+ All Categories
Home > Documents > Ultra Wideband Power Amplifiers in 130 nm InP HBT Technology · Ultra Wideband Power Amplifiers in...

Ultra Wideband Power Amplifiers in 130 nm InP HBT Technology · Ultra Wideband Power Amplifiers in...

Date post: 25-Jun-2020
Category:
Upload: others
View: 7 times
Download: 0 times
Share this document with a friend
28
Ultra Wideband Power Amplifiers in 130 nm InP HBT Technology Robert Maurer 1 , Seong-Kyun Kim 1 , Miguel Urteaga 2 , and Mark J. W. Rodwell 1 UC Santa Barbara 1 Teledyne Scientific Company 2 CSICS 2016 Austin, TX
Transcript

Ultra Wideband Power Amplifiers in 130 nm InP HBT Technology

Robert Maurer1, Seong-Kyun Kim1, Miguel Urteaga2, and Mark J. W. Rodwell1

UC Santa Barbara1

Teledyne Scientific Company2

CSICS 2016 Austin, TX

2

Motivation

Broadly-tunable high-dynamic-range dual conversion receiver

Passive mixer IP3 determined by LO drive power

Receiver bandwidth limited by LO driver bandwidth

3

Design Goals

Need to design a power amplifier with:

Wide bandwidth ( ~50 GHz -100 GHz)

High output power ( > 21dBm)

Preferably with:

Limited size

High power efficiency

4

Design Strategy

How can we achieve such a large bandwidth without

sacrificing performance?

2 Key Factors:

2) Sub-λ/4 balun series power combining2

Simultaneous output matching & power combining

Compact, wide-band, low-loss power combining

M. Urteaga, et. al. DRC 20111, H. Park, et. al. IEEE JSSC, 20142

5

TSC 130 nm InP HBTs

Max output tuning bandwidth:

Low CCB High Δfoutput

HBT ~CCB LStub RLoad

Intrinsic

Sub-λ/4 Baluns

6

ZL

m1

m2

m3

V1 V2

3-metal transmission line power combiner (m1, m2, m3)

HBT outputs V1 & V2 combined on m3

T-line between m1 & m2 provides shunt inductive tuning

For more info, refer to H. Park, et. al., IEEE JSSC, 2014

Amplifier Design

7

4:1 Series, 2-way parallel

combining

Baluns designed to provide

inductance to cancel Cout

Minimum amount of tuning

elements

HBT ~CCB LStub RLoad

Intrinsic

Recall, for max tuning BW:

Pre-amplifier Stage

8

2:1 Series, 2-way parallel splitting

Designed so stage 1 outputs line

up with inputs stage 2

Provides additional gain &

eliminates need for lossy splitter

9

Power Amplifier IC

2:1 Input Stage 4:1 Output Stage

IC Area: 0.9 mm X 1.68 mm = 1.51 mm2

10

Signal Path

11

5

10

15

20

25

20 40 60 80 100 120

S2

1, d

B

Frequency, GHz

Measured

Simulated

-30

-25

-20

-15

-10

-5

0

20 40 60 80 100 120

mag

nitud

e, d

B

Frequency, GHz

S11

, S22

Measured

Simulated90 GHz small signal bandwidth

Broad output matching bandwidth

Input matched only near 100 GHz

Small Signal Bandwidth

12

-5

0

5

10

15

20

25

0

2

4

6

8

10

12

-15 -10 -5 0 5 10 15 20

Outp

ut

Pow

er,

dB

mP

AE

, %

Input Power, dBm

P3dB

= 17.6 dBm

PAE = 8.6%

50 GHz

Large Signal Bandwidth

VDC = 2.1 V

13

0

5

10

15

20

25

0

2

4

6

8

10

12

14

-15 -10 -5 0 5 10 15 20

Outp

ut

Pow

er,

dB

mP

AE

, %

Input Power, dBm

P3dB

= 19 dBm

PAE = 11.1%

80 GHz

Large Signal Bandwidth

VDC = 2.1 V

14

-10

-5

0

5

10

15

20

25

0

5

10

15

20

-15 -10 -5 0 5 10 15 20

Outp

ut

Pow

er,

dB

mP

AE

, %

Input Power, dBm

P3dB

= 22 dBmPAE = 14.9%

90 GHz (Peak Performance)

Large Signal Bandwidth

VDC = 2.1 V

15

-5

0

5

10

15

20

25

0

2

4

6

8

10

12

14

16

-15 -10 -5 0 5 10 15 20

Outp

ut

Pow

er,

dB

mP

AE

, %

Input Power, dBm

P3dB

= 21.2 dBm

PAE = 13.2%

100 GHz

VDC = 2.1 V

Large Signal Bandwidth

16

10

12

14

16

18

20

22

24

5

10

15

20

25

30

40 50 60 70 80 90 100 110

P3

dB, d

Bm

Pea

k P

AE

, %

Frequency, GHz

Large Signal Bandwidth

Measured

Simulated

PAE > 8% from 50 GHz to 100 GHz

3-dB compression of output power >15.5 dBm

Comparison

17

Broadband / High Performance mm-Wave Power Amplifiers

Technology Freq.(GHz)

BW3dB

(GHz)Max S21

(dB)Pout

(dBm)Peak

PAE (%)Topology Ref

0.25 μm InP HBT

86 23 9.4 20.37 30.4 2-way PowerCombining Balun

1

0.14 μm GaN HEMT

90 35 21 24.5 13.2 4-stage BalancedAmplifier

2

65 nm Si CMOS

94 33 18 12 4.5 4-way Combining 6-stage CS

3

0.15 μm GaN HEMT

91 ~7 16 31.2 20 3-stage 4

130 nm InPHBT

90 90 15 22 14.9 2-stage 2-way power combining

balun

ThisWork

H. Park, et. al. CSICS 20131, A. Margomenos, et. al. EuMIC 20122,

K. Wu, et. al. Trans. THz Sci. & Tech. 20143, A. Brown, et. al. IMS 20114

Ultra-Wideband Power Amplifier

18

Broadband power amplifier designed as LO Driver for

high dynamic range mm-wave dual conversion receiver

Uses low-CCB130 nm InP HBTs and sub-λ/4 baluns

Peak PAE of 14.9%, Pout of 22 dBm at 90 GHz

PAE > 8% and P3dB >15.5 dBm from 50-100 GHz

S21 = 15 dB, 3-dB Bandwidth from 24 GHz – 114 GHz

Thanks to Teledyne Scientific & Imaging for IC fabrication!

Thank you!!

20

-5

0

5

10

15

20

25

0

5

10

15

20

-15 -10 -5 0 5 10 15 20

Outp

ut

Pow

er,

dB

mP

AE

, %

Input Power, dBm

P3dB

= 18.2 dBm

PAE = 13.2%

55 GHz

VDC = 2.145 V

Large Signal Bandwidth

21

-5

0

5

10

15

20

25

0

2

4

6

8

10

12

14

-15 -10 -5 0 5 10 15 20

Outp

ut

Pow

er,

dB

mP

AE

, %

Input Power, dBm

P3dB

= 15.5 dBm

PAE = 8.3%

60 GHz

VDC = 2.145 V

Large Signal Bandwidth

22

65 GHz

-5

0

5

10

15

20

25

0

2

4

6

8

10

12

-15 -10 -5 0 5 10 15 20

Outp

ut

Pow

er,

dB

mP

AE

, %

Input Power, dBm

P3dB

= 16.9 dBm

PAE = 8.2%

VDC = 2.145 V

Large Signal Bandwidth

Ultra-Wideband Power Amplifier

23

Broadband Power amplifier uses 130 nm InP HBTs and

sub-λ/4 baluns to achieve 50-100 GHz large sig.

bandwidth

Peak PAE of 14.9%, Pout of 22 dBm at 90 GHz

PAE > 8% and P3dB >15.5 dBm from 50-100 GHz

S21 = 15 dB, 3-dB Bandwidth from 24 GHz – 114 GHz

Thanks to Teledyne Scientific & Imaging for IC fabrication!

Sub-λ/4 Baluns

24

*H. Park, et. al., IEEE JSSC, 2014

221,0 tan jZZ stub

*

Amplifier Design

Slide 25

4:1, 2-way power combining (4 series, 2 parallel)

Zin= (25 + jX) Ω

Determine Power

cell size

Amplifier Design

Slide 26

Create Power Cell & Determine Cout

Design 2-way 4:1 output Balun such that

DC couple baluns to PA cell (Minimum output matching)

Create symmetrical Input balun, measure port Zin

Design Input Match

27

TSC 130 nm InP HBTs

Max output tuning bandwidth:

28

Design Strategy


Recommended