^ control cabinet and sometimes the driver and gear box,

the use of vendors catalogues could be misleading in estimating the installed weight.

Figure 4 could be used for a very preliminary estimation. It is established for the dry

weight of a centrifugal compression package including :

. compressor skid (aeroderivatlve gas turbine + compressor)

. technical room

, overhead tank (seal oil)

6 REFERF NCW AND USEFUL LITERATURE

6.I. LUDWIG Volume3 Chapter12

6.2. CAMPBELL Volume 2 Chapter 14

6.3. GPSA Chapter 5 1979

6.4. SSI Program

f/6

COMPRESSORS

Revision : 0

Oste. 2/85

Page NO. :

7.2

Page 104: Total Company Process Eng Design Manuall

c(mPwss0Qs TEPIDPIEXPISUR Data : 2 / B S

m C .

4% C .-

3 r , 33 $ 2

E v n 3 5 z g !m

- - - _ _ _ l _ _ _ _ _ l _ _ _ l _ _ _ _ _ _ _ I _ C _ _ _ _ _ _ _ _

e n i

- * - - 5 -

4 - r? - -

rO x -- - - N - -

v\ x -- - -

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - - - _ - - - - - _ _ _ A d

~~~~~~~~~~~~~~~____ ----------------- I 1

.- x E I-"

- -_- - - . - - - - - - - - - - - - - - - - --------------

11

z

v -

'- a 1.; E 3 c 2s r u ~8 .. ?I rn E

3 L E

-----

A

Y - _ - _ _ _ - - - - -

11 3

-u = a

5 ;

+ NA 0 I

u E - C -

-2 0 E

F X

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - - - + - - - - - - - 4 - - - - - - - -

s

______---_-___----------------------

B 5

----------------d-------------------

-------_ ------- ---------------

t-

11

3 s )6 c. Y

!? - CI r 0 2

i;

: 5 u u -------._-----d----------------d----

Page 105: Total Company Process Eng Design Manuall

7.0 I OPERATING . IlDlTlONS

I SUCTION PRESSURE PI = 7.a bar a DISCHARGE PRESSURE P2 = 3 , O bar a

I SUCTION TEMP- T I z 5'3 *C = 32: #It

I SUCTION FLOW W = 5b000kbh GAS DENSITY f i r ACTUAL VOL FLOW V = 9400 m Ih SUCTION = ', 36 kg/m3

I ., . . I . GAS PROPERTIES pe = 45.9 bara

~c = 230 'K

2. POLYTROPIC EFFICIENCY 3~ = 0,79 SEE I d l G

3. AVERAGE 8 = MCp/MCp-1.99 8 = *21 E S T L ~ ~ r ~ TZ ?5oU~'i dBL

4. DLSCHARGE TEMP 1 2 =TI(%) 3 T2 = 84 K REIII, hT STEP 3-Q If TZ IS

= 15014 ' C D1rf I ~ R E N T FROM ONE "'I'I I IN STEP 3

5. DETERMINE Z AVC 5UCT 21 r 0.91 DlSCn 2 2 = 0 a37 AVC = 0,975

6. CALCULATE GAS HORSEPOWER

C H ~ = Z X R X W X ~ X ( T ~ - T ! ) C H ~ = 32h0 k W ' 11,314 k3/ kgMOLE . *C M W x 3 6 0 0 x ( g - 1 ) 4 -

7 CALC SHAFT HORSEPOWER F 'lm C ' l l l ~ ~ ~ ~ kW 5.0 0.96

p5 = CHP x (1 + F11001 x 11 7, PS = 3d80 kW s(ht I <( MW 3.1 0.97 taker : Fr 3 5 im * 5.97 )LO MW 1.0 0.90

8 . ESTIMATE DRIVER POWER

ELECTRIC MOTOR PS x K PO -- kW GAS TURBINE PS x (1.14 + K) PO = 4040 kW

' 1.15 41.02 TO 0.04 WlTH

GEARBOX 1 - 3 : 2 32

9. E S T ~ ~ A T E D PACKAGE WEIGHT

COMPRESSOR-DRIVER-LUBE M = 9° Oo6 kg ($1:(1~16 4)

I NOTES :

CENTRIFUGAL OR AXIAL ;&z X M F ~ ~ , S : ~ C CoMPRWS?R no..

Tt?~O?mVffXMUU It. :,>I6 O ~ T I \ rornrir . i ~ i b t 1om WO nr JJ;~FJ cnr I I t V ' -

/ /g

Page 106: Total Company Process Eng Design Manuall

7.5

OPERATING L f4DlTIONS

SUCTiON PRESSURE PI = 0.0 bar a DfSCHARCE PRESSURE P2 = 27.0 bar a PRESSURE RATIO PZ/P1 = 3 . 3 3

SUCTION TEMP. T1 : 40 *C = 3 3 +K MW ?5,0

SUCTION FLOW W = 41DP k h d GAS DENSITY AT ACTUAL VOL FLOW V = 549 rn / h SUCTION s 7 5% kglm3

STEP NOTES

L G A S PROPERTIES Tc = 247 mK PC - 45,s bar a

2. AVERAGE 8 = MCp/MCp - 1.99 8 = l12D A E S U W . . ~ ? T 2 2 I t7 'C

orl

3. CALCULAT f DISCHARGE TEMP

T;L s TI x (PI +J m) T2 = 383,4 'K Repeat 2 - 3 ti T2 differs = 4 4 from that used in STEP 2

5. DETERMINE Z AVC SUCT 21 s: 0.97 DISCH 22 s 0.45 AVG Z = 0.5%

6. DETERMlNE OVERALL EFFICIENCY

'IS 3 g = O,@? See Fig 3

7. CALCULATE GAS HORSEPOWER

CHP = Z ' R * 5' * 5 x (T2 - T I ) CHP = 454 kW R = 8.314 kJ/kgmole.*C m W x 3 6 0 O x ( $ - 1)

8 . CALCULATE SHAFT HORSEPOWER P S = 1 4 ? kW

PS = GHPlf x r)g i = 0.96 to 0.97

9. CALCULATE DRIVER POWER

Electrical Motor Po = [.I5 K PS Po + ?-Z"~W

#!'+#( PROCESS CALCULAIION SHEET nLH: FUEL GAS COMPRELC3K

no . K 7323

IODMO I arv 19 - I ~ C I W C O P P R X C I % U R

RECIPROCATING COMPRESSOR

I lorn r~t i r . E xs, M P LE II cnu DA rc

Page 107: Total Company Process Eng Design Manuall

Pwm No :

7 a6

120

Rodlion :

Dare :

PROCESS ENGlNEEAlNG DESIGN MANUAL

ddcs

- TOTAL TEPIDPIEXPISUR

Page 108: Total Company Process Eng Design Manuall
Page 109: Total Company Process Eng Design Manuall

-~ ...

Revision : 0

Dale : l i e s

TOTAL TEPIDPIEXPISUR

PW No :

7.'

PDCESS ENGINEERING DESlGN MANUAL

~ R E S S O ~

Page 110: Total Company Process Eng Design Manuall

8 , EXPANDERS

Page 111: Total Company Process Eng Design Manuall

. CZ recovery

. ethylene processing, etc...

-

1. APPLICABILITY

For both the feasibility study and a pre-project study the engineer wi l l be required to fill i n

a process data sheet with the basic information and to estimate the expander horsepwer.

Outlet conditions and horsepower estimation r a n be calculated accurately by computer.

Hand calculations for pure component systems using a MOLLIER diagram are OK.

2. DESCRIPTION AND GUIDELINE NOTES

. The turbc-expander i s a mechanical device which is designed according to the laws of

thermodynamics end aerodynamics. I t remover energy from a process ga; which results

in a drop in pressure and temperature of the gas. The energy removed i s converted into

mechanical energy which is most often used to drive a single stage cornprcsm.

- T urbaexpanders could be used for :

+ cryogenic pressure let down

. dew point control . C3ICl recovery

. Thermodynamical principal. See Figure I.

, Expanders efficiency

The expander efficiency is the ratio of the actual energy removed to the maximum

theoretical energy on Figure 1 :

HBAA 'I= - HBI-HA

Expander efficiency depends on :

- mass flow rate - discharge pressure

- inlet pressure - gas composition

- inlet temperature - speed

Generally a value of 80-85 %can be used for estimation purposes. See Figure 2.

. Liquid content at the outlet of the expander varies from 10 to 30 % (weight)

Inlet gas must be free of solid particles and water (sometimes COZ), ice formation is prohibited.

- Maximum horsepower of the manufactured turbo expanders is about f 2 000 HP. This figure should not however be considered as a limit.

. Turbo expanders can be used in series.

Efficiency Is a f l u t e d by the variation of the design flow rate See Figure 3 for an ntlmarion.

/>' --

TOTAL TEPIQPIEXPISUR

-. .,. . Pngm No. :

g.1

EXPANDERS

Revision : 0

Oatc : 2/85

Page 112: Total Company Process Eng Design Manuall

3. REFERENCES AND USEFIR. LITERATURE

CAMPBELL VOLUME I1

Engineer's guide to turbo expanders HYDROCARBON PROCESSING APRlL 1970

Pagc 97...

Turbo expander applications in JOURNAL OF PETROLEUM TECHNOLOGY

natural gas processing May 1976 Page 61 1 etc...

What you need to know about gas HYDROCARBON PROCESSING

expanders February 1970 page 105...

Turbo cxpanders offer processors THE 011 AND GAS JOURNAL

a way to conserve energy Jan. 23, 1978 page 63...

Use expander cycles lor LPG HYDROCARBON PROCESSING ~ o c . 1 9 7 ~ recovery Page 89...

VENDOR DOCUMENTATION

i.c. : ROTOFLOW, MAFI-TRENCH..;

la 6

Revision : 0

Date : 2/85

EXPANDERS

* "

Pagl NO. :

8.2

TOTAL TEPIQPIEXPISUR

Page 113: Total Company Process Eng Design Manuall

PRESSUAE

t

TUTAL TCPIDPIEXP18UR

FIGURE 1

H ~ l H~ HA ENTHALPY

PROCESS EMGINEEHINU utslun MfilUUl&L

EXPAtfUEW

PA Inlet prssaure TA Inlet temperature HA , tnlot enthalpy PB Outlet prusure Tg Outlet temperature HB Outlet enthalpy

f Bl Outlet theoretical ktBI Outlet theoreticel tnthstpy tsmpcrrruw

FIGURE 3

t$evrrroft : r b

Datr : z/n<

ESTIMATED PERFORMANCE AS A FUNCTION OF DESIGN FLOW RATE

I d y ~ I U U .

8 . 3

FIGURE 2

I APROXIMATE PLANT FLOW RATE MMXFD

PERCENT OF DESIGN FLOW RATE

Page 114: Total Company Process Eng Design Manuall

9. FLARE SYSTEMS

IIUIMb TEPIDPIEWISUR

'2 4

~ ~ U L C W CN~IN~LI( INU V L S I ~ N MANUHL HIYIIIQO :

Date : 2/85

r80l NO :

Page 115: Total Company Process Eng Design Manuall

TOTAL TEPIDPIEXPISUII

1. APPLICABILITY

For the feasibility and preproject studlcs, a detsllcd design of the f lare system is not

needed. Required information for either study will include ;

. Evaluation of number and levels of f lare system

. Determination of maximum relieving (and hence flare design capacity)

. Flare KO drum Design

. Estimation of height of flare stack or boom length and type of t ip required . PSV sizing (not always required, depends on project).

For further more detailed specification and design requirements consult thc CFP

DESIGN GUIDE ON FLARES-YENTS-RELIEF AND BLOWDOWN SYSTEMS.

2. DEFINITIONS (see section 3 i n DESIGN GUIDE)

- Relief system t includes any prtssurc rsjirrf valvelrupture disc downstream piping

and liquid separator

- Blowdown system I includes any depressurlng valve, downstream piping and separator

(normally the pressure relief and depressuring systems utilize

common piping and separator)

- Flare system : a system which ensures the combustion of hydrocarbons

- Vent system : the rdcasc of hydrocarbons to the atmosphere without

combustion

- Design pressure : the pressure used to design the vessel and calculate the wall

thickness (see section 1.0.)

- Set pressure : the pressure at which a safety device is adjusted to open under

service conditions. Usually equal to the Design Pressure

- Accumulation : maximum allowable increase in vessel pressure during discharge

through the safety device. Normal accumulation is 10 % but 20 %

is allowed for external fire due to hydrwarbon liquids. For HC gas

fires an accumulation of 5 % is recommended.

3. FLARE 5)'ITEM ANALYflS AND GUIDELINES

This section details how to determine the number and levels of the required flare system for a feasibility or preproject study and other guidelines.

. A system of items of equipment and piping can be protected against overpressure most economically by considering it as a single unit when calculating the relieving capacity

/2 1 -

Page No. :

9.1

FLARE SYSTEM

Revision: 0

Date: 2/85 A

Page 116: Total Company Process Eng Design Manuall

TOTAL 1 EPIDPIEYPISLIR

Revision : O

Ostc: 2183

FLARE SYSTEM

Page No. :

9.2 . . Block valves should not be present in the system so as to isolate a unit irom its

relicvine point. Special casts may warrant a car-sealed open or locked valve. However

such arr , .ements should be avoided if possible

. Interconnecting piping should be of adequate sire and not subject t o plugging. The

system should not be of such a size that two separate systems would be more

economical

. tn specifying the design pressure of the individual items and safety valve setting there

a r e two approaches

- Set the design pressure of each item independently. Then specify safety valve

scttings to protect the weakest link in t h e group of Items

- Study the items as a single system initially. Thls is preferable as it avoids having an

unexpected "weak link" limit the operating conditions.

. Consideration should be given to possible abnormal conditions viz :

- Light hydrocarbon systems can reach low temperatures during depressurization

- Heat exchange trains may be bypassed resulting in higher than normal downstream

temperatures

- Fallure of cooling medium can cause excessive downstream temperatures

- Production separators may have a varying feed temperature, especially offshore.

. I t i s often required or beneficial to provide two or more separate piping systems from

tk i tems of equipment t o the flarc $yatem eg I high and low temperature headers.

Consideration should be given to the following

- Relief gases below O°C must be kept apart Irom warm moist gases t o prevent

formation of ice within the flarelines. Thia could cause a system plug up

- Segregated systems may be economically desirable to minimize the extent of low

tcm+rarure piping

- By segregating the flows irom high and low pressure sources into two separate flare

systems greater use of the high p r e s u r t drops can be achieved without lmposing

severe backpressures on the low pressure systems

- The molecular composition of some streams may warrant their segregation irom

other streams. eg moist C02 or H2S is corrosive. I t may be cheaper t o fabricate a

second smaller vent system to handle there rather than fabricate the entire system

in corrosion resistant material.

02 A

Page 117: Total Company Process Eng Design Manuall

--- Page NO..

9.3

TOTAL TEPKlPlEXPlSUR

Determination of the flare system and levrl can be summarized in the following step by Step

analysis.

I . Does the facility contain process areas with distimt pressure levels eg : HP compression,

LP c o ~ -ession, atmospheric separation ?

If so, c sider two or more flare levels if sufficient limitation is imposed by the LP

section

2. Does gas exist at high pressure that on depressuring will fall t o below 0 vC.Lf so, i t must

be segregated from warm relief gas. If the temperature falls below - 29.C may have to

consider low temperature s teel headers

3. ldentify any corrorlve relief sources and consider if n ted to pipe up separately

4. Is a vent system required for tank breathers, regeneration vents etc...

5. Identify on the PFMs) the set pressures of each PSV anticipated and consequently its

maximum allowable backpressure [MABP usually 10 % 01 set ~ressure) . Locale the "weak

links" in the process i.e. : the low design pressure vessels. If only 1 or 2 exist within the

system conslder installing balanced relief valves IMABP = bD % set) so as to incorporate

them into a higher pressure flare system, or even alter the design pressure of the weak links to acheive the same. This may be more economical than specifying two flare levels.

Having determined the configuration of the flare system, it is necessary to size the

headers only and the flareline itself. For thls, an idea oI the maximum relief load gcnerattd

will be required. For the studies a full "risk analysis" af upset conditions is not necessary

neither 1s a listing of every relief load and condit~ons.

The sizing case of t he flare system can usually be judged by inspection. Invariably, the

largest vent flow will be s full flow reliel off the first separator or compres~lon drum or a

total electrical failure. This may be supplemented by a simultaneous depressurization of a compressor or equipment loops resulting in a flare design flow higher than the normal plant

throughput. Generally f i re generated loads do not dictate the sizing of the flare system, but

may influence the sizing of laterals and subheaders. A certain degree of experience will help

in identifying the possible one or two cases ihat will size the flare system without havlng to

perform a fuH plant rlsk analysis.

In some cases, the resulting flaring loads may be minirnised by using ESD isolation valves or

autamatlc controls t o start back-up equipment.

133

FLARE SYSTEM

Rerrs~on: 0

Dstc: 2/85

Page 118: Total Company Process Eng Design Manuall

TOTAL TEP~DPIEXPISUR

I. HEAOeR SIZING 8 STACK AND TIP CHOlCE

I n order to estimate the main flareline and header slzcs based on backpressures, 3 pieces ot

inlotmation a r t required :

- Design llowratc,temptraturc,MW - Length of flareboom or height of stack - Type o f t ip and stack to be used.

9.1. DESIGN FLOWRATE TEMPERATURE AND M W

This has already been determined from the previous sectlon.

2 TYPE OF TIP + STACK TO BE USED (see section 10 in Flare Design Manuay

The rhoice of stack and tip type wilI obviously be dictated by the location of the

prar, nder design.

For onshore plants in remote areas i t is usually suflicient to use a remote vertical

stack with a conventional pipeflare tip. The height of the stack wi l l be determined

by the radlation l imitat ion on the designated sterile area round the stack. For non

occupied areas, this figure could be high as 5000 BTUI~.!~~ (15 700 ~ / m 2 ) resulting

in a short stack height. For cases where high flaring loads s t i l l result i n a tal l stack,

a further reduction in height can be achieved by using a Coandaffndair or similar

type high pressure sonic flare tip (see section 10 in FLARE DESIGN MANUAL for

dixusslon o f each t ip type).

Offshore the choice is somewhat more complex in choosing between a remote

vert ical flare or similar, or an Integral 45' mounted boom itare or even on board

vertical sta&. The decision between these is more often than not governed by

economics, structural considerations and specifics pertinent to each platform

Iocation eg r water depth. Generally, however sonic flare tips are used where

pressure levels allow (2-> bars) a t the tip entry i n order to reduce stack/bom

lengths, by reducing radiation levels, and associated support structure weights.

4-3. FLAREBOOM - FLARE STACK SIZING

The flareboom or stack (hereafter termed flare) length Is determined by the

maximum allowabIe thermal radiation tolerable on the platlorm or surrounding area.

A detailed calculation of this value for vertical or inclined flares on or offshore

under a variety of wind conditions and temperature5 can be performed using the

computer program SUPERFLARE. For i tasibil iry and preprojecta, however an

estimate of radiation level can be determined using the method as derailed in

AP 521. Set Appendix 1.

13 4

FLARE SYSTEM

Revision : 0

Date : 2/85

Page No. :

9.4

Page 119: Total Company Process Eng Design Manuall

,-

TOTAL TEPIDPIEXPISUR

Recor~ nnded Radiation levels are given below :

I - I I I Allowable Exposure I 1 Condition 1 radiation I period I I I 0tulh.ftZ I 1 I I I I 1 I I 1 Areas where personnel may be I 1000 I Infinite 1 1 located and expected to per- I 1 I 1 form rhejr duties continuously I I I I I I I 1 I I I Arear where personnel may be 1 2000 1 L minute 1 I located from which escape is I I I I possible and shelter is 1 1 I 1 attainable 1 1 I I I I I I 1 I Areas where equipment is I 3000 I 5 seconds I I located and personnel are not 1 1 I I normally present during ope- I (Emergency 1 I I ration, but if present im- I flaring only) I I 1 mediate shelter i s available 1 1 1 1 I I 1 I I I I Areas where personnel are not 1 5000 1 D I I permitted during operation I 1 I I t I I I I I I Helideck 1 r DO0 I I 1 1 I 1

The above figures are maximum allowable radiation lntcnsities inclusive of solar radiation t 250 BTUIhr ftZ).

I t should be noted that the following recommended values of F - Fraction of heat radiated and mach numbers at the ti^.

a) Pipe flare

LOW M W gas F = 0.2

Ethane F : 0.25 Velocities - max at design relief 8 0.5 M

Propane F r 0.3 - normal continuous = 0.2 M

b) IndairICoanda

All gases F i 0.1 Mach I

C) Mardair F s 0.05 Mach 1

Having calculated the flare length bawd on radiation analysis and c3rabllshed both

the design flare rates and tip type the main header can now be sized.

i3 i7

FLARE SYSTEM

Revision : 0

Date : 2/85

. Page No. :

9.5

Page 120: Total Company Process Eng Design Manuall

TOTAL TEPIDPIEXPISUR .

4 . HEADER SIZING

T h e major criteria governing the sizing of the header are backprtswre and gas

velocity. Flare headers must bt both large enough to prevent excessive backpressure

on the plant safety valves and to limit gas velacity and noise to acceptable levels.

Sizing procedure

I) Identlfy "weak link" wl th respect to MABP on safety valuea. (this should have

been done when determining the levels of relief). This is the maximum upstream

pressure tolerable in the rystcm-

2) culatc the 4 P acrws the flare t ip for the relief design flow. For sonic type

ti1 the backpressure will be 2.0 to 5,O barg depending on load.

For plpeflare tips use : Flare tip 0.5 - 2.0 psi (0.034 - 0.lb bar)

Fluid seal 0.2 - 0.5 psi (0.014 - 0.034 bar)

Molecular seal 0.5 - 1.0 psi (0.034 - 0.07 bar)

3 Estimate the equivalent length of piping from the tip to the flare KO drum.

(Allow generous margins, flare headers are complex and rarely straight).

4) Calculate the mnlc velocity of the relief gas

c K : CP/CV Vsonic = 91.19 - rn /s T : *K

This wil l gTvt a f i rst estimate of required pipe id based on maximum relief flow.

The stack diameter should be one or two slzes less than the tip diameter. LIMIT

VELOCITY JN STACK TO 0.85 M A T DESIGN FLOW.

5 ) Using thc estimated D calculate the AP from tip to flare KO drum. The Conison

equation is recommended for isothermal f b w :

2 + f L

P , : p2 4 p2 ( 39.4 - + 2 in V 2 9 "1 lo-'

Where : 1 = upstream conditions f = moody fr ict lon factor

2 = downstream 1 = equivalent length rn

p + pressure bar (a) d = pipe id - inchs

u = relocity mls

v = spu l f i c vol m3/kg This calculation requires a degree of trial and error as y-

9 6 I ,

FLARE SYSTEM

Atvision : 0

2/85

Page No, :

9.6

Page 121: Total Company Process Eng Design Manuall

.

.

6)Examint the P l (calc) at the relief drum and decide if the stack + header diameter

is adequate I t is PI (cak) drum approaching the maximum upstream pressure

allowable at the plant ? if so increase the diameter and repeat the AP calc.

7)Oflcc sathfied with the drum-tip line,proceed back up the flare header and

can late the next section of Une diameter.

8) Continue along the headers, adjusting flowrates as necessary if sources disappear,

untU t k '*weak link" criteria has been satisfied.

9) l f the project requires,sub headers and laterals can be egtirnated from the main line

static backpressures calculated above.

EXAMPLE :

@ PS$

0 I Fn4 h3

t-- Hrbr . 1.1 b r : ,

B 0 P< t.2 k3 I---1

L. l o o n

4 I ?.a 0.6

I . Flare design is based an vent [low from source (1)

2. Weak link in system 1s set by PSV a t source (2)

3. System must be designed for a design flow from source (1) not giving a

backpressure at point (3) of more than 1.2 barg. 4. Size line from tip to drum (1 = 150 m) to give P drum O,5 barg (say) site l int

from drum to point (3) (L = 100 ml to give PI < 1.2 barg.

5 Check that source (1) can flow from (I) to (3) with pressure drop available.

73 a

Revision : 0

Oat@: 2/83

PqcNa: .

9.7

TOTAL TEPlDPIEXPISUR

FLARE SYSTEM

Page 122: Total Company Process Eng Design Manuall

TOTAL TEPIDPIEXPISUR

NOTE : I ) laterals ---> sub headers ---> headers must increase in diameter - as the system progresses to the tip.

2) Max velocity in a line is MACH 0.7 for short duration rdiefs only.

3 When calculating AP for f lare systems isothermal flow is

assumed for each section. For high source pressures with low MW

a AT v6 AP profile will yield more accurate results, i.e. adlust

temp a t specific points in the system to account for A P

accurcd.

5- FLARE K O DRUM SlZlNC

A f l a r e KO drum Is provided to drop wt and col lect the liquid part of the f l a r e vapours in

order t o :

- prevent quid accumulation at the base of the f l a re boom or tower

- to mini11 e t h e risk of burning liquid [golden rain) emerging from the tip and falung on personnel

- t o recover and reclaim valuable product materials.

5.1. DESIGN CONSIDERATIONS

- s epa ra t e knock ou t drums a r e generally required lor earh level of f lare system

installed i.e. : a n H P KO drum, LP KO drum, LLP drum

- cold v a p w r lines Le. < O'C) can be introduced immediately upstream of inlet

line to a "warm" drum providing t h e resultant temperature in the drum does not

caH below design. This precludes t h e need for two independant drums.

- FLARE KO DRUMS SHOULD BE HORIZONTAL AT ALL TIMES.

- Mist eliminators a r e not to be installed. Min design pressure of drum is 3.5 bar (6)

- Heat ing coils should be installed in f l a r e KO drums to prevent freezing of residual liqulds. Typical is to maintain a T min = 4.C

- LIQUID 3ROPLET SIZE (per AP1521)

Recommended particle sizes are :

VERT lCAL FLARE 110 (offshore)

INCLINED BOOM > 45' 150 I*

< 45. boo I,

REMOTE FLARES 600

ug

FLARE SYSTEM Rev~sion : 0

Date : 2/85

P C ~ R No. :

9.8

Page 123: Total Company Process Eng Design Manuall

-

5.2. DRUM SIZING

Bawd on the above design considerations the flare KO drum can be sized using the

method outlined in section 2.0. VESSEL DESIGN.

For a flare KO drum, the normal liquid level should be kept in the tower part of the

drum 1.e. : utHise as much space as possible for the vapor-liquid dt-entrainment. If a

large diameter drum results consider using a split flow arrangement with the cxlt

noz. r mounted on the head. This will rnaxirnise the L/D ratio and give a smaller

Iighit drum. This is especially useful offshore where weight + space are a major

concern.

An LSHH will normally be installed in the flare drum to Initiate a plant shutdown (or

wellhead shut in oiishore).

6.0. RELIEF DEVICE SIZING (For more detail see API 520.521)

6.1. GENERAL

- Safety valves are either termed balanced or conventional depending upon the

backpressure limitation

- Rupture discs are less robust than an equivalent safety valve and rannot be relied

on to function accurately. I t is recommended that rupture discs arc avoided

6 . 2 BACKPRESSURE

- Backpressure exists in two forms I

. flowlng backpressurc is the pressure on the discharge side of a PSV that is

blowing off to the relief system

. superimposed backpressure, or s tat ic backpressure is the pessu re on the

discharge side of a PSV caused by another relief source in the system venting to

flare

- For conventional valves the Maximum Allowable Backpressure (MABP) for either

superimposed or flowing is 10 86. For balanced relief valves up ra 40 % can b t

allowed for without a reduction in the valve capacity.

6.3- LIQUID RELIEF

The formula for siring liquid relief valves is :

A = gpm 27.2 Kp. K,. Kv G

li 7

Revision : 0

bate : 2/85

Page No. :

9 3

TOTAL TEPIOP/EXPISUR

FLARE SYSTEM

Page 124: Total Company Process Eng Design Manuall

Page NO. :

4-10

Where :

A - Effective discharge area, ins2

gPm = Flowrate, u.3, galIons/mIn G - Specific gravity a t flowing temperature

P = Capacity correction factor due to over pressure (from figure 6.5)

"d - Relieving pressure minus constant back pressure (PSI)

K w x Capacity correction factor due to back pressure when balance

belows value are used (irom figure 6.4)

Kv - - Viscosity correction factor (from figure 6.3.)

6 VAPOR RELIEF

The formula for sizing vapor relief is :

W A :

inch2 C K PI Kb

Where I

W : Relief flow, lbslh i! = Compressibility factor

T : Inlet vapor remperature, 'R (1.8 'K1

C = Coefficient (from figure 6.1, 6.2)

K = Coefficient of discharge (0.975 unless vendor data available)

PI = Upstream pressure, psis. Set pressure x 1.1 for blodted outlet, CV

failure or 1.2 for fire plus 19.7 psia

Kb = Capacity correction factor (from figure 6.6)

M = Molecular weight of the vapour

6.5. RELIEF FOR GAS EXPANSION DUE TO FIRE (DRY VESSEL)

F' 0.1406 . ~ 1 . 2 5 A. A, - F' =

4 -F CK ~0.6506

A = effective discharge area of valve ins2 T = 1560-T , 'R

A, = exposed surface area of vessel ftZ T = temp. a t relief pressure .'R

C and K as in 6.4

6.6. STEAM RELIEF r

A = inch2 SO PI K&,

/ 40 -

Revision : 0

Date : 2/85

TOTAL TEPIOPIEXPISUU

FLARE SYSTEM

Page 125: Total Company Process Eng Design Manuall

TEPIDPIIXPISUR Date: 2/85 1 9.11

P I = Set pressure x 1.03. (ASME Power)

l or 1.1. (ASME Unfired vesseis)

Klh - superheat correction factor table 6.1. I

Page NO. :

6.7. STANDARD RELIEF VALVE ORIFICE SIZES

The following table may be used for estimating tho relief valve size based won the

effective discharge areas calculated 6s in paragraphs 6.3, through 6.6. :

R e v i l i ~ n : 0 TOTAL

Nozzle Normal size

Orifice letter Effective Area Designation sq. inches

FLARE SYSTEM

Avoid using 2 1/2 inch outlet flanges (F and C orifices)

* * Avoid using 2 112 inch inlet flange (3 orifice)

Page 126: Total Company Process Eng Design Manuall

7 . DESlCN CUlDE Flares-Vents-Relief and Blowdown systems CFF MAY 1989 - TEPIDPIEXP

7.2. API 520 AFI I b C

A 521 API 14E

Page No. :

9.12

7.3. Det Ncrske Veritas : Technical Notes fixed offshore installations

Norwclgen Petroleum Directorate : Guidelines for safety evaluations of platform

conceptual designs.

Revision : 0

Oatc: 2/81

TOTAL TEP/DP/EXPISUR

- - Y I 111 449 WB 701 11+ 992 741 197 i f ) - - LIO 1p2 141 7 3 191 1.2 33 7 n tro nr - - ~ I J 1x1 733 141 131 141 YII m rlr

FLARE SYSTEM

Page 127: Total Company Process Eng Design Manuall

--.

TOTAL TEPIDPIEXPlSUR

I

PROCESS ENG~NEERIHG DESIGN MANUAL

FU.kE AND RELIEF

ierision : CI

Date :2/05

P W NO :

9 - 1 3

Page 128: Total Company Process Eng Design Manuall

I NOT,: ~ h t . b d ~ NW. *LOW t h r ~ up to and i ~ l u d i ? ~ LJ pi. : The . cur.* rtpt#nn#r r sornp~ornirr of lhr *l lWr e*rrpl-rm, caprcilp 11 r l e c t d by ILK chbnlr m lilt. lh* lrcornlnrnJ,# I numb.r 01 rrlet.ralws mrnu ix lwm. This ~ i k r d i ~ h v r p rw f i i e rn . rnd hr shrnw in ow*- curre ma, k . 1 *hmn tha ma** or lb v * I w . nc4 bnfiwm p,=~,.,.. Ab. . 21 p ~ s e n l . csp.cily It c l d df LI lh.

Whtn ah mrbr . \nOwll. I h l ~ b n u l r r l u r t l l h d d br CQI~IU~~~ rlllnll in o*.rplrUUIe. rot ~ h c LOIICCIU~ lat iw Vrlvrr -ratin# *I low ovsrprruurrs und " c h ~ k r " : l ? r r r

for,. orarprnrur.r 01 krc lhrn 10 p r c m l muuld br r*odcd

p i g Y m .votiobl. ar Censrant Barb.?rrssur~ Silin9 torlor I ( . for 2) plrtr"t arrrpr.,~~r. on Figure & 5 .Capocity Corrtc l ion laclor- Due 10 0v.r.

Ilabnr.d Bbl lors s o f a ~ ~ - l r l i d V O ~ * * S prcrlur. lor Rcli.1 ond Salefy.Rrliel

(Liquidr Only) Volr.1 in l i q u i d Scrrlcr I

Page No :

9.11

Rerision : U

Dl#* : 2/05

TOTAL TEPIDPIEXPISUR

PROCESS ENGINEERING DESIGN MANUAL

F U R L UJD RTLlEF

Page 129: Total Company Process Eng Design Manuall

I;: 0 5 LO 15 20 25 3 0 35 40 4 5 50 I BACK PRESSURE PSlC P GAGE BACK PRESSURE ,IPSIG

x

Norr: Thc abov curvcr trprrprnl rn romprnmlu or lhr ralun rcromnnded by a nvrnkr 01 rclicf wal*e mrnvi=rlutcr~ ehd may be uwd when lhc mabr or ral-e or the aclubl trilical.l?aw presrvre p i n t I01 ihr rapor or # I 3 i5 unknown. When thc makc i l Lnom. Ihc manufacortr nhwld h comrulrd lor Ihr corrcLlion f~c le t

T l n r curves r r r tor rt pnrurc. of 54 pounds p l r sqvmrr #nth *oar and abort. Thty art lirniled to h c h prcnurc klm cril*al- now p*.rure ter r ~ i w n r r pwsure. Fw wbtrfilaczl.flor bmct presrurm b l o w SO paundr p r quare inch -PC. rtu manvfrctu~rr mual br cmsultcd rw ihr vr lua of K..

TOTAL TEPIDPIEXPISUR

I Figure b,(k-~.r~abl. or Conrioni 8ack.Prcrrur~ Sizing Focror K. for Bolontcd Bellows Sofr!y.R*lirf VaIvrr (YO. pars and Gases)

1

. -. Revision : 0

Dbrc : 2 / ~ 5

PROCESS ENGINEERING DESIGN MANUAL

FLAW AND RELIEF

1 .o

0.0

0 9

0 .4

0.2

0 0 10 20 36 40 50 6 0 70 80 90 100

BACK PRESSURE. PSI* ./0 ABSOLUTE BACKPRESSURE' SET PRESSURE + OVERPRESSURE. PSIA XI00 =rX

P a ~ s N o :

9.15 I I

Figure 6 * 6 L ~ o n ' l o n i 8o.k Prelrurc Siring roctor I(* Far Convrntio,ml ~ . h ~ ~ . r ( e l i s t Volver (Vapors ond Cares Only1

Page 130: Total Company Process Eng Design Manuall
Page 131: Total Company Process Eng Design Manuall
Page 132: Total Company Process Eng Design Manuall

10. ?SPES VALVES + FITTINGS

A

TOTAL T EPIDPIEXPISUR

/ 4 Y

R n l ~ i o n :

Omtm : 2/83

PROCESS ENGINEERING DISlQN MANUAL

-

Prp* NO :

Page 133: Total Company Process Eng Design Manuall

TOTAL TEPIDPIEXPISUR

1. APPLIC, 'UTY

. For a feasibility study a quick es t imate of the line size will be required.

- For a pre-project study a be t t e r es t imate of the line s l z c will be required.

- The purpose of this guide is to size only the lines in t h e process unit.

. For the both the feasibility and prc-project studies a b a q w s AFTP can be used :

. "Pour le cslcul des pe r tcs dc charges des liquidts dans les conduites"

. "Pour le calcul dcs pcrtes de chargcs dcs g a z dans Its conduitcs"

. The line sizing depends on t h e service :

. Fla re l ints, pipeline end riser sizing a re not included on this chapter.

2. LIQUID LlNES SIZING CRITERIA

Set Table 1.

3. VAPOR AND STEAM LINES SIZING CRITERIA

See Table 2.

5. TWO PHASE PLOW LINE SIZING CRITERIA

The v Z cr i t e r i a as s t a t e d for vapor lines to be followed with : P

f =rm * W in kglm3

W = WJ + Wv = to ta l f k ~ w r a t e in kgfh fl = liquid density in kglrn3

W1 = liquid flow r a t e in kg/h pv = vap?r density in kglm3 Wv = vapor flow r a t e in kg/h

and V = Vrn = mls

Pi = internal d iameter of the Line in m.

om and Vrn a r e respectively the apparent density and velocity of the fluid.

PROCESS AND UTILITY LlNE SIZING

Revision: 0

Datt ; 2/85

Pmge No. :

10.1

Page 134: Total Company Process Eng Design Manuall

.- - - TOTAL

TEPIOPIEXPISCIR

. The f low regime t o be checked on the figure I for horizontal lines and on the figure 2

lo r vertical lines.

, For horizontal lines slug and plug f low regimes should be avoided.

, For v t r t ica l lines slug flow regime should be avoided.

Remark : Flow chart fig. 1 and 2 are based on author's experimental results.

5. PRESSURE DROP CALCULATIONS

5.1. MONOPHASIS FLLID (GAS OR LIQUID1

5.1.1 ''ABAQUES AFTP" could be used w i t h the correction of the line diameter

rch as indicated on there ABAQUES.

5.1.2. Method using MOODY or "regular" Fanning friction factors.

a. Calculate Reynolds number

R ~ . fli V . -$

Pi = line internal diameter in mm f * = fluid dynamic viscosity in Cpo

P = fluid density in kg/m3 Re is a dimensionless number

V = velocity in m/s

b. Determine the relative roughness : See Figure 3 -3 - & s

D

c. Determine i = friction factor : See Figure 4 4 f =

d. P = f x 7; LOO x & = %t bar1100 rn

5.2. TWO PHASE FLUlD

Many correlations ex is t to calculate the pressure drop for two phases flaw,

depending of the vertical or horizontal line, ratio of vapar/liquid and pressure and

temperature conditions. That is out of scope of this guide and we mention only some

authors : POETTMANfCARPENTER FLANIGAN

EATON BEGGSIBRILL

LOCKHARTJMARTINELLE TAITELIDUCKLER

quick methods for an estimation are as follaws :

I 5.7

un,,,, nzlnc

-- Revision : Q

Datr: 2/83

-- Page t4o. :

10.2

Page 135: Total Company Process Eng Design Manuall

5.2.1. "ABAQUE AFTP" for gas could be used with the correction of tht line

diameter. Takin as defined in 1 4 and the liquid viscosity as the fluid viscosity.

T OTA L TEPIDPIEXPISL

2 . 2 Method using MOODY or "regular" fanning friction factors.

I t is the same method as on C 5.1.2. wlth f.=P" and V = Vm as defined on 5 9

and the fluld viscosity taken as the l iquid viscosity.

PROCESS unuw slziwz

5.2.3. A more detailed method using the Lockhart Martinelli method i s given i n

section 11.0 PIPELINES.

i. NOTES

Revilion: O

nrtt: 2fg5

. Tubes dimensions are standard and an example is given on Table 3.

Pmg? Ha. :

10.3

. With "ABAQUE AFTP" the correction for the internal diameter must be done and an

estimation of the line thickness could be done with the following formula used mainly for

high pressure.

e s thickness rnm Y = coefficient having values for tcrritlc steels

P = Design pressure bar g Be : external diameter inch

S = allowable stress bar C = corrosion allowance mm

E = longltvdial weld joint factor

5, E and Y are not always available so the following iorrnular could be used for an

estimation.

t r thickness in mrn c = corrosion allowance in mm

P = design pressure in bar g K = 43 for carbon steel and low temperature

carbon steel

de = external diameter in inch 54 for 3.5 % Ni and stainless steel

For small diameters upto about 10" usc the thickness given by the schedule on fable 3.

For P do not 'forget to take into account the change in clevstjon for liquld and two

phase 1 low.

Page 136: Total Company Process Eng Design Manuall
Page 137: Total Company Process Eng Design Manuall

Pw No:

30.5

Reviaion : 0

Dete : 2/85

TOTAL T EPIDPIE XPISUR

PROCESS ENGINEERING DESlGN MANUAL

PRCCESS WD ImXLITY

L X N ~ ~ I Z ~ N G

___________I__----_----------

fi

? P? 9h! 15 99 0 - 4 0 N' N-

E

a

.-, n

e4 &I

2 u b

/3-5

s> 3 EUP 2 2 E I?

rn EC

g;aE G.2 S.$Z =i E f 5: a z 2:

11 -.' vl UJ 2 = 5 u td

5 n z u ct 0 n < >

C.hC.C.CA-CICI

N N 0 0 = a m *

__l____f___________--d---4---

5 .- 3 V -

0 0 0 9 0 0 0 +- O D " $

*-=z =22 k

x: 0 3 I- m -- ___________-_______---------

i G

E E E E g o 0

M U L L k w N: 8 8 R E v,, NP.4 d m 2 " A

w~ n P ~ 0 U M ~ W

b 3 - k x:!i u a v n U

'-+vv 5oa: O a a S .snV g:

V O O h d V g f i .;Z a m n a g a m , y g

* 0 . . . . o . , . . . P . . 5 8 rd M

D g .*

3 G E On M 5 v : 2 a n

v V 0

d, a - A

P s , I

z - A d

< > _-_________________-- - - - - - - - -

k k ; c U, .- " L E E - 8 2 0 0 4 u l 11 U f m r .- a 5 . . 5 I

Page 138: Total Company Process Eng Design Manuall

f LPIDPIEXPISUR -

7. REFERENCE5 AND USEFUL LITERATURE

, LUDWIG

. Flow of flulds CRANE

, "Gas liquld flow in pipelines I Research regults" by A.E. DUKLER May 1969

Publ by A.G.A., API and Union of HOUSTON

. "Gas liquid f low in pipeline I1 - Design manual" by 0. BAKER, H.W.

BRAINERD, C.O. COLDREN, FLANIGAN and J.K. WELCHEN, October 1970,

published by A.G.A. and API

- "Proposed correlation of data for isothermal two phase, two component flow in

pipelines" LOCKHART, R.W. and R.C. MARTINELL1 (1949)

. BEGCS , H.D., and BRILL, 3.P. Manual lor "Two phase [Low in pipes" 1975 university of TULSA

. ABAQUES AFTP: . "Pour le calcul des pertes de charges des liquidcs dans lcs conduitcs"

- "Pour le calcul des pertes d e charges des gaz dans Its condui tes"

. PEPITE PKOGRAM

"CHEMICAL PROCESS DESIGN ON A PROGRAMMABLE CALCULATOR"

W. WAYNE BLACKWEIL, 8.5. Page 22

. "Two phase pressure drop computedqq - Mafik SoLirnan, Hyd. Processing April 84

156

Revision : 0

Date: 2/85

P ~ g l No. :

10.6

Page 139: Total Company Process Eng Design Manuall

TOTAL 'IEPIDP/EKPfSUR

10qow Iblnr 1 . Flsr rJ.L*m. * hvrllonlll t*e-ph~#a no* (b.& m earn hDm I", i'

as& Ha. 10, lBU, D. 1H.I

IhODO

I

s,

I,DOD

8 . 0.5 0 .33 SeC P.11.3

Bx.- 210.7 - ( g O . I 6 6 \ ( 1 WG

BY = 7.102 WC

fl V O E z

OSHINMYO -CHARLES TWO PHIsE FLOW MAP FOR VERTICAL UPWARD f LOW a FIGURE P

D - P i p Inside durnmHr, inthn p 1- Liquid dcfisity. L ~ / F I '

x r ~ r ~ ~ / f i . 1#53[(0, + o , ~ ~ m ~ ] [ p ~ ~ ~ ~ u 11.5111 1'1 0.25 4 . .

PROCESS E N G l N E E R l N O DESIGN MANUAL PROCESS AND u T m n

LINE SIZING

Revirion : 0

Date :2(es

. No :

10 .7

Page 140: Total Company Process Eng Design Manuall

I TOTAL ( PROCESS ENGINEERING DESIGNMANUAL tlevi~mn : I I r *yn o.tr . PROCESS AND UTILITY 1

P i p Djmlel. in lKhn - d I

T EPIDPIEXPlSWR LINE SIZING Date : 2 / 0 5 10 .o

Fi y r c 3 - Relative rawghnas of pipe

Pip Dim&r , ia Frd -P

Page 141: Total Company Process Eng Design Manuall
Page 142: Total Company Process Eng Design Manuall

t , 11 ror mchrdulr 10 9 < 1 4 - m r * mot used n ~ r n . 1 1 ~ '

21 mr rolloli.. a idt . . . are nor c m m r 0 , Y O . I I 2 "2.. 3 I/='# 5" 31 fox QI > lo- lim dl.+rcrr i r c m a n in 2" incrrrrml.

. .______---- ~

160

Page 143: Total Company Process Eng Design Manuall

TOTAL TEPIDNEXPl5UR

~ e v ~ s i o n : 0

Date: 2/85

PIPING CLASS

- page NO..

10.11

1. APPLICABILITY

The purpose of this chapter is t o determine the piping class uscd as shown on a PID line

whtn the f . i ~ i n g material class document does not exist. This is generally the case for feasibility arid pre-project studies.

2. CLASS NUMBERING PRINCIPLES (From DD-5P-TCS-112 "PIPING MATERIALS CLASSES")

2.1. GENERATION OF NUMBER

The class number shall consist of a capital letter representing the ANSI series and 5 two-digit number representing the main material entering into the composition of the

material used for the valve bodies, tubes, fittings and flanges of the network in

question.

Example :

0 01 - . . . + . Series 150 ........... ....,........ Carbon steel

The tables below give the letters and numbers to be uscd for numbering piping

Claases.

2.2. LETTERS representing the series of the class

Series 1 125 1 150 1 250 1 300 1 400 1 600 1 900 1 1500 2500 Traring 1 1 1 1 1 1 1 1 l I

I C H 3 1 Y Symbol

2.3. NUMBERS representing the main material of the class

01 t o 20 : Carbon steels (ordinary, galvanized, normalized, etc...)

21 t o ir5 : Alloy steels

56 to 70 : Stainless steels f l to 85 : Special alloys (Monel, Hastelloy, etc...]

86 t o 99 : Other materials (Cast-iron, copper, copper alloy, t t c ...I Glass

Plastic, cement-asbestos fiber, ctc...

/6 1 *

A B C D E F

Page 144: Total Company Process Eng Design Manuall

( 3 P R U I U R E TEMPERATURE RATINGS 1 The following ANNEX G is extracted from ANSI 8 16-5 1977 (AMERICAN NATIONAL

STANDARD STEEL PIPE FLANGES AND FLANGED FITTINGS).

Far pressure temperature ratings higher than series 2500 tho Iollowing is used 5000 PSI, 10000 PSI, ... (used mainly for well tubing and wellhead).

Pagr No. :

W O t t S Conv..s*n Llo {go1 - 6.8VI plls

(el p*rm.aible bul r M rwrarnnendad lor prolanomd vr. n h r * m'f {dl "01 tab. uwd ova, 65O.f {.I n m l t* b* uwd o7.r I M ' F (h) nol io b. uswd er.r 1000.1 SI

---- Revision : 0 TOTAL

T EPtDPIEXPtSUR

PIPlNc CLASS

Date : 2/85 10.12

Page 145: Total Company Process Eng Design Manuall

Page No. :

10.13

1. APPLICABtLlTY

The purpose of this chapter is to determine the types of valves used fo r designation on the

PID.

. valves are used tor two mains functions, isolation and control.

The following is only a guide line for selection of types oi valves which must follow the

piping material class document when it exists.

2. BLOCK VALVES

The main types are : , ball . gate

plug . butterfly

2.1. BALL VALVE

Ball valves can be fu l l bore or reduced bore.

2.1.1. Full bore u x s

. flare system : upstream and downstream of PSV, rupture disc, flare line if

required.

. downstream pig launcher and upstream pig receiver.

. vents and drains on hydrocarbon equipments.

, piping valves on instruments for hydrocarbon.

- far block valves on hydrocarbon lines if the pressure drop is critical.

. utility except water for diameter larger than 2".

2.1.2. Reduced bore uses

. Block on hydrocarbon service without solid particles.

2.2. PLUG VALVE USES

Plug\/alves have the same use as reduced bore ball valves when used for high pressure

(600~ Plug valves can be as~irnilated to reduced ball valves, Generally, plug valves

are the smaller and lighter of the two.

163

. Revision : 0

Date: 2/85

." _ -I-..

TOTAL TEP1DPlLI(PlSU R

SELECTION OF TYPES OF VALVES

Page 146: Total Company Process Eng Design Manuall

Page No. :

10.14

Revision : O

Date : 2/85

To TEPIDPtEXPISUR .

SELECTION OF TYPE5 OF VhLYeS

2.3. GATE VALVE USES

. Gate valves can be used as ball valves except for downstream of pig launcher and

upstream of pig receivers. The vertical physical space requlrcd by a gate valve is

greater than a ball valve.

. T i t h t shut off for bal l or plug valves is superior to that of a gate.

. For hydrocarbon service wi th solid particles presentor as wing valves on well

heads.

+ For quick dosure purposes.

, On utility lines tor low diameters < 2"

2 . . BUTTERFLY VALVE USES

. On water lines for service, utility or sea water, generally for diameters larger

than 2".

3. CONTROL VALVES

The main types are :. globe

. butterfly

. special

3.1. GLOBE VALVE USED

. Control valve used in most Q! cases except at very high A P as defined by

instrument group, or on water networks, and compressor suctlon lines for

throttling purposes.

3.2. BUTTERFLY VALVE USED

. On water networks

. Throttling a t compressor suction

3.3. SPECIAL VALVES USED

Special valves are defined by instrument grwp :

. for very high A P the angle valve could be used

. for cornpressor anti-surge cage valves could be used.

164

Page 147: Total Company Process Eng Design Manuall

I. APPLICABILITY

The purpose of this chapter is to calculate precisely the pressure drop in a piping network.

This may be required for either study phase for situations where A P is a critical consideration. For most proj-ts however calculation of process lint A PI wil not be

required. The pressure drop calculations are based on a summation K method.

2. P THROUGH VALVES

TEPIDPIEXPISUR

2.1. YALYES OPEN

1 I GATE I GLOBE CHECK 1 I I

TYPE VALVE I I I NALlNE I VALVE I I VALVE , 1 I 1

I K I 0.15 I I I 0. I I 2.4 I I I 1 1 1

P in kglcm2 1 bar : 1.02 kgicrn2

P : Iluld density in kg/m3 V : fluid velocity in m/s

2.2. BALL VALVE

Revision : 0

Date: 2/15

A P through bell valve with reduced bore : This A P depends on the valve vendor. An extract of CAMERON BALL VALVE PRODUCTS is given as an example.

Page No. :

10.15

The example below gives aomt values of the pressure drop coefficient K Lor fittings

cncounterd in cylindrical conduits. For further information, refer to "MEMENTO DE5

PERTES DE CHARGE by I.E. IDEL'CIK, EYROLLES idition, PARIS".

A P in kglcm2

P : fluid density in kE/rn3 A P = K

V : fluid velocity in mls

I ELBOWS

K values for elbows.

RID 1.5 I 3 I 5 I I I I I

90' 0.17 t 2-36 f 0.12t4.721 I I 1

0.09 + 7.87 f I

I @I* 1 1

I 0 . 1 + 8 f I 0.08 t 2.36 f 1 0.06 + 3.94 f - f = friction factor see chapter PROCESSIUTILITY -LINE SIZING 5 5

Page 148: Total Company Process Eng Design Manuall

Pogo No :

1 0 , ~ . - 3.2. taLr-t a F A r a - - ~ * ~

T - l - # -C S.

'44 1 \I.

-%\ s, $9 ~ D H ..

LI-I

Y'&, = r , K - ~ ' C I - $1 5

K ' -

I :A,

Revision : 0

Date : ? / a s

--- TOTAL TEPlDPlEXPlSUA

PROCESS ENGINEERING DESIGN MANUAL

A P THROUGH VALVES AND FIlTINGS

Page 149: Total Company Process Eng Design Manuall

*

TOTAL TEPIDPIEXPISUR

v

3.4 trc

3-lr.4 5 , ts , >S.

Q15, -L V.,%. 5. = 5 4

zy2 p vaun l<h% Cr.*)

a a)Lku.\ br-h x . ~ + ( ~ * ~ - 2 ( , . ~ ) - , . b , , ~ ( ~ )

1 Q sp++b-a z . l - ( r - s ) a,

3-lc.2 -

Q, - '-'. 5.

PROCESS ENGINEERING DESIGN MANUAL

A P THROUGB VALVES AND FITTINGS

Revirion : o

Date :2/B5 .

Page No : .

1 0 . I 7

Page 150: Total Company Process Eng Design Manuall

TOTAL f EP/DPf EXPfSUR

3.4 3

v. 'J.

5. - 5, +--?$

c,) L.+&.\ &=***k

+* 4 2/, O C ~ C C ~ . a - l ~ * q * '

,( = kt [, *($ - 2 , 5 -3

V. I +

2) M . 7 2 A - --I f b 4'. 1 C. 5 & 0 . 0 v.

K - R . [O.% *($r] 4' : 0 4 h. 5 Ye ) o r $

b) ~ t r . . ~h+ bic*.h

4, j K . oql, ( I - - v.

. - -- - 16f

-

Flga No :

10. 10

,4

PROCESS ENGINEERING DESIGN MANUAL

A P mrnUM VALVES AND PI'ITlNGS

. Revmian : 0

Data : 2/85

Page 151: Total Company Process Eng Design Manuall

TOTAL TEPlDPlEXPlSUR

. Resistance Coefficient. K

The rtsisrrnte coclicicn ncrlculatrd by thr formub:

K = r L D

Valm of 1ht Irktion fmor, 1, b r valiovr pipe sizes are lined in rablt 1.17.

W l u n for LtD and C. k r Wy ~ n t d valwr were taltulared from thearetical s~nldcratiom. Vllvcl of C. for panialty open u a k u were rnripolalrd from in1 rnultJ lor rtprcrenlrtwe sizrr of brll v a k .

Chrn 1 * 18 provides graphic reprcsrntation of vahn pahion *nus the percent of full O w n ires.

Table 1-47 FricIlon Factor Ill

Table 1.3 Calculated Values of t/D for Full Opening Cameron Ball Valves In Full Open Position

-.-- m]Tll .- ~ - r o dm .. - ir am 5- 1 I s m

'I1 in 1.1 .-- 1 rn I Y

8 , I I. 7 - 1 *# I * . * I m I. SC I .I 1 11 1.1 8. r n I - I Y 1 r

- --

Revision : 0

Dart ; 2/85

PROCESS ENGINEERING DESIGN MANUAL

A ? THROUGH VhLVfS AND FITTING5

P 4 t No :

10.19

Page 152: Total Company Process Eng Design Manuall

Table 1-6 Calculated Values of L/D for

Venturi Openin Cameron Ball Valves in Full 8 pen Position

-,-.

Pago NO :

10.20

~ * v i ~ i o n :

a t : 2/85

- - . - -- - . .

Table 1-5 Calculated Values of L/D for

Reduced Opening Cameron Ball Valves in Full Open Position ,

-

~ D O C E S ~ E N C I ~ ~ E R ~ N O DESIGN MANUAL

A P THROUGH v ~ L V E S Am FI'ITINCS

-

- .

. TOTAL TEPIDPIEXPISUA

- -A

,I." ISP I,. 111 i t . 111 I, I 111

11 1 111 m. In* P* n. 111 nnm 74.n I.1

H I I- nn

9 1 1.1

. w v u . a a l p ~ - mw. - --.... un. r--

u.n 111 11 1 11 1

~ m m u u

1.7 4 9 1.. - 1.1

m.. 3Z.m

I.rlI

_ - - 1-

111 LI , i t -- 11 1

nb *' 11 1

HI+I - m e w . 4-=d ma n I 111

*!I a>* 1,.

11 1 "'

-1011 F m 111 --.--

tl 1%

.I a I k* #'* 1.1 I. I

I* a I 'I . II 5 111 I1 11 1

LI 111

*I 3.e P. - IH 111 13'

rnl n. UI *a 2 2 1 9 1,. 11 I

a. 1,s 111 --

41 a g: 11 1

m d I m* I1 7 I t a 111 . 1Y 111 11'

Page 153: Total Company Process Eng Design Manuall

- I. ..II CONTROL VALVE SIZING

TEPIDPIEXPISUR 10.21

1. APPLICABILITY

Tht purpose of this chapter is to give some formulae to estimate the size and the number of

control valves installed for one given service, and to estimate the capability o f the control

valves i n case of revamping. The final sizing should be done by instrument people.

2. CONTROL VALVES CHARACTERISTICS

Them are determined principally by the design of the valve trim. The three fundamental

characteristics available are quick opening, linear, and equal percentage.

2.1. QUICK OPENING

As the name implies, this type provides a large opening as the plug is f i rst l i f ted from

the scat wi th lesser flow increase as the stem opens further. The most common

application i f for simple on-off control with no throttling of f low required.

2.2. LINEAR

Linear t r im provides equal increaws in stern travel. Thus the flow rate is linear with

plug position throughout i ts travel.

2.3 EQUAL PERCENTAGE

Provides equal percentage increases i n rate of flow for equal increments of stem

travd. The characteristics provide a very small opening for plug travel near the Seat

and very l a r ~ e increase toward the fully open position. As a result, a wide

rangeability of flow rate b achieved.

3. CONTROL VALVE RANGEABILITY . For an estimation only it is common practice to select a valve i n which the valve opening

at maximum flow is smaller than or equal to 9 1 per cent.

. For normal flow the valve opening should be at least 60 per cent while for minimum

flow, il applicable, the opening should be larger than 10 per cent. If the inlnimurn flow is

clor 'o or smaller than 10 per cent, a smaller valve should be installed in parallel with

the n n valve. . For a flow rate the valve opening depends on the valve characteristics and i t is given by

vendor i n their catalcgue.

4. FORMULAE

The valve area is characterized by the coeificient Cv (except lor FISHER which use Cg for

the gas (see hereafter).

The Cv coefficient is the number 01 U.S. gallons of water flowing during one minute through a restriction and the pressure drop through this restriction is 1 PSI. The following formulae are slmpllfied and to be used only far an estimation of the Cv. Some corrections may be necessary for the installation of reducers around the control valve. I f so, the Iormulae given by manufacturcrs in their catalogues w i l l be used for a better Cv calculatlon.

/ 7 /

Page 154: Total Company Process Eng Design Manuall

-

- TOTAL

TEPlDPlEXPlSUR

I 4.1. LIQUID

1 A - Sub critlcal f low 1 8 - Critical f low

I P v < P Z a n d P I - P 2 < ~ f 2 A P S I P I - P ~ > C ~ ~ ~ P S

I

v = I . Q j.. PI - PZ

c v . ~ JEZ I 1

Ps

CI = critical flow coefficient (given by manufacturers and depends on the type of valve and the action of valve by increase of variable) cf < I

Pv = fluid vapor pressure in bar g.

P1 : upstream pressure in bar g. P2 = downstream pressure in bar g.

A p i = PI - (0.96 - 0.28 @ ) Pv PC

or to simplify, i f Pv < 0,s PI, APS - P I - Pv PC = fluid critical pressure in bar

Q = f b w rate in m31h at upstream conditions

sg = specific gravity at flowing temp. (water = 1 a t 15.C)

4.2. GAS AND STEAM

I A - Sub critical How I 8 - Critical flow

I PI - P2 < 0.3 cf2 PI I PI - PI ) 0.5 ~ f 2 P I

I 1

GAS

I I ,--=A 1- 1 ,-,= Q

295 (PI - P2) (PI + PZ) I I

257 Cf PI

I 47.2 W 1 C V = 54.5 W

Cv = I

JIPI-P~) ( P ~ + P ~ I rg I ct PI G W = mass flowrate in t h

172

Rcvir~on : 0

Drte: 2/85 CONTROL VALVE SIZING

Page No. :

10.22

Page 155: Total Company Process Eng Design Manuall

TOTAL TEPIPPIEXPISUR

SATURATED STEAM I

Cv r 72.4 W I cv=- 83.7 W i

J(PI - ~ 2 1 (PL + ~2)' I I

Cf P I

I SUPER HEATED STEAM

I C v = 72.4 (I t 0.00126 Tw) W I Cv = 83.7 (1 + 0.00126 Tos) W

PI - P2) (P1 + PZ)' I I Cf PI

Cg, PI, P2, Q =me definition and unit as 5 4.1.

G = re la t ive density (air 1.0)

T = upstream gas temperature OK = 273 + ' C

Z = upstream compressibility factor

W = s t e a m weight in tlh

Tos = s team superheat in 'C

43. TWO PHASE FLOW

For sizing, maximum P - PI - P2 = 0.5 ~ 1 2 P I

I A - Without liquid vaporization 1 B - With liquid vaporization

1

& = 51.8 W 1 cv . 36.6 W

q-) I

Cg, P I , P2 same definition and unit as 5 9.1.

W = t o t a l fluid flow. in t/h

d l = upstream mixture density in kg/m3

d = W x 103 WII Wlv

-t- dl1 d l v

Wll = upstream liquid flow in kg/h

dl1 = upstream liquid density in kg/m3

1 = upstream vapor flow in kglh

d l v = upstream vapor density in kg/m3

172

Revision: 0

Date: 2185

CONlROL VALVE SIZING

Page No. :

10.23

Page 156: Total Company Process Eng Design Manuall

d2 = downstream rnjxturr density in kg/m3

d2 = W x 103 W21 w 2 v -+- d2 1 d2v

~ O T A 11 p m.ouci. v , u v i s rrmNcr

W21 r downstream liquid flow in kglh

d21 t downstream liquid density in kg/m3

W2v t downstream vapor flow in kg/h

d2v = down~trcam vapor density in kg/m3

Rkvilion : 0 Page No. : r-

4.4. FISHER FORMULAE

For gar 'FLSHER" use Cg instead of Cv

C1 = valve coefficient (given by catalogue)

Cg = W

0.4583 d p l s i n 3 - c] dag.

W = gas flow rate in kglh d = gas density at upstream tanditions in kg/m3

PI : upstream pressure in bar (a1

P2 = downstream ptessurt in bar (a)

5 .0 REFERENCES AND USEFUL LITERATURE

- Vendors documentations

- CPSA chapter 2

Page 157: Total Company Process Eng Design Manuall

TOTAL tEPlDPlEXPBUR

/,-= -

PROCESS ENGlNEERlNC DESIGN MANUAL Revision :

Datw : 2/85 - -

Plgr No :

Page 158: Total Company Process Eng Design Manuall

For both feasibility and preprojcct studies, long pipeline AP and A T calculations will

normally be performed using PETITE or RESEAU. I t may be necessary however to make an . estimate by hand. Details are glvtn below on how l o proceed on this.

TOTAL 7EPlDP/EXPISCIR .

I 2. PIPELINE PRESSURE DROP FORMULAE

2.1. GAS TRANSMISSION

there exist many methods of calculating hP for gas transmission lines. Some of these

arc : American Gas Association Formula Wcymouth

Panhandle 'A' and '8' Darcy

Colebrook

PIPELINES

Below is given the Panhandle 'A' for use : r 11.1539

Where Pi s Upstream pressure bar (a1 P;i = Downstream pressure bar (a) C = Specific gravity of gas Ts = Base temperature K (273 K or 298 K) ps : Base pressure bara(l.01325 bar) T = Gas flowing temp K L rn = Pipeline length krn q r: Flowrate at Ts, Ps bast m3/d (at Ts, Ps) d = PIPELINE DIAMETER crn Z = Average gas compressibility E = Efficiency (0.92 for a clean line)

Revision : 0

Oate: 2/85

The formula does not fake into account the pipeline profile which, i f significant, can be added to the A P calculatcd if required.

Page No. :

11.1

I 22. LlQUlD FLOW IN PIPELINES

Use Darcy equation :

M = Mass f low k d h F = Moody fr ict ion factor

p = Density kg/m3 E '= Absolute roughness em

D = lim id crn (KC page 10.8 and 10.9)

AP z pressure drop barlkrn = viscosity CP

Page 159: Total Company Process Eng Design Manuall

- TOTAL

TEPIOPlEXP~SUR

Re = 35.368 x M F = 6@lRe for Re < 2000

x 0 F =[(31~d12 + i/(A+B) 3/21 1112 for Re > 2000

with : A - 2.457 Ln i 1 -----a*---

( 7 i ~ e I . 9 + (0.27 E/D) 0 = (37530/~e)16

I l6 BE CAREFUL when using friction factor charts as confusion arises

between MOODY F and FANNING F' : F' = 1/4 F

2.3. T W O PHASE HORlZONTAL

Estimating 2-phase flow A P by hand for long pipelines is not recommended, a8

the flow characreristics and equilibrium wUI alter along its length. However an

estimate of A P can be hand calculated providing the phase regime is fairly

stable.

Given below is a calculation method based an LOCKHEAKT-MARTINELLI-

BAKER method. This method can be used for both longpipelines (stable regime)

or process lines.

METHOD

A P - 2 PHASE

- A P HORIZ + APVERT

1 Evaluate flow regime and adjust Pipeline @ if required

2.. .a~cu~ate A P ~

3. calculate &pr

4. Calculate ( ~ P ~ / P P ~ I ~ ~ ~

5. Calculate AP 2 PHASE

factor.... P: H

6. Calculate ApVert factor (vertical section of pipe)

For convenience pipe ids are in crn viscosity is in cp.

/ 7 f -

1

Page No. :

11.2

PlPELlNES Reuis~an : 0

Date: 2/83

Page 160: Total Company Process Eng Design Manuall
Page 161: Total Company Process Eng Design Manuall

- - 11.4

1 1 I I 1 4. AVERAGE VELOCITY 1 I I 1 I 1 I 1 V s = ( W + m) W1 I VS = !-!. 0 3 ;n/s I V3 = average velocity I 1 I I I I I I I I I 1 5. CALCULATE X RATIO I I 1 I 1 I

I x = C.\ \S 1

I I x =(&)f I I I I I

I I I I I I

6. CALCULATE LOADlNG FACTOR WS 1 1 I I I I I

I ws=7?123 I WS r - W i x 0.205 1 I I A 1 I I I 1 I I I 1 1 7. CALCULATE PH FACTOR FOR HORIZONTAL FLOW 1 1 I I L FLOW TYPE = b;si'f52rb I ( TYPE OF FLOW I Rt

I I I PH

W . . S € D I ..I [..UP O l t l . * X .1.*1.* - LI,.,~" #]I = I .Pf8 I

I 1 1 ANNULAR wbl • . b . & - & W d I I I b m 4 - 3 Q ~4 1 mu.

I I

I BUCBLE i e I I

I I

I STRATIFIED I 1 I 1-3-

I I

I ,,, 1 1 '*' I fS I I I I PLUG D+S5 J

I

[ -- - Ey+- - - - - A - - - - - - - 7

I FLOW f YPE = WAVE I I W A V E I HI.=.& ~h rk Fn * 0 . 2 1 1 1 h h s - 3-793

I WG .A.

I I

]A?, = S . t 5 4 rn m ~ ~ p ~ ~ 1 > w h ~ . A PZH = I

1 I I bar/km I I I I 1 I 8 . -. CALL 'LATE ~n FACTOR FOR VERTICAL SECTION I I YLRTICAL i Fw . ra.9 "'/a V i r m h D i n cm I I 1 I I SECTKIN I x . a 1 9 (x) I I R N P . ' ~ ~ APH,. t.510

I I

1 I - X XD in Disprrd 1l@r to 1-1 PH r m . I I I I I I I I I 9. CALCULATE TOTAL TWO PHASEAP I I I I Horizontal : PH z 1-r 8 1 A PZH =bpG x PHZ = 1 % 3 4 0 bar/km I I Vertical : pH,= \ . S t 0 A PZ,, = ~ P G x P H ~ = o . r i > barlkm I I I I TOTAL &P = (ApZH x L +APzv x h)/1000 = 1 bar I I I

/SO m@/ TOTAL

T I C ~ W ? T ) t C ' € l P ~ S U R

IV c nx

PROCESS CACCULATlON SHEET Sheet 2 of 2

TWO PHASE PIPELINES P CALCULATION

OAT^ Ilao T I T L ~ . rzniirr i

I T E M :

NO. :

JOB NO I t v

Page 162: Total Company Process Eng Design Manuall

TOTAL TEP/DPIEXP/SUR

3. TEMPERATURE PROFILE

For detailed and accurate AT and hP calculations in 2 phase lines buried, subsea or in air +

the program PEPITE should be used. The hand calculation method presented on pages I l+6,

11.7 is accurate t o wllhln 10 96 for both gas and liquid lines. The procedure is easily adapted

t o a small pragrammablo calculator and increases in reliability the greater the number of

segments used.

The fold #ing should be remembered when designing pipelines,

. For long pipelines assuming isothermal f low can result in overdesign in pipeline sire and

A P.

. If the plpeline is constant with regard t o material, insulation and burial depth along its

route a fixed thermal conductivity (k) can be assumed.

. For gas pipelines the internal film rcsistivity is negligible - Ignore it.

. For all steel pipelines the resistivity of the metat 1s also negligible.

. Small plpelines 1< 20") have a large heat flow compared to the specific heat of the

flowing medium. Consequently the gas w i l l reach ~roundtsea temp in a relatively short

length. For large pipelines the converse is true and a long distance is required t o reach

ambient.

. For oil and small gas pipelines the asymptotic temperature Ta is that of the surrounding

medium. For large diameter gas tines, Ta d e p n d s largely on the JwlrThompson effect.

The attached calculation sheet can be used for hot lines in cold surroundings or vice

v e r m

For subsea pipelines, epoxy wrapped, concrete coated resting on the bed an overall heat

transier caeff of U = 10 - I S kcal /hm2*~ is a good estimate for calculation purposes.

/r 1

Revision : 0

Dare : 2/85 PIPELINES

Pmgt No. :

I I.5

Page 163: Total Company Process Eng Design Manuall

- .?

11.6

Coverinn Mcdjurn :

%,?. b y q ) Tg Temperature * C = \ O k Therm. cond. kcal /hmnC = 1 . Lq

C L - -+ TI,?.

DATA - LIQUID FLOW

Total pipeline length rn = 2aa.o Volumetric flown3/h = No of segments = & Density (av) k8/m3 =

L L e n ~ t h per segment m = losoa M Mass tlow kg/h - - AY Total elevation change - + m = a 1-a Cp Specific heat kcallkg *C =

0 Pipeline diameter ins = 3- Pipeline diameter rn = 0.16~

h Burial depth to cent re m = I.t l GAS FLOW

PI Inlet pressure bara = L o Valumetrlc flow m3/d (std)s ?d 0-e P2 Exit pressure bara = la Molecular mass = tq

A P Total plpeline bar = 10 M Mass flowrate kg/h = w c a b S T I Initial Temperature OC = A? Cp Speciiic heat kcal/kg*C* 0.6

J FLUID JOULE THOMSON COEFFICIENT = rc *F/IOOO psi ( x o.ooao5) : o - L < ' ~ l b r r (set fig. I , page 11.8)

I I I I I STEP I VALUE I NOTES I - t I I I I I I 1. Calculate heat transfer Iactor s I I k 1 1 I k c a l h m ~ I 1 x = 2h/D I x : 3.33 I Soil 1.99 I I 5 = tkT/ln[n + (x2 - l ) f ) I s = 5 keal/hm°C 1 Air 0.022 I I 1 I Water 0.508 1 I 1 I Sand dry 0.30 1 I 1 I Sand wet 1.49 I I I I I 1 I I 1 2. Calculate . .at flow ratio per unit I 1 I I @@ a I 1 I I I c I I

( a =rrHti ~ ~ - 1 1 a = r/MCp (liquid or gas1 I I I 1 I I I I I 1 3. Calculate Asymptotic temperatureTa 1 f I 1 I I I 1 T a = T g - ( J b P + A y l j ~ p ) / a l I T a = - h I ° C I L is segment length I 1 I I j = 426.5 & I 1 I I kcal I I I I I I I 1 4. Calculate downstream temp T2 I I I I I I I I T2 =(Tl - ~a)c-aL + Ta I T2 =bl.kqC I 1 I I 1 I I I I 1 Repeat steps 3 + b for each segment I I I I See shee t 2 for stepwise spreadsheet 1 I 1 I I I I

1 t?2

m&u TOTAL mz3

T€PrmP*oIP EX@ sun

PROCESS CBlCUlATlON SHEET Sheet 1 of 2

07 CHK

ITEM

Ho.

100 Mo REV -

BURIED PIPELINE AT CALCULATION

OCTE 108 TITLE t s A d l €

Page 164: Total Company Process Eng Design Manuall

. 11.7

ITERATIVE CALCULATION LOG FOR A BURIED PlPELlNE AT.

I I I I I 1 I I I I I SEGMENT N* I LENGTH I ELEVATION I PI I T I I Ta I T2 I PZ I I I I I I I I 1 I I I 1 I I I m I - + m I bar a l ' C I 'C I ' C I baral 1 I I I 1 I I 1 I I

1 1 ,..a a 41.0 1 ~ 0 I r r - . A I I I I I I ,*eo, I ~3 13s I A I . L I - I 3 ~ 6 1 3 0 I I I 2 I I 1 I I I I I 1 I I I I I I t I 3 I 1 I I I 1 I I 1 I I I I I 1 I I I I I 4 I I I I 1 I I I 1 I I I I I I I I I 1 I 5 I I I I 1 I I 1 1 1 1 I I I I I 1 1 1 1 b 1 I I I I I I I 1 I I I I I I I 1 I I I 7 I 1 I I I 1 1 I I I I I I 1 1 1 I I I I 8 I I 1 I I I I I I I I I 1 1 I I I I I 1 9 I I I I I I I I I I 1 I I I I I I I t I 10 I I I I I I I I I I I I I I I I 1 I I I I I I I 1 I 1 I I I I I I I 1 I I I I I I 1 I I 1 I 1 I I 1 I I I I I I 1 I I I I 1 I I I 1 1 I I 1 I I I 1 I 1 I ! I I I I I I I I I I I I 1 I 1 1 I I I 1 I I I I I 1 I I I I I

+ Q T £ . ) b r wrfc a c t ..In1.1.c\*i wnrd Cp -1 J k l 4 4 J

* t d hu C I I I ~ ~ C . hIs0 PP L q . 4 ou LWU&JC j . L ~ l i v ~ P t u v P L t O \ * ~ ~ l r 3 .*,I uc~.o,. .

1 <> & flP'OOP'D~?'ta~~sun

PROCESS CALCULATION SHEET Sheet 2 of 2

II

BURIED PIPELINE AT CALCULATION

o a ~ t I roo TITLE t s ~ ~ t * i L CHK

ITEM

uo

JOB wo I ntv I d

Page 165: Total Company Process Eng Design Manuall

4. LITERATURE AND USEFUL INFORMATIONS

9.1. LUDWIG YOL I chapter 2

4.2. CAMPBEL VOL I chapter 12

4.3. KATZ, HANDBOOK OF GAS ENGINEERING chapter 7

4.4. CRANE MANUAL

4.5. "Equations predict buried pipeline temperatures" GiKinp, 043 March 16, 1981

8.6. "Two phase hP computedM R. Soliman Hydrocarbon Processin)! April 1984

Soil 1.19 concrete 0.65 - 1.19

Wet soil 4 9 sand(dry1 0.30

Ground -> air 2.98 sand (wet) 1.C9

Grwnd --> water 29.8 Air 0.022

Stee l 38.7 Water 0.5 10

Epoxy coating 0.67

Caai tar 0.22

r

Page NO. :

11.8

TOTAL PIPELINES Revirion : 0

Date : 2/85

4

ri 2

Specific heatso f '*-.Htlwa-- *

* DI - rn b ) l m . u t 4 1 1 n I J P I m *I

'5 1

loule-Thornson coefficient'

I

r m.*-- \

0 PI ra Pr ~.mol*l .rol lml.IDP2.OPI -c

Page 166: Total Company Process Eng Design Manuall

12, PACKAGE UNITS

- TOTAL TCPIDPIEXPISUR 4

PROCESS EHCINEERlNC DESIGN MANUAL R.risim :

bat* : 885

P q r No :

Page 167: Total Company Process Eng Design Manuall

- TOTAL

TEPIDPIEXPISUR . I. APPLICABILITY

For many studies undertaken there wifl be a requirement i o r 8 gas or liquid dehydration unit i n ardcr to reduce the water content of the export phase to acceptable l imits for pipeline

transportation. Generally this design wil l be undrrtaken by a vendor sperialist. However the

engineer should be aware 01 some of the options available for dehydration schemes, some of

the dos and donts of design and also how to undertake the basis slzlng of the most common

unit (TEG). The majority of this section i s concerned with gas dehydration using tri-ethytene

glycol contact, this being the most widely used.

2. GENERAL DEHYDRATION NOTES

(English units ate used throughout this section for convenience)

, Gas is normally dehydrated to 6 to LO lb af H20 per MMSCF in order to prevent hydrate

formation in gas tranrmlssian lines, and reduce corrosion. Unless the gas is dehydrated

liquid water may accumulate at low polnts and reduce the flow capacity of the line.

Methods of dehydration i n usage arc :

I. Adsorption (Alumina, silica gel, male sieve)

2. Absorption (di- or tri-ethylene glycol)

3. Direct cooling

4. Compression followed by cooling

5. Chemical reaction (for method injection see 4.0)

The last three methods have minor usage and are discussed elsewhere in literature.

. A sumr, y of the advantages and disadvantages of various absorption liquids i s given in

Table 1.

Tri-ethylene glycol is the preferred (mast widely used) absorption liquid. Example

flawsheets of di- and tri-ethylene glycol arc given in Fig. 1 & 2.

. In order to limit the overhead glycol losses a max practical operating temp of 38 *C (100

'PI is used. A maximum of 50 'C (50 @ F ) i s recommended to prevent problems due to t h t

glycol viscosity.

. Glycol losses arc usually in the order to 0.012 gaIfMMCF (0.0016 r n 3 / ~ ~ r n 3 ) due to

vaporisation and loss in the overheads. Total lossea due to leakage, vaporisation,

mlubility run around 0.025 gallMMCF (0.0033 r n 3 1 ~ ~ r n ~ ) .

. Concentrations o f TEG upto 99.1 % can be acheived without the use of stripping gas. For

higher purities gas wi l l be required.

if?

-

DEHYDRATION

Revision : 0

Date : 2/85

Pagt No '

12.1

Page 168: Total Company Process Eng Design Manuall

TOTAL ~EPJDPIEXPISUR

. Glycol foams in the presence of light hydrocarbons. This can be minimised by goad feed prescrubbing and addition of anti-foam agents.

. Actual gas ex i t dew points are usually 10-15 'f (5.5 - 8 'C) above the theoretical

equilibrum dew point. Take this into account when setting the specification.

. The number of trays (or packing height) is usually small I 4 trays) an excess of either is

always provided in the design. Recommended efficiencies are 25 % lor bubble caps 33

113 % for valve trays. Use 24" tray spacing*

, Regenerator temperatures should not be above 400 'F (204 #CC) at atmospheric pressure

in order to prevent glycol degredatjon. Limit heat flux to 5000 - 7000 BTUlhft2, aim tor

6000. Provide a t - least ZOO0 BTUlgal pump capacity.

. To prevent hydrocarbon condensation i n the glycol feed maintain the inlet temperature

at 10-15 'F (5.5 - 8 ' C ) abave the gas exit.

. Regenerator s t i l l column should run at 220 'f (104 'C) a t top to prevent loss 01 glycol

but maximise water rejection.

. Glycol clrculation rates should be between 2-4 gall/lb t i 2 0 removed (3 i s a good

number).

3. PRELIMINARY SIZING CALCULATLONS

An exact sizing of a TEG unit will normally be performed by the vendor on request. The

CFP lnhwse program "GLYCOL" also exists Ior estimating vessel sizes, circulation rates

and ut i l i ty consumptions. These arc based on data from the B5+0 design guide. The

following hand method can be used however to estimate the required size :

1. Determine water content 01 inlet gas to contactor a! required temp and pressure Fig. 7 Ibs/MM5CF, k g / ~ ~ r n 3 .

2. Calculate total water mass in feed gar to contactor

3. Repea: nlcuiation lor exit gas using required exit dew point (add 10 "F contingency). Calcula. dew point depression 'F, 'C.

b. Calculate amount of water to be removed in contactor.

5. Use 3 galls f E G / l b H Z 0 evaluate glycol circulation rate.

6. Use Fig. 3 to determine required TEG concentration. % Use Fig. 0 t o determine required stripping gaa rate

7. Use 2000 BTUlgall TEG circulated to determine rcboiler capacity.

188'

Revision : 0

Date: 2/85

DEHYDRATION Page No, :

12.2

Page 169: Total Company Process Eng Design Manuall

TOTAL TEPIDPIEXPISUR

8. Use Fig. 6 t o determine number of trays required in contactor

and Fig. 5 to determine contactor diameter.

9. Evaluate contactor height (set section I vessels) include integral KO pot in base of

tower. Hence estimate weight of contactor.

A more detailed sizing method can be found in CAMPBELL VOL 11.

4. METHANOL IN3ECTION (HYDRATE INHIBITION)

In order to prevent hydrate formation in gar transmission lines the product is normally

dehydrated in s TEG or mole sieve unit as defined in previous sections. On some occasions

however (wellhead to plant) this is not possible due to the location of the source. If the

minimum pipeline temperature is below the hydrate point the inhibition of water i s required.

This is acheived by infection of inhibitors to depress the hydrate and freezing points.

. Common inhibitors are methanol, DEG, TEG. R ~ C Q V C ~ ~ of inhibitors a t the receiving

plant ir normal, the liquid being then recycled. Econamics of methanol recovery are not favourable.

. Methanol i s adequate for any temperature. DEG not good below - 10 *C due to viscosity

Limitations. Above - 10 ' C better as lower vaporisation losses.

. Predict injection ra te for hydrate depression as follows :

W = d M 100 W = weight % inhibitor K i + d M

d = 'C hydrate depression

M = Mol w t of Inhibitor

Kt = 1297 for ,Me OH

2220 for DEC, TEG

. TO uw ve equation : 1. Predict hydrate formation temp at max. press in line TI 2 Estimate rnin flowing temperature in line T2

3. d r T I - T 2

The amount of inhibitor injected must be sufficient to depress the hydrate point as

calculated above and also provide !or vapour and liquid phase losses due to vaporiwrtion +

dissolving. Adjust injection rate accordingly. For glycoI use 0.0035 r n 3 / ~ r n 3 (0.23

I~~MMSCF) , vaporisation. For methanol use vapour pressure charts (CAMPBELL pp 159).

/ST

Rewislon : 0

pate: 2/85 DEHYDRATION

Page No. :

12.3

Page 170: Total Company Process Eng Design Manuall

TOTAL TEPtDPlEXP/SUR

5 SOLID BED DEHYDRATION

Solid bed dehydration is used when lower residual water concentrations arc tcqulrcd than

the over achieved by glycol units. This is generally around the - 40 ' C mark or 1 ppm

residual water. Solid bed dehydration can be used lor less stringent design requirements

providing the cost is competitive when cotnpared to TEG.

NOTE5 :

. LNG facilities always used molecular sieve dehydration to acheive I pprn H20 or less.

. Available dessicant medium : k~HZ0/100 kg bed

Bauxite 4-6 cheapest

Alumina 4 -7

Gels 7 -9

Molecular Sieve 9-12 most expensive

. Beds can be severely degredated by heavy oils, arnines, glycols corrosion inhibitors,

salts and Ilquids. i t i s essential to have a good feed fi lter or scrubber prior to entering

the dessicant bed.

, Bed life is usually 2-4 years depending on contamination.

- Gas flow through the bed is generally downwards. Regeneration gas flows upwards. This ensures the water is stripped from the media without having to pass a l l the way t h r ~ l g h

the bed.

Figures 8 and 9 show a typical molecular sieve arrangement.

Regeneration temperature is usually 175 "C - 230 OC. Too high temp destroys the

media, too low results i n poor regeneration.

Table I gives a summary of operating and regeneration practices.

6. USEFUL REFERENCES AND LITERATURE

6.1. ~ A M P B E L L V O L I I C H A P T E R S ~ ~ A N D ~ S 6.2. HANDBOOK OF NATURAL GAS ENGINEERING, KATZ, Chapter 16

6.3. PERRY

6.4. GAS DEHYDRATION "Fire tuning existing f leld installations"

D. CRAMER - World O i l - Jan 1981

63. "Cutting glycol costs I" C. SIMMONS 0 + C3 Sept 2 1 1981

"Cutting glycol costs 11" Sept 28 19111

6.6. "Correlation eases absorber-equilibrum line cales for TEG natural gas dehy4ratian"W. DEHR 0 + 93NOV 7 1983

1 Yo -

DEHYDRATION Rtvision : 0

Date: 2/85

w

Pmgs No. :

12.4

Page 171: Total Company Process Eng Design Manuall

TOTAL TEPIDPIEXPISUR

PROCESS ENGINEERING DESIGN MANUAL

DEHYDIUTION

v r n CCYT a v c a n WIMT

no. g no- *tar b h i a h y l w m glyml ddtydrerian plant i C o m M omd lwrmrw.

TABLE 1

Revirion : 0

Date : 2/05

.

--

Fagr No :

12 ,5

. LtWlD

C.IC1- Chlor14.

L L ~ L I P cU.111.

10-xr p*.c.nr M U 00-11 ?.rr*.r WC 3-10 l m r = * m * Umt-r

Di.lh,L-. Clw-1

I I

/

s r m u ~ ? a wm*cu IAD D r s w w w m r

MVMffiU

nu, l y h l v p l ~ l l

U#i c.pst1ty 1.1 UI.~ b. =.=...I.. I.*. k t b71rmlit14 l l m i l f kr wht I=l.mm.L.. 1.-Y'C

t-v.. e*. .IS -tw . l a l r - *a ro l~ .

Ol?col r4doc.e L o n - i m ~ cI11wL.. .I -1". D.h~dt.t.. 1.1 pu~%fi.. I.. 1. a. o w . l l n .

Lubl. IS ..lIdih is c o 5 ~ 1 r . c d

wlrcm. IC.bI. L. p.m.-. d .UIlrrs

a n t - .rl c q .I u-1 e+.r*tw ta?-mtw-.

mwr brr-.r* Can? wn I. uii

b*. n m l U i I ~ im .m.emcr.s*4 1 1 m t h .

Bnmbb Is V.UY* 01 o r i t u . EW- 1.1 cq a t w r u l 0p.r.t1.# i"~.t.*.....

I IBh I? hY11.rm.lc mai l l r.ll.rmt.4 c- It yr -

C"t U I " t h . C.*q l.t -11 llmh i.r v1.c 1.~~10111

- urarrrm rxwwr

D I Y W U I * D U

bullltl.~ I i c b e l l , Cerrmd.m ~ 1 r r r r s l ~ ~ l c . l l ~ la" I.. pll. I.p.I..II hlr*mn rdlU.'lsru 11.=1piI.Imm

t.pemair= l.1Y1.1.. Y ~-.rej.l 11.1.. . ,...

<a~rm.l-.

Ciur.r sarrl n . r rk.. r l tb rrhthrl... mlrmel.

L 1 d z . d 1.r i r ~ r t i s a l puxpom*m I. mnmr I.. l.bllr.mim. r r himh rq.a.*.rlam chp.r*tur~. me.4.1

rmrra.1r 1. p rmb lu . D.I pist d.pr.111m 1. 1hLt.l a.1 1.~.

t h e lie t=b t h r l w 117~m1.

Calr, e m # w u t r lh lm r i l h t r l m t b l n a t11101.

nt -.I a -1 rtrnt s a l n l r r r ir & l o t w o 4 m#.U?.

k. ,.Id i .,..., in I... th.. .I,b t s i m * w ~ - s mimm~

namb i m i r v l *em&

li'h l m i 1 h 1 a w l w i b i t m so- r-mi., t-d*=, is ~ t u . =a

-1 Itmhr L l l t a c ~ t b ~ Ilqrli.. b- f ~ m l m m *IWL mu*= -ltll* b1 14dd.

!

!

I

Page 172: Total Company Process Eng Design Manuall
Page 173: Total Company Process Eng Design Manuall
Page 174: Total Company Process Eng Design Manuall

I --

unm err w m . *C

I I ~ Y ~ . 7 r a n t ca.rm< or wm. m * r s t u r - l -9. 1 . .. -.- ../.

I q4

Plgb No :

1 2 . 0

a f 10unt 0

I IAYDOR I*CI(INC RrOUIRIO TOR OLlCOt D E H I O M T O R S

Rtvision : 0

Date : 2/85

TOTAL TEPIDPIEXP/SUR

PROCE5S ENGINEERING DESIGN MANUAl

DEHYDRATION

Page 175: Total Company Process Eng Design Manuall

I

I rm Y

U

Y

IM

-. 13l

TOTAL ~ E P ~ D P ~ E '{SLIR

m a w r m m

1

I

I

I

8

f t 4 r ) U 3 Basic Charmtteriattc~ Of Kolecular Sieve*.

om* SAI

I E C I C L E O QbI CObPIlEiSDI

F,Cdkc q I C Y t Y N K OllO.lY O? YOLCCULLfi l l l V l fiV10.p11m

/ # r

PROCESS ENGINEERING DESlON MANUAL

DEHYDRATION

fnml ct , , n(dl.m

I0 hlb* R YIWWW~ -a I WIHVIII .nh ulw ca.nvn*h I. llm* h l m L m w l m ! m l l b h t 1tmr8 IJI hwq I* I I C ~ ~ k k :: ilmln<18 *- >I8 r lrhrtrlhallr I n ( t l N ; I*IttLI. 1Irn.IICmlm"L .(

' t 1 ELM *a i rm, w IW* I , 1 l b l U I * l M l * I.. ,."i.lmy HI1 d

I I nnrmm i m l l ,

- I rmwr mllrnm mlo~vllt I

Revision :

Date : 2/85

1 . r

h e 1 1 1 . 1 I,**, warn

Pngo t4a *

12.9

n.p

ii IP

11111.11 I . , W Y *

m~*r l r . . , ~ M M I r r n ~ 1 1 ~ m

)odn I11G.m h k m I I C ~ h m l t

n.~.rm !w*n mn n r m r n rrmln a , r n w < ~ j*m11*>1 r . l l " l m ~ * !u#lanl, rrmy ldmi { * I ow **I I

:

tu r w r * M r Sornmm-W r ~-WIII*LIC.*I. rmrlu(Wmmm r s l l m u h n u = b . r , I l k Y W la- . r d r.mn wn vie d w l h * l * l W y h Y h " " l h l I* M.

11 11 I J I s

<I* I n,, . " * c m "n *,whdId -u C(m,..llw-h .*im m umw ,,lma. w 1111 rrmnn-aeq Y l l , r * h C I*ICL

hkd.. r l h I U & h l evP n - r .lhrtn 1 . ~ 1 ~ ~1 / a-tm >I ~ U W L II m l l r m . 11.

' W C U I D 4 1 " ' ~nl l. ell,." .U." 11111

h l d r n n m * wdlh hm Drrrhadam L CFIW LV ~l#lt(wlt l h P m * l 11*111

C.hnl.P- , 11.11 I I

Page 176: Total Company Process Eng Design Manuall

TOTAL TEPtDPtEXPISUR

1. APPLICABILITY

Generally natural gas, or associated gas contain acid components, mainly carbon dioxide

(C02) hyi :en sulfide (COS), carbon disulflde (CS2) and mercaptans.

To obtaln a commercial product, gaseous or liquefied, the gas needs to bc treated t o

eliminate these sour components for safety or process reasons. An other aspect of gas

sweetening is linked with the development of the C02 injection to improve oil recovery. In

this case C01 is extracted by a selective process. This section details different methods

available for gas sweetening and lists their advantages and disadvantages. Guidelines are

glven on which system to select lor specific services.

A detailed sizing method i s beyond the sccpt of this section, but can be found in the

referenced literature is required.

2. UNIT

The specification of treated gas can be given in grains/lOO SCF for H2s or sulfur content

1 gralnllOO SCF r 16 ppm volume

3. GAS S WEETENINC PROCESSES

Various prwrcsscs a r e available :

- chemical absorption - solid bed adsorption

- phy slcal absorption - cryogenic fractionation

- chemical conversion using catalyst

the absorption process b the most utilised

3.1. CHEMICAL ABSORPTION

In this type of process, the chemical solvent absorbes the acid components present

in the feed gas by chemical reaction and releases them by heating at low pressure.

T.he main chemical solvents a re :

Aqueous ?6 normally - - f h t Alkanolamines used cwt) - . MEA (Monoethanolamine) 15-20 . DEA ~Diethonolomlnc) 20-35

. DCA [R) (Diglycolamine), {FLUOR ECONAMlNE) up to 65

MDEA (Methyldiethanolamine) 15-30

. DlPA (Diisopropanolamlne), (AD]?) 30-50

- or alkaline salt solutions as potassium carbonate KzCOj 25-40

14 6

GAS SWEET ENINC

. Revis iMl : 0

Date : 2/85

PageNo.:

12.10

Page 177: Total Company Process Eng Design Manuall

- page Ida. :

12.11

. TOTAL

TEPIOPIEKPISUR

Alkanolamincs cannot be used undiluted because :

. I -c t o solid s t a t e a t ambient conditions

. lo gtability et high temperature (heating is needed to extract the absorbed acid

gases) wlth generation of highly corrosive products by decomposition.

Table 1 shows the advantages and disadvantages ol these p r o c t s ~ s .

3.1.1. MEA PROCESS ( x e figure 1)

MEA solution was the first solvent used and is still widely used. Generally a

I5 % weight solutjon is utilized.

a) Advan ta~es

- high reactivity - low solvent cost

- good chemical stability - publicly available (no licendng fees)

b) Disadvantaftcs

- irreversible degradation into corrmlon products by sulfur components

such as COS, C52 - trreversible degradation lor the salvent by oxygen (Direct contact with

air must be avoided) - ineffectiveness for removing mercaptans

- high utility requirements - high vaporisation losses

- need of reclaimcr t o purify the circulating solution

- no selectivity far absorption between H z 5 and C02

- foaming problem

C) Fields of utilization

- general use : MEA can be utilized for gases conraining from 60 ppm to

I5 % volume acid gases without COS, CS2, mercaptans and with acid

gas partial pressure up to 100 PSlA currently maximum capaclty for a

MEA unit is around 250 ~ 1 0 6 SCFD.

3.1.2. DEA PROCESS

The second most wldely used gas treating process with a tcndancy t o replace

the MEA process and some improved processes.

Flow diagram very similar t o MEA process without rcclaimer.

14 -7

GAS SWEETENING

nevirion : 0

act* ! 2/15

Page 178: Total Company Process Eng Design Manuall

TOTAL TIPIDPIEXPISUA -

a) Advanta~cs

- no degradation by COS and CS2 (hydrolysed into C02/H25} - a significant amount af the light metcaptans present on the feed gas

is absorbed

- a good chcmlcal stability - no need for a reclaimer

- a very low absorption of hydracarbons - reduced vaporisatian

- publicly availabIe losses

b) Disadranta~es

- lower reactivity compared to MEA and thus higher circulation rates

lor the conventional system (Not applicable to SNEA-DEA process) - an irreversible degradation of the salvent by oxygen and HCN

- hlgher utilities rtquirelnents - no selectivity lor absorption between H2S and C02

- foaming problems

C) Fields of utiiization

The DEA process i s used to treat gases containing H25, COZ and also

COS, CS2, RSH (up to a total acid gas content of 20 % volume)

Hz5 content of the treated gas lower than the normal specification

requirements 14 ppm volume) can be achcived. The CO2 content of the

treated gas can be as low as to I00 ppm volume. Performance of the

process depends on the C02/bi~S ratio in the feed gas.

dl Improved DrDceSSeS

I. Spli t flow (see figure 2 )

For sour gases w i t h high acid gas content (above 25 % mole), DEA

f low rate can be reduced. Investment cost increases significantly

(more equipment, complex columns, increased regenerator height).

2. SNEA - DEA process.

SNEA company has developed a pracess using a hlgher concentration

of DEA (above 30 % wclght).

The process licensor claims to give In one step, for gases containing

0 to 35 % of Hz5 and 0 to 35 % of COz, a treated gas matching the most stringent H ~ s spe~ii ication (4 pprn by volume).

1qr

GAS SWEETENING Rrvlrion : 0

Date : 2/15

Page NO, :

12.12

Page 179: Total Company Process Eng Design Manuall

TOTAL Revision : 0 Page No. :

GAS SWEETENING TEPIDPIEXPISU~ 0ate : 2 / ~ 5 12.13

3.1.3.DIGLYCOLAMINE (DCA) PROCE55 (FLUOR ECONAMINE)

The DGA process has a limited number of units compared wi th MEA and DEA.

Although in the public domajne, the process was developed by FLUOR and is refered to as the FLUOR ECONAMINE process advantages and disadvantages

to compare with MEA arc :

a) Advantages

- low solutlon circulation rate due to the concentration (same absorption

capacity as MEA)

- low uti l i t ies consumption

- very low pour point (-b0.F) - Plants in cold climate areas

b) Disadvantages

- needs cooling of the solution during the absorption phase - high solubility hydrocarbons and aromatics are dissolved

- high solvent cost.

c) Criteria of selection

Like MEA, DCA reacts both w i t h C02 and CS2 and a reclaimer is required. The process is applicable to gases with acid gas content from

1.5 to 30 % volume and CO~/HZS ratios between 300/1 and O.lf1 a t

operating pressures above 15 PSIC.

3.1.4. DIPA PROCESS

This process has been developed by SHELL under the ADIP trademark name.

It is characterized by the selective absorption of H2 S in presence of Cot-

3.1.5. MDEA PROCESS

As with DIPA, MDEA is characterized by i ts selectivity for H2S i n presence

of C02.

MDEA processes arc proposed by process liccnaors :

- SNEA (Dl

- UNlON CARBlDE : UCARSOL

lr Y

Page 180: Total Company Process Eng Design Manuall

TOTAL TEPIDPIEXPISUII

3.l.b.HOT POTASSIUM CARBONATE PROCESS (see figure 31

A n activator specific to each process licensor is added t o increase the

reactivity o f the ~ l l u t i o n

- BENFIELD (amin@ m d other activators)

- CATACARB (aminc and other activators) - GIAMMARCO-VETROCOKE (arsenic and others activators)

The main characteristic of the process is that the absorber and the

regenerator operate a t the same temperature (1 1011 15'C)

a) Advantages

- no degradation by COS and Cs2 which are hydrolysed

- goodthemical stability - no need for a reclaimer

- no reaction with alr - low heat requirements (isothermal) - low hydrocrarbon absorption - selective C 0 2 absorption

(GIAMMARCO)

bJ Disadvantages

- licensing fees required - high water content of treated gas

- low reactivity with M2S - no mcrcaptan absorption

c) Fields of uti l ization

Applicable mainly on gas wi th high C02 content. Low H2S absorption

makes it dif f icul t to achieve specification of 4 ppm voiume.

Generally a two stage process wl l l be used

- K2C03 for C02 removal - arnine lo r H2S removal

This dual system (amine / K2CO3) can be in some instances more

attractive cost wise than an amine process

3.1.7. CONSTRUCTION MATERlALS

Carbon steel generally utilized in the chernical absorption units.

Regenerator can have a strainloss steel cladding and trays. Rtboller tubes

can be stainless, but s t i l l subject t o corrosion. Monel is an alternative by

costly, copper alloys shall bc avoided.

2 00 h

GAS SWEETENING Reviston : 0

Date: 2/81 -

Paga No. :

12.1b

Page 181: Total Company Process Eng Design Manuall

TOTAL TEPIDPIEXPISUR

Generally solutions treating gas with high C02iH25 ratio wi l l be rnorc

corrosive.

When the C02/H2S ratio is high, 3tainless steel w i l l be preferred far the

following equipment : amlnelamine exchanger tubes, expansion value

internals, regenerator trays and rtbailer tubes.

3.2. PHYSICAL ABSORPTION

In i type of process, the solvent extracts the acid components by simple physical

cofltc t and releases them by simple expansion at low pressure.

High pressure and low temperature favour the physical absorption. Table 2 l i s t s the

advantages and disadvantages of physlcal solvents. These processes are applicable

especially in the case of high acid gas partial pressure (above 5 bars also).

Not suitable lor sweetening at low or medium pressure (10 bars abs) gases containing

large amount of heavy hydrocarbons. Can be considered for a selective absorption.

The main processes a r t :

3.2.1. WATER WASH

Can be used as primary treatment. For absorbers water wash can be achieved

by addition of trays in the top section.

Because of Its low efficiency, water wash should be used mainly on gases with

a large amount of H2S. Corrosion problems for this process should be

considered carefully.

3.2.2. SELEXOL PROCESS (see figure 4)

- developed by NORTON CHEMICAL PROCESS can be applied to gases

with large acid gas content.

- has been applied for sweetening of gases containing up t o 65 % of C02

and 9 % of H2S at pressure ranging from 25 to 100 bars abs.

- treated gas specification can reach 0,02 % C02 and 1 ppm W2S. When

used to absorb selectively H2S or C02 it can also dehydrate.

- other sulfur compounds (COS, mercaptans) are also eliminated.

do 1

Revis8on : 0

Date : 2/85 GAS SWEETENING

Page No,,

12.15

Page 182: Total Company Process Eng Design Manuall

TOTAL TEPIDPAXPISUII

3 . 2 3 FLUOR SOLVENT

- developed by FLUOR, propylene carbonate is used as the solvent

- primarly intended for t he removal of C02 from gas containing up t o $0 %

volume residual CO2 content arwnd 1 % volumc in treated gas.

- C02 solubility is higher than tha t obtained with MEA or potassium

carbonate.

- c a n bc used to treat gas containing Hz5 and C02. H2S content would

require a iinlshing t rea tment douwstrcam to obtain 6 pprn of H25. COS and

rnercaptans a l so absorbed.

- requires an extensive use €rotating equipment.

3.2.4 PURISOL PROCESS

- proposed by LURGI uses n-methyl-2-pyr-rolidone as solvent

- ss t h e scrlubility of Hz5 is higher than COZ can be c~nsidertd a s a rclective

precess t o remove H2S even in case of low H2SICQ2 ratio.

3.2.5. RECTISOL PROCESS

- developed by LURttl, uses a refr igerated solution of methanol as solvent.

High s e l c c t i v i t ~ lor C02, primarly used on synthesis gas or on p r e c w l t d

gas (cooling by an external refrigerant cyc l e for example).

- major disadvantage of t h e process, when not in tegrated in a plant already

equipped with refrigeration cycles, needs refrigeration and methanol

injection.

3.2.6. ESTASOLVAN

Developed by F. UHDE GMBH uses trl-n-butylphosphate as solvent. Selective

process for H2S extraction. li C02 specifications on the t r ea ted gas ate

stringent, addit ional unit downstream wi l l be required.

3.3. PHYSIC0 - CHEMICAL PROCESSES

3.3.1. SULFINOL - th is process has been developed by SHELL

- involver a physical solvent (rulfolant) and a chemically reactive agent [DIPA alkanolarnine) in aqueoLls solution.

GAS SWEETENING

Rrvisi~n : 0

Date : 2/83

Prge NO. :

12.16

Page 183: Total Company Process Eng Design Manuall

GAS SWEETENING

TEP/DPiEXPISUR .+& ------ ------r*-rrrrr.....-.-- -..,.- -. A -.--.--

Sulfolane permits deep absorption of C02 and H Z ~ . Arnir~e facilitates the

extraction of the acld gascs from solvent during repcncration - performances for selective and non selective kt25 absorption depends on

operating conditions - process also permits extraction of mercaptans and other sulfur cornpounds

(C05). As tor physlcal absorption, absorption of heavy hydrocarbons

occurs (mainly aromatics). Does not d9hydratc the treated ias. Compared

to smine processes, SULFINOL shows a low foaming tendency - SULFINOL solution freezes at about -2.C.

3.4. SOLID BED PROCESS

3.4 h4OLECULAR SIEVES

- not widely used for gas sweetening - can be used as a finishing treatment to remove rnercaptans - absorption in molecular sieves is particularly well adapted for LPG as

finishing treatment to obtain the sulfui content specifications of propane

and butane

- good absorption capacity for Hz5 low for C02. They retrlove water

preferentially - sieve l i fe is reduced for gases with high C02 and Hz5 content

3.3.2. IRON SPONGE PROCESS

- could be also classified as absorption process or as a conversion process

(Hz5 is converted to sulfur) - mainly applied to gas with low H2S content

- discontinuous process, iron oxide has to be regenerated or replaced.

Spontaneous combustion of the fouled product occurs wi th air.

4 CRITERIA FOR SELECTION OF ABSORPTION PROCESSES

- there is no multipurpose process for gas sweetening, each case is specific and shall be studied accordingly

- final selection is done on the basis of ccor~ornical cri teria from short l i s t of prwesses

which seem appropriate to satisfy the treated gas specifications

d c.2 - --- -

Revision : * Date : 2/85

PrgeHo. :

12.17

Page 184: Total Company Process Eng Design Manuall

-

TOTAL TEPIDPIEXPISUR

k

- chemical processes are characttrizcd by their abil ity to absorb acid gases w i t h a Low

influence of the gas pressure. They require a large heat quantity for regeneralion - physical processes performances are more dependent on gas pressure. A t high

pressure with high acid gas partial pressure, the absorption is better than l o r

chemical processes

- selection cr i ter ia listed herebelow can be used for preselection of sweetening

processes but shall not be considered as definitive.

4.1. C02 ABSORPTION (NO HtS 1N THE GAS) (we figure 5)

4.2. SIMULTANEOUS ABSORPTlON OF CO2 AND H2S (see flgure 6)

Q.3. H2S ABSORPTION (NO C02 IN THE GAS) (see figure 7)

This is not e frequent situation with natural gases.

4.b. Hi ELECTIVE ABSORPTION (H25 AND C02 IN THE GAS) (see figure 8 )

Physical solvents are particularly welt adapted in this case.

Among the chemical proccsscs, only MDEA and OlPA seem to be adapted for this

service.

5 REFERENCES AND USEFUL LITERATURE

(1) Natural gas production transrnlssion and processing

F.W. COLE, D.L. KATZ, L.S. REID, C.H. HlNTON

(2) Gas conditioning and processing [volume 5) gas and liquid sweetening by

R ~ B E R T N. MADDOX edited by JOHN M. CAMPBELL.

40'1 i

Revision : 0

Date: 2/89

GAS SWEETENING Psge NO. :

lL l l

Page 185: Total Company Process Eng Design Manuall

FIGURE 1

YE). P R O C E I I

?Lor DILGRIY

i Page NO

12.10

Revision : 0

. 2/85 Data . TOTAL TEPIDPIEXPISUR

PROCESS ENGINEERING DESIGN MANUAL

GAS SWEETENING

Page 186: Total Company Process Eng Design Manuall

xIt#nl i . c m n e ~ t el i h r q w . r L n y pr ts rwe m rh* RiL loam69 when ihr $alutom t i ~ ~ l l ~ l ~ d l h ~ o r f f ~ r b o n l .

~ r r n r v t I ~ L pnw!lw .~sw"ded 5011d11

v t ry slicnt ~bgorpt ion 01 h r w y hldroc~rbonb ~a,8blv Corr~mnm problems resvl t in~ 1r.m ~elulbon o.~allmbn l cm11~1 w l l h

w r ~ c n l 80 !he feed all ,if) a irom mlvrlon ~lp*rhc.ain~ hlrmng rtFtnrr*loen.

r larr -1 i h r I*W~%ICJ availnbb ir the mhblic oomlm Pure ..I+, tequmrrd to dilvlr !he mlv-nl Irm trrcnMn# I t r r )

.lcmd #ar l to l~=nr t ~ u i l i b r i ~ n 4.1. .~.ll.blr in the Hilh *.re, c m l m l 01 lh r ~ r e a l t d 11s I l t lC~aIw.

i i l ~ 4 ~ 0 ~ b l t cog1 01 m l r m l s H~.tin@ r m u r t d lor wlrefil 1101aEe.

TABLE 2 PHYSICAL SDLVLNT~

D V ' t G E I @~SADVANTAGLI

Pnye No :

12.20

. Low e r u r l y tequtrrment? !or . n l l h iml tb i l i l y .s a d d 81s ~ r t i a l

te#emwariam p r r ~ ~ u r l

h

TABLE 4

AOYANThGCS CNn WlAPVhHfAGt5 OF AnwPP7KYI PUC€€S5Ef ..I CHEMICAL JOLYLH~

ntvllloll :

O a t : 2 / 8 5

TOTAL T EPIDP16XPISVR

I . L e r rmrr r rm len t of thv . 4bim~1ia.sI hraw hlrdrcc.~lrbom

!remt*d 8,s lram the 1e.d 8 I j

PROCESS ENGINEER~NG DESIGN MANUAL GAS SWEETENING

I . Vo healin# required lor wlrent . Highcssr 01 lhe %ol-*nn

, I a rq r

Page 187: Total Company Process Eng Design Manuall

-- Page No .

12.21

- TOTAL PROCESS ENGINEERING DESIGN MANUAL

GAS SWEETENING

TEPIDPIEXPlSUR

.el0 *.I I mamum

u e " Y Y L . I o I

nut" u,. I l l lL".!

1011 IOI *

8 . ~ ~ 1 OCI .11*..1n ~ 1 0 1 N I U V ~

IWI C I S

11EA" I M O T C A l l B O N L T € PROCESS

FIGURE 3

RESIDUE G A S n2$ 6 AIR - - COMPRESSOR

4 HEATER 4

FUEL

aBS0RBER STRIPPER

'ICET G A S P I R -

COMPRESSOR

SOLYEWT VENT

M O L PROCESS FLOW FOR HlGW GOl AND MIOM HIE

FIGURE 4

Revision : 0

Datr : 2/85

Page 188: Total Company Process Eng Design Manuall

.- TOTAL PROCESS ENGINEEllNG DESIGN MANUAL Revision : W

W\S SWEETENING TEPIDPIEXPISLIR Dale : 2 / 8 5

Page 189: Total Company Process Eng Design Manuall

Psgc No :

1 2 . 2 3

P

Revi*ion : o

Dale : 2/85

TOTAL TEPIDPIEXPISUR

PROCESS ENGlNEERfNG DESIGN MANUAL

GAS SWEETENING

Page 190: Total Company Process Eng Design Manuall

TOTAL TEPiDPlEXPISUR

I . APPLICABILITY

For both fea5ibility and pre-project studies, the engineer wil l be required to select a

process scheme k c . : choice between coid frac and refrigeration system) to estimate the

power, utilities, weight af this package,

2. DESCRIPTION

The description is based on simple cycle. A refrigeration cycle is based on the exchange

between a hot source and s cold source. The cold source is a refrigerant, the air or rhe

water, the hot source is the gas to be refrigerated. (see figs 1, LA)

Figure 1 shows such a cycle where :

t l : Is refrigerating stream temperature

t2 : is condensed refrigerating srream temperature

P~ : is vapor pressure of the refrigerating stream a t t l

P2 r is vapw pressure of the refrigerating stream at t2

Pd : compressor discharge pressure

t d : Compressor discharge temperature Tl /T2 : init ial and final temperature of the hot source

TRlITR2 : initial and final temperature of the coid source

On the figure I A , it is easy to explain the cycle on a pressure enthalpy diagram :

A 91 : is the duty of the process to be refrigerated

A Q2 : is the duty of the condenser

A Q2 Q1 + HP HP i s the power oi the compressor

3- MODIFICATIONS - ECONOMISER

During the. discharge of the cryogenrc refrigerant, a mixed phase is generated (vapor and

liquid). Only the liquid phase participates i n the coding duty. The vapor phase being compressed from low pressure to the high pressure without participation at the

refrigerated duty.

I t is possible to remove a part of this vapor phase by addition of an intermediate pressure

stage removing the vapor from the low pressure stage compressor which is called

economiser (see figures 2 and 2A). An economiser is widely used in the industry.

a i a

Revision : 0

Date: 2/85

REFRIGERATION

Page No. :

12.24

Page 191: Total Company Process Eng Design Manuall

-.

TOTAL TEPIDPIEXPISUR

.

4. SELECTION OF THE REFRIGERANT

Depends on the required final temperature of the hat source and the disponlbility of the

country where the units are installed.

Tables 1 shows the performances of different refrigerants in various conditions.

it is recommcndtd that the compressor suction pressure be maintained abovt atmospheric

pressure.

5. CHOICE OF DIFFERENT PARAMETERS

5.1. REFRIGERATlNC STREAM TEMPERATIJRE t l AND COMPRESSOR SUCTION

PRESSURE P2

tl to be 3 to 6*C lower than the final temperature of the hot source 12.

With the selected refrigerant and t l read on the MOLLIER diagram of the selected

refrigerant the vapor pressure.

1.2. CONDENSED REFRIGERATING STREAM TEMPERATURE t 2 AND COMPRESSOR

DISCHARGE PRESSURE Pd

In first, estimation take t2 : TRl (initial temperature af cold swrce) + I 5 or 2 0 ' ~ .

t 2 to be checked later I f it Is compatible with the cold source flowratc and the pinch

of the condenser [pinch are shell and tube g 3 note 2 ) which should be 3'c minimum.

With t2 determine PZ which is the vapor pressure of the refrigerant at t2 (read

MOLLIER diagram). Cornpressar discharge pressure = Pd : P2 + P through the

condenser.

5.3. PRESSURE IN THE ECONOMISER P,

This pressure wi l l be finalized with the compressor manufacture but for an estimation

take !

p, = P i

d I / .

REFRICERAT [ON

Revision : 0

Date: 2/85

Page No. :

12.2s

Page 192: Total Company Process Eng Design Manuall

TOTAL

1 6. CALCULATION N T H ECONOMBER (a figure 2A)

Revision : 0 Page No. :

TEPIDPIEXP~SUR ,

Step 1 Deterrnlne refrigerant circulation through the evaporator = rn2

REFRICERATION 7-----r - Oate : 2/g5 12.26

/ . W vapor at evaporator inlet =

Hz - H3

% liquid a t evaporator inlet = '42 - '45 x 100 HZ - '43

Step 2 Determine vapor refrigerant circulation rate through the econo- miser = mj

% vapor a t econo~niser inlet = "I - H5 x 100 H4 - H5

% liquid a t econorniser inlet = H4 - H I

H4 - H5

% vapor at econorniser inlet m1= m2 = m2 x HI - H5

% liquid a t econorniser inlet HQ - HI

Step 3 Dctermine refrigerant circutation through the condenser = m

rn= m l + rn2

Step 4 Duty of condenser

A Q ~ = rn (Hd - HI) Step > Calculate the compressor discharge temperature and power (see

compressor chapter).

Step 6 Check the pinch in the condenser and the cold source flowrate ( i f not

acceptable select a new 12 and Pd and repeat the ca1culation).

Step 7 Size drums evaporator and condenser (see vessels and shell and tube

exchanger chapter 5).

Page 193: Total Company Process Eng Design Manuall

TOTAL t€PlDPlEXP/SUR

7. SELECTION OF MATERIAL

The material selection to be made carefully. We recommend t o take the temperature

corresponding a t the vapor pressure at the atmosphere pressure (1.e. : for propane it 1s

recommended to select the law temperature killed carbon steel).

. MULTISTAGE CYCLE

If we look at the enthalpic curves of the exchanger (precess refrigerant) with or wi thwt

economiser, it i s obvlous to see that the area between the process stream and the

refrigerant stream is proportional to the compressor work (in a f i rst approximation).

It is possible to reduce this ar ta by addition of several pressure levels between the discharge

and the 5' 'ion of the compressor. However, there is more equlp~nent (drums, exchangers,

regulation) d the compressor is more complicated. The number of pressure levels is an economical problem but the maximum i s 3 or 4

selections of these pressures: the pressure ratio between each pressure Is for a first

estimation.

7 =ne n = number of cornpresser suction

PI = f irst compressor suction pressure P2 condenser pressure

9. REFERENCES AND USEFUL LITERATURE

9.1. Gas conditionning and processing volume 2 by Dr. John M. CAMPBELL

9.2. Applied process design lo r chemical and pctrxhemical plants volume 3 by Ernest E. LUDWIG

9.3. Chemical Engineers Handbook by Robert H. PERRYICECIL M. CHILTON

21% L

REFRIGERATION

Revision : 0

Date: 2/81

Page No. :

- 12.27

Page 194: Total Company Process Eng Design Manuall
Page 195: Total Company Process Eng Design Manuall

EVAPORATOR

ACCUMULATOR

FIGURE 2A

-__-..-.

b g e N o

12.29

REFRIGERATION CYCLE WITH ECONOMISER

FIGURE 2

Revision : 0

Date : 2/85

, TOTAL, TEPlDPIEXPISUR

PROCESS ENGINEERING DESIGN MANUAL

REFSICATION

Page 196: Total Company Process Eng Design Manuall

Tab

le

1

cOHP

ARIS

ON

OF

COm

ON R

EFR

ICE

WTS

Tap.

oC

Ev

am

ratw

h

nl

a

0 5

.98

6

0.71

6 0.

958

1.26

1.

63

2.09

5 2-

65

3.31

4.

11

5.03

6.

15

1.4

1

Pm

pyl

*lc

0.4%

0.

655

D.YO

I 1.

11

1.13

1.

79

2.21

2.

69

3.31

4.

00

4-82

5.

68

6.62

7

.79

9.

03

3

P~

CIS

UN

P

ropl

na

0.38

t5

0.51

3 0.

614

0.86

8 1

.2

1.41

1

.1

2.

16

2.63

3.

M

3.86

4.

64

5.51

6.

485

7.58

In

hr

s F

reo

n1

2

0.19

8 0.

271

0.36

3 0

.49

1

0.64

1 0.

827

1,

1.

64

2-02

2.

46

2.97

3.

56

4.23

4.

99

-

-

I*

- m

Cm

dcna

ed L

iqu

id T

em

~rr

turc

52'~

; C

onde

nser

Pre

ssur

e *n

Urs

: L

Ro

nig

20.

8B;

Ro

py

lma

21.

64;

Pro

pane

17.

92:

Fr

m 1

2 12

.68

v

n

0

C)

m z n 2

Z

m

m

9 '2 '"

R

Z

z!

Wcn

rcd

liq

uid

Ta

Oc

rrtu

rt 3

5%;

Con

dmse

r P

rosw

e I

n B

*rs

i9m

Pnir

35.5

8;

Ro

py

lw 1

4.61

; Pr

opm

e 12

.20;

Fr

wn

12

8.48

0.20

4 0

.BU

0.

835

1.96

0.95

2 L,

10

. . 1.

03

-1.0

2

0

0.11

0 0.8

21

0.78

8 0.

761

0.19

0 0.

699

0.69

4 1.

10

0.W

0.

485

0.4

9

0.49

0

0.360

0.36

2 0.342

0.36

6

I

0.20

7 0.

894

0.90

3 2.

10

1.63

1.

78

1.77

1-

77

1.22

1.

33

1.32

1.

32

0,20

6 0.

875

O.B

B0

2.05

1.3

8

1.55

1.

50

1.49

1.03

1.

16

1.12

1.

11

4

.

0.20

5 0.

857

0.85

7 2.

01

1.16

1.

31

1.25

1.

24

0.86

5 0.

977

0.93

3 0.

925

0.19

3 0.

153

0.75

6 1.

81

1.26

1.

20

1.24

1.

24

0.94

0 0.

895

0.92

5 0.

970

0

. .

0.21

1 0.

957

0.98

0 2.

27

2.54

2.

79

2.81

2.

78

1.89

2.

08

2.1D

2.

07

0.2

10

0.

234

0.95

3 2.

21

2.19

2.

41

2.43

2.

41

1.63

1.

80

1.81

1.

80

0.1

91

0.

112

0.7O

B

1.73

0.64

8 0.

647

0.62

2 0.

668

0.48

3 0

.48

3

0.46

4 0.

498

0.19

2 0.

139

0.73

9 1.

79

1.03

1.

00

1.01

1.

05

0.76

8 0.

716

0.75

3 0.

791

0.20

3 0.

912

0.92

5 2.

15

1.90

2.

03

2.07

0 1.

42

1.51

1.

54

1.54

0.19

1 0.

726

0.72

1 6 0.

835

0.83

0 0.

800

0.W

8

0.62

3 0.

619

0.59

1 0.

633

0.19

7 0.

798

0.80

7 1.

96

2.08

2.

06

2.03

2.

14

1.55

1.

54

1.51

1.

60

0.19

6 0.

780

0.78

9 1.

91

1.78

7

4

1.75

1.

83

1.33

1.

30

1.3

1

1.37

0,21

5 1.

41

1-04

2

.U

3.13

3.

66

3.59

3

.61

2.48

2.

73

2.68

2.

74

0.19

5 0,

767

0.77

6 1.

87

1.50

1.

46

1.49

5 1.

12

1.09

1.

11

1.16

0.21

3 0.

980

1.01

2.

33

2.92

3.

23

3-18

3

.20

2.18

2.

41

2.37

2.3

9

0.22

3 1.

13

1.19

2

.7

5.68

5.

96

5.85

6.

25

4.24

1.

45

4.S

4.

66

0.20

0 0.

830

0.85

3 2.

05

2.80

2.

69

2-67

2

6

2.09

2.

01

1.99

2.

L3

0.20

2 0.

848

0.87

5 2.

11

3.23

3.

10

3.03

3.

31

2.41

2.

3L

2.26

2.

47

0.21

7 1.

03

1.07

2.

47

1.81

4.

11

4.06

4.

18

2.84

3.

09

3.03

3.

12

0.22

1 1.

10

1.15

2.

63

4.96

5.3

2 5.

18

5.46

3-70

3.

97

3.86

7

1.17

1.

21

2.8

6.72

6.

60

1.11

5.01

4.

92

5.30

0.19

9 0.

812

0.83

0 2.

00

2.41

2.

15

2.32

2.

47

1-8

0

1.75

1.

73

1.4

0.2

19

1.

07

1.11

2.54

4.38

4.

71

4.60

4.

78

3.27

3.

50

3.

3.

57

1.2

1

1.30

2.

91

7.49

7.

47

8.09

5.59

5-

57

6.

tgm

ref

rig

eran

t pe

r a

lnu

te

prr

ta

n o

f rc

frS

gcn

tlon

Brr

ke h

ovsc

pol*

r p

r t

on o

f rt

frlg

erb

tlm

s ~

ilw

att

~r

ton

of

ref r

tgc

rrtt

a

0.91

3 0.

958

2.28

4.47

4.

3'1

4-9

8

3.33

3.

27

3.72

0.93

9 0.

990

2.35

5.M

) 1.

98

5.10

3.73

3.

72

4.25

- kqn

refr

ige

ran

t p

tt m

inut

e p

ar

tan

of

r e

frlg

cra

tia

n

Bra

ke h

wsr

po*s

* p

ti tcn

of

refr

igc

rbtf

on

Xlloultr pc

r to

m o

f re

frig

era

tio

n

Jam

nia

Pm

pylm

e Propane

. F

rea

n1

2

Am

nia

P

rop

ylac

Pr

opan

e F

rem

l2

Wn

ia

h

py

lan

e

to

pure

F

rco

n12

krs

nlr

R.o

py

le~

R

DW

IIC

Fre

olL

Z

Am

mia

Pr

apy3

ent

Prop

ane

Fre

on

12

LR

mn

l*

Pro

py

lmt

hw

ne

F

reo

s1

2

0.20

6 0.

889

0.92

5 2

.2

4 3.96

3.

87

4.33

3.22

2.

95

2.89

3.

23

0.20

4 O

.871

0.

898

2.16

3.74

3

.61

3;

43

3.19

2.79

2.

62

2.56

2.

83

Page 197: Total Company Process Eng Design Manuall

Refriv*ranl Wvlblr (kR1 mlprutionl I - 2 2 r-113 F-111

Vapor C 1.013 lrrr - 1 ' ~

TOTAL TEPIDPIEXPlSUR

PROCESS ENGINEERING DESIGN MANUAL

REFRIGERATION

Revision : O

Dart :2 /85

P ~ p e M a :

12 .31

Page 198: Total Company Process Eng Design Manuall

13. UTILITIES

TOTAL TEPIDPIEXPISUR

21 q -

PROCESS ENGINEERING DESIGN MANUAL

- Revision :

Omre : 2/85

Page No :

Page 199: Total Company Process Eng Design Manuall

-

Papt No. :

13.1 - 1. APPLlCABlLITY

For both feasibility and pre-praject studies the engineer wil l be required to make an

estimate of utility requirements both in consumptions and equiptnent required.

This section details e few gutdelints and notes on the following utilities :

WATER TREATMENT

UTlLlTY AND INSTRUMENT AIR INERT GAS GENERATOR5

WATER SYSTEMS

FUELS

2. WATER TREATMENT

T h e following details the common used effluent water treatment equipment given in order

of effluent quality :

API gravity settler

. Usually the first line of d e a n up. Simply a settling tank with a top skimmer to remove

any floating oil or debris and a bottom skimmer to remove sludge.

, Effluent quality around 150 microns globules and 150 ppm oil.

. Large bulky items, cannot be used offshore, Either circular or rectangular in design.

. Simple, cheap very common in onshore use.

Tilted Plate Separator (TPS), Corrugated Plate Interceptor (CPJ)

. Widely used both offshore and onshore.

. Uses plate packs, usually at 45* mounted in a tank and relies on gravity settling between

ail + water within the spaces between the plates.

. €[flu quality dawn to 60 micron oil globules and >0-200 ppm.

. Can have problems with high solids content it upstream settling tank i s not installed.

. TPS units are usually used as the first treatment stage offshore.

Flotation units

. Uses induced or dissolved air flotation t o remove any residual solids/oil in the cjlluent.

Works in reverse to a gravity settler (small air bubbles trap debris and float to top of

tank).

2 2 I

>

Revision : O

Date : 2/85

UTILITIES

. TOTAL

TEP/DP/EXPl5UR

Page 200: Total Company Process Eng Design Manuall

-, I

TOTAL TEPtDPlEXPl5UR

Effluent quality better than 40 ppm. Vendors usually guarantee < 30 pprn.

Can be used both offshore and onshore. Usually instalIcd downs~ream of a T PS unit or

API separator.

Filtration (Use for Water injection systems only)

. ~ i l t r a t i o n units either uses media beds [sand, anthracite, garnet, walnut shells) to

achieve water quality or filters (fibre sccks, mesh, stainless steel cage).

. IJrwlly not required for effluent water treatment unless very ldw residual solids

content eniorced by lacal effluent standards.

. More commonly used for water re-injection where high quality, low solids level is

required. Can achieve 1-2 ppm in certaln beds, 10-15 ppm is more common.

Units arc generally cornpacl but heavy due to media bed weight.

. Good pre-fi ltration is required to prevent fouling up of main bed units.

Effluent standards

Listed below are maximum residual oi l content in effluent water for dumping to sea :

NORTH SEA 40 PPm

INDONESIA t MIDDLE EAST 30 pprn

CHINA 20 PPm

LOCAL ESTUARY (river) 5 pprn (European standard)

Process drains, produced water, deck (site) drains [see figure 1)

. Produced watcr may need degassing before treatment. If the amount of dissolved gas is small it may be possible to handle it in the TPS unit.

Deck or site drains normally iluw to a separate sump tank before Qe-oiling. If the deck

drainage is small or produced watcr itow is small, both streams can be combined

through one TPS unit.

. Process d r a l n ~ are normally manually initiated and pass directly to the return oil slop

tank. These drains are generally watcr free.

Always try 3 use gravity iced between units. Pumping can cause e m u l s i o ~ and make

oil-water stparatian harder. Similarly avoid fast flowing lines and turbulent pipe

arrangements.

2 2

UTILITIES

Revision : 0

Date : 2/85

Page NO. :

13.2

Page 201: Total Company Process Eng Design Manuall

TOTP I TEPIDQIEXPISU.

3- UTILITY AND INSTRUMENT AIR (see ligutc 2)

COmpre~fed air is used on plants lor instrument control, turbine and engine strtt-up sod

utility services t g : pneumatic tools, cleaning, etc. :

For turbinelcngine s tar t -up 17 -25 bar supply will be required.

. For general instrument and utility air, compressor discharge around 9 bar is adequate.

. Consumption : use 0.6 scfrn 0.017 rn3lrni1-1) for each air pilot (- valve)

( instrument air) 0.8 sc fm (0.022 m3/min) lor valve pasitioner

generally 1 m31h per valve unit will do as first estimate.

Add 25% to comprcswr capacity for design.

. Utility a i r : consumption is intermittent and difficult t o es t imate at early project stages.

Add 75-100 tc fm (130-170 m3/hJ t o compressor capacity for initial est imate.

. All plants should have 100% instrument a i r standby capacity.

. Utility and instrument air can be supplied from same compreswr or separate ones

depending on capacity requirement.

. Instrument air must be dried befare use. Dew point of air b dependant on minimum air

t empera ture in location of unit. Generally dcssicant bed driers arc used giving dew points

as low as -60°C.

. Size air r t cc ivers to give 10-15 minutes of instrument a i r assuming t he compressor goes

down. Pressure in the instrument air receiver should not f a l l below SO psig (I.> bar g)

during this period.

. For long air transmission headers in cold climates intermediate KO puts may be required.

. An e s t ima t e of compressor and dryer weights and power a r e given in figure 3.

4. lNERT GAS GENERATORS (N2, CO2)

Inert gas i s required in all plants for purging and incrting of equipment. For small

requirements Nz bottles c an be used in racks. This hawever is not feasible for large units

and so gas generators must be supplied. The main types a1 generator in use are :

- cryngeni,~ distillalion of air

- oxygen absorbtian on sieve

- gas combustion

. For nlrrging purposes es t imate capacity based on 3 t imes the volume of the largest vcsscl

to bt lrgtd in one hour.

- 2 2 :

. Page NO. :

13.3 UT1LITIE.S

Revision : 0

Date: 2h5

Page 202: Total Company Process Eng Design Manuall

Revision : 0 Page NO. :

Date: 2/85 13.4

TOTAL TEPlOPlEXPlSUR

. Cryogenic "stillation is used only for large volume requjrtments, $pecifically LNG

plants. Not ed offshore.

. Gas combustion produces a N2, C 0 2 mixture for inerting and purging purposes. Not used

much these days except for onshore large volumes.

. Pressure swing absorbtion is the must common used method for N2 generation. Skid

mounted units are sometimes supplied with dedicated air compressor, or can use

existing plant air compressor for supply. Air consumption is 4-5 times inert gas

production rate, residual 0 2 i n gas is 1-2%-3%.

. Details and weights of common units are given in figures 4 and 5.

5. WATER SYSTEMS

Seawater

. Used for coaling purposes both onshore and offshore. Can also be used as wash water,

sanitation water and feed to potable water units.

. Seawater is also used for f i re water systems but is usually a separate system. The

seawater cooling circuit is normally connected to the fire water ring lor emergency

supply only.

. Always coarse f i l ter the seawater before circulating to the plant. This removes any

debris or rnatine life.

. Treat with chlorine at I - 2 ppm concentration - maintain a residual CL- level i n the

water exi t a t 0.3-0.5 ppm.

. Seawter exit temperatures to outfall canals or drain caissons shouId not be above 40'C

to prevent corrosion.

. Once thrwgh water systems are preferred for small, cooling duties with only 3-4

exchangers. For large duties and number of units where the cost of corrosion proofing i s prohibitive conslder using a closed loop cooling medium system. Cornmon used i s

- 25% TEG in water.

. For cooling medium/~awater exchangers consider using titanium or similar plate

exchangers. These are especially ideal offshore due l o reduced weight and space

requirements.

a 2 6

UTlt lTlES

Page 203: Total Company Process Eng Design Manuall

TOTAL TEPtOPIIXPISUR

Potable water

. Depending on location of plant potable water can be made in sttu or supplied by tanker

lor storage, or taken ditccily from a mains supply.

- For onshore plants most common method of water supply is evaporative distillation.

Problem with these units is size and weight are high and residual T D5 (Total Oissolved

Solids) i s 5-10 pprn. This results 1s a bland distilled water which is not pleasant to drink.

, Increasingly popular now arc Reverse Osmosis units (R01 which art lighter and need less

maintenance than cvaporativt units. Water quality is 400->OD TD5 (World Health

Organization TDS for drinking water i s 500-1000) operating costs of RO unit5 i s

1.5 times that of evaporative distillation.

. Power consumptions : for a 100 gph (0.38 m3ihl unit.

Evaporative Distillation unit IEO) 3.5 kW

Reverse Osmosis (XO) I kW

Vapor Compression unit ( V C ) t 5 kW

. Most common unit ofishorc a t present is the VC unit which i s very reliable and easy to

operate. Unit operates a t 100.C and is more susceptible to corrosion.

. RO units are relatively new, operate at ambient temperature and has lew mechanical

parts lor servicing. Average membrane life is 3 years.

. Consumption : estimate on 50-60 gallons per day per man (0.2 m3)

Storage : allow 10-15 days for oiishorc units

I0 days for onshore remote artas

. Potable water can be dosed with hypochlorite a t 0.4-0.5 ppm to inhibit bacterial growth.

U1astt water and sewage

. Before discharging to rivet, sea, or underground sewage + waste water must be treated

to meet local health regulations prevalent in the area.

. Limlts are imposed on BOD (Biological Oxygen Demand), COD (Chemical Oxygen

Dcrnl-d), coli iorm bacteria count and 75s.

Examp Limits are r bacteria < 200 per 100 ml

T DS 150ppm

BOD < 100 mgll

CL' residual > 0.5 mg/l < 1,O mg/l

2 2 3 - d

Revirion: 0

Date: 2/85

UTILITIES

Plgc No. :

13.5

Page 204: Total Company Process Eng Design Manuall

-

. Sewage is treated by physical attrition, airation and chlorine dosing to 30-41 ppm raw

sewage.

. Provide 15-20 hr retention time for enzymic action to reduce 300.

. Allow 30-50 gall/day per person (0.15 m3) for sev;age, shower, laundry and kitchen

wastes. Use upper limit for hot unsociable climates.

6. FUELS

Diesel - . Used for emergency generators, pump motors and air compressors, cranes, and

alternative fuel lor turbines,

. For emergency equipment pravide individual day tanks sized on providing fuel for 2@ hr

operation.

. Main diesel tank [for fecd to day tanks) should hold 10-12 days supply. This is dependant

an location of plant and normal supply periods.

. Diesel should be filtered t o * 5 Microns. Can be centrifuged to remove residual water

and smaller particles. This is especially recommended offshore where longer storage

times, supply boat debris, seawater contact and poor supply quality can lead t o

operation problems.

. For storage use atmospheric venting tanks with vacuum-PSV vent. Use crane

pedestrals, platform legs or inter-deck space for of lshort storage.

Gas - . Fuel gas is supplied as normal fuel to generators, turbines and any gas driven motors.

. Always pass FG through a scrubber before use. Filter gas supply to turbines 10

10 microns (generally turbine manulacturcr will s t a t e quality required and may InClude

his own filters) - do not rely on this and provide separate treatment anyway.

+ Maintain FG temperature at least 15'C above dew point. Minimum temperature of gas

to be 5'C.

. Common supply pressures a r t 15-20 bar fsome jet engines need 35 bar).

Size fuel g a suppiy on maximum design duty of all users operating. Allow + 10%

margin.

- FC used for flare purge and pilots, ctc., does not need t o be filtered to 10 microns - use

gas strai, ' off scrubber overheads.

&k if -

Revision : 0

Dat t : 2/85

Page NO. :

13.6

TOTAL UTILITIES

TEPlDPlLXP/SlJII ,

Page 205: Total Company Process Eng Design Manuall
Page 206: Total Company Process Eng Design Manuall

Ldyoul plan I a i mn*rrsur

P A h c d r 3 num,r

4 Adwbrr

5 Pmduo buLv wsul

6 sblrrrt

Page 207: Total Company Process Eng Design Manuall
Page 208: Total Company Process Eng Design Manuall

- TOTAL TEPIDPAXPISUR

22 I L ---

- PROCESS ENGINEERING DESIGN MANUAL R#rlrion :

Dote : 2/85

P q e No :

Page 209: Total Company Process Eng Design Manuall

FUNCTION

BRILL 1

The program predicts pressure gradients and liquid holdup occuring during the simultanews

flow of gas and liquid i n pipes;

BRILL I1

This program is specially assigned t o calculate the transpdrt capacity in the case of a mixture of t w o gases.

RANGE OF APPLICATION

These programs were written for the FRIGG pipetine. However, the)' can be used for other

lines, sptciaHy far gas wi th condensate.

TOTAL TEPIDPRXPISUR

REMARKS

The line can be level or not.

The r i sers are calculated.

BRILL 1 takes into account the line temperature profile.

i

Revision : 0

Date : 2/g5 COMPUTER PROGRAMS

. AMINES : Sizing of gas sweetening unit.

Peg@ NO. :

14.1

FUNCTION

This program provides capability for the calculstion of gas sweetening prccesrs using s single aminc (MEA at DEA). It also determines the main equipment characteristics of the unit for preliminary studies.

OUTPUTS

Contactor bottom temperature

Amine Howrate

Exchanger amine/amine area

Contactor diameter (3.5. CONNORS formula) and number of trays

Stripper ref lux drum : height and diameter Reflux ~ w f f p : power

Amine pump : power

RANGE OF APPLlCATlON

The temperature of the rich arnine entering into the stripper is 190 f.

The bottom temperature of the stripper is 240 F.

The default pressure of the reflux drum is 20 psia.

Steam saturated temperature i s supposed to be 250 F.

2. BRILL 1 and I1 : Pressure drop profile in gas and liquid pipes

Page 210: Total Company Process Eng Design Manuall

1 3. FLASH : Equilibrium ~ a l ~ u l a t i a r .

PROCESSING

The program is based around the Peng Robinson equation of state and the API (modified

Lee-Kessler) corr+sponding states method for thermal properties.

Page No. :

14.2

REMARK

This program is not as robust as large commercially available batch simulators such as

PROCESS, but it is very quick, cheap and easy to use.

L%nswers are instantaneous.

The program is self documented.

Revision : 0

Date : 2/85

- TOTAL

TEPIDPIEXPISUR

1 - C O M W L Y : Multi-stage compression unit

COMPUTER PROCRAMS

FUNCTION

This program simulates a multi-stage polytropic compression unit.

PROCESSING

CPSA method.

RANGE OR APPLICATION

The transformation i s assumed to be polytropic,

The number of stages is fired Qr calculated (for a compression rate). It i s possible to input

non-standard components.

The KATZ table glving Z (Pr, Tr) is included in the program.

I 5 GLYCOL : Sizing of gar dehydrating unit

FUNCTlON

This program simulates a gas dehydrating unit using tri-ethylene glycol.

PROCESSING

The gas is countercurrent dehydrated in the absorber using a triethylene glycol solution

which is then regenerated by stripping in a packed column.

RANGE OF APPLICATION

Gas input pressure into the absorber must be between 200 and 2000 PSIA.

Gas input temperature into the absorber must be between 40 and 160 F.

Gas dewpoint temperature must be > - OD F.

Page 211: Total Company Process Eng Design Manuall

TOTAL TEP!DPIEXP/SUR

6. GULF : Sizing of petroleum ptatlorms

FClNCTlON

Estimates and simulates pttroleum platforms.

For preliminary studies, it calculates :

. size and weight of equipment5 [ p r ~ e s s utilities, drilling quarters)

. size and weight of structure and substructure

. cost of the construction

PROCESSlNG

The equation of state used is a modified version of SOAVE REDLICH KWOWG.

REMARK

Oi l flowrate can vary trom 3000 to 300 000 BOPD. The program i s specially adapted for compact platforms [drilling, quarters, production) but can also be used for production

platform only.

The accu y of the weight and cost estimations is respectively about - + 15 % and - + 20 %.

7. HANLEY : Density, thermal conductivity and viscosity calculations

FUNCTION

This program uses the HANLEY equation to calculate density, thermal conductivity and

viscosity of hydrocarbons and hydracarbon mixtures.

INPUTS

The program w i l l handle a 20 component mixture. Library data is available for C1 thru' Cl7'

Nitrogen, Carbon Dioxide, Hydrogen Sulphide and Water. Pseudo components can be dcflned

in the input f i le r i f they are used, thermal conductivity wil l - not be calculated.

A datafile i s required. For each pseudo component, the following properties are needed. . cr i t ical pressure, atm . Acentric factor

. crit ical volurnt, ~rn3/~-rno le . Molecular weight

. crit ical temperature, Kelvin . Normal Boiling Point, Kelvin.

This empirical equation is believed to be the best correlation currently available for

estimating liquid and vapour densities a t pressures above LOO aim.

Vapour densities calculated using this method a r t believed to accurate up to 680 atm.

The viscosity correlation is very accurate !or the vapwr phase, but not as reliable for

liquids. The best available method is probably the Chung-Lee-Starting equation, with an

average deviation 01 24 %.

The thermal conductivity correlation is included for completeness, but i t s accuracy has not

been assessed.

2 p s

Revision : 0

Date : 2/85 COMPUTER PROGRAMS

.. Page No. :

14.9

Page 212: Total Company Process Eng Design Manuall

TOTAL Tf PlOPlEXPlSUR

8 . L l B P R 0 0 : Fluid physical properties calculations

GENERAL

The LIBPROD iibrary encloses FORTRAN subroutines for calculating various properties.

FUNCTION

Subrwtine ASTM : stock tank oil viscosity at a certain temperature by the ASTM

correlation.

Subroutine CALBO : Oil Formation Volume Factor by the STANDING correlation.

Subroutine CALFRI : Friction Factor by the MOODY diagram

Subroutine CALSIG : Gas-oil surface tension by the BAKER and SWERDLOFF

correlation

Subroutine CHEW : 01 viscosity by the CHEW and CONNALY correlation

Subroutine LEE : Gas viscosity by the LEE-ET-AL correlation

Subrwtine RSOUPB: Solution Gas Oil ratio by the STANDINC AND LASATER

correlation

Subroutine ZED : Gas compressibility factor by the STANDING and KATZ

correlation

9. MASBAL : Creation of mass an energy balances resulting from PROCESS program.

FUNCTION

The "MASBAL" program generates mass and energy balance tables, in conjunction with the

SSI program, according t o the user's specifications.

The program uses %he output of SSI program and generates mass and energy balance tables

which can readily go into a report.

PROCESSING

The tables can be generated either in Metric or in English dimensional units system as i t

may be the case in the 551 program.

The clasaificatlon of components defined in the 551 program can be reduced for mass and . energy balance tables (components up to C20 for SSI program can be classified up to C[o+

in mass balanccl.

Printout of cnthalpy is optional.

The stream composition can be expressed in the four different ways : rnolal flow rate,

molal percentage, mass flow rate, mass percentage.

Each table contains 8 streams maximum.

P 3d > -

Revisron : 0

0ate : 2/85

COMPUTER PROGRAMS

Page NO. :

14.4

Page 213: Total Company Process Eng Design Manuall

I LO. MONOAGA : Pressure drop profile in dry gas pipes

..

I FUNCTION

Calculation of pressure lossscs for steady flow in dry gas pipes.

PROCESSING

MONOAGA uses the A G A method which is based on the general equation for compressible

fluid in pipes, whatever their profile may be.

OUTPUTS

Any af the lollowing five variables can be calculattd :

. flowrate . outlet pressure . length . inside diameter

. inlet pressure

RANGE OF APPLICATION

This program can also be used to predict the behaviour of gas with very low condensate

contents (less than 50 crn3/~rn)).

The profile of the ground can be f la t or otherwise.

The tern--raturt profile can be fixed.

Page NO. :

14.5

I 1l.F'EPITE : Pressure drop and temperature profiles in gas and liquid pipes

Revision : 0

Dale: 2 f >

- TOTAL

TEPIOPfEXPfSU4

FUNCTION

This program calculates the profile of pressure, temperature and hold-up liquid along pipes carrying single or two-phase fluids.

COMPUTER PROGRAMS

PROCESSING

This program user the most efficient correlations which exist at the present time for single

or two-phase flow, whether the ground be flat or otherwise.

Pressure losses for two-phase flow are based on the research work carried out in BOUSSENS.

The calculations methods used are commented in the note "Two-phase flow in pipelines"

written by Mr LAGIERE, and included in the 1982 Surface Seminar.

OUTPUTS

The program can determine, at any point of a pipeline, the pressure, the temperature, the

f low pattern, the liquid content and the other hydrodynamic characteristics.

Page 214: Total Company Process Eng Design Manuall

Page NO. :

14.6

RANGE OF APPLICATION The many tests run under various conditions show that PEPITE is definitely better than

other models.

The good results arc obtained by PEPlTE 80 to 90 % of the time, whereas traditional

models only provide acccptablc results 50 % of the time.

The least effective results obtained by PEPITE are those for steep uphill slopes.

This drawback is on the point oi being solved. On a whole, the accuracy of the calculations

i s in lint with that of the accuracy of the measurements themselves.

REMARKS

In addition to pressure and temperature calculations the PEPITE program will define the

flow pattern.

The user can do ten dif ierent calculations with a single run.

The results can be either summarized or detailed, on request.

Either starting on finishing conditions can be given as inputs lor the PEPlTE program.

12. PETREL : Pressure drop profile in gas and liquid pipes

FUNCTION

Calculation of the pressure losses and liquid content of the pipes, for condensate gar, oil

and gas, oil gas and water flows in horizontal, slight slope pipes.

INPUTS

Temperature profile or average temperature.

Physical properties af the fluid.

Line profile.

Some physical opertles can be predicted with correlations included in the program.

PROCES51NG

The PETREL program offers several caiculations methods corresponding to different fields

of application.

Methods available in PETREL include : DUKLER, HUGHhlARK, EATON, BONNECAZE and

FLANIGAN.

OUTPUTS

Anyone of the following parameters can be calculated :

. inlet pressure . line length

. outlet pressure

RANGE OF APPLlCATION This program does not calculate risers.

The calculation of liquid contents is doubtful in the case of condensates gases.

a3 t' - .

Revision:

Date : 2/85

.. T

TOTAL TEPIDPIEXPISUII

COMPUTER PROGRAMS

Page 215: Total Company Process Eng Design Manuall

I 13. RESEAU : Combination of PROCESS and PEPITE programs

I GENERAL

This program i s the combination of the PEPITE and PROCESS programs.

page NO. :

- 14.7

FUNCTION

This program calculates pressure drop and temperature profiles using the results of the

proctss program.

Revision : 0

0ate: 2/85

TOTAL TEPlOPlEXPlSUR

PROCESSING

Fluid physical properties needed in the PEPITE program are interpolated into tables

generated by PROCESS program.

COMPUTER PROGRAMS

INPUTS

Input data is composed with : Process input data

Unit called "US 14" (name, inlet and outlet stream numbers)

Options of the calculation

1 Pipeline ~haracterist ics

RANGE OF APPLICATION

Pressure must be included between 1 and 7 250 PSIA

Temperature must be included between - 200 and + 200 'C

Only tv-nty "US 14" ran be calculated per run.

The PRC 'SS options r OUTDIMENSION, SCALE and SEQUENCE cannot be used.

The PROCcSS option "CALCULATION TRANSPORT = 2" is compulsory.

l ib. THERM : Pressure drop in l iquid piper

FUNCf ION

The TERM program computes heat and pressure loss calculations in liquid pipelines for

Newtonian or non-Newtonian flow.

It can alsa predict the restarting pressure after a shut d ~ w n .

I t also allows pump calibration.

Page 216: Total Company Process Eng Design Manuall

TOTAL TEPIDP!€XPISUR

INPUTS - Physical properties of liquid :

, viscosity versus temperature (for Newtonian flow)

. viscosity versus temperature a t dltferent shear rates (for non-Newtonian flow)

. ylcld strength versus temperature

. density versus temperature

. specific heat versus temperature

. thermal conductivity versus temperature.

Some of the above properties can be predicted, but i t is preferable to obtain viscosity and

yield strength of liquid from laboratory measurements.

OUTPUTS

Three artput formats may be selected by the user :

. "finite clement length"

. "percent length increment"

. "preselected finite element length"

In the third case, the program also computes the restart pressure as a function a1 t ime

after shut down.

15. UPFLARE : Flare calculations

FUNCTION

Radiation level calculations for an oriented pipeflare or a Coanda flare tip.

INPUTS

Boom and tip characteristics.

Gas characteristics (flowrate, gross heating value)

Climatic conditions (wind, sun)

Calcvlatim ions

PROCESSING

The calculatjon methods are API RP 521 or KALDAIR.

OUTPUTS

Flame profile

Radiation levels at given points or isopleihs {lines ol constant flux).

REMARKS

The method used [API RP 521) has been extended to three dimensions and any flare tip orientation.

l a ro

C -. .- -

Revision: 0

Date: 2/65

COMPUTER PROGRAMS

Page No. :

14.8

Page 217: Total Company Process Eng Design Manuall

- TQTAL TEPIDP/EXP/SUR

"..

Z Y I

PROCESS ENGINEERING QESIGN MANUAL Rarision :

Dmtr : 2/83

Pbg? Ma :

Page 218: Total Company Process Eng Design Manuall

-

PAGE - 2 General data 3-9 Converslon tables

I0 PSEUDO CRITICAL5 AND OIL PROPERTIES

11 -14 Phy slcal properties of hydrocarbons 15 Figs. 1-3 Camprtssibility factors of natural gas 16 9 Pseudo cri t ical pressure VS. MW

5 Critical constants for gases and fluids 17 6 Critical temperature VS. normal boiling point 18 7 Characterised boiling points d petroleum Fractions

8 Molecular mass, BP, and.denslties of fractions

19 DENSITY 20 10 -density of petrolturn fractions VS T Z 1 11 Relative density of petroleum fractions VS MABP

22 VlSCOSITY 2 3 12 Viscosities of hydrocarbon gases 24 13 V i s c ~ i t i e s of hydrocarbon liquids 25 ASTM viscosity chart

26 VAPOUR PRESSURES 14 Low temperature vapour pressures

27 15 High temperature vapour pressures 28 16 True vapour pressures of petroleum products and oil 29 17 Hydrate formation pressures

30 SPECIFIC HEATS 3 1 18 Specific heats of hydrbcarbon vapours at 1 AT M 3 2 19 Heat capacity correction factors 3 3 20 Specific heat capacity ratios a t I ATM

21 Specific heat capacity of hydrocarbon liquids

3Cr THERMAL CONDUCTlVlTY 35 22 Thermal conductivtty of natural gases

23 Thermal conductivity ratio for gases 24 Thermal conductivity of hydrxarbon liquids

3 6 LATENT HEATS OF VAPORISATION 37 25 Latent heats af various liquids 38 26 Latent heats o f hydrocarbons 39 27 Heat of combusion of liquld petroleum fractions

40 SURFACE TENSIONS - MlSCELLANEOU5 4 I 28 Surface tensions of hydrocarbons 4 2 29 Dew points of natural gases k 3 30 Solubility of natural gas in water and brine

31 Sobbility of methane in water 32 Solubility of natural gas in water

4 4 33 Solubility of water in hydrocarbons 4 5 3 1 Temperature drops for expanding gas

35 Temperature drops for expanding gas 1 6 36 Physical properties of gas treating chemicals 47 Physical properties of water 48 Physical properties of air

2 93 7

- I

Revision : 0

Date: 2/85

- Page No. :

15.1 -

TOTAL T EP!DPlfXPlsi!R

DATA SECTION

Page 219: Total Company Process Eng Design Manuall

-

-

P&gr No :

15 -2

Ravision : *

~srm : ~ / B S

~ R O C E ~ ENGINEERING DESIGN MANUAL

GENERAL DATA

.. -**(

- d. J r* d n*

L

4

TOTAL TEPIDPIEXP/SUR

~ ~ l ~ . , it,. tonbionl R in TV n 11 ,, J.; .mu J- r.*e~*a.d 1'- L*M.+M k=*!*L.*d i.'*h. *,,&,, *,Ck~**,,,~~.n.~o.C.J ~ o ~ . ~ ~ ~ ' * . " ' * ~ r d r -

r 1.rnp~lur. Irn.rm1 R m T.~,..~.,. r , .~. . Y-lrm* " R .mlwim I.*%* o ma 057 m rol

C*. I w* 1.1111 I .m 11 .a37 n* .- cm' a b2 u4 1 DW \.HI1 m a *a L.0 I lit., OM1 1.5 C d w h*.m I C.. b r* O . w 2110 L1.r 0.01.18. .I LW.h OOD54lW L b.1.m' O O O l l l A L b -.I ",I Ib ad .a T L*. I,., t l R . 3 4 .1- ha 0.1301a

-*I 1 ha z r n l ~ i14 L d . -1 hb ** #')I.' LnJ nrnp 5 3 a . n

bn* -I lo.?= bur .D blka

Llh' 15i3.3 h' b-d .I hJ 1.3144

K own b .I* kl V P I I? bnJ I m- M e -1 1.1113 M1 L i?rn

b* 14 ems l a 5 i d I

,d.cb, .I ~.~6...11. lo8 .."pl.. - l * llnl A h Y, , *.I. ".g.;,*l.m *I*. 6''d.' 6.

Th. rrl.bmn brwr Bmuml or A.P.1. lo Specific

Gmtiry erprrrd by the 10ibdnr formuln:

F~~ (i+d. lighter than w o w

130 ~ ) r ~ ~ t m Bmumb = -g - 140

G1 130 + D e ~ r t a Erumk

m w wu-

I - IYM VL.. I ru . 1 .OII$ b r a

l4lJ - 131.5. Dcrrec. h.P.1.' 7 141.5

131.5 + Devc~S A.P.I.

liquids heavier l h ~ n Mkr:

145 D ~ ~ ~ ~ I Bnnmb s 115 - 7

145 G 145 - ~egress Bwmb

G S ~ i h c GrnvitY .t th. wei lh l 01 given

v.Lum, a, @- ~.h~.nheilto he weight

ol*rahr .I B[r F*hrenh*it.

,,,,lmi,,.t~.r~lg .T.VI~Y by mi~iwoi180f (if.

{ermt grrvitin: md, + ndg

Dt ,+n

.nc Cr.vity ot mix lur~ D e Denlily or SpICL , = velum. p r ~ p o n ~ ~ n of oil dl d*n'!ty dion oi l of dz den~l t r , s Volume pmPq

& = #+ficGr.vlt~ or d t " + ~ of ?" &, specific Gravity or drnnsty of n

l b 0-c ,LO.l, 13.~.C

0.c r4 -1. ('D.., 15.I.C

*C - 5/9 PF - 321 -F L 915 (me) + 32 ~ ~ - c + n 3 . 1 $ - 5 / 9 R

= *F + 468.61 - 1.8 K

51 prrfi.rr id Mvl~lptialla f1ct.n:

Pr.(br S ~ b d 1 HH T I@ i~ lo' nrP 1cJ ti10 1 8 h e ta 10' * lo-' drd 10-1 pnLi 0-1 milli LO- ' mW . I** - a J p i a P 10." I m 1 - I * a114 1

>,*..I ~ 1 ' D*.- n'

I 11.111 ., 11.b)L .

-I

-

/

- USEFUL WTU

nr

N. - , y(

, R/moL 101 :U ldrlhId:Ucb.~' . '.02212. IOU r n 4 4 e J - d hrq1droc"U"'

~=&.tiorr 01 4w~i11 . *.&I mt*= )I.I? frls2

vdooip 01 r".'"d in *! = , t,,l . ,%+.*. ..I* 0.c.ndi.m

.f *J . ~

Page 220: Total Company Process Eng Design Manuall
Page 221: Total Company Process Eng Design Manuall

AREA I

r

TOTAL TEPIDPIEXPISUR

LENGTH I

2 mitre 1 1 , M Y ) o O O L ~ Z 1 . O m W E W 1 . 6 d 0 0 0 0 E t i O 3 .937wO€+01

cenrimitn I . ~ ~ D D ~ E ~ Z r t . 0 m ~ t y w 1 . ~ ~ 1 0 0 0 ~ ~ ¶,~310m€-01

VELOCITY

Page NO :

15 - 4 PROCESS ENG~NEERING DESIGN MANUAL

DATA SECTION

Revisien : o

Data 2 5

Page 222: Total Company Process Eng Design Manuall

TEPlDPlEXPlSUR DATA SECTION

DENSITY

5.)8? 037 t -04

Page 223: Total Company Process Eng Design Manuall
Page 224: Total Company Process Eng Design Manuall

VISCOSITY (Kinematic)

I 1 1 -

1

Pan* No

I5 - 7

.

Revision : 0

Date : 2/65

TOTAL TEPIDPIEXPISUR

n i t r m ad Wr u d *

mnu'nokwr

munr. I r t pw wand

,quan feet @r bru*

PROCESS ENGINEERING OESlGN MANUAL

DATA SECTION

I

\ w o O Q l E Q

9.290 304 E-02

?.6806*0 €4

~ . W O W O ~ + O F

I

e .m lor r +ol

2.W1180 €+Of

1.076 3ni E+OI

1.016 391 1-05

I

3.117)78E-M ,

3.835 091) E fbr

3.11 75 008.5 -02

a.6m ~ o o E *a3

I

Page 225: Total Company Process Eng Design Manuall

Cr*IDUCIIY,Il I * € s Y ' O m

m, m, ,-4 N- '

m u w ern.* ha.**,. ," hr+dIm

4 - 4 t . k i r .. Mi!hulArrk. I,.,-w F h W h

TOTAL TEPIDPIEXPISUR

W I C . ~

1

% . i t 1 l?lIiQO

~ . ~ e r n t r s

5PEClFIC HEAT CAPACITY

THERMAL CONDUCTIVlTY

HEAT TRANSFER COEFFICIENT

FORCE

PROCESS ENGlNEERlNG DESIGN MANUAL

DATA S E C T I O N

rwr-.'c

1101 rn 1-01

I

1 . . 1 ~ 1 ~ 1 * 0 0

Revision : 0

Dale : 2/85

waw*.h:#

I H I 1I1I41

4 . 7 1 s 1U € -01

Paw No :

15 - 8

Page 226: Total Company Process Eng Design Manuall

I HEAT CAPACIT Y/ENTROPY

€ N I C I # I E t carrcilt ~UERMIW% JIK LWIK k t d ' ~ 1

-

Pagr ffo :

15 9

I

POWERlHEAT FLOW RATE

-

Revision : o

Date ; 2/85

TOTAL T EPlOPJEXPlSUR

7

PROCESS ENGINEERING DESIGN MANUAL

DATA SECTION

Page 227: Total Company Process Eng Design Manuall

PSEUDO-CRITICAL5 AND OfL PROPERTIES

TOTAL TwtnP/Ewnutt .

. Deflnitionr :

True vapour pressure I - actual vapwr pressure of a crude oil a t the actual

temperature of the fluld.

Reid vapour p r c w e r - reference vapour pressure of an oil at a controlled

temperature of I00 *F (used as a basis for product specification).

Mom average bo- pint : - equal to tht Sum of the mole fractlcm of tach

component x i t s atmospheric boiling point O R .

Volume average b o U i ~ point r VABP : - average temperature at whlch the ASTM

10 %,30 %,50 % , T O 96 and 90 % volumes boil.

VABP. T I 0 % + 730 % + TJO % + T7O % + T90 % 5

M e a n averrEe bailing polnt : MABP I - the slope of the AST M distillation curve i s used

to c a r r u t the VABP t o give MABP. See Fig. 7

Cubic average boULng point z CABP : - another corrected form of VABP.

llOP K or WATSON CHARACTERISATION FACTOR

KS~!!!!!! i g at 60/60 Sg CABP in 'R

Thfs lssued as a characterisation factor when defining crude oUs. I t is required for

variws other data evaluations.

dS3

, DATA SECTION

Revision : 0

' : 1/15

Page No. :

15.10

Page 228: Total Company Process Eng Design Manuall

- TOTAL 1 PROCESS ENGINEERING DESIGN MANUAL Pagm N o .

TEPIDPIEXPISUA b

DATA SECTION Dare : 2/05 15 - 1 1

Page 229: Total Company Process Eng Design Manuall

I PHYSICAL CONSTANTS OF HYOROCARBONS(27)

TOTAL TEPIDPIEXPISUR

PROCESS ENGINEERING DESIGN MANUAL I

DAth SECTION

I

Revision : 0

Dam : 2/85

7

PW No :

15 - 12

Page 230: Total Company Process Eng Design Manuall

-. -

Pagr No :

15 - 13

- Revision : 0

Date : 2/85

. TOTAL TEP/DP/EXP/SUR

7

PROCESS ENGINEERING DESIGN MANUAL

DATA SECTION

I

i I No

; I 1 3 4

' 5 a 7 I

9 10 11 I 2 13 14 15 16 17 I@ I n 20 f l 22 23 4 25 21 z7 ?I 29 3 31 n 33 34 35 3 37 JI P 40

41 42

PHYSICAL CONSTANTS OF HYDROCARBONS(~$)

5a NUII NO - 10. I l ~ 12. 1 13 Flarnnyb~la~v ASTM

H U I ~ WIW. 15 *c' ; tumuls. "01 % DCI~W

Nlt ~n b+r rniw!u<~ h r m w

cmwum 1

wrnmr Elham Prmw n.Eulwt l r ~ q r l 1 n nPtnlarr . '

lwpntm# Nmantrnr n.Mbrw 2 ~ l l l v l ~ n l w 3Umhrlmnlbm keoh*=m 2.3.Dm~thvibutalu n4ilotrn Z*Hlthwlhm.M 3.M.lhvihr.*~ 1Eihvlmn1mr ~ ~ ~ l m l h u l p . n t b n 2,44vnr1n*lpn1an 3.30imlhrlo.nnn T r i o l m nOtlmm Diirobrl~b Ismclan *-NDIW n-D.onn Cvf~oafiram W t n v l h ~ l ~ m n ~ r r * C~rcbhesaw wm,lc,ck,n.bm C lhr r lflhvbml P~oD.~ . irr-l..wl 18ul.N I~UWIHI ri1.2.0urw t~.ru.1.€lucmr l t a r r r r I*UIUUM l I . & r w m r * I . Z h w i ~ IVCP-

Aolvllr*

43 44 15 40 47 4s r# Za 51 52 53 Y 55 54 I 7 5d 59 60 81 62 63 4

3 s& -- -~ ~ ~~~ - _ _ _ _ _ _ - _ _ - - . - - - . .- 7- 1

33938 60.395 86,453

112.391 l12'.0Jl I=,= 13,0114 137 465 1Sr.402 lbr076 1 w . 1 ~ 1 161 0%

1m.m 190,099 IW,243 1555327 1896XI IBP.W3 I . I W W 318174 215,191 315.732 342.389

131.114 1S6.757 1580% 1E1,%7 55.042 11.402

l07 .4n 107.191 1 W M 7 106.755 133465 101.1 18 101,017 1273m 53cw

107.MO lV4.DS 194.407 194.415 191.445 1 8 7 . W 1)2 -

3 Z W W.WS 11.9% 0

23.791 - 10.1ai - 12.a1 - - -

1.879 - -

Tolunr Ethvlhnr.rr a.Xvl*rr m.xrl- #.XvIer* Slyrru imp.opv~brny*ru CIu.1hVl .lc- Elh*l .*&I Clrmmmwmm& Clrbon d i o d e n v ~ , w - wit* Sullur dm141

4vmonib Air Mvdl-n Omvw M t r m Chlarbn W11.r MrIium nvdrep.-chlarldb

37.691 68.032 93972

121.>19 121.4X 149664 149.31S I 4 L 7 S l 7 t . W 171.22P 1 7 1 . ~ 1 1 7 6 171.170 ~ 0 6 4 3 1 205.132 m . 2 7 6 205.3S KY.m 20..d% I 71Y.722 2132M 2317m 232.644 =;.I= 2 8 9 ~ ~ ~ tW.KP IM.033 167.- 194. IM 50.10Q 07.1 1G

114.991 114.701 114.473 114.211 lumo 1a.755 1 0 7 5 8 iIY.141 Y P 7 0

a2450 43.014 42WO 42.M1 4 2 W l 42.213 443.410

. 2 2 . a OQ.107 - - - - - - - - - 0 - -

159531 lE%,s% 165.002 1%5,0;10 lll5,OSO 1@0,?PO 211.324 28 ? YW2 l l . S S 0

21.912 - 1 p . m ~ - 10.230 - - - 0 - -

Bvru*rr 139691 rY,OSS

- 51.58bh Y 1 . W 49.158" 49.DUb . 8 . ~ 7 48.570 .842 fh

' 4.W 46313 #.m 1 40.1W 48.101 4E.m) u . 0 ~ 2 -.rot 479b4 1B.W 4 1 47Sa2 47PtB 47la32 A7.843 47.7B3 47.8'10 41955 46.8Z3 46.- 46.5n - - .80814 47.027h 47Ma" 47.7W 47.71~) 4Y .W* 41.- aL4m -

DOOO 37478 37 935 37 245 37 131 3 8 4 8 375Q1 I8 067 . 23513 - - - - - - - - - -

0 - -

4t.843

- 1s 45b 25 39Ib 247ll)L 27621. PIw 90333 281L064

32091 9 1 7 4 3 2 ~ 31 512 B 1st m a s l 2 l O O 3 3 2 4 ~ 35m6

32501 33- 33319 33166 33 312 PlZPD M45 %PBS 35225 JJ 270 S 4 9 7 J5Wt - A

Zn9leh P ~ S L 19 lMh =feen m ~ 2 31 21011 29242h 31 62d -

360.14 WPII WdO 342.47 Y . 0 2

1351131 31125

107547 bcO.54 215.70 5 $48.01 7 . 7

I*. 214. 450.4 11% ?W 0

1257. - 431.5

36-

~ 8 6 48Q.M 42573 38556 =LO 7 2 Y 2 3 D 3 H Y m B 1 m1.U 31511 -24 1 316.33

307.17 -91 ID103 8 4 # 1 Z9S.07 2Bll.W Y I l I 6 285.89 27154 2 nsos S9.m 3 5 . 5 1 55545 31703 482.77 437,gl m . m 416.10

s z s 14a.61 1410.7) 1115.21

_ _ I - - - - - 1.lOP73 1 J W S 1-3 95 1 .4wM. 149B9s 1 .998 I lB4u) 1 . m - 1.38345 1 . ~ m 3 0 I.WO*O 1 . m O l IPOP w I.-% - 1,m 13 100027 1 0 m 1 8 13R71t 1~33347 lDDDDj I 42

333.32

1214 0 4 ~ 1,219135~ 1.33?0*. - 1 m 2 4

1 -6

1311 46 1 3 l l l t 1.3m 18 1.371 51 1.377 9 1 . 3 ~ I I 138743 1 a 1 19 1.38594 1,38475 I . 1.31342 1.391 W 1 W @ I 1.S4BB 1 9 3 P 2 1.407 73 I 1 1.r11027 1.412 UI I.42llS2 1.42566

- - - - -

~.nrai - -

%.425% - 42% M.11 m.11 S .11 N.11 47~72 51.21 7.14

14.33 2 . p I

7.16 - 2 1 . 3 - - - - - -

l.SM31

9 9 16.70 23.86 31.02 31.02 . I 1 3810 4 5 . 3 45.Y 45.24 45 .3 4S.Y

5 2 . 9 5 51.- 2 51.50 $1.50 U . W 5250 5 J9M 5Q65 66.81 7397 =.ID 42- 42.W 5011 1 4 . 3140 21.63 2 H.83 2 n.m a.25 . m.41 11.93

1.F o~W 1.1' 1.1' 1.1'

Ah' 5 n9 3 r2.1' 1.12(51 X.93 a - 328151 1815 . A

Jb.79

12.WlSl - 4.xrtSl -

IEla

4ODl5l - - - - - -

1 . 9

5 0 I 5 0 - - 2.9 130 -1 2 1 18 1.8 1.4 1.4 1.4 1 1 1 1

lr.21 1.2

l1.N la .

1141 llal l l O I 11.ot 1111 (1.01 tl.OI 0.W

I0.98I I,O 0.87' 0 . 7 ~ 1141

7430 - 46.60 - 2 7 M - 14.10 - - - -

m -0.1' [ 11.21 8 . B(I0 1 3 7.8 77.3 I 1.2 - 71,) 74 8 2.7

- 2 0 Y O 756 - 0 ~ f 1 10.0

1 6 I1 61 - 03.5 11.61 - - - 11.81 - - - 1.4 BY 77 1 00s

11.0) 112.1 - - 2.0 11.5' - -

11.51 A 11.0 w .1 2.5 80, - -

I , 4 8 4 s.3

1831 1B.31 7 .

17.71 n.11 I711 17.71 10

17.01 17.01 17.01 17.01 17.01 17.01 17.01 - - - 2 9 2.6 A

- - - - - - - - - - - - - - - -

- - - - A - - - - - -

09.b' 9 7 0 . 90.3 80.2 28.0 135 7 . 1 934 94.3 0.0

48,4 %,a w j 95.6 838 88J

if - 55.7

93 # -0.rd.f

s1.r B 2 3 85 5 24.9 73.4 74 5 018 +o# 0.0

41.4 S2,O ~ 5 0 9 2 ~ s3.1 80.0 + l s f 1 + ,

552 1 - -

Page 231: Total Company Process Eng Design Manuall

--

DESIGN MANUAt

HWKHBSCES #El 1nmn.u*..1 C"1lr.l hur 111 ll ld#nan. -llnnAbnl ul Chrmwrr mnd r h y n o ~ " . BLd dill*.

I U C 13 Jm. Clrm I r c . I l * . at. I in, fi..Y. U la.rmrdrn.nr P.n.1n.. u(r..*-: U".l..-.n*. - I.&. llldd ~m Y.+ n .~ . .w .k . I. A S A S * rrr. r.*r R I ~ ~ T I . ~ r t r ISI d u n k . 8.2. s,~..n. 61 u. Mrl'mny, R 11.: H.nl.). H. J. M

mr II.* PI^. U S r,rr .*I, N.. 140. I V ~ ,231 Vmlua El h 6tm.rbn.. c u n mrd n.mC.. 1.19. -rr. r*c!d

u rmkulad Lm d.1. IP L hbln *I Lhr T h r m u d ~ s r n n kr..m+r & m u r M irr.rb,n hum ibmmwrlr A H b* .nh h a . n 44) a d IL ~ 1 . n lr, th. rmmlnln# ?vo.anh. nmhn 10-M. -... rkdn c.Icu~.ad I.- W m ~rthrn.bln 11 lk Thrrd,n.mirr Lr rar th Cenkr n.1. Rl)n arb- uli.l.4 t4h"r".

iZLl Lmru. S . ~rmmarun,. n,. 4. web. li Y Fd. "Mr~hrr * lmlw m..wm-I l b d , m a ~ ~ T . b k . d ~ h r FLv!dK..u-l": P.r~.nwm Fb-: hid. 1971

rr.1 Anrml, S. trm.lruna. n. de h l . c. H.. Ed.. ttlnurn.ln-l +h.*dyn.mm Tab*. of Ih. F1.Y %.~-hhy*n. . lm": bl.rrr.nb Landam. 1974

lm H..r. L.Call.rhn.3. S.J. rhrl. Cham. M.ml. l*ll. t U. 1311 ~ n l ~ n . s. A # ~rurk. W. M , ~ r n n ~ m n g , U . Edr -NI *I l r - r .

1~urn.1 T l u r d nmmr f.b*rdrh. ) 7 d %iu l rn -~~ ,~ I .Wa P.M.: D IM. lt7k

I S 1 *,,,"I.,$.. dr hw. K Y,. "H.l,u., L""rn.li.~*iTk"lr d . . . ~ tab*, .I A. n u , suu-r.. ?....nu h n : 0.M.

. . t r ..CrbLII 11 f 1- un . nu- -..1w- ..d ir r . l w ~ w r . p t y r r u v n ~ wc re Iw. T h . ~ . r u b l l l , f ~ d , * r " . ~u.1." z # p

I 7 1 lk 5.mo,0 +4 a. *ul su nlv,.e w ..r i. Yl~UuWr.vl

T ~ . . * L ~ ~ * . ~ . . I . I . Y U L I . " O ) ~ TI. .Co& d." .I.. *..I ,r * # 7

.#. - wr

l'b4.u i.r. V(J.cl#uVVkubd m..l 1

r r" .+ k".,.", .I h &I(., r.. -.l.k.d t." uw -.& vwvw mJ.r k m t r a c n t - n. w rein .~rr nu . xr -.n r r k u d Col&. nol-... ..nuom 1.- r*. U.lll " 1.dq.DAO.I d CLI* . Th. I d L I

8 Lua re .mar 3 U..Z a n d n r d h u ..-.nu1 -...r.. unu FHI .II.MYI L.b- lb'C.I* v.lu"#twmamG~M ... "c."%.d...-'.... "Q .f*.I,."4 ."r.r.r,.r.d r.," . rCUL"md,U I

I6 T h b w . r b e l r lr *#.awe .r uv o%a.lr, .I nnk.h I- ad, )I )U u hyfh )Y mUn4.d .UV mL 18% .C ** cr...u. * I r e . ,"I. .u..... . m u dl rt Ibl.8-b %?I mL.1 F r . a r r d r*.n lh h . l r u CdiaOkSIPlr. w n r h n v n m r r u - ,

c.n.%s,wha. I ..,I - h +; -< + IIW,) - .COIGI>.

Page 232: Total Company Process Eng Design Manuall
Page 233: Total Company Process Eng Design Manuall

T EPlDPlEXPISUR DATA SecrIm Dale : 2/85 15 - 16 Ps.ud. critical ptrrnurr FIB. 4

Page 234: Total Company Process Eng Design Manuall

Ctirical Irrnpmralur*S

N o m d boitinp point. *C

TOTAL TEP/DP/EXP/SUR

PROCESS ENGINEERING DESIGN MANUAL

DATh SECTION

Revision : 0

brtr : 2/05

P b y NO :

15 - 13

Page 235: Total Company Process Eng Design Manuall

- TOTAL PROCESS ENGINEERING DESIGN MANUAL Revision : 0 PIOI No :

TEPIDPIEXPISUR DATA SECTION Oat, : 2/05 IS - 18 a s - u o Y smna IP t- .C.hlara mr-M

cular mass, botllng d relative densltles

100 200 300 4 00 Mean awlaye boililly fminl. O C 26 I

Page 236: Total Company Process Eng Design Manuall

VAPOUR DENSITY

Yapour densities or molar volumes can be caiculated from the equation :

Specific gravity of a gas a r M Walr = 28.967

TOTAL TEPIOPIEXPISUII

M

D E N S I T Y

LIQUID DENSITY

The density of a multi component mixture can be calculated utng the summation af the

component densities :

Wl= mass component

P' = density component

liquid densities for hydrocarbon mixtures can be estimated using. Figures 10, 1 1 in this section.

262 - . --

DATA SECTION

Revision : 0

Data : 2/85

-

page NO. :

15.15

Page 237: Total Company Process Eng Design Manuall

- TOTAL TEPIDPIEXPISUR

F16. 18 kppeomimate t c t t i v n density of pelrslrum frotiionr

I.mp.l.l"l* .L

-.--- .~ ---- 2 6 3

-PROCESS ENGlNeCRlNG DESIGN MANUAL

DATA SECllON

Revision : 0

Date ; 2/85

-

Pw Na :

15 - 2 0

Page 238: Total Company Process Eng Design Manuall
Page 239: Total Company Process Eng Design Manuall

where

TOTAL TEPlDPlLXPlSUU

V I S C O S I T Y

U N m :

Dynamic vlscoslty r I centipooc = 0.01 dyne.rlcrn2 e 0.000672 1bfft.s

Kinematic viscosity : 1 centistake = 0.01 ern2/s r Dynar&icv:yit y

Other quoted units for kinematic viscosity arc i

Saybolt universal Redwood Engler

Saybolt fur01 conversion charts are sited in literature

VAPOUR VISCOSITY

. Use figure 12 in this section or

. Calcolatt using : i) r m = Zp- 1: fl

P= mlxturt viscosity ~~6 y; = component viscosity

nw: = component mol.wt

ii) rn = A exp l0f) 3: = component mo1.frac

accuracy 2 5 %

(q.4 * *.Ql w) -r !.r A z T i n

(CW 4 14 n.ru, ,-r) \a4

9tc 0 - 3 . - + 0.01 MU L o L T L kCo @ F 7-

C = ?.A - 0.1 b I A . ~ L PL !oo.o pr:%

)7J. P P ' s R T a+' R = L65.P

LIQUID VUCOSlTY

. Use Figurt 13 in this stetion or : -

. Calculate using : 1 ) /-'a [ - ( y h f X; = component mol. fr~c

. The viscosity of crude oils with an API > 30 (sg = 0.88) can be estimated using :

logy- a - (0.035HAPI) centipoise

.C I a I 3% 1 2.05 54 1 1.113 71 1 1.55 88 1 1.30

104 ] 1.08

. Corrcldtiolrs for tiquid vi~coslty pusscsa u general rclidbillty or - t 15 %

DATA SECTION

Reuision : 0

Date : 2/85

Page NO. :

1 S . U

Page 240: Total Company Process Eng Design Manuall

I VISCOSITY OF NATURAL GASES .?LC I

I Papa No : [ TOTAL 1 PROCESS ENGINEERING DESIGN MANUAL

TEPIDPICXPISUR

Revision : D

DATA SECTION Date : 2/85 15 - 23

Page 241: Total Company Process Eng Design Manuall

TEPIDPIEXPISUR DATA SECTION Date : 2/85

I

Page 242: Total Company Process Eng Design Manuall

TOTAL TEPIPPIEXP/SUR

rcmpcrature 'F

QSTR VISCOSfTV CHWlT

9 6'6

PROCESS ENGINEEAINO DESIGN MANUAL

DATh S E C T I N

Rsrisbn ; 0

Datr : 2 /65

P.01 No :

15 35

Page 243: Total Company Process Eng Design Manuall

( TOTAL 1 PROCESS ENGINEERING DESIGN MANUAL Revision : O I I I DATA SECTION

TEP/DP/EXP/SUR Date : 2/85 1 15-26 I FIG. 14

Page 244: Total Company Process Eng Design Manuall
Page 245: Total Company Process Eng Design Manuall
Page 246: Total Company Process Eng Design Manuall

TOTAL TEPIDPIEXPISUR

Ptrml~rlblm mzprnrlbn of 4 0.7 rtlrtivr density ~Perml~~lb l r i~panrlon O l I 0.8 rrlatlvb dmnrlly

Prrmlrrlblr mapanrlon of r 0.6 rmlrtlrt density

2 D M 3W04000 6W3 I D 0 M m O a I 10 II w n rn Flnbl vrmssurn. hPb (ab.1

T n n w r a i u r 'C

FIG. 17 HYDRATE FORMATION

2 T J -

PROCEU ENGINEERING DESIGN MANUAL

DATA SECTION

Revision : 0

Date : 2/85

Plpr NO :

I5 - 29

Page 247: Total Company Process Eng Design Manuall

TOTAL T LPtDPlEXPlSUR

S P E C l F l C H E A T S

(HEAT CAPACITY)

UNITS : BTU/lb O F 1 BTUllb .F = 4.19 k3lkg -C

kJ/kg *C I BTU1lb.F = 1 c a l l g . C

VAPOUR MiXTURES

. Use figs 18, 19 in this section

. Cp* Is a fuctlan of ternper*tlue and can be calculated ualng r

Cp* s A + BT + C T ~

where A, 0, C are constants dependant on system composition

and T h In *R [K)

Values of A, 0, C are cited In Kern, or Perry.

. Cp* can be corrected for preswre if Pr and Tr are known uslng Figure

. K = ratio of specific heats this should also be ~ M r K t e d for pressure If required. 8 LIQUID MIXTURES

, Use Figure 21 in this section or :

, Calculate using

Cpl = 2.96 - 1.34 G + T (0.00620 - 0.002349) k3)kG *C (T in 'C)

Cpl = 0.68 - 0.31 G + T (0.00082 - 0.0003 191 BTUllb O F (T in *F)

G = liquid specific gravity CAMPBELL

(accuracy - t 5 %)

1 rt3

DATA SECTION

Revision : 0

Date : 2/85

Pap. NO. :

15.30

Page 248: Total Company Process Eng Design Manuall

DATA SECTION T EPIPPIEXP/SUR D a e : 2/85

FIG. 18 SPECIFIC HEAT OF HYDROCARBON YAPOURS AT 1 ATM (NOTE UNITS ARE

BTU/LB/*F)

Pagm No : Revision : o TOTAL PROCESS ENGlNEERlND DESIGN MANUAL

Page 249: Total Company Process Eng Design Manuall

TOTAL TEPlDPIEXPlSUR

U t 4 ~ ~ 4 0 D l l % b V . ~ 8

a01 0 2 01 a4 06 01 ID P # # * c ~ * r e > w * , 4 = 8

FIB. 19 HEAT CAPACITY CORRECTION FACTORS (NOTE UNITS ARE BTU/LB

MOLE/*F) (8t attnospheric prtswre) 2 ?S --

PROCESS ENGINEERING DESIGN MANUAL

phra SECTSON

Rnision : 0

Dale : 2/05

PW ND :

15 -32

Page 250: Total Company Process Eng Design Manuall
Page 251: Total Company Process Eng Design Manuall

TEPIDPIEXPtSUR

T H E R M A L C O N D U C T 1 V I T y

UNITS : BTU/lb *F

VAPOUR MIXTURES

. Use figs 22,23 in this section

. Low pressure thermal conductivities of pure gases and vapours can be estimated ushg :

I-Af k = r (=r accuracy 2 8 % k - B1Wh.ft.F

y - lblh-ft Cp - BTUIJb 'F

l l p ~ a s

. Usc fig 24 In this section or :

. Liquid hydrocarbon mixtures can b t estimated uslng :

a = WE' [ I - on003 (r - 32)] =g

accuracy - + 12 % k - BTU/h.ftaF rg - specific gravity .78 < > -93

7 -OF 32 < > 392

mLl!3S

. See Perry of Kern for details of metals, earths and building materials.

277 ! -- -

DATA SECTION

Revisiorr : 0

Date : 2/85

pagt N@r :

I>.%

Page 252: Total Company Process Eng Design Manuall

lhcrrnol ronductiwity ror io lor goran

t.1m.d r*..nr..?a

f HERMAL CONDUCTiVlTIES OF HYDRO-

CARBON L I Q U ~ D S Ft6. 24

1

Pagr No :

15 -35

v i s i o n : 0

Orte : 2/85

mTnk TEP/DPIEXP/SUR

F I O C E S ENGINEERING DESIGN MANUAL

DATA SECTIQN

Page 253: Total Company Process Eng Design Manuall

TEPIDPIEXPrSUR

LATENT HEAT OF VAPORISATION

UNITS s BTUflb 1 BTUllb = 0.5556 kcallkg kcallkg

. Use figures r 25, 26

. Estimate using Trwtons rule :

A-2 l - ~ h callgma~c

accuracy 2 20 % Tb s boiling point *K

. For relief valve calculations use 50 BtU/lb If actual Lt.ht i s not known.

, Detailed estimation methods in Perry : pp 238

2 74

DATA SEtTtON

-

Revision : 0

Oatr : 2/85

Page NO. :

15.36

Page 254: Total Company Process Eng Design Manuall

PRECISION : 10% E3

L LATENT HEATS OF VAPORIZATIOH OF VAAlOUS LlbUlDS FIG. a

2 &-0

Page NO :

15 -33

Revison : 0

a : 2/85

TOTAL TEPIOPIEXPISUR

, PROCESS ENGINEERIN5 OESIGN MANUAL

DATA SECTION

Page 255: Total Company Process Eng Design Manuall

-

! LATENT HEAT OF VAPOURlSAflON OF

HYDROCARBONS FI~. 26

- .2g

TOTAL TEPIDPIEXPISUR

CPl W2 QO4 Q05 03 0.2 0.4 C5 1 2

PRESSURE - ATM

PROCESS ENGINEERING DESIGN MANUAL

DATA SECTION

Revision : - 0 :,

Oatr : 2/85

>

P w No :

15 -38

Page 256: Total Company Process Eng Design Manuall

TOTAL TEPIDPIEXPISUR 5

' K)/WmF . 1.10 .no

PROCESS ENGIIIEEIING DESIGN MWWLL

DATA ACTTON

Rmwuan : 0

Date : 2/85

Pago No :

(5 -39

Page 257: Total Company Process Eng Design Manuall

S U R F A C E T E N S I O N S

TOTAL TEP!DPIEXPISUR .

UMTS : Dymfcrn .I dyntlcrn = 10-3 ~ l m N/m

. For surface tenslons of paraffins use fig. 28

. To estimate surface tensions for hydrocarkn Iiquida/gas use 4

a-. [' . "-PI nu (2.A

w r c e r baker

accuracy : 2 1U %

P c Parachor = 18.07 + 2.996 MW for paraffins with M W < 100 = 278 + 2-55 (MW - 100) for paraffins wiik MV > 100

PI r liquid density iblft3

pv = . vapour density lb/ft3

. For oilagar mixtures can also use

0.. -..a*? 7 - 0 . z c 1 A?L) - L r p (- 6 .0 .0 ) 7)

T = temperature in O F source B e g s ' + Brill

P = pressure in psia

2 r3

DATA SECTION

7

Revision : 0

Date : 2/85

papa NO. :

U.40

Page 258: Total Company Process Eng Design Manuall

PROCESS ENGlNEERlNG DESIGN MANUAL Revision : 0 Pw No :

TEPIDPIEXPISUR DATA SECTION ma : Z/ES IS -41 .

Page 259: Total Company Process Eng Design Manuall
Page 260: Total Company Process Eng Design Manuall
Page 261: Total Company Process Eng Design Manuall
Page 262: Total Company Process Eng Design Manuall

TOTAL TEPIDPI EXPISUR

FI6. 55 solubllny of watar In hydroearbonr

Z? 7 - -

PROCESS ENGlNEERlNG DESIGN MANUAL

DATA SECfTQN

-

7

RarNon :. o

Ontc : 2/85

Paw No :

15 - 44

Page 263: Total Company Process Eng Design Manuall
Page 264: Total Company Process Eng Design Manuall

" a

gv

U

a

I I. 0

\n' -

. * o

2

-. ..

C

0

.- - .- . > 0

.- d

8.

2 3 z 2 z CI - 3 0

. z

s - E

.

3 Y

1 LU

4

.z

2 - 0

.0

2

-.

W

8

W

0

0

K

Q

. a

. ~

~

.~ .

. .

. .~

.

. . -

.. i

. ..fD

dy...

& #.W

4 :#,OH

!

................................. Il

id1

LH

P

PI

Crl 911

.... ..........*.+-.-. Z %

>'#

qq

q4

~U

tt'l 3.m

IW

I r&

r I

bCE

r' I

u?

~'L

P

ltrl ..

...... 3.M

''N

.*+V

*U

XO

OLeL.'o

3.051

+.'I

. LW

I rclj

.%oc r 1.9

.... .................

2-0

2 0

co

3.0

~ ~

CO

L .

>W

IUO

I ~

~~

e4

.o

3.08 I

L'SP ).0C

i4.0Z "

""

4."

"

....., ..*Y -4!-w

A

. '"...'...'.

WC.IOI

%O

OI~

SL

S

WIC

IOI

&?LC W

FLOI

**I?

~ir

~o

t+o

rs

W~

E.IO

I*QM

h-8 .rq

I- B

trrr P l~

- C

LZ'O

>.I'1F e

UI'O

...

~9

r1

. LIC'O

>.P'SI .)6tL

'Q

1.

~5

11

LWO

m-'-'"m

-"'- 3.a

. l*t)r.pa

~~

r %

WP

UW

p

uy

~

".. ......... 13.01-*$1

Dl?'&

3.M

1 +'I

1L

l.t W

.2

WC

': IC'C

.. h

9.q

b li.n4J/rq 'Irp

od

w rv*v em

05 ..

LIIL'O

WL'I

0.r t

~C

~I'I

ru

~r

~

5sll.l m

.-..o.,w

uh

......... 3.0~

t3.w

-&!'.P m

Aw

pu ...............................

WI

rpc I

P*ZL cr I

I 1111

c111 E

WI

Q~

'3.04 a

hu

-a

................................. OIL

616 C

l?

or

101

ELC 3.

'mm

8orrdur*l ...............................

OS~C

~5 rb

ez

CMC

LSPI W

QL

119e) *ry '-a44 W

Wm

a P

WJ

....................................

1.u

- I'd

E

v- -

Kl-

I-

EL-

3. 'w

ed

Oqzbud

...................... r

W

m.3

LLC

Lac S

rL ld

l 3.

'119.1 9'101 @

rw

d **!@a

........................ ;S

IOE

G

Lr

al

LC

~~

I

11

'osl

zl.voL 1w

tv ..............lrD

vr

qulq

*

. "...

........................ .

HO

~H

~

mln

a .

H~

IO

W~

~

,,qD

.H'3)O

" H

rlO,H

'J~H

K

I.HtM

n

."" ".." ",. -" I rn-4

E 'U

lrrr .-~

-wrs

W

O wh

-4~

Wo

-WIW

l-4

0 *-I1w

m

Wm

--All

........................ LC

1 1

st

CC

I

LC1

tll

' .

ILI

Cb

>. '303 .IV

+ Odylq*

................... L

OL

I'I -

>.St& U

Cr

I

US

?'&

CC

Sl'l

9111'1 LS

V'L

3.w

'w 'm

rpu! v*pw

r)*a

3.001 1 LI'O

3.a

*

FL

.

LO a

s'?

>-PC

90 L

um

lvwm

r .I.- su

L

uo

!wr n u

au

w

........ .................

>.st- Q

8'0

1

XS

L P

B'S 3.w

a WI

a.7~1 rw

~.O

L*CIO

I 3.a IW

C

3.u a

""

b.D,rn .4,!W

*

.................................. -

3. CC , ut-

- L

Ul-

CW

II- ..................................

- -

-3 3.s~

LII-

ml-

ad

- s

~n

w w

I* ow113 w I- ww

**I

C.IO

&

rm

- m

dl(

Plr

aI

' Y

I E'LOL d

OIE

W

I C

.tOl I SEE

.I3 U

'd &

W9

-1

C

'IOI @

VEm

'.'(@9

0)

%34e a1fll *

lmW

dm

rP

ray W

eW

.....

>.(rl a W

~D 3

.c~

IWI'O

-

wo

M

C'O

PEL'O

3-02

lwh

..r~'llr '&u!-

IW-SL

~

. -

CO

I'I J.E

I L

WL

. 3m

QC

1 UI'C

' IdC.2

l W

L

LIS'Z

3.08

19

tE'C

'"

' 3

.r

~~

a,(3

..~q)R

~'Ir!a

od*r

i.

4~

q

!ds

W'l

- 3.0C

lSP 1 W

Q

2150'1 O

Cf l'l

bO

CfO

E)4

&4

Vt

""..""..""" ).Q

LIS

.Ol

'Mu.?

.ryml.r

...................... L

'TM

I J'S2

1CO

l 3m

OC.4bb ?

.Ptl&

IEO

I *111

SUll #to

1

1U

IQ 3.O

t IIU

WIO

........................

- -

MI

. to1

CiE

Z??

OSC x 'e

*rwd

wrl

...................... -

- o

ut

zue

a??z CLLC

SMS 1qm

) o& 'm

ci#*q

-nu-

lon

vr~

...........................

C~

P-

C

U-

tv

1.21- r'zz

. w

ro

i .............

3. '

IV

!~

~

"!

ZB

U~

ZH '

011 4IZ

121

(nm.odw

oa.O) p

s~

6PC

' V

Odl

3. lq

('9n

lnd

l CIO

L 1 lu(m

d .

......................... W

Z4I

WZ

CI'C

CI

1i'SO

t b1'911

? I'S

OI

W.I9

....n

orn

,rp,**W

"

........................ *

,,,,t(tncm

) 4++,r(

,,

,6

~ )n

,,qm

rj0

,",,,,.n(Xrn) 'W

,,,4)C

W

".."." c

~~

r3

,*.m

q,.r(y.wg g.--4

--4r,lrtUYl .I-.*-

VI

IO

..*-

..IYU

IwII

.IPY

.(UY

Iw ---

qm

lul*y

r kllrn

ar~

lo

6 (m rm

lr*do

rd 10-

Page 265: Total Company Process Eng Design Manuall

DATA StmlON

PHYSlCAL PROPERTIES QF WATER

, m . 4 4 wmr a d Skim. .ruan.J('W

Il-mkn.. r+ TllC t im , , ,

Page 266: Total Company Process Eng Design Manuall

' I

Fw tk btntm a1 a b n r m & r l . ~ urn Iunetimo d 1h ~IM, U. ''In~#rm.Liom J Cljef.J .T&-," vd. 8. I.. M;' b Tim 011 snd 2-34.

' h p k d h r E ~ b , sc td,h n $1 ~m. hm W' lo 1Yn.L. 1 h. IW b.n. h V-mn. L.r,~cL&r. ad bbwd 5bm- pkr*t*l m n n d rm id ira c a m . - WF. W. and

PHYSICAL PROPERTIES OF AIR ?.E-SSf tnr TI a m . 1C1. rru -n -I-. Irwl- d PF.IM IWC,

PROCESS ENGINEERING DESIGN MANUAL

nt K l ' I t . na

. XI Im

---- 1 ~ev is ioh : 0 . P q b No :

Page 267: Total Company Process Eng Design Manuall
Page 268: Total Company Process Eng Design Manuall

EQUIPMENT CALCULATION SHEETS

- P

AIR COOLER

SHELL AND TUBE EXCHANGER

PUMP CENTRIFUGAL OR AXIAL COMPRESSOR RECIPROCATING COMPRESSOR TRAYED COLUMN

VERTICAL LIQUID GAS SEPARATOR

HORIZONTAL TWO PHASE SEPARATOR ' HORIZONT A 1 3-PHASE SEPARATOR

PIPELINE TWO PHASEAP CALCULATlON

PLPELlNE AT CALCULATION

TEPlOPfEXPfSUR

PROCESS CALCULATION SHEETS

Revision : 0

Date : 2/85

Page No. :

16.0

Page 269: Total Company Process Eng Design Manuall

OPERATING CONDlTlONS AND NATURE OF FLUID I

Duty . I Q = I kcrl/h I Fluid inlet temperatwe IT1 1 aC 1

1

Fjuid outlet temperature I T Z = I *C I FLUID AT^ = T l - T 2 ' C Fluid inlet pressure I F = I bar abs 1 Air arnbiant temperature I t l = I 'C I INLET ATL - TI - t l = *C Overall heat transfer coeff. I'U = i kcal/h m2 *C I l ~ e e Table 2 and/or a t t a e a work sheet) (Based on bare tube area) I NOT@

STEP - 1.Optimum number of tube ! N = I I (N~VC N* 4)

rows for U selected

2. R = At air/ t m l R = 1 I (curve N* b) 3. T1 - TZ/TI - tl 1 I *c I 4.Y =At air/Tl - t l . I Y = I I (curve Na 5) 5. Atair s Y x (TI - t l) IAtair I *C I 6. Exit air temp t2 =&air + tl I t 2 m I *C I 7. Average differential temp. I 1 1

At, = dtalr T . k m * 1 ' C 1

1 . I I 8. Bare tube surface A r -92 L A = 1

Ux tm rn2 I

I I I 9. Bare tube areatrow Fa=AIN I Fa = 1 m2 I LO. Tube length I L - I m 1 3, 4 , 5 , 6 , 7.5 or 9 m are common 1 1 . Tubeslrow TR = FdLlt0.08 ! TR 5 1 I ( I" OD tubing)

12. Cooler width W=TRxO.O635 1 W 1 rn 1 13. Total fan power =Fa*0.795 1 Fp I kW I 19. Number of tam I NF I t max. fan dlam = 4.6 m IS. Fan diameter I FD I m 1 16. Powcrfian Fp/NF I PF I kW 1 . 17. Estimated weight 1 - M I kg I (including rnotars)

4.88 (36.4X9.35 NIxWxL 1 1 I

Notes : Curves numbers refer to Process Dedgn Manual Chap. 4.

246

E Z U TOTAL

4223 T€*mO?QIC E X P I U I

sv 1 r nr

PROCESS ~ ~ L C U U ~ O N SHEET

AIR COOLER ITEM:

b. !

- DATE I 101 ~ m t 1406 he.. I u r v l /

Page 270: Total Company Process Eng Design Manuall

. 1, LIQUID COOLING

LIQUID VISCOSLTY AT + T2 s 2

GLOBAL HEAT TRANSFER COEFFICIENT : U = (Read curve n* 1)

2. GAS COOLlNG

MOLECULAR MASS : Mw'=

GLOBAL HEAT TRANSFER COEFFICLENT :U = (Read curve n4 2)

3. TOTAL CONDENSATION

T l - T 2 = *C

GLOBAL HEAT TRANSFER COEFFICIENT : U = (Read curve n* 3)

I r . PARTIAL CONDENSATION

4.1. WITHOUT LIQUID AT INLET

inlet gas f lowrate WGl - - outkt gas flowrate WG2 - -

outlet liq flowrate VL2 s

Tl - T2 C

GAS MOLECULAR WEIGHT AT y, HEAT TRANSFER COEFF. Uc = (Read curve n* 3)

HEAT TRANSFER COEFF. Ug :

(Read curve no 2)

G L O ~ A L HEAT TRANSFER COEFF.

SELECTED GLOBhL HEAT TRANSFER COEFP. t u =

kcallh rn2 ' C

kcauk rn2 *C

kcal/h m2 'C

kcallh rn2 *C

Curves refer to PDM Chptr. 4. a4 7

L m PROCESS CALCULATION ,SHEET

ITIW :

w.. 101 No I ntv 1 ;

TOTAL r- TEI1WP:DV:E X W U *

AIR COLERS HEAT TRANSFER COEf flClENT

I* cnu 1 OATS I ( 101 ilnt

Page 271: Total Company Process Eng Design Manuall

2 WITH LlQUlD AT INLET'

inlet liquid flow rate WLl - - kglh

outlet liquid flow rate Wtt - - kgfh

LlQUlD MOLECULAR WEIGHT AT T1 + f2 = 7

LIQUID SPECIFIC HEAT AT T1 + r2 CP1= --?-

kcallkg f C

Q L - t v ) x CPI x [Tl - T2) = kcal/h

inlet gas flow rate WG1 ' - - kg lh

outlet gas flow rate WGZ - - R%h

GAS MOLECULAR MIGHT AT- =

GAS SPECIFIC HEAT AT T2 CPg = kcallkg 'C 2

QG = f W C l + WC2) x CP& x (TI - TZ) = kcallh 2

CONDENSAT ION HEAT

P c = Q - Q L - % kcal/h

LIQUID VlSCOSlTY AT 71 + T2 2 cpg

LIQUlD HEAT TRANSFER COEFF. Ur = kcalfh rn2 *C (Read curve n9 2)

GAS HEAT TRANSFER COEFF. U8 kcalfh m2 *C . (Read curve n* 2)

CONDENSATION HEAT TRANSFER COEFF. Uc = kcal/h rn2 *C (Read curve n. 3)

GLOBAL HEAT TRANSFER COEFF. .

U = A U = kcallh m2 'C

$+F+$ SELECTED GLOBAL HEAT f RANSFER COEFF. r U = kcal/h m2 *C -

p q Y &y TE?~OCV~PIZ~? ISU( I

6 I C H I *

PROCESS CALCULATION SHEET

AIR CoOLeRS HEAT TRANSFER COEFFICIENT

OATE 4 1 lO# T111f

nzM:

~o . 100 ho I l t ~ I -

Page 272: Total Company Process Eng Design Manuall

! ITEM: 1 I I I I I VALUE I NOTES : I I

I I I

I DUTY Q I keal/h 1 I Indicate temperature I I I I I I HOT FLUID I 1

I

I Inlet remperature TI I 'C 1 I Outlet temperature T2 I ' C . 1 I I I I COLD FLUID I 1 1

I 'C 1 I

I 1n:et temperature tl 1 I Outlet temperature t2 I 'C I

I I

I 1 I

I I I I I -c I I + ! I I I I I

I T 2 - t l I

I ' C I I I I I I

I I

I LMTD from formula(l) I ' C I I I I I I 1 I I t 2 - t l I ' C I I I I I I

I . I TI - tl

I I *C I I

I I I I

I T I - T 2 I

1 .c I I

I I

1 I I

I p = t 2 - t l I

1 I I I I

I r l - t l 1 I I I 1 I I I

I I R = T l - T 2 I m I I I

1 I I I I

I NUMSER OF SHELLS 1 I 2 3 f 4 1 I F = LMTD correction 1 Fig. 2 1 1 I I I factor (3) I ' I 1 I I

I

L I

1 I I CORRECTED LMTD CORR. I 1 1 I I I I I I HEAT TRANSFER COEFF. U I kcallh I I Including fouIing I 1 TABLE 3 P a ~ e 4-10 I m2'C I 1 factor I - '

I I HEAT TRANSFER AREA I I

I 1 I I I

1 A'.+. I

I rn2 I I

1 U.LMTD ORR I

I I I I I

I I ESTIMATED TUBE LENGTH FTlrn) I I

1 ESTIMATED SHELL DlAM I inr(mm)'l I I

I I

1 I I I

I t

I I ESTIMATED WElGHTBundlc 1 - tonnes I

1

I I 1

Shell 1 tonnc~ 1 1

I 1 1 tonne* 1 1 I

I 1 I I I

247 -

i!i& StPIDD?'D~P ~ X P ~ S U U

av { t cnx I

PROCESS CALCULATION SHEET

SHELL AND TUBE HEAT EXCHANGER

I T E M :

N, . oat€ JOB nnr ror NO I REV I

Page 273: Total Company Process Eng Design Manuall

'

-

lndicstc pressure, elevations and system sketch

PUMP TYPE r FLUID PUMPED r Liquid : Speed t

Pumping temperature T r *C Viscosity at P, T . cP Vapor pressure at T I bara Specif ic.gravity . (reL ~ b d ] Density at P, T I kglm3 Normal flow Q at P,T : m3/h Specific gravity at P, T r Design margin : %

Design llow at P,T (1) : m3/h

I I *

SUCTION PRESSURE .

1 I DISCHARGE PRESSURE I I I . 1

I I

Min. Origin Pressures baral Delivery pressure bara 1 I + Static head at LLL = m I Static head bar I I (m x sg x 0.0981) bar t f d P control valve(s) bar 1 1

1 - A P suction line bar1 I A P txchan cds) 2 bar I I I AP orific 51 b r I I

PUMP SUCTION PRESSURE I 1 AP bar 1 1 OP lint 105s bar I

I 1 I I 1 Othu bar I I

NET POSlTlVE SUCTION HEAD 1 I ' I I I TOT MSWARCE PRESS bara 1 1 Static head at LLL m 1 I 1 - Line loss m l 1 1

+ vapwr pressure correction . m 1 1 DlFFERENTlAL PRESSURE I I I I I

bara I I

TOTAL AVAILABLE NPSH m I Suction pressure . I 1 Discharge pressure bara I I I I I pump 'A P bar I

I MAXIMUM.SUCTION PRESSURE I 1 (2)

I ' I m I 1 , Vessel PSV setting bara I 1 Statlc head at HLL bar 1 I

I 1 P ~ W L R REQUIREMENTS I I I

net bara I I I Brake Horse- ower = (l)x(2) kW I ' 1 (31

MAXIMUM DISCHARGE PRESSURE I P

!I+ 7si. . I 1 1 1

Max. suction pressure bard I Estimated mator size kW 1 1 141 Normal pump AP x 120 % bar1 I I I

I Design operating load i411qmkWI I !((I net bar. I I 4Fig3for 1,)

I * . I 1

I Estimated weight *I 1 I r --- ....*--- - I .

300

-1 TOTAL Em7

TECWoPXWP'tI(P sun

PROCESS CALCULATION SHEET -

I V I CHI

ITEM :

He. I

I 0 0 lro 1 r t v

PUMP

OAT€ 10. rant

Page 274: Total Company Process Eng Design Manuall

r 1

OpER4TING CONDITIONS

SUCTION PRESSURE PI = bar a DISCHARGE PRESSURE P2 = bar a PRESSURE RAT10 P2/Pl

SUCTION TEMP* TI = 'C i *K MW a

SUCTION f LOW W + kgir GAS DENSITY AT ACTUAI. VOL FLOW V = m lh SUCTION = kg/rn3

STEP NOTES

1. GAS PROPERTIES PC bar a Tc = ' K

2. POLYTROPlC EFFICIENCY 9~ = SEE FIG. 2

3. AVERAGE 8 = MCplMCp-1.99 8 = ESTIMATE T2

4. DISCHARGE TEMP ~2 = ~l(a) 3 ~2 t K REPEAT STEP 3-4 IF ~2 IS

= C DIFFERENT FROM ONE USED IN STEP 3

5. DETERMINE Z AYC SUCT 2 1 = DlSCH Z2 = AVG Z r

6. CALCULATE GAS HORSEPOWER G H P = Z X R X W ~ ~ X ( T ~ - T I ) ~ f j p k R = 8.314 kJlkgMOLE .*C

M W x 3600x(X- 1).

7. CALC SHAFT HORSEPOWER F 'I m tHP<800 kW 5.0 0.96 .

PS = GHP x (1 + FIlOO) x I / q,. PS = kW 8 0 0 < < 10 MW 3.) 0.97 > I D MW 1.0 0.98

8 r ESTIMATE DRIVER POWER - - - ELECTRJC MOTOR PS x K PO k kW K = 1.15 GAS TURBINE PS x (1.14 + K) PO = kW K s 0.02 TO 0.04 WITH

GEARBOX

9. ESTIMATED PACKAGE WEIGHT

COMPRESSOR-DRIVER-LUBE M = kg (SEE FIG 4 )

NOTES I - - - .

301

&2.Lb PROCESS C&LCUCATION SHEf T TOTAL ED3

1 I P I P W ~ l h l X I ~ I U R

-(.CUK j

CENTRIFUGAL OR AXIAL COMPRESSOR

DATE f JOD rrne

l l lY :

wo. :

10s mu 1 UIV 1

Page 275: Total Company Process Eng Design Manuall

- t

OPERATING CONDITIONS

SUCTION PRESSURE P1 = bar r DlSCHARGE PRESSURE P2 = bar a PRESSURE RATIO P21PI =

SUCTION TEMP. TI o C = K MW c

SUCTION FLOW W , kgjh GAS DENSITY AT ACTUAL VOL FLOW V z m /h SUCTION = kdm3

STEP NOTES

1. GAS PROPERTIES TC = *K PC = bar r

2. AVERAGE 8 = MCplMCp - 1.99 II =

3. CALCULATE DISCHARGE TEMP . l-2. T l x ( Y E) T2 = 'K Repeat 2 - 3 i f T2 differs

m *C from that used In STEP 2 ".

5. DETERMINE t AVG SUCT Zl * DlSCH Z2 = AVG Z =

7

6. DETERMINE OVERALL EFFICIEN&

'l e 'lg = s n FQ 3

7. CALCULATE GAS HORSEPOWER

CHP = Z x R x W * 11 x ( T 2 - T I ) GHP= kW R = 8.314 kJ/kgmoldC M W x 3600 x i 1 - 1)

8. CALCULATE SHAFT HORSEPOWER PS = kV

PS+ GHPlf x v g f = 0.96 t o 0.97

9. CALCULATE DRIVER POWER

Electrical Motor Po = 1.15 x PS. Po = k W

30 2

lmm TOTAL

E E u T I C m w m M X C n V n

mv cut

PROCESS aLcumnoN SWEEI

RECLPROCATING COMPRESSOR

O ~ T I JOB nnr :

ITEM :

: .

IOWUO. : IIV 1

Page 276: Total Company Process Eng Design Manuall

TRAY CALCULAnON SHEET

Columm item : Name :

Tray number : Number a! passes r

to = .*c PQ = bar .a

1. VAWUR.AND LIQUID TO TRAY

- - - I HYDROCARBON : I I I I I I 'I I I .LIQUID I - 1 ! 1 I I I I I VAPOUR 1 I I 1 1 I ' 1 I - I TOTAL I 1 I I I I I

-7- --- I

Compressibility factor Z

Reduced temperature Tr Kcduccd Pressure Pr

From charts Figure 1,2 or 3 & page 15-15

?pour actual rate

C v = k & = - - m 3 h Dv I h. 3 0 9 .

~' .$W PROCESS ULCULATION SHEET Sheet 1 of 4 ITEM:

TRAY COLUMNS I 'IEP'DWrDlP'tlCSUR WO. :

my CUE OLTt ! 1 Ion tlm,. . . 10s no r REV I , .

Page 277: Total Company Process Eng Design Manuall

2. LlQUlD FROM TRAY

to = .C Use figure 10 page 15-20

D15 ' kg/m3 DL at to r kg/m3

Liquid flowrats = k&

3. DOWNCOMER DESIGN YELOClTY YD bg

TS : = mm T R A Y SPACING"

DL-O": kdm3

v D dsgo = m3/h/rnZ From figure 2 Page 3.10

System factor Kl from table 1 Page 3.9 VD dsg = VD dsgo x Kl = rn31hlrn2 .

4. V A P ~ U R CAPACITY F A f f O R CAF

. TS: mrn CAF 0 = from (Fig.3) on page 3.10

.System factor KZ = from (Table 1) page 3.9 ..

CAF= CAF , x K 2 , =

5. VhPOUR EFFEmVE LOAD V Load

6. APPROXIMATE COLUMN DIAMETER DT = rn f rm Vlg.4) page 3.1 1

30Y D m , PROCESS CALCULATION SHEET Sheet Z of 4 TOTAL Em3 REM:

TRAY COLUMNS TtP'DDCPC.TXP~SUR *o. ;

1 riv,:,

Page 278: Total Company Process Eng Design Manuall

a. HI : See design details on vertical vapour-liquid separators. Minimum distance for H1 will be one tray spacing. Minimum distance between

inlet nozzle and top tray 300 mm.

COLUMN HEIGHT ESTIMATION

HZ : trayspacing x (number of actual trays - 1)

I

"a

No actual trays = theorctjcal traysltrray efficiency

for tray efficiency see section 22. page 3.3. Assume = 50%

Actwl trays a

I 1 _

I

Note.: ifthe column diameter changes over the length, the transition piece will be -

-

h* = @0l - (2) long and t i 2 ri l l increase by this amount

~ I

Selected H2 5 mm

*- T O ~ A L

T CP.~bP#Pl@*txt~SUt

PRQCE%$ CALCULAnON SHEET Sheet 3 of 4

B

.. , . , . .

TI~AYCOLUMP~S ...

cur 1 ' .

I t tM.

no..

DATE I ! I O B T I ~ L ~ , 1 ror no I t tu I

Page 279: Total Company Process Eng Design Manuall

:

..

. .

c. H3 r . .

H3 s h l + h2

hl = tray spacingx 2 = . mm

h2 = h6 + h7 + h8 (see vertical separator sizing)

h6 = hold up time

For production flowing to I .

. . anothci column t r 15 rnh

. storage 2

. a furnace 10 . another unSt . 5

. reboller/heat exchanger 5

h6 = rnm h7 = rnm h8 : mm

+ h 2 = ' rnm .

Hf = hl + h2 r mm

. Selected H3 = . rnrn

TOTAL COLUMN HEIGHT e HI + H2 + H3 = mm

~.

p 6.

TOTAL B f . 1 1EPrDDP:DIPJELHSUI

81 I C ~ Y

PRDCESS CALCULATION SHEET ~ h & t 4 of 4 .

TRAY COLUMNS IoRTITLt : PATI /

~ E M :

ma:

lOrnN0.. . ] REV i

Page 280: Total Company Process Eng Design Manuall

CALCULATlON SHEET FOR VERTICAL TWO PHASE SEPARATOR

EOUIPMENT N*

Operating data :

Pressure (operating] bara r

Temperature (operating) ' C = Gas MW - - . Liquid description :

Gas flow rate kg/h a Liquid flow rate kg/h = Gas density (f ,P) kdm3 = Liquid density (T,P) kg/m3 =

, Actual volume flow Qg m3/s = Actual volume flow m3Irnln r

Particle size microns =

' Mesh pad Yes : . Estimate Vs using Fisure 1 and 100 micron curve

No : . If P < 50 bar and )J < 0.01 use Fig. 1 and f 50 microki . ~f ~ > ' 1 0 b a r o r f > 0.01 use calculation for Vs

1. Vapour-liquid settling velocity : from Fig l/calculated Vs a ' m/r

c = vs = m/s Delete as applicable

2. Derating % = 85 maximum velocity Vm = m/s

3. Actual volumetric Drum flow area = m2

gas flow - m3/1 Calculated drum fi = mm

SELECTED DIAMETER = - mm

4. Required liquid hold-up timer

h5 : HLA - HLL r min = m3 . m mm

h7 : LLL - LLA = mifi = rn3 mm

5. Mesh pad: Yes/no thickness s rnm - . , 30? .

Em2 PROCESS aLCULATION SHEET Sheet 1 of 2

&jet;[ Y E ~ C A L vAwuR-Wu1o SEPARATOR I I tTM.

I .-.CII. YO

Page 281: Total Company Process Eng Design Manuall

6. Hci~h: calculation = mm 1

hl : t 5 % of 0 or 400 mm [Use mad = mm TL

h2 : mesh pad - - mm

h3 : 50 % of @ or 600 mm = mm

With mesh : hl + h2 + h3 - - mm

No mesh 2 hl + h2 + h3 8 60 % d or 800 = ' mm U h9 : 400 mm + dl2 r d = inlet not2 P = mm

L I+ - mm hS : From step 4 or 200 mm - h4

4: %I h6 r From step 4 or 350 mrn 5 mm

h7t FromstepIorlSOmrn s rnm h5 N

.I: h8 : 150 mm for bottom LC

h6 - .WLL 300 mm for side LC = rnm LtL

A. - For "drym vessel b l ua . - - h6 + h7 + h8 F mm

Id

TOTAL VESSEL HT TAN#AN = - mm

t 7. Wall thickness

. DESIGN PRESSURE P = h r g Diameter D = mm

. CORROSION ALLOWANCE c = mm

Max stress :

5 = 1220 bar CS t = P x D + C Z X S X E - I ~ Z P

LO00 bar CS S = Joint efficiency (.a51 E =

tmin = Df800 + C - - mrn

8. Veswl weinht (Flg. 6)

t = mm shell \eight = b L = m Head weight = ks D r m (t x dx 201

TOTAL WEIGHT = h

30 ST

1 OTAL m.

IEC'DDC'D(PIEXMUR I I 1

PROCESS CALCUUnON SHEET Sheet 2 of 2 . - VER'llCAL YAPOUR-LlQUID SEPARATOR

I - - - - -

n t w : "., . - . " .-.. I .. I4

Page 282: Total Company Process Eng Design Manuall

-

CALCULATION SHEET FOR HOMZ ONTAL 2 PHASE SEPARATOR

t TANnAN fL' ) . ~

0 of HLL

0 =

ht LLL

h2

3

Head type cllipticallhcmispherlcal +

:; ;. .@ EQUIPMENT N * :

Indicate on sketch if 2emlstcr mesh required DESCRIPTION r

* Delete as applicable

Operating data r

Operating pressure bara

Opcrating temperature ' C =

Gas molecular weight x Liquid nature :

Gas mass flow rate k d h = Liquid flowrate kg/h

Gasdensity T, P kg/m3 = Liquid density T,P kg/m3 = Q g actual val f b w m3/5 = Q1 actual vol flow m3/min =

Gas vlseodity CP = partide size microns =

I . Vapour-liquid settling velocity : from Fig. I/calculated * Vs = mls

C = * Delete as appliabIe

- 2. Max. vabour'velofity V m = V s x f x L V m r mlr

LID - 3 b

3. Actual vapwr volumetrlc flow Qg = m3/s *" = %= m2

30 7

E m 3 PROCESS CALCULATION SHEET Sheet 1 of 3

&?P) IEPIOOP UIPIE~PLSUR -

- BY C ~ K

ITEM :

WO. :

JO@ no R l V

CALCULATION FOR HORlZONTAt

2 PHASE SEPARATOR

DATE IOD TlTLl .

Page 283: Total Company Process Eng Design Manuall

4. Nozzle sizlng I velocity limits (rnfs) = Inlet r 7-13, Gas outlet : 15-30, liquid outlet 1-3

i ; lnlcr flow = m3/s Nozzle ID = n Actual vel = mlr (+ 10 96)

!J2 : Gas outlet = m3/s Nozzle ID = n Actual vcl a mls Li@d outlet = m3fs Nozzle ID = w Actual vel = mla

5. Drum sizing

For trid I t,,, = 4 min voL required r b x Ql =, m3

I I T R H L I I

I I I I I I

1 . Selected h/D I Vapwr area Av m2 1 I I I I % Total area (Fig. 3) 1 I I I I Total area At m2 1 I I I I Liquid arcs Al m2 1 I I I

I I I I 1 , I

Calculated drum # mm I I I I I a Selected drum 0 0 mm i 1 1 I I

1 I I I I LID (3 - 4) 1 3 1 I I I Flowpath length L rnrn I 1 I I 1

I 1 I I I 1 I I

1 , Tan/Tan length L1 mm I

I . 1 I I I HLL hclght mrn 1 . 1 I I 1 '

Volume at HLL m3 I 1 I I I LLL height mm I I I I I Volume a t LLL m3 I 1 , 1 I - I Surge volume (HLL - LLL) d I I I 1

I 1 t I I Calculated treS min I I I I 1

I I I I I L I

NOTES r 1 I 1 I 1 I 1

SELECTED DRUM t DUMeTER mm r mm tanltm

d T m / t a n l e n g t h L 1 = L + If x l l + 14 g2 I (ignore this correction if D < 1.2 m and use L for volume calcs. For trial 1- use L I &d ignore heads).

b) If VOL HLL is less than rquired surge i n c r e a ~ D, L or h/D or reduce trcs (by inspection).

3 l0

F v Z a &qJJ

T E ~ Q O P * R V ~ XP'IUI

BY cnr

PROCE5S LnLCULLITlON SHEET sheet 2 of 3 n t ~ : 116.:

IOI YO . I REV '1 CALCULATION FOR H O R I Z m M

2 PHASE SEPARATOR D L ~ E 101 TITLE.

Page 284: Total Company Process Eng Design Manuall

Shell weight = kg

Head weight = kg It x $r 20)

TOTAL WEIGHT = k*'

L I

6 Wall thickness

. DESIGN PRESSURE P = barg Max stress CS = 1220 bar

+ CORROSION ALLOWANCE C = mm SS = 1000 bar 5 =

Joint efficiency E =

P x D + C = -p

5 mm

8. Vessel Vfei~ht Fig. 6)

t = rnm L = m

D = rn

. 3

LqT'J-J TOTAL

E a 3 TIPIDDPOIP IXPISUR

PROCESS CALCULATION SHEET Sheet 1 of 3

BY

CALCULATION FOR HORIZONTAL

2 PHASE SEPARATOR CWK

"EM :

Ha'

101 No 1 mtv A T I ] 101 TIT11

Page 285: Total Company Process Eng Design Manuall

- -

I - f ANITAN LENGTH L' t I; FLOW PATH LENOTH L - 1

Or TO . Amend rkateh if boot requited instead of bfflr

HLL .indicate on sketch i f mesh r.quir+d . Heads : 2 : 1 slliptical /hemisphsricaf

EaUlPEMENT No :

1 DESCRIPTION :

0 . Operating data i Operating pressure a = CONDENSATE Flowratc kglh F

Opcratlng temperature ' C = PC Density T,P kg/rn3

Ql Vol flow T,P m3/rnin = GAS MW - I." Viscosity cp = Mass flowrate kg/h = Dtnslty T,P kgfm3 = WATER CUT Flowrate kglh - Qg Vol flow m3/h r PW Density T,P kg/m3 =

P - - Qw VoI flow T,P m3/rnin = Particle size microns= P "' Viscosity ep =

I. Vapour-liquid settling vclwitr: from Fig. Ilcelculatcd * Vs = , ds

C 5

Delete as applicable

2. Maximum vapour Y m r V s x O d 5 x L b velocity LID = 3

3. Liquid-liquid settling

Oil in water Ut = 0 . 5 1 ~ 8 [ ~ ~ - f ~ ] rndrnin U+il= mmlmin )c.

Water in oil I J ~ = 0.1 101[-.] rnrnlrnh Utwater = mmlmin re

31s

TOTAL m T ~ F , D O F . ~ ) I ~ ~ ~ P ' S U R

PROCESS C&LCUCATION SHEET - Sheet 1 0 i 4

67

CALCULATION FOR HoRIZONT& 3 PHASE SEPARATOR

I CHK 1

1 7 ~ :

NO.:

- OAT€ I 101 TITLE to6 lto . ltlv

Page 286: Total Company Process Eng Design Manuall

rr . Nozzle sizing r velocity limits (mi$) = Inlet ! 7-13, Gas outlet 11-30, Liquid outlet 1.3

1. Inlet flow I

(+ 10 %I 2. GM outlet I

3. HC outlet r 4. Water outlet r

5. V e s x l sizIng

m3/s :.

For tr id 1 use tres oil [HLL-LLL) = 4 min

OIL SECTION

I TRIAL I I * I 1 I 1

1 Selected h/D I 1 I

I

Calculated (Qg/Vm) Av m2 1 1 I I

Av as % AT (Fig. 3) I

I 1 I I I

Total area At I I I m2 I

Liquid area A! m2 I I I

I I I

I I I I

I . Calculated @ mm I I 1

1 I Selected I

1 I - D mm 1 I I I I

I I LID U - 5)

1 I 1 3 1

I Flowpath length L

I mm 1

I I TanlT an length L'

1 I I I I I

I mm I

I

HLL height I I I I

h 1 mm I I I

Volume at HLL I

I 1 1 I

m3 I LLL height h2 I 1 I I

I mm 1

I Volume at LLL m3 1 . I I I Surge volume {HLL - Ltt] m3 I 1 I I I

I

Calculated t,,, I I I I I

min I I I I

I I

I t I I

I Notes or comments r

I I I I 1 I I - 1 I I

a) tan-tan length Lo = L + I j x + 02) mrn - Ignore if D < 1.2 rn

- $3 -

nozzle 10

k y > m f OTAL F J r n

T~PDDHQ~FTXPSUR

actual vel m/s

PROCESS ULCULATION SHEET Sheet 2 of 4

CALCULATION FOR HORIZONTAL

3 PHASE SEPARATOR . i . w I I ewe I 1 inn rlrm

'TtM: .- - no :

IM we I UIV 1

Page 287: Total Company Process Eng Design Manuall

WATER SECTION Trial 1 8 = 213 x L r rnrn [rwndcd)

1 1 Rl AL Total liquid vol f lowrate

4 1

m3lmin I I I

Qw + QI I I I I I I

I I

Baffle distance 8 rnm Liquid area at HLL A1 m2 Horizontal vcl at HLL V1 rnrnlmin Ut water btep 3) mrnlmin Vertical fall from HLL

= B x U t / V i mrn HLL - vertical fall mm

Liquid area at LLL A1 rnZ Horizontal v t l at LLL VZ rnrnlmin Ut water (step 3) mmlmin Vertical fail from LLL

= B x UtlV2 mrn

Selected baffle height . h3 mrn Selected HIL level . h4 mm (adjust h3 and B if necessary)

Check oil rise r Horizontal vel at LLL vz rnmfrnin Ut oil (step 3) mrnlmin Vertical rise within dist B

* 0 X UtfV2, . mm = mex. outlet height

hS selected LIL level mm

h6 selected outlet height mm

' ql water vol at H E (upto baffle) m3 . q2 water vol at LlL (upto baffle) m3 ,

q3 water voi at NIL (upto baffle) 3 i I

94 water voI at outlet ( I' rn3 ' i I

i q surge = VOI (ql - q21 m3 i i i I I I I I I

swge time q surge/Qw min I I i I I residence time q3qb/Qw min I 1 I I ' I

I 1 I I I calculated oU residence t ime (upto baffle) I 1 I I I Vol (NLL - NIL)/Ql min J I 1 I 1

34- Em3 TOTAL

TE?.WC OR,I X M U I

PROCESS CACCUUTlON SHEET Sheet 3 of 4

CALCULAf ON FOR HORIZONTAL 3 PHASE SEPARATOR

m a I I 4"" ?ST, r +

nEm ' . . ne.:

I ~ L Y ~ I nru 1

Page 288: Total Company Process Eng Design Manuall

-

. .

6. Wall thickness

. DESIGN PRESSURE P = k g Max stress CS = 1220 bar

. CORROSlON ALLOWANCE C = mr(r 55 = 1000 bar

s =

Joint efficiency E =

t = P x D + C = mm, 73izlm,

8. Vessel weight (Fig. 61

t = mm Shell weight = kg

L * m Head weight k!! I3 = m (t x D\ 20)

1 OTAL MIGHT = tfg

-31 5 <

i f tf P DDPRIP'EXPISUI

PROCESS aLcuanoH SHEET Sheet 4 of 4

UT cnr

"'M-

wa: 10s Nn MV

CALCULATION FOR HOWOmhL 3 PHASE SEPARATOR

01Tf 101 t a t .

Page 289: Total Company Process Eng Design Manuall

;

OPERATING DATh

GAS - - LiQUiD

FLOWRATE Wg kglh = FLOWRATE W1 k& DENSITY Dg kg/m3 = DENSITY 01 kg/m3 = VISCOSITY .. Yg cp - VISCOSITY Vl cp =

SURF TEN st dynestcrn =

FLOWING TEMP *C =

PIPELINE DIAMETER D cm = PIPELI~SE LENGTH L m = LNTERNAL AREA A m2 s Vertical change A h m = -

- f STEP - NOTES I

I 1 1. DETERMINE FLOW REGIME I I I I r d m x v e l = I Bx + 210.3 - 1

I 1

I Wg ~1213 st I I I 1 I I I BY r 7.087 x W I = I 1 1 m a * '- I 1 I I I I I I REGIME FROM BAKER CHART 1 I rcr 1-JL 40.7 I

I I I 1 . I 1 2. CALCULATE Apgas I I I I I I 1 I Re = 35.368 x W E I R e x ' I I I Vg x D ! I I I I I I I Friction factor ( ~ o o d y ) I F a

1 scr rf 10-9 t I I 1 I I ~ P G = 6.254 x f x,wg2 ld PG . - bsrlkrn I I I D g x D I I 1 I I

I I I 1 3. CALCULATE ApLlQ I I I 1 I I I 1 Re = 31.368 x W1 I Re= 1 I

V l x D I I I I I l f = I I

I J I I I APL 36.254 x f x ~ 1 ' I A P ~ = bar/km I I

Dl x D> 1 -1 1 I I I I I

3 16 -

f z z v pAOCESS aLCUt4TION SHEET Sheet ' of ' nim.

M a :

TOTAL r - r n C C

%LF~DPd'TilP.T XP.%UR

-- TWO PHASE PlPELwE

P CALCULAnON

i 1 I CCtK ()osntir ~ * * f i r c ~ 108 NO.. I *EV I Ohti 1 ? . .

Page 290: Total Company Process Eng Design Manuall

J

. I I 1 1 4. AVERAGE VELOClTY 1 I I 1 I

I 1

. \ Y,. 3.537 I v,= ( + 3 ) I mlr I VS + average veloclty I

I I I I I I I I 1 1 5. CALCULATE X RATIO I 1 1 1 I I I I x = APL * I X = I 1 (w) I I 1 I 1 1 I 1. I 1 1 6. CALCULATE LOADING FACTOR WS 1 1 I I I . I I 1 WS= W I x 0.205 I WS= 1 I I -K 1 I I I I 1

- I 1 7. CALCULATE PH FACTOR FOR HORlZONTAL FLOW

I I

i FLOW TYPE z

I I , m w n b . ! . I

M I PH 1

I I I ~ w t - I E.u . .I,IN *I. mu7~ # - LII*

t I

I mw- I -4 rn s r.n-ou3 d b * aY>.&*d l u d t U m U

I 1 I I 1 .mnu !J,q&2 I L I VS I

I I mmIE0 1 d q - L I 1 I vs I I 1 ,, iZ&~ I I

' m a 1 q # 3 I

1 L" _ _ - - - - c - - c - - I I --'- - FLOW TYPE + WAVE I I TAVE t . r h nt = o ; l l r r ~ H X - h-3 I W G f l C

I I PZH ,3 prlh . c . t ~ FH .c2 P ~ D ' ~ u l a e r

I 1 1 I berlkm I 1 I I I 1 8. CALCULATE PH FACTOR FOR VERTICAL 5EC710N I ' VER- i rn . 18.2 rlm vm+Din

I I I a 1n5

I I Y- I X , . aJYW@W PHv = 1 I 1

I w X . x,,~nDirpcrrQm~wt.wPn- I I 1 1 1 I I ' I ) 9. CALCULATE TOTAL TWO PHASE F I I I I HorIzmtaI : PH = PC= P ~ H = . P C X P H ~ = barlkm 1 I Vertical : pHV= ~2~ = PG x PH$ = barkm I I 1 ( TOTAL P = ( P ~ H x L + ' PZv x h)/lD00 = bar I 1 1

21 7 Pwm PROCESS CALCU~A~ON WEET Sheet 2 ~f 2 ?of AL r-7J-J

1tPfDOPIMPI~XP~SUI m

BY. cur

- TWO pime PLPELWES P CALCULATlON

DATE J O ~ T ~ T L E .

ITEM:

NO.: . 108 no, atv

Page 291: Total Company Process Eng Design Manuall

- /

Covering Medium r rP

b I ~g Ttmpcrature .C = 4 k Thcrm. cond. kcal/hm*C r

L p- * 1, ' 7'!?L

DATA - LlQU?D FLOW

Total pipeline length rn = Volumetric flow m3/h t

No of stgrncnts - - Density (av) ke/rn3 = L Length per segment m = M Mass f low kg/h 5

Ih Y Total tltvation change ; rn = Cp Specific heat kcal/kgmC = D Pipe tire diameter ins =

Pipslim diameter m = h Burial depth to centre m r GAS FLOW

PJ Inlet pressure bara = Volumetric flow mj/d (std) ~2 ~ x i t pressure bara = Molecular mass - -

A P Total pipeline bar = M Mass flowrate kg/h = T 1 lnitjal Temperature ' C '= Cp Specific heat kcal/kgmC =

3 FLUID YOUtE THOhiSON COEFFICIENT = aF/I,OOO psi ( x 0.00805) = *C/bar [see fig. 1, page 11.81

21 8 -

NOTES - Covering

I

i'-m TOTAL

FEZ7 TIPmDP'DIP't XPfOUP

81 ( CHK

VALUE >

STEP - 1. Calculate heat transfer factor s

1 I k I

I kca1Thrn~ I I x t 2h/D 1 % = 1 SOU 1.09 I I s = 2k /h [x+ (x2- ~ ) f ] I s = kca1fhrn.C 1 Air 0.022 1 1 1 1 Water 0.508 I I 1 0.30 1

I I :: t 1.09 I 2. Calculate heat flow ratio wr unit -

lennth I

a = dMcp (liquid or gas) I * a 1.. 1 m-1 I I 3. Calculate Asymptotic tempsrature Ta

Ta =Tg - (JAP + A y/jCp)/aL Ta = 'C L is segment length I I 1 1 = 4263 1 I I kk?

PROCESS CalCULATlON SHEET Sheet ' --

9. Calculrte downstream temp T2

T2 s(T1 - ~a)e-aL * Ta

BURIED PIPELIhiE d t CALCULATlON

12 : C

W9.: -

1 Repeat stcps 3 + Q for each segment 1 1 I See sheet 2 for stepwise spreadsheet I I I 1 I

DATE 1 101 TITLE 100 co REV -

Page 292: Total Company Process Eng Design Manuall

7. %

lTERA71VE CALCULATIQN LOG FOR A BURIED PIPELINE AT.

1 I SEGMENT Na I LENGTH I ELEVATION 1 PI 1 TI 1 Ta T2 I PZ l

I 1 I 1 7 i 1 I I I 1 1 1 I I

1

1 I I I m I - + m 1 bara l ' C 1 'C I *C I baral

1

I I 1 I I I

I I

I 1 I 1 I 1 I I I I I I

I I I I

I 2

I I I I I I I I I 1 I I I I I I I 1 I I I I

1 3 I I ! - I

1 1 1 I I 1

I I I

I I I I I I 1 I

4 I I I I I I I I I I . I I I I I 1 I I

I 5

I I I I I 1 I 1 1 I I 1 I I 1 I I I I I I

b I I I 1 I I I I I I I L I I I I I I 7 I I 1 I I 1 I I 1 1

I I I I I I I I I 1 I g 1 I I I 1 I I I I 1 1 I I I I I 1 I I 1 9 L I I I I I I I I I I I I I I I I I 1 I 10 I 1 1 I ! 1 I I I I I t 1 I I I I 1 I I I I I I I I I I

I I

1 I I I 1 I I I I I I I I I I 1 I I I I I I I I I I I I I I I I I I I I I I 1 I I I I 1 I

I I

I t 1 I I I . I 1 I I I . i 1 I I 1 I I I

I I 1 I I 1

31 9 . ~~~

JBL &-

ltP~VDP.VLP'EXPrSUR

#V ( 1 C H ~

PROCESS CALCULATION SHEET Sheet 2 of 2

BURIED PlPElINE Af CALCULATlON

DATE [ 101 TITLE :

nru:

10V NU U t V

Page 293: Total Company Process Eng Design Manuall

-

TOTAL TEPIDPIEN'ISUR

3 2 a

..

PROCESS ENGINEERING DESIGN MANUAL Rovisien :

. 2/85 Dno . ?- No :

. ,

Page 294: Total Company Process Eng Design Manuall

PROCESS DATA SWEETS :

iP&3T'k. TEPIDPIEXPISUR

AIR COOLER EXCHANGER

PUMP COMPRESSOR

TRAYED COLUMN PACKED COLUMN

FURNACE

FILTER VESSEL

SllMMAtUES OF EQUIPMENT CHARACTERISTICS

. I

PROCESS DATA SHEETS

COLUMNS

PUMPS HEAT EXCHANGERS

Revision: 0

Date: 2/85

COMPRESSORS - TURBO-EXPANDERS

P ~ ~ I N O . :

17.0

AIR COOLERS

DRUMS

FURNACES

Page 295: Total Company Process Eng Design Manuall

n CONSTRUCT ION

. 1

CHARACTERISTICS 2

@En 1

E?iL c C P

TLPlDDP!

b . r ? 21 Tbrl p i r r ~ v n . bar g

1 4 0,Blgn lmnprnlun C

2

PROCESS DATA SHEET PIE :

. AIR-COOLER Jab : Unli : ~ r r v i e e : llem :

-

V v L I 8et~ lc . : I ma 1 ha 11 1.111 drrt lop~ lu11ue : d m a m 1

4

TUB6 MATERIAL .

Page 296: Total Company Process Eng Design Manuall

a PERFORMANCE DATA

EpE73 TGTAL 5D.3 -

C F P

TEPIDDPI. .

SI CONSTRUCTION

Pagr : PROCESS DATA SHEET

... EXCHANGER

Job : I Unit : . k r v i c r : l l t m :

y T u b rbrelr -Sl.taonrrl : f l ~ l l n q - : 35 B ~ f t l e cma. TIPI : Thlfklnmmm : tpbclng : I m n

a Bwwlw lorq ' l l w . T h l s k n t ~ l : Spaclnp : I n m

37 t u b ~ U W M B I h l c h ~ r t r : SvbcIm~ : I m

8111 1 t t P * I C.lllng SUII. per urn# 1 Cnerh pr l unlt 1 Surlmce p r ek.11

38 a# 10

43

Ganitts T b I ~ t n l l 8 : I nn CO(Ln*cllol@ shall In : 5mrltr : Oul : kr1.n :

charmel In : Scrlm~ : @run : Carrorlon at+arnr. ahall SI* IVA mm I crdt ~ W U I - ~ ~ ~ S t e m ~ clan* :

Wwlghl 40Ch *hall . -4 Full 01 ~ 1 1 1 1 kg

Page 297: Total Company Process Eng Design Manuall

L

BfJZ r n A L GAY3

C F P

TEP/DOP/

I OPERATIHQ CONDITIONS

PROCESS DATA SHEET Pmlr :

PUMP Job : I Unit : Smrvitr : 1 l l r m :

L

1 FLUlD HANDLED

2 1 4 I

I I

. . ~- I - 1

4s n ~ t i * * s n t ~ r l nmsfuf* I bar r 1 I

I 10 49

PUMP 1

Flu14 clrrvlrlrd Puaplnt trmper*lut?

Vlrcorltp 11 P.T. Vlpor pralrutr *I .T.

Spuilie qrrr l l r 16 / 4 fi*tllic ymvily r l P.T.

n . .. , . > , DRIVER , , .

I

C ~ p r e l l y O i ~ r h r r l e pratrun L d i a n bn*nurr

*C

rg k r l

J

math I brr s I bar a

. J

i r Tn. 25 nfllns kw k Wwa I/ ma

27 OprrrI%n( lord - kwh n, Canarcltd lewd k W

- -- .

Page 298: Total Company Process Eng Design Manuall

OPERATING CONDITIONS

L

D"13 TOTAL HiwD

C F P

1EP.'DOP/

Capacily OqC. 1 AT* tlrn3fh Capacill (sucllan P.7.) m31 h

Sve11on prcssur~ bm f --. Discharge prr lsut* bin g C ~ n l p r r ~ ~ i O n fr l io , C

b

PROCESS D A T A SHEET Pn9r

COMPRESSOR

$0: Unit : Srrvrce . I l l rm : 7 - t

COMPRESSOR

- 1 f LutD HANDLED

DRIVER

- 3

84

P5 26 87

. 1 28 '

T ypr Rating LW

Opbraling load kwh Conneclrd load kW

S w r d t Imn ..

1 TP* Nurnbc~

~ S I Q O CPP,CI~V E l l i c imcy

L1.1. brake h~rsepowcr ~ p c r a U a b r i ~ l s

NmW b k

hW

I/M

. ..-a - -- , .

- .--

Page 299: Total Company Process Eng Design Manuall
Page 300: Total Company Process Eng Design Manuall

KRVICE

* U T E I I I I L CQKihSUoY - A U W A W C E rn

NOTI!# ;

.. RLVIIIOH

8-?.95' Vm&L is^^

C F P

~ ~ C I D D P ~ '

BOUIPUEWT CHARACTERlSTlCS SUMhthRY

A I R COOLERS - on u* DRAWING nr SHEET w

Page 301: Total Company Process Eng Design Manuall

.

-

*

UYITS

mm

null

n u

Rrn

h r g

.C

fl

'C

m

m

S

CK~PAC~ERIITICS

1T€Y M' -- NUYWR

SERVICE

I# 0 i A e T E M

L C Y S J ~ SETWEEN TL

W I Z O M T A L : M COSITLOw L ? V

MIST LLIWIUTOR

&ZrT C F P

TEPIODPI

DATE

. O O T

w z l u i l ~ a

comlf mu

M U M

C ~ l ~

EOUIPMENT CH&AACTERIST~CJ SULIIIARV

DRUMS

J0a nm DRAWIWO W SnEtT w

--

m m u . m a t m

6CTWEEY L.t.

~ L F P U R E

~ r m n r r u i t ~

H E m t m E . TEWPZ M T V M

. 22q

t

. U T C R A L

Wltn T H l C X R I

COI#DOTm CLLOrAuaE - t WTr N O W r

r m T I l :

I I E W S W

mnaL

I

I

w I

I -

Page 302: Total Company Process Eng Design Manuall
Page 303: Total Company Process Eng Design Manuall

UNITS -

wr k d l b . c

CC

Csrrrr

d

b u

*C

)r l

' C

n u

ht

I

*c

mm

r 2

CMRhCtER3tTICS

f t t Y II*

HWlLll

SCRVlCE

-

I

!

.

-

f LUiO

CllCULATLD

flksz 7 E P l O b P f - -- --

R C v --. + -* -, ,OA r i

-

M L L HOE

TUBL ClDC

EOU~PMENT CHA~ACTEUISTICS SUMMARY

- MEAT ~ l x c n ~ n t i ~ s ... - -. 400 H' ~ ~ A A Y I H O W* : MEET n*

3 3 a - - -- - -- .-. -- IC-

I ------

I I I

1

m 1 I

- HEAT EXCWGED

"

I

ti 3 z x w - * :

# ii

LI E I cl A

3

MOTES

I

I I 1 I

I I

-- - -- - *---_C

LY1.0.

t Y P t

WIL~ OF SCELU - LYIQ C O ~ V ~ L C T ~

OWERILL M L l l ? W E 1 1 UTE - ESTIM&TED A m

O P E R I ~ ~ W O

COUDlT!WS

DESION

C W I T I Q N S

YAtEAIAL

DPEwLtlNC

c ~ o l l l o n s - DESIGN

ComDlTlOns

Y A T E R H L

. nEWS10M

M I E W E

Tf%P€UTURE

PRElWRE

TEYP€MTVRS

TYPE

ChRQBIQW ALLOIUICE

PRLOSURE

T N P E U T V I I E

PRESURE -- T E M P ~ R A T ~ ~ €

TVPE

CORRP61011 ALLQ*AHCE

E 3 : m r n A L

:

- - . --*

Page 304: Total Company Process Eng Design Manuall

7

c n ~ n ~ C t E R l S t ICS UNITS - -. .- --- .- - - . I . - 1

-- * . 1 - A- 17EU ND . --- - N W B C R

pnVlCE

WJuR€

! o m YOLECVLAR 1ElCnl 3

- - - - -- - - , --A,-,

*

- - kfif k

w

L%3z' C F P

TE P/DDP/

L

MG.......

EOUIPMEMf CHARACT R I fT rc r StJMMARv

COMPRESSORS - TURBO-EXPANDERS

JOB N* 1 DR111RG M* h

.

4 : = D

S x i

3 s

-

fi VILUE CP/CV

C C r 3 n f S s l B l L l t l FACTOR z

WECtFIC W V I T I

PnES'*

T E W E M T W E

O P E M T ~ K FLO. ~ A T L

h f .

*C

r s l h

d / C

b r r

W

n

L I I

.V

DLUGll $LO* U T E

DILOIAME P(I E W n E

COYPIIENIW arno

YL'l ERlAL

,

C m P R C m

DRIVER

1

TYPE

m R A t t Y G LOlD

T Y P E

COUWECTEO LOAD

Y O t E S :

RLWCtON

fi 3 2 2 7 m A L

Page 305: Total Company Process Eng Design Manuall

CHARAC I E R I S T I C S UNIT5 I

. t fEU W'

NUYBER

SERVICE

. -.

IN. DIAM. BDTTDYI MlDDLCl TOP m

TOTAL LENGTH T l l T L 1111

m -

E TVPE

'

- - . NUUSER BQTTQIIUlObLE/ TOP

T ~ A Y SPACING BQTIClYNLDDLEnOP m

OPERAT~WG PREWRE -we ,

e g ~ a y ~ m l TEMP. DOTTW/ TOP *C .. DLSlGM PhEWhE & a

*. COWDITIWS TELIPEIIATVRE ' *C

MATERIAL B H E L U TRAYS

SMELL CLLC. THfCIII*Y M

~ ~ L L C O R A O ~ O H A L L O I A Y C E mm w 4

E S T l V r T t D lElGHT ( f Y p T V I T . HOTES : IWrrch)

. REYlI lOl l

.

fT&TD RIYAL- am

C F P

tE P/ ODP

DATE

--- EOUIPUEHT CHARACTERISTICS SUMMAPY

- tQLL'ltrUS

JOB k' DIIAMWG n- S H E E T U ~ '

3 3 9

Page 306: Total Company Process Eng Design Manuall

CHARAC.TERISTICS UNITS

#TEY )1' <

wuuaEK ..

lERVlCE

EOUIPYENT CHARACT ERlSTlCS SUMMARY I E P I DPI PCOCZ

PUMPS

101 W 9 ORAWIHO N* SHEEf W* .

.

-

I . J ? u

8 ' t . i3 8 .

1

1

FLUID ClRCVL*TED

SPECIFIC OP.&VITY A T SO. F

FLOW RATE

JEUFZRATURL

PRESSURE

8PEC lFlC GRAVITY r

. V I X C I I t *

WPSH AVAILABLE

!

. .

t

kg/ n)

3 #C

*C

h a

b # l d

cP.

m

I

nslhr

brr

&r

%

I8

'h

OESIEW FLOW RATE

-DISCWARDL PRES5uRE

.DlFFLREMT1Ab PRESSURE

YATERIAL

-P I

. ...

-

.PUMP

&RIVER

.

.TIP€'

EFFlClLUCl

OPERATING LOAO

, .TVPE

CWWEC'ICD LOAD

k O l L l :

llEVlSlON

Page 307: Total Company Process Eng Design Manuall

~- .

1 COLUMN CHARACTERlStlCS * -

Erlnlng lawn : y.. or no 1 " 3 ln~ ldo d l l d n l ~ r mm

4 Packkg IyW

8 ~ Pneklng dlam*ul a m T . Numbr ml h a s ,

I PACKINQ CHARACTERtStlCS

b

~ i ~ 3 W T A L ~m

C f P

TEP/ POP/ .

PROCESS DATA SHEET 1 plpc

' PACKED COLUMN %

Jab 1 Unit : . Scrvica* : I tem :

Page 308: Total Company Process Eng Design Manuall

Ea3 m A L DL33

c F P

TE P / DDP/

PROCESS D A T A SHEET 1 Pro8 :

FURNACE J o b : 1 ~ n r l : s*rvlc- : j l t r m : 1

1 I * A h o r b 4 b m l id Kcallh

3 Mar. ~ I l ~ w w b t m b a l l IIUZ i# KC~IIII j

1 OPERATING CONDITIONS

s L

I a

10

n I 2 13

14

1 I l*

t? *a 1I

20

n COHSTRUCTION

13 t 4

25 %

X

m a l y , ~ m u u n

&llorrbla pr *aaun drcg

tub rmlarlml . mdlm~lmm alnr ~ D ~ V . C I I D I I t o n u

Fual

art g

k r

-

Page 309: Total Company Process Eng Design Manuall
Page 310: Total Company Process Eng Design Manuall
Page 311: Total Company Process Eng Design Manuall

I Dm3

TOTAL M 3

C C P

TEPI DQP/

P.@. '

PROCESS DATA SHEET

. FILTER Job : I ~ n f i : Setvice : I 1t.m :

2 FILTEREO FLUID

15 DESIGN CONDITIONS

16 Drsign I*mpetatun I e c I 17 b e l g n prtasvrm b r p . 1

.r

TYPO I Murnbmr

3 1 S 6

7 1

P

10 OPERATING CONDITIONS

18 MATERIAL

11

12 13

14

Nstur* of H u l d 1 Flttrmtion lrnlrntyrr

S p r e l w a u i l y d 1 5 / 4 S p c l l k grrvily r T

Virroaity m 'I P Fr+ealng poinl Mature 08 I n ~ p u r l l i ~ r

. Prtrrure I bar*

40 -

LC . cp

Flow u p ~ ~ l r l l n l / i o n

-.-I

nr3/ h

P - Yr i . prrsrur? drop bar

3 1 2 4 7

l

0

44

41

42

4

3 Y d Checked

REVISION

dale

, by

Page 312: Total Company Process Eng Design Manuall

Recommended