+ All Categories
Home > Documents > Two component Bose Einstein condensates: Thomas-Fermi ...

Two component Bose Einstein condensates: Thomas-Fermi ...

Date post: 03-Feb-2022
Category:
Upload: others
View: 3 times
Download: 0 times
Share this document with a friend
32
1 Maths physics meeting on cold atoms, IHP, January 2014 Two component Bose Einstein condensates: Thomas-Fermi limit, phase separation and defects Amandine Aftalion CNRS, Laboratoire de Math ´ ematiques de Versailles, UVSQ full screen quit
Transcript
Page 1: Two component Bose Einstein condensates: Thomas-Fermi ...

1

Maths physics meeting on cold atoms,IHP, January 2014

Two component Bose Einsteincondensates: Thomas-Fermi limit, phase

separation and defects

Amandine Aftalion

CNRS, Laboratoire de Mathematiques de Versailles, UVSQ

full screen quit

Page 2: Two component Bose Einstein condensates: Thomas-Fermi ...

2

Joint works with

Peter Mason (PRA 2012 and PRA 2013)Peter Mason and Juncheng Wei (PRA 2012)Benedetta Noris and Christos Sourdis (in preparation)Jimena Royo Letelier (to appera in Calculus of Variations andPDE’s)Juncheng Wei (in preparation)

full screen quit

Page 3: Two component Bose Einstein condensates: Thomas-Fermi ...

3

Outline of the talk

I. Main mathematical results for a single condensate

II. Two component condensates: numerical simulations

III. Two component condensates: rigorous results

IV. Spin orbit coupling

full screen quit

Page 4: Two component Bose Einstein condensates: Thomas-Fermi ...

4

Gross Pitaevskii energy for a single condensate

A single BEC, set under rotation Ω = Ωez, is in a state which minimizes

E(ψ) =

∫IR2

1

2|∇ψ − iΩ× rψ|2 +

1

2(1− Ω

2)r

2|ψ|2 +1

2g|ψ|4,

Two mathematical limits

• g large, Thomas Fermi limit: analogue of Bethuel Brezis Helein analysis ofvortices, also Jerrard, Sandier-Serfaty. vortex core of size 1/

√g is much

smaller than the distance between vortices. Triangular lattice.

• Rapid rotation: Ω→ 1. vortex cores start to overlap: reduction to a singleparticle state: the lowest Landau level (LLL).

full screen quit

Page 5: Two component Bose Einstein condensates: Thomas-Fermi ...

5

Figure 1: Numerical simulations illustrating experiments in thegroup of Jean Dalibard

full screen quit

Page 6: Two component Bose Einstein condensates: Thomas-Fermi ...

6

Minimize the Gross Pitaevskii energy in the Thomas Fermi limit, g large:

E(ψ) =

∫1

2|∇ψ − iΩ× rψ|2 +

1

2r

2|ψ|2(1− Ω2) +

1

2g|ψ|4,

under∫

IR2 |ψ|2 = 1, r = (x, y). Difficulty, the problem is set on IR2 with aconstraint and a trapping potential. One can rewrite the energy as

E(ψ) =

∫1

2|∇ψ − iΩ× rψ|2 +

1

2g(|ψ|2 − a(r))

2 −1

2ga

2(r)|ψ|2,

where a(r) = 1−Ω2

2g (R2 − r2), a+, a− denote the positive and negativeparts of a, and R is determined by the constraint

∫a+ = 1.

Leading order, inverted parabola profile:|ψ|2 = a+(r).

Splitting of energy. (Trick due to Mironescu) to get the energy of the vortexballs

full screen quit

Page 7: Two component Bose Einstein condensates: Thomas-Fermi ...

7

Let η be the minimizer at Ω = 0, then η2 ∼ a+(r) and let v = ψ/η, then

E(ψ)− E(η) =

∫1

2|∇v − iΩ× rv|2 +1

2gη

4(|v|2 − 1)

2

Next order: computation of the critical velocity Ωc for the nucleation of thefirst vortex. The ground state stays real valued until Ωc.

Next order vortex balls of size 1/√g. The behaviour of the vortex core is

given by f(r)eiθ where f(0) = 0, and f is the solution tending to 1 at infinityof

f′′

+f ′

r−f

r2+ f(1− f2

) = 0.

Vortex location miminize the vortex interaction energy∑i

|pi|2 −∑i,j

log |pi − pj|

Numerically, almost a triangular lattice.

full screen quit

Page 8: Two component Bose Einstein condensates: Thomas-Fermi ...

8

II. Two component condensates: numericalsimulations

full screen quit

Page 9: Two component Bose Einstein condensates: Thomas-Fermi ...

9

2 component condensate: 2 wave functions, new phases and defects.V. Schweikhard, I. Coddington, P. Engels, S. Tung, and E. A. Cornell (2004): asquare lattice is stabilized in a two component condensate.

full screen quit

Page 10: Two component Bose Einstein condensates: Thomas-Fermi ...

10

Two component condensates (Aftalion-Mason)

2 different isotopes of the same alkali atom, isotopes of different atoms, or asingle isotope in 2 different hyperfine spin states: 2 wave functions ψ1 and ψ2

with∫|ψ1|2 = N1,

∫|ψ2|2 = N2

EΩ,g(ψ) =

∫1

2|∇ψ − iΩ× rψ|2 +

1

2r

2|ψ|2(1− Ω2) +

1

2g|ψ|4,

E = EΩ,g1(ψ1) + EΩ,g2

(ψ2) + g12

∫|ψ1|2|ψ2|2

• g12 small: 2 components are disk-shaped with vortex lattices. a vortex incomponent 1 corresponds to a peak in component 2. Square lattice.

• g12 large: phase separation and breaking of symmetry: rotating droplets

• intermediate regime: phase separation but no breaking of symmetry, onecomponent is a disk, the other is an annulus. Skyrmion in the boundary layer

• vortex sheets

full screen quit

Page 11: Two component Bose Einstein condensates: Thomas-Fermi ...

11

full screen quit

Page 12: Two component Bose Einstein condensates: Thomas-Fermi ...

12

−10 0 10−10

−5

0

5

10y

−10 0 10−10

−5

0

5

10

−10 0 10−10

−5

0

5

10

y

−10 0 10−10

−5

0

5

10

−10 0 10−10

−5

0

5

10

x

y

−10 0 10−10

−5

0

5

10

x

500

1000

1500

2000

500

1000

1500

2000

500

1000

1500

(a)

(b)

(c)

left column|ψ1|2right column|ψ2|2Ω = (a) 0.25,(b) 0.5, (c)0.75

g1 = 0.0078,g2 = 0.0083,N1 =

N2 = 105,m1 = m2,g12 = 0.0057

full screen quit

Page 13: Two component Bose Einstein condensates: Thomas-Fermi ...

13

−10 0 10−10

−5

0

5

10y

−10 0 10−10

−5

0

5

10

−10 0 10−10

−5

0

5

10

y

−10 0 10−10

−5

0

5

10

−10 0 10−10

−5

0

5

10

x

y

−10 0 10−10

−5

0

5

10

x

5001000150020002500

5001000150020002500

20040060080010001200

(a)

(b)

(c)

g12 large:phaseseparationleft column|ψ1|2right column|ψ2|2g1 = 0.0078,g2 = 0.0083,N1 =

N2 = 105,g12 = 0.0092,Ω = (a) 0.1,(b) 0.5, (c) 0.9

full screen quit

Page 14: Two component Bose Einstein condensates: Thomas-Fermi ...

14

−10 0 10−10

−5

0

5

10y

−10 0 10−10

−5

0

5

10

−10 0 10−10

−5

0

5

10

y

−10 0 10−10

−5

0

5

10

−10 0 10−10

−5

0

5

10

x

y

−10 0 10−10

−5

0

5

10

x

5001000150020002500

5001000150020002500

20040060080010001200

(a)

(b)

(c)

g12 largerleft column|ψ1|2right column|ψ2|2g1 = 0.0078,g2 = 0.0083,N1 = N2 =

105, g12 =

0.0122), Ω =

(a) 0, (b) 0.1,and (c) 0.9.

full screen quit

Page 15: Two component Bose Einstein condensates: Thomas-Fermi ...

15

−1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ω

Γ12

Co−existence. Square coreless vortex lattices.

Region 1

Co−existence. Triangularcoreless vortexlattices.

Vortex sheets

Region 2

Rotating dropletsRegion 4

Region 3

Spatial separation. Densitypeaks and giant skyrmion.

Spatialseparation. Nodensity peaksand giantskyrmion.

(b)

Ω−Γ12 phasediagrams g1 =

0.0078, g2 =

0.0083, N1 =

N2 = 105

Γ12 = 1− g212g1g2

full screen quit

Page 16: Two component Bose Einstein condensates: Thomas-Fermi ...

16

III. Two component condensates: rigorous results

full screen quit

Page 17: Two component Bose Einstein condensates: Thomas-Fermi ...

17

What can be proved

We recall Γ12 = 1− g212g1g2

.

• If Γ12 > 0, we expect phase coexistence. If g1, g2, g12 are large, TF limit(g1 = α1g, g2 = α2g, g12 = α12g with g large).

− leading order, inverted parabola profile. The computation of the limitingprofile involves the coupling

α1|ψ1|2 + α12|ψ2|2 = λ1 −1

2(1− Ω

2)r

2

α12|ψ1|2 + α2|ψ2|2 = λ2 −1

2(1− Ω

2)r

2

Either 2 disks with different radii or a disk and an annulus. Convergence inthe TF limit. No vortex in the exterior until the first critical velocity(Aftalion-Noris-Sourdis following Aftalion-Jerrard-Letelier and Karali-Sourdis).

full screen quit

Page 18: Two component Bose Einstein condensates: Thomas-Fermi ...

18

What we can prove in ANS:

• uniqueness of the ground state at Ω = 0. Either 2 disks or a disk+annulus.

• precise estimate of the convergence to the Thomas-Fermi limit. Proved byconstructing an approximate solution. Then using the linearized operator, weperturb it to a genuine solution. By uniqueness, it is the ground state. Relatedto the talk of C.Gallo.

• until the first vortex, the minimizer is unique and real valued. Done bydivision of the ground state at Ω, by the ground state at Ω = 0 and withjacobian estimates, we prove that the ratio is 1. It means that the ground statestays real valued until the first vortex.

full screen quit

Page 19: Two component Bose Einstein condensates: Thomas-Fermi ...

19

− computation of the critical velocity for the 1st vortex, called Ωc (incomponent with larger radius). (Aftalion-Mason-Wei)

− vortex peak interaction. The equation of the vortex core has to be replacedby a system of vortex/spike (f(r)eiθ, S(r)) where (f(r), S(r)) satisfies

(rf ′)′

r−f

r2+ α1f(1− f2

) + α12S2f = 0,

(rS′)′

r+ α2S(1− S2

) + α12f2S = 0.

Related results by Eto, Kasamatsu, Nitta, Takeuchi, Tsubota, in the case of ahomogeneous condensate.

Existence of a non degenerate solution, upper bound for the full problem(Aftalion-Wei). Related results: Alama-Bronsard-Mironescu.

−∑i,j

(log |pi − pj|+ log |qi − qj|) +∑i

(|pi|2 + |qi|2) +∑i,j

|pi − qj|2

where pi are the vortices for component 1, qj are the vortices for component

full screen quit

Page 20: Two component Bose Einstein condensates: Thomas-Fermi ...

20

2 and cΩ =π(1−Γ12)| log g1|

2

8Γ212N1g1

(2 ΩΩc− 1). At some critical value of cΩ, the lattice

goes from triangular to square: relation between Γ12 and Ω.

full screen quit

Page 21: Two component Bose Einstein condensates: Thomas-Fermi ...

21

−5 0 5

−5

0

5

x

y

−5 0 5

−5

0

5

x

y

−5 0 5

−5

0

5

x

y

−5 0 5

−5

0

5

x

y

full screen quit

Page 22: Two component Bose Einstein condensates: Thomas-Fermi ...

22

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

Γ12

Ω

full screen quit

Page 23: Two component Bose Einstein condensates: Thomas-Fermi ...

23

Formal Abrikosov computation by Kasamatsu, Tsubota, Ueda (Int. J. Mod.Phys. B, 2005)

Using the reciprocical lattice, they compute the lattice displacement and how,as Γ12 varies, the lattice goes from triangular to rectangular.

full screen quit

Page 24: Two component Bose Einstein condensates: Thomas-Fermi ...

24

If Γ12 = 1− g212g1g2

< 0, phase separation is expected: asymptotic limitΓ12 → −∞, or g12 →∞. The coexistence region gets asymptotically small.Two droplets are expected.

We define ρT = |ψ1|2 + |ψ2|2, ψk =√ρTχk, χk = |χk|eiθk so that

|χ1|2 + |χ2|2 = 1 and Sz = |χ1|2 − |χ2|2. We have Sz = 1 when onlycomponent 1 is present, Sz = −1, when only component 2 is present.

• Ω = 0 and g1, g2 large, Γ12 → −∞: Thomas Fermi regime with invertedparabola profile for ρT = |ψ1|2 + |ψ2|2. Gamma convergence to a De Giorgitype problem (Aftalion, Royo-Letelier).

Write Sz = cosφ, then the energy becomes (for g1 = g2 and Ω = 0)∫|∇√ρT |

2+ρT

2|∇φ|2 +

1

2r

2ρT + g12

ρ2T

4(1− cos

2φ) + g1

ρ2T

4(1 + cos

2φ)

If g12 is large, then cos2 φ ∼ 1 almost everywhere, except on a boundarylayer.ρT is almost TF, and vanishes at interface.

full screen quit

Page 25: Two component Bose Einstein condensates: Thomas-Fermi ...

25

We go back to the GP energy for a single condensate with 1/ε2 = g1 = g2:

Eε(η) =

∫1

2|∇η|2 +

1

2r

2|η|2 +1

2ε2|η|4.

under∫η2 = N1 +N2. We call η the ground state. Let ρT = ηv. Then the

energy splits intoEε(η) + Fε(v) +Gε(φ)

withFε(v) =

∫1

2|∇v|2 +1

2ε2η

4(1− |v|2)2

Gε(φ) =

∫1

2v

2|∇φ|2 +g

2(1−

1

gε2)η

4v

4(1− cos

2φ)

Fε is a Modica Mortola type energy with weight.

|v| is 1 almost everywhere, but goes to zero on the interface region betweenthe two components.

We prove that Gε converges to 0 and Fε converges to c∗∫interface

η3.

full screen quit

Page 26: Two component Bose Einstein condensates: Thomas-Fermi ...

26

Limiting problem

defined by the inverted parabola η2 = (λ− 12r

2)+, where D is the disk ofradius

√λ/2 and

∫Dη2 = N1 +N2.

Find the optimal D1 and D2 such that

D = D1 ∪D2,∫D1η2 = N1,

∫D2η2 = N2 and they minimize∫

∂D1∩∂D2η3.

Better to have half spaces than disk+annulus to minimize this interfaceintegral.

Related results of Berestycki-Lin-Wei (no trapping potential)

full screen quit

Page 27: Two component Bose Einstein condensates: Thomas-Fermi ...

27

Vortex sheets

Add rotation. This requires to understand the equation for Sz (or φ) at leadingorder.

full screen quit

Page 28: Two component Bose Einstein condensates: Thomas-Fermi ...

28

IV. Spin orbit coupling

full screen quit

Page 29: Two component Bose Einstein condensates: Thomas-Fermi ...

29

Spin orbit coupled condensates∫ ∑k=1,2

(1

2|∇ψk|2 +

1

2r

2|ψk|2 − Ωψ∗kLzΨk +

gk

2|ψk|4

)+ g12|ψ1|2|ψ2|2

−κψ∗1(i∂ψ2

∂x+∂ψ2

∂y

)− κψ∗2

(i∂ψ1

∂x−∂ψ1

∂y

)under the constraint

∫|ψ1|2 + |ψ2|2 = 1.

We assume g1 = g2 = g and define δ = g12/g.

Aftalion-Mason, PRA 2013

We define ρT = |ψ1|2 + |ψ2|2, ψk =√ρTχk, χk = |χk|eiθk so that

|χ1|2 + |χ2|2 = 1 and Sz = |χ1|2 − |χ2|2, Sx = χ∗1χ2 + χ∗2χ1,Sy = −i(χ∗1χ2 − χ∗2χ1).

δ > 1: segregation: at κ = 0, one component is empty. As κ increases, to agiant skyrmion (disk+ think annulus circulation 1), to multiple annuli andeventually stripes.

full screen quit

Page 30: Two component Bose Einstein condensates: Thomas-Fermi ...

30

−5 0 5

−5

0

5

1

2

3(I)

(a)

−5 0 5

−5

0

5

1

2

3

(I)

(b)

−5 0 5

−5

0

5

1

2

3

(II)

−5 0 5

−5

0

5

1

2

3

(II)

Figure 2: Left column (a): (δ, κ) = (1.5, 1.25) and right column(b): (δ, κ) = (1.5, 1.5). Density plots (frame (I), component-1, and(II), component-2).

full screen quit

Page 31: Two component Bose Einstein condensates: Thomas-Fermi ...

31

Question: understand the Gamma limit of the spin orbit term in thesegregation case?

−κψ∗2(i∂ψ1

∂x−∂ψ1

∂y

)

Formally in the case disk+annulus, we find that the circulation in eachannulus is 1.

Ω = 0, δ < 1: coexistence of the components, the global phase θ = θ1 + θ2

is such that∇θ = −2κS⊥: relation with a ferromagnetic problem.

MORE IN THE TALK OF PETER MASON....

full screen quit

Page 32: Two component Bose Einstein condensates: Thomas-Fermi ...

32

Conclusion

We have seen mathematical techniques to deal with two componentcondensates in the case of

• coexistence: TF approximation, core of vortex - peak, vortex energy, LLLopen mathematically

• segregation: Γ convergence in the case of no rotation. Open for vortexsheets or spin orbit coupling

full screen quit


Recommended