+ All Categories
Home > Documents > Uni Greifswald · i Table of Content Abstract...

Uni Greifswald · i Table of Content Abstract...

Date post: 22-Aug-2020
Category:
Upload: others
View: 4 times
Download: 0 times
Share this document with a friend
172
Holocene interaction between ocean circulation and the West Greenland ice sheet I n a u g u r a l d i s s e r t a t i o n zur Erlangung des akademischen Grades Doctor rerum naturalium (Dr. rer. nat.) an der Mathematisch-Naturwissenschaftlichen Fakultät der Ernst-Moritz-Arndt-Universität Greifswald vorgelegt von Kerstin Perner geboren am 04.12.1983 in Greifswald Greifswald, 31.01.2012
Transcript
Page 1: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

Holocene interaction between ocean circulation

and the West Greenland ice sheet

I n a u g u r a l d i s s e r t a t i o n

zur

Erlangung des akademischen Grades

Doctor rerum naturalium (Dr. rer. nat.)

an der Mathematisch-Naturwissenschaftlichen Fakultät

der

Ernst-Moritz-Arndt-Universität Greifswald

vorgelegt von

Kerstin Perner

geboren am 04.12.1983

in Greifswald

Greifswald, 31.01.2012

Page 2: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................
Page 3: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

Dekan: Prof. Dr. Klaus Fesser

1. Gutachter: Prof. Dr. Jan Harff

2. Gutachter: Prof. Dr. Michal Kuçera

Tag der Promotion: 05.05.2012

Page 4: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................
Page 5: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

i

Table of Content

Abstract .................................................................................................................................... 1

Kurzfassung ............................................................................................................................. 2

1. Introduction and Objectives ............................................................................................ 3

2. Study area and benthic foraminifera ............................................................................ 5

2.1 Study area and oceanographic setting ....................................................................... 5

2.2 Benthic Foraminifera – Proxy of paleoenvironmental change

2.3 Analysis of benthic foraminifera and preservation of agglutinated specimens ..... 7

2.4 Indicator of water mass characteristics .................................................................... 8

3. Presentation of Results ................................................................................................... 10

3.1 Long-term Holocene (last 8 cal. ka BP) perspective on

palaeoceanographic evolution of Disko Bugt, West Greenland (Paper I) ............ 10

3.2 Centennial scale oceanographic variability during the late Holocene

(Paper I/II) ................................................................................................................. 12

3.3. Multidecadal ocean temperature changes in Disko Bugt during the

last 100 years (Paper III) ......................................................................................... 14

4. Outline of author contribution ...................................................................................... 17

5. Publications ...........................................................................................................................

5.1 Holocene palaeoceanographic evolution of West Greenland ............................... 19

5.2 Centennial scale benthic foraminiferal record of late Holocene

oceanographic variability in Disko Bugt, West Greenland .................................. 69

5.3. A 100 year record of ocean temperature control on the stability of

Jakobshavn Isbræ, West Greenland ...................................................................... 81

6. Summary and Outlook ................................................................................................... 97

References .............................................................................................................................. 99

Erklärung ............................................................................................................................. 109

Acknowledgements/Danksagung .................................................................................... 111

Appendix .............................................................................................................................. 113

Page 6: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

ii

List of Figures

Figure 1. Schematic map of bottom topography in Disko Bugt region ……………………. 6

Figure 2. Temperature and salinity profiles from CTD measurement (June 2007)……… 6

Figure 3. Summary from 343300 compared with other regional data sets from

Perner et al. (submitted) ........................................................................................... 11

Figure 4. Summary from 343310 and other regional datasets for comparison from

Perner et al. (2011) .................................................................................................... 13

Figure 5. Comparison of temperature reconstructions and measurements with

ice stream position from Lloyd et al. (2011) ........................................................... 15

Page 7: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

Abstract

1

Abstract

Understanding the interaction between climate variability and ice sheet behavior

is critical due to scenarios of future climate warming and the consequent contribution of

Greenland ice sheet melting to sea-level rise and its potential to influence thermohaline

circulation.

This thesis investigates the role of ocean forcing by the West Greenland Current

(WGC) on the dynamics of West Greenland ice sheet behavior, with focus on

Jakobshavn Isbræ, in the Disko Bugt area of central West Greenland. High-resolution

sediment cores, obtained during a cruise of the RV ‘Maria S. Merian’ in 2007, provide a

long-term Holocene perspective on climate variability off West Greenland. These

records cover the last 8000 years with increasing resolution through to periods of

historical and instrumental data series.

Paleoenvironmental reconstructions, based on the calcareous and agglutinated

benthic foraminiferal assemblage, reveal significant variations in the water mass

properties (e.g. temperature and salinity) of the WGC. From 8 to 6 cal. ka BP, a

relatively warm WGC enhances meltwater production (ice retreat) in Disko Bugt.

Holocene ‘thermal optimum-like’ conditions prevailed from 5.5 to 3.5 cal. ka BP,

associated with minimum ice sheet extent in eastern Disko Bugt. Long-term cooling of

oceanographic conditions is recognized from c. 3.5 cal. ka BP towards the present day.

Superimposed on this millennial scale cooling trend, centennial scale variability within

the WGC is reconstructed: i) the 2.7 cal. ka BP ‘cooling event’; ii) the Roman Warm

Period; iii) the Medieval Climate Anomaly; and iv) the Little Ice Age. Over the past 100

years, oceanographic conditions remain relatively cool and multidecadal variability in

the WGC’s ocean temperatures show close correlation with the ice margin position of

Jakobshavn Isbræ and phases of the Atlantic Multi-decadal Oscillation (AMO). Cold

(warm) phases correlate with stabilization/re-advance (retreat) of Jakobshavn Isbræ and

a negative (high) index of the AMO.

It has been demonstrated that variations in ocean temperature are an important

factor that influence ice sheet behavior on a range of times scales, underlining the close

coupling of ice-ocean interactions during the Holocene. Warmer ocean temperatures

influence the stability of marine terminating ice sheets and glaciers, causing basal

melting and glacier acceleration, whereas ocean cooling supports stabilization and

advance of ice margin.

Page 8: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

Kurzfassung

2

Kurzfassung

Ein besseres Verständnis der Wechselwirkungen zwischen Klimaänderungen

und Eisschilddynamik ist notwendig, da in Anbetracht der prognostizierten

Klimaerwärmung, ein Abschmelzen des grönländischen Eisschildes zu einem globalen

Meeresspiegelanstieg und zu Änderungen in der thermohaline Zirkulation führt. Diese

Promotionsarbeit, untersucht die Rolle des ozeanischen Einflusses (Westgrönlandstrom,

WGC) auf das Verhalten des westgrönländischen Eisschildes (Jakobshavn Isbræ) in der

Disko Bucht Region. Hochauflösende Sedimentkerne, entnommen mit dem FS ‘Maria

S. Merian’ in 2007, ermöglichen eine Betrachtung holozäner Klimavariabilität

Westgrönlands auf tausendjährigen bis multidekadischen Zeitskalen. Untersucht werden

die letzten 8000 Jahre, mit zunehmend zeitlicher Auflösung, in den Zeitabschnitten der

historischen und instrumentellen Datenreihen. Basierend auf der Untersuchung von

kalkschaligen sowie agglutinierten benthischen Foraminiferenvergesellschaftungen

werden Schwankungen in den Eigenschaften des WGC (u.a. Temperatur und

Salzgehalt) rekonstruiert. Zwischen 8 bis 6 cal. ka BP unterstützt ein relativ warmer

WGC Eisschildrückzug in der Disko Bucht. Stabile, warme ozeanische Bedingungen

markieren das holozäne ‚Thermale Optimum‘ zwischen 5,5 bis 3,5 cal. ka BP,

einhergehend mit der geringsten Eisschildausdehnung in der östlichen Disko Bucht.

Von 3,5 cal. ka BP bis heute, ist ein Abkühlungstrend in den ozeanischen Bedingungen

vor Westgrönland festzustellen. Auf diesem finden sich Schwankungen in den WGC

Eigenschaften im Bereich von Jahrhunderten: i) die 2,7 cal. ka BP ‘Kaltphase’; ii) die

Römische Warmzeit; iii) die Mittelalterliche Klimaanomalie; und iv) die ‘Kleine

Eiszeit’. Während der letzten 100 Jahre verbleiben die ozeanischen Bedingungen

relative kalt. Multidekadische Schwankungen der Ozeantemperaturen (WGC) erfolgen

zeitgleich mit Änderungen der Eisrandposition des Jakobshavn Isbræ und der Atlantisch

Multidekadische Oszillation (AMO). Kalte (warme) Ozeantemperaturen korrelieren eng

mit einer Stabilisierung/Vorstoß (Rückzug) der Eisrandposition des Jakobshavn Isbræ

sowie mit einem negativen (hohen) AMO Index.

Anhand dieser Ergebnisse zeigt sich, dass Ozeantemperaturänderungen einen

wichtigen Faktor darstellen, welcher das Verhalten von Eisschilden auf

unterschiedlichen Zeitskalen beeinflusst und das darüber hinaus eine enge Kopplung der

Wechselwirkungen zwischen Ozean und Kryosphäre während des Holozäns besteht.

Warme Ozeantemperaturen steuern die Stabilität von marinen Eisschilden und

Auslassgletschern, durch verstärktes basales Schmelzen und der daraus resultierenden

Zunahme der Fließgeschwindigkeit. Hingegen, unterstützen kalte Ozeantemperaturen

die Stabilisierung sowie das Vorstoßen von Eisschilden.

Page 9: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

Introduction and Objectives

3

1. Introduction and Objectives

Many studies have identified increased surface melting, marginal thinning of

the Greenland ice sheet (GIS) and increased melt water discharge from rapid

acceleration of outlet glaciers, resulting in a negative mass balance, particularly since

the mid-1990s (Zwally et al., 2002; Rignot and Kanagaratnam, 2006; Howat et al.,

2007, 2008; Joughin et al., 2008; Van de Wal et al., 2008; Bartholomew et al., 2010).

Modern climate warming, specifically increased atmospheric temperature, is often

proposed as the forcing mechanism driving recent changes in outlet glaciers recorded

(Zwally et al., 2002; Howat et al., 2005; Hall et al., 2008; Box et al., 2009).

However, an increasing number of studies have suggested that the rapid retreat and

acceleration of Greenland’s outlet glaciers (e.g. Jakobshavn Isbræ, Helheim,

Kangerdlugssuaq) is, in fact, triggered by warm ocean temperatures exerting an

important control on modern ice sheet dynamics (e.g. Thomas, 2004; Joughin et al.,

2004; Bindschadler, 2006; Holland et al., 2008; Straneo et al., 2010). The complex

processes determining ice sheet dynamics (i.e. calving rates, meltwater production,

glacier flow) and their potential contribution to future sea-level rise, remains poorly

understood and is not realistically included in models projecting future sea-level rise

(e.g. Solomon et al., 2007; Pritchard et al., 2009). To provide a better understanding

and broader context of modern changes in ice sheet dynamics, it is important to

investigate the role of ocean forcing on a longer-term perspective, during past

periods of natural climate variability.

The Disko Bugt area in central West Greenland is a key area to investigate

the role of ocean forcing on GIS behavior during the Holocene period. This region

has a relatively shallow and wide shelf area, which provides potential for the

interaction between the ocean and the ice sheet. Preservation of high resolution

sedimentary archives (decadal to centennial time-scale), within the embayment and

deep water troughs on the shelf to the west, allows detailed investigation of the

interaction between palaeoceanographic conditions off West Greenland and ice sheet

behavior reconstruction from a marine perspective.

The Disko Bugt area also benefits from:

1. Detailed information of past ice margin positions of Jakobshavn Isbræ (a major ice

stream draining the GIS), provided by historical, glaciomorphological and remote

sensing data (Weidick, 1995; Weidick et al., 2003; Weidick and Bennicke, 2007).

Page 10: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

Introduction and Objectives

4

2. One of the longest instrumental data series of subsurface ocean and air

temperature measurements exists around Greenland (Box, 2002; Polyakov et al.,

2002; Holland et al., 2008).

3. Previous studies, indentifying offshore sediments from southwest Disko Bugt to

provide long-term records of water mass characteristics (e.g. temperature and

salinity) of the West Greenland Current (WGC), which links oceanographic

variability off West Greenland to the large-scale North Atlantic circulation system

(e.g. Moros et al., 2006b; Lloyd et al., 2007, Seidenkrantz et al., 2008; Krawczyk

et al., 2010; Ribeiro et al., 2012).

This PhD thesis forms part of the project ‘Disco-Climate – Interaction

between ocean forcing, climate change and the West Greenland ice sheet’ funded by

the Deutsche Forschungsgemeinschaft (DFG; MO1422/2-1). The main focus of the

thesis is to reconstruct the palaeoceanographic evolution of the West Greenland

margin over the last 8000 years based on sediments from two high resolution core

sites, obtained during a cruise of the RV ‘Maria S. Merian’ (MSM05/03) in 2007

from the shelf southwest of Disko Bugt (Harff et al., 2007). Palaeoceanographic

reconstructions are inferred from calcareous and agglutinated benthic foraminifera,

based on a data set of 554 analyzed samples. Benthic foraminifera are used as a

proxy to investigate oceanographic variability (WGC) and to increase the knowledge

and understanding of ocean forcing on West GIS behavior (including Jakobshavn

Isbræ) through the last 8000 years. Reconstructions of palaeoceanographic variability

off West Greenland will be compared with Holocene climate variability trends

recognized in the North Atlantic region.

Three manuscripts are included: i) Paper I: Holocene palaeoceanographic

evolution off West Greenland (Perner et al., submitted); ii) Paper II: Centennial scale

benthic foraminiferal record of late Holocene oceanographic variability in Disko

Bugt, West Greenland (Perner et al., 2011); iii) Paper III: A 100 year record of ocean

temperature control on the stability of Jakobshavn Isbræ, West Greenland (Lloyd et

al., 2011).

Page 11: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

Study area and benthic foraminifera

5

2. Study area and benthic foraminifera

2.1 Study area and oceanographic setting

The Disko Bugt area includes Disko Bugt, a large marine embayment (40,000

km2) and the inner shelf to the west of the embayment (Figure 1), in central West

Greenland. Water depths typically vary between 200 and 400 m and two troughs cut

across the bay combining to form the deepwater trough, Egedesminde Dyb - up to

900 m water depth, at the western edge of the bay (Kuijpers et al., 2001; Long and

Roberts, 2002). Sediment cores, presented within this thesis are obtained to the

southwest of Disko Bugt from the inner shelf and from Egedesminde Dyb.

Oceanographic conditions off West Greenland and in Disko Bugt are

influenced by the WGC. This relatively warm water current extends from Kap

Farewell, at the southern tip of Greenland, as far as the north-western continental

margin of Greenland (e.g. Buch, 2000; Ribergaard et al., 2006, Ribergaard, 2011).

The WGC is a combined water mass of Atlantic (Irminger Current, IC) and Polar

(East Greenland Current, EGC) derived components. The IC, a side branch of the

North Atlantic Current (NAC), contributes relatively warm and saline water masses

to the WGC. The EGC contributes polar water masses, relatively cold and fresh,

transported southwards along the East Greenland shelf, to the WGC. At the entrance

of Disko Bugt a branch of the WGC is deflected into the embayment, while the

remainder of the WGC continues to flow into northern Baffin Bay (Andersen, 1981;

Bâcle et al., 2002).

Measurements of temperature (°C) and salinity (PSU) have been conducted

on sampling locations in June 2007, illustrated in Figure 2, along a transect from

southwest to southeast Disko Bugt (provided by J.J. Waniek). These measurements

show that the WGC forms the bottom water mass (2-4°C, 34.2-34.4PSU) in Disko

Bugt (Figure 2). Bottom water temperatures are slightly lower in front of Jakobshavn

Isbræ (site 343410), which is presumably related to the shallow location of the site

(approx. 400 m water depth) and potential influence of meltwater outflow from the

Isfjord. This is in line with previous measurements from the area (e.g. Andersen,

1981; Buch, 1981; Buch et al., 2004; Lloyd 2006a). The WGC water is overlain by

polar water masses, penetrating from Baffin Bay into Disko Bugt (Figure 2, PW).

There are no indications of an admixture of this deep Baffin Bay water below 300 m

water depth (Andersen, 1981). Surface water masses (SW) are predominantly

Page 12: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

Study area and benthic foraminifera

6

influenced by local meltwater runoff from land, icebergs and the previous season’s

pack-ice, along advected low-salinity water masses from Baffin Bay.

Figure 1. Schematic map of bottom topography in Disko Bugt region. The insert map illustrates major currents around Greenland. Abbreviations are as follows: EGC – East Greenland Current; IC – Irminger Current; WGC – West Greenland Current; WGC – West Greenland Current; LA – Labrador Current. The red dashed box marks the study area – Disko Bugt, in central West Greenland. The approximate location of Jakobshavn Isbræ is marked and the flow direction of the WGC within Disko Bugt is indicated (green -blue line). In addition, sampling locations from south -western Disko Bugt are i llustrated.

Figure 2. Temperature (red line) and salinity (green dashed line) profiles from CTD measurement obtained in June 2007 from sampling locations in south -western to eastern Disko Bugt, presented in Figure 1. Abbreviations are as follows: SW – Surface waters; PW – Polar water; WGC – West Greenland Current.

Page 13: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

Study area and benthic foraminifera

7

2.2 Benthic Foraminifera – Proxy of paleoenvironmental change

One proxy method to reconstruct paleoenvironmental conditions in marine

sediments is counting benthic foraminifera. This thesis is based on the analysis and

interpretation of benthic foraminiferal assemblage changes through the last 8000

years. These single-celled organisms (e.g. Loeblich and Tappan, 1987) have the

ability to secrete calcareous shells (calcareous foraminifera), or to agglutinate

sediment particles into a shell (agglutinated foraminifera), also termed the test.

Benthic foraminifera occupy a wide range of environments at all latitudes, from deep

ocean basins through to brackish estuaries and marshes.

2.3 Analysis of benthic foraminifera and preservation of agglutinated specimens

Benthic foraminiferal counts, presented in this thesis, are obtained from the

grain size fraction >63µm. Particularly in Arctic and Sub-Arctic environments many

species tend to be small in size, due to harsh environmental conditions and ecological

stress (Schröder et al., 1987). A more detailed picture of the benthic foraminiferal

assemblage is obtained when using the fraction >63 µm (e.g. Corliss, 1985; Schafer

and Cole, 1988; Schröder-Adams et al., 1990; Scott and Vilks, 1991; Jennings and

Helgadóttir, 1994; Wollenburg et al., 2001, 2004, 2007; Lloyd, 2006a,b; Lloyd et al.,

2007).

Agglutinated foraminifera are often not used in paleoenvironmental

interpretation and in many studies main focus is set on the calcareous fauna. Some

studies note that agglutinated foraminifera are not suitable for paleoenvironmental

interpretation as their tests can disintegrate after death with time due to oxidation and

sediment load (e.g. Hald and Steinsund, 1992; Hald et al., 1999). However, a variety

of studies, from fjord and shelf areas within the North Atlantic region counted the

total assemblage (agglutinated and calcareous) in the wet residue, without allowing

the sediment to dry and highlight that agglutinated foraminifera are important

members of the total benthic foraminiferal assemblage (e.g. Scott and Vilks, 1991;

Schröder, 1988; Schröder-Adams et al., 1990; Korsun and Hald, 2000; Lloyd et al.,

2005; Lloyd, 2006a,b; Lloyd et al., 2007; Scott et al., 2009; Andresen et al., 2011).

This group seems to have a better ability to survive and compete in harsher

environmental conditions than calcareous foraminifera.

Page 14: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

Study area and benthic foraminifera

8

In this thesis samples for foraminiferal analysis were taken from the fresh

sediment cores. A standard volume of 5 ml fresh sediment was gently wet sieved just

prior to counting and in the following counted from the wet residue >63µm. Hence,

the loss of the more fragile arenaceous species is reduced, which can be caused by

drying of the sediment. Findings presented within the frame of this thesis highlight,

that by combining the agglutinated and calcareous fauna a more detailed and

accurate understanding of paleoenvironmental changes can be achieved in the Disko

Bugt area.

2.4 Indicator of water mass characteristics

The distribution and diversity of benthic foraminifera in marine sediments is

predominantly controlled by water mass characteristics (e.g. temperature and

salinity) and food supply (surface water productivity) to the seafloor (e.g. Murray,

1991; Rytter et al., 2002; Sejrup et al., 2004). Investigation on modern benthic

foraminifera within the North Atlantic region has identified the ecological tolerances

of certain species with respect to temperature and salinity – key water mass

characteristics (e.g. Vilks, 1969; 1989; Schröder-Adams et al., 1990; Jennings and

Helgadóttir, 1994; Corliss, 1991; Hald und Steinsund, 1996; Jennings et al., 2004;

Lloyd, 2006a). Based on these modern ecological studies, certain benthic

foraminiferal species can be grouped together based directly or indirectly on their

temperature and salinity tolerance. The two main groups used in this thesis are an

Arctic Water (AW) and Atlantic Water (AtlW) group. This allows the identification

of broader trends in the relative water mass contribution of the WGC source currents,

the EGC (Arctic-sourced water masses) and the IC (Atlantic-sourced water masses).

Species included within the AtlW group (e.g. Islandiella norcrossi,

Cassidulina reniforme, Adercotryma glomerata, Reophax fusiformis, Reophax

pilulifer, and Cassidulina neoteretis) are often reported from sites influenced by

(transformed) Atlantic water masses (e.g. Schröder-Adams et al., 1990; Bergsten,

1994; Jennings und Helgadóttir, 1994; Hald und Steinsund, 1996; Duplessy et al.,

2001). This group indicates a relatively warm and saline WGC, and thus increased

contribution from the IC to the WGC. The AW group comprises species (Cuneata

arctica, Stainforthia feylingi, Spiroplectammina biformis, Textularia torquata,

Elphidium excavatum f. clavata, Islandiella helenae), which are predominantly

Page 15: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

Study area and benthic foraminifera

9

found at locations underlying polar/arctic water masses (e.g. Ostermann und Nelson,

1989; Vilks et al., 1989; Hald et al., 1994; Hald und Korsun, 1997). This group

documents limited food supply, along with enhanced contribution of relatively cooler

and less saline water masses, originating from increased meltwater contribution or

from an increase in the EGC contribution to the WGC, within the Disko Bugt area.

Page 16: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

Presentation of Results

10

3. Presentation of Results

The following chapter summarizes major findings from the three publications

included in this thesis.

3.1 Long-term Holocene (last 8 cal. ka BP) perspective on palaeoceanographic

evolution of Disko Bugt, West Greenland (Paper I)

Centennial to millennial time-scale paleoenvironmental changes offshore

West Greenland are reconstructed from a sediment core (343300) at a resolution of c.

70 years, based on benthic foraminiferal assemblage changes (Perner et al.,

submitted). These reconstructions provide a long-term Holocene (last 8 cal. ka BP)

perspective on the palaeoceanographic evolution (WGC) in Disko Bugt. From 8 to

6.3 cal. ka BP benthic foraminiferal evidence indicates that a relatively warm and

strong WGC entered Disko Bugt, coeval with ice sheet retreat in eastern Disko Bugt

(Lloyd et al., 2005; Long et al., 2006; Weidick and Bennicke, 2007). This strong

WGC enhanced ice sheet retreat and increased meltwater supply during this period.

This in turn causes reduced surface water productivity, as documented by low total

organic carbon contents (Figure 3a) and minor abundance of productivity indicator

species (e.g. N. labradorica). After 7 cal. ka BP, meltwater influence recedes at the

core site southwest of Disko Bugt, documented by increasing productivity and a

prominent rise in AtlWcalc indicator species (Figure 3a, d). During this period

Jakobshavn Isbræ continued to retreat further into the Isfjord and the ice sheet

became land-based in eastern Disko Bugt (Weidick and Bennicke, 2007). A strong

productivity event at about 6 cal. ka BP is interpreted as indicating that the Baffin

Bay seasonal sea-ice edge migrated from south of Disko Bugt northwards over the

site. Subsequently, between 5.5 and 3.5 cal. ka BP, persisting dominance of the AtlW

fauna, along with increasing productivity, indicates a prolonged warm phase, which

reflects a warm and stable environmental, i.e. ‘thermal optimum-like conditions’,

southwest of Disko Bugt (Figure 3a, d). Simultaneously, in eastern Disko Bugt, the

ice sheet had retreated behind its present margin onshore (Weidick and Bennicke,

2007; Briner et al., 2010). The relatively warm WGC is attributed to the persistent

contribution of warm and saline water masses from the IC to the WGC.

Page 17: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

Presentation of Results

11

Figure 3: Summary of results compared with other regional data sets from Perner et al.

(submitted). a) TOC (%) content (343300); b) AMS14C dates against depth (cm, 343300); c) Sand content (% fraction >63-200 µm; 343300); d) number of calcareous Atlantic water specimens (AtlWcalc) per ml wet sediment, red line displays data from site 343300 and light red line data from nearby si te 343310; e) Biogenic carbon (%) content of sed iments from site MD99-2322, Denmark Strai t (Jennings et al. , 2011); f) number of agglutinated Arctic water species (AWagg) per ml wet sediment, blue line displays data from site 343300 and light blue line data from nearby site 343310; g) Drift ice proxy da ta (Quartz%) from core site MD99-2269, NW Iceland (Moros et al. , 2006a). Known historical cl imatic events such as the Roman Warm Period (RWP), the Medieval Climate Anomaly (MCA) and the Little Ice Age (LIA) are marked. The black arrows indicate the positio n of the two turbidites found in the sediments based on X-ray-radiographs (A. Jennings, unpublished data).

Page 18: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

Presentation of Results

12

The rather late appearance of ‘thermal optimum-like’ conditions off West

Greenland supports the spatially variable nature of Holocene ‘Thermal Optimum’

conditions in the North Atlantic region (see discussion in Kaufman et al., 2004;

Kaplan and Wolfe, 2006), which can be attributed to local ice sheet meltwater

influence. Following a ‘thermal optimum-like’ oceanographic condition, a longer-

term cooling trend is observed from 3.5 cal. ka BP towards the present day,

associated with the onset of the Neoglacial cooling. Cooling of oceanographic

conditions is prominently shown by a persistent rise of AWagg indicator species. A

relatively cooler WGC is attributed to a continuing contribution of colder and fresher

water masses from the EGC to the WGC.

3.2 Centennial scale oceanographic variability during the late Holocene

(Paper I/II)

A higher resolution record (resolved at 12-15 years) from a sediment core

(343310) taken in the Egedesminde Dyb resolves relative changes in the water mass

composition of the WGC at a sub-centennial time-scale during the last 3.5 cal. ka BP

(Perner et al., 2011). On a long-term perspective, cooling of the WGC is

documented, associated with the onset of Neoglacial cooling at 3.5 cal. ka BP. A

continuous late Holocene cooling of oceanographic conditions agrees well with

findings in adjacent West/East Greenland fjord and shelf areas, which state gradual

cooling of the WGC (e.g. Lloyd et al., 2007; Perner et al., submitted), concomitant

with expansion of the EGC since ‘thermal optimum conditions’ and glacial re-

advances around Greenland (e.g. Weidick et al., 1990; Geirsdóttir et al., 2000).

Superimposed on this longer-term late Holocene cooling trend, marked centennial

scale variability within the WGC is reconstructed from both coring sites (343300 and

343310). A distinct rise in AWagg indicator species reflects cooling of

oceanographic conditions at c. 2.5 cal. ka BP (Figure 4b) and is associated with the

2.7 cal. ka BP ‘cold event’, which is widely recognized in the North Atlantic region

(e.g. Oppo et al., 2003; Risebrobakken et al., 2003; Moros et al., 2004). This cooling

is attributed to increased contribution of fresher and colder EGC-derived water

masses to the WGC. A warm phase within the Disko Bugt area, found at 1.8 cal. ka

BP, corresponds to the ‘Roman Warm Period’.

Page 19: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

Presentation of Results

13

Figure 4: Summary from 343310 and other regional datasets for comparison from Perner

et al. (2011). (a) Ratio of calcareous vs. agglutinated specimens; (b) Relative abundance of agglutinated Arctic water species, note the inverse scale; (c) Relative abundance of calcareous chilled Atlantic water species; (d) Relative abundance of sea -ice diatoms from site DA00-03 from Moros et al. (2006b); (e) mean annual temperature reconstructions from GISP2 ice core from Alley et al. (1999); (f) Reconstructed arctic summer temperature from Kaufmann et al. (2009). Known climatic events such as the Roman Warm Period (RWP), The Dark Ages (DA), the Medieval Climate Anomaly (MCA) and the ‘Little Ice Age’ (LIA) are indicated. Grey

arrows indicate 2.7-2.8 ka cooling event.

Page 20: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

Presentation of Results

14

The relatively warm WGC during the ‘Roman Warm Period’, illustrated by a

prominent rise in AtlWcalc indicator species (Figure 4c), is linked to enhanced

contribution of IC water masses to the WGC and reflects oceanographic conditions

comparable to, or even stronger than, the ‘thermal optimum-like conditions’,

between 5.5 and 3.5 cal. ka BP (Perner et al., submitted). At the transition to the

‘Medieval Climate Anomaly’ only slight warming within the WGC is noted (Figure

4c). This is in line with findings from Sha et al. (2011) further south of Disko Bugt.

Cooling of bottom waters becomes most pronounced after 1.7 cal. ka BP,

corroborated by a progressive increase of the agglutinated fauna and AWagg species

(Figure 4b) as a result of enhanced contribution of fresher and less saline water mass

from the EGC to the WGC. The late Holocene cooling trend culminates at c. 0.3 cal.

ka BP, during the time of the ‘Little Ice Age’, encompassing the re-advance of

Jakobshavn Isbræ within the Isfjord in eastern Disko Bugt (Weidick and Bennicke,

2007).

3.3. Multidecadal ocean temperature changes in Disko Bugt during the last 100

years (Paper III)

On a long-term Holocene perspective oceanographic conditions (WGC) remain

relatively cool in Disko Bugt during the last 100 years, which is highlighted by the

dominance of agglutinated species (Lloyd et al., 2011; Perner et al., 2011). A short

core from Egedesminde Dyb (site 343310) studies at a resolution of c. 2-3 years

oceanographic variability in Disko Bugt over the last 100 years. The time period

encompasses significant changes in the ice margin position (calving front) of

Jakobshavn Isbræ, which is well documented since the 19th century and particularly

from the mid-1990s (e.g. Thomas et al., 2003; Joughin et al., 2004; Rignot and

Kanagaratnam, 2006; Dietrich et al., 2007; Moon and Joughin, 2008). Benthic

foraminiferal assemblage changes reveal multidecadal variability in the water mass

composition of the WGC offshore Disko Bugt. Relative changes in the AW and

AtlW fauna can be observed, correlating remarkably well with summer water

temperatures, measured in 300 m water depth in eastern Disko Bugt close to Ilulisaat

(Figure 5C, D). This confirms that changes within the benthic foraminiferal fauna

reflect changes in subsurface ocean temperatures. Increased abundance of AW

Page 21: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

Presentation of Results

15

indicator species document significant cooling of oceanographic conditions between

1910 to c. 1925 and from the late 1940s to late 1980s.

Figure 5: Comparison of temperature reconstructions and measurements with ice stream

position from Lloyd et al. (2011) . A: AMO (Atlantic Multidecadal Oscillation) (Gray et al. , 2004). B: Arctic-wide surface air temperature anomaly (Polyakov et al. , 2002). C: Relative abundance (%) of cold water benthic foraminiferal taxa (note inverse vertical axis scale). D: Relative abundance (%) of warm water benthic foraminiferal taxa (red curve) and ocean temperature measurements from Disko Bugt (gray curve) (Holland et al. , 2008). E: Historical record of ice front retreat illustrated on aerial photograph; blue line shows cumulative ice front retreat from Litt le Ice Age maximum position in A.D. 1850.

Page 22: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

Presentation of Results

16

The cooler ocean temperatures coincide with stabilization and re-advance

phases of the ice margin position of Jakobshavn Isbræ (Figure 5D, E). In turn,

warming of the WGC is recognized by a significant rise of AtlW indicator species

between c. 1925 to late 1940s and since the mid-1990s. Relative warmer

reconstructed ocean temperatures coincide with retreat phases of the ice margin

position of Jakobshavn Isbræ (Figure 5D, E). In addition, these variations in ocean

temperatures show some similarities with changes in the arctic-wide surface

temperature anomaly and the Atlantic Multi-decadal Oscillation (AMO) during the

last 100 years (Figure 5A, B). The AMO is a periodic variation identified in sea-

surface temperatures in the North Atlantic region (Kerr, 2000). Periods of warm

(cooler) ocean temperatures correlate with a high (low) AMO index, leading to ice

margin retreat (stabilization) of Jakobshavn Isbræ. The identified synchronous

changes, i.e. warming of ocean temperatures from mid-1990s, coincide with the

collapse of the floating ice tongue of Jakobshavn Isbræ (Holland et al., 2008) and an

increased AMO-Index (Figure 5A, C, E). This provides further evidence of a close

coupling of the ocean and atmosphere with the cryosphere, which needs to be,

included in future projections of sea-level changes.

Page 23: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

Author Contribution

17

4. Outline of author contribution

This thesis includes 2 first-author and 1 co-author manuscripts. In the

following a brief outline of contributions, provided by all authors to the respective

manuscript, is presented.

Paper I Perner, K., Moros, M., Jennings, A., Lloyd, J.M., Knudsen K.L. ‘Holocene

palaeoceanographic evolution of West Greenland.’ Submitted to The Holocene

The long-term Holocene (last 8 cal. ka BP) evolution of palaeoceanographic

variability of West Greenland is presented. Benthic foraminiferal assemblage

changes illustrate the potential influence of warm ocean temperatures on mid

Holocene ice sheet retreat and late appearance of Holocene ‘thermal optimum-like’

oceanographic conditions in the Disko Bugt area.

The concept of the manuscript was developed and written by K.P., supported

by contributions from M.M., J.M.L., A.J. and K.L.K. Countings of benthic

foraminifera were carried out by K.P. and A.J. produced the ice-rafted debris (IRD)

data. The age model was developed by K.P. and A.J. Interpretation of the

foraminiferal data set was supported by all co-authors of the manuscript. All figures

were produced by K.P. with support from all co-authors.

Paper II Perner, K., Moros, M., Lloyd, J.M., Kuijpers, A., Telford, R., Harff, J.

(2011) ‘Centennial scale benthic foraminiferal record of late Holocene

oceanographic variability in Disko Bugt, West Greenland.’ Quaternary Science

Reviews, 30 (19-20), pp. 2815-2826.

Oceanographic variability (WGC) in Disko Bugt during the last 3.6 cal. ka BP is

discussed. Benthic foraminifera reveal a longer-term late Holocene cooling of

oceanographic conditions, associated with the onset of Neoglacial cooling in the

North Atlantic region.

The concept of the manuscript was developed and written by K.P. Countings

of benthic foraminifera were carried out by K.P. Interpretation of results was

supported with significant contributions from M.M. and J.M.L. and further from

A.K. and J.H. All figures were produced by K.P. with support from all co-authors.

The age model was produced by R.T. All co-authors contributed to write the

manuscript.

Page 24: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

Author Contribution

18

Paper III Lloyd, J.M, Moros, M., Perner, K., Telford, R., Kuijpers, A., Jansen, E.,

McCarthy, D. (2011) ‘A 100 year record of ocean temperature control on the stability

of Jakobshavn Isbræ, West Greenland.’ Geology, 39 (9), pp. 867-870.

The influence of ocean temperature variability on ice sheet dynamics is discussed.

Benthic foraminiferal assemblage changes highlight the close coupling of warm

(cold) ocean temperature with retreat (stabilization/re-advance) of Jakobshavn Isbræ

during the last 100 years, correlating with variations in the Atlantic Multidecadal

Oscillation.

The concept of this manuscript was developed by J.M.L. and M.M. Countings

of benthic foraminifera from sites 343300, 343310, 343410 were carried out by K.P.

Core 343320 was counted by J.M.L. and core 343520 by D.M. The age model was

developed by R.T. Figures were developed by M.M, J.M.L., R.T. and K.P. All

authors contributed to write the manuscript.

Page 25: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

Holocene Palaeoceanographic evolution off West Greenland

19

5. Publications

5.1 Holocene palaeoceanographic evolution of West Greenland

The Holocene, in revision

Page 20-68

Page 26: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

For P

eer Review

�������������������� �������� ���������������������

�������� ������������

������ ������ ���������������

������ �������� ������

����� �!" ���#�!���$��%��$��� �&����������

'�"������� ����(�%��$���� ������)�*���� �+��� !� ,����� �����(���-��� �� ����������$�.����"���#��/��.0)��� ���1����2������)����$ ��+��� !� ,����� �����(���-��� �� ����������$)��� ���1����2������ �2�)�%����3+�4� 5��� ����(�'�����#�)��6 �%%����#�������"�����(�1����2 ���� � ����������#)������+����$�"�4� 5��� ��)�������"�����(�1��2���$��*��#���)�*������� ��+�4� 5��� ����(�%��$��)�������"�����(�3���$� � ������

*��7��#�� !���$ ��8���" � (���)�������(��� �2)�.1')��')�31')����������

%!�������

-���$ ��(���" � (���������"!��2���(��"������������$7�����(�� �9��-�2�����5 #��������������������� 5��/�����:�9��-�0���� ����$���;������ ������� ����!��7�����$��.����1�������#�'�������/.1'0���#��$��.����

1�������#� ����$�����'$��2��� ���$��(�������5����� 2� ( �����5�� �� ���� ���$��7�����"����������� ���/��"�����������#���� � ��0��(��$��.1'���8��"�:�&����<�&�9��-�)�������� 5����7��";�����2�.1'� �(���������$�� ����$���� ��� �9��-�2����#����������$����#�"���7��������#��� ��)������� �2� ����7����(����7��������#��� 5 �����$��"����(�5����!���������2���$ �����# � ����������(��"�=�=�&�=�9��-�)������ ���#�7 �$�>�$��"������ "�"�� 9�?����# � ���)�����"���� �2�" � "�"� ����$�����@�����7 �$ ���$���������$�������# � ������������ !���#���� 0���#���#�"���7����� �(�������/ ����$���� �����#�!���#0���#� 0���$����#������ !�� ����(�7��";��� ���7�����"������(��"��$����" �2���'�����������$��.1'���$������� � ��� �����$����������������/�����&�=�9��-�0� ���$������� ,�#�!������ �2��(�������2���$ �����# � ���)������#�!�� �������#��#5��� ����(����#;��7���� � ���7�����

"������(��"��$��3����1�������#�'��������%����2������"������������������� �2�����#�7 �$ ���$��.1'� ������ !���#�����$���������(�6��2��� ������� �2�� ���� "����#�����$ ������ �2�����#)�"��� �������� ���������5�� �! � ���7 �$ ���$��.1'�"���$�������������� ����(��"�������!����� �2�� ������(����7�� 0����� �2������=�9��-�)�� �9�#�����$����:�9��-��>���� �2��5���?+� 0���7��"��$�����������9��-�)������ ���#�7 �$��$����"���.��"���� �#+� 0��� 2$��7��" �2�!��7������A���B�9��-�)�� �9�#�����$���# �5���'� "����%��"���+� 50���5�������� �2��(������B�9��-�)����" ��� �2������&�9��-��#�� �2��$��� ���������%2����.���$�7��$���"��� �������� �������������������2���$ ��5�� �! � �������2��$��.����1�������#�"��2 �� ��#� 5���!��������(��� �2)� ����5�� �� ���� ���$��

����� 5������� !�� ����(�%����� ��/��" �2���'������0���#�������/3����1�������#�'������07�����"����������$��.1'�#�� �2��$�������:�9��-�)�

http://mc.manuscriptcentral.com/holocene

HOLOCENE

Page 27: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

For P

eer Review

�(����� �2� ����$����#���" �����

Page 1 of 45

http://mc.manuscriptcentral.com/holocene

HOLOCENE

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960

Page 28: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

For P

eer Review

����

�������������������� �������� ��������������

�����������

������������������ ������������ ����������������������� ������

������������ ������������ ���!�"� �#� � �!$�% ���&������'�( ��&�������� �����)�������)��& �����

���� � �� ���'�( ��&�������)������! ��"!���!� �*��+�� �������,���� �����������*"����

��'��$ &�*��+�� ����'�( ��&�������)���� ($��*���

��'�( ��&�������)�� !���!��� �$� �*��+�� ����'�-.///�� �$� �'���

���

!���� (������� ��$��0�1�� ����(�����2��-3 ���&�����������

���3��� 0�����$�!���� &������ �%),��,�4),��!� �����!����5���!����� �

����

����

����

����

����

���

���

����

����

�� �

����

����

����

����

����

���

Page 2 of 45

http://mc.manuscriptcentral.com/holocene

HOLOCENE

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960

Page 29: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

For P

eer Review

����

���������������

� ����$�!���� &������ �� �&�� �� ����&� �!���� ���$3� �����'� 1����������

(��+���� �5���!����(�� (�!��+��6� �����7�1 ���8�����!�- $���9�!� ������� !���� ����

���3�����$��%� ��)����� ���,�������6%),8� ����$��%� ��)����� ����!�� $������ �

,$ ��� �����$��� �� ���+� �� ������! ���+ �� ���� �����$��3 ����& �(��(����� ����

6��&(�� ����� ��� ������8�����$��%),��$����$���&����� ����

:��&�7������;���1 ���� ���� ��+����3 �&9 ������%),��������!� ��!�� $����&�������

���'� 1������� ���! � � ���$ �!���&���3 ����(����!������� ������������3� ��� !�����

3 ����(����!��+�����<$��&� ��� +��� �����!� ���� ($�!�!�������� ��!!������&�=�=�������

��=�1 ���� �!� ����3��$�>�$��& ���(��&�&-��1�?�!�������� ���!�&( ������

&���&�&��!�� $�����@���������$��'� 1������� �� ��<$� ��!�������� � ��� ������������0���

�8�����!���&���3 �����������!�� ��$���!�� $����� �� ���� ��� �����8���$ �!������

!���������������3 �&9 �����3 ����& � ����&��$����&������,�����������$��%),��<$�����

�� � ������������$��� ���5���!����6� �������=�1 ���8�� �!$ � !����������� �!����������� �

�!� ����&(�� ���� �! � ��������!�� ��� �+�!��������!���9��3- �������3 �������

& � ����&��$��4 ��)����� ���,����������������-���&�� ���5���!����!����������������

3��$����$��%),�� � ��������������$���� ������A���� !� ��!�������3��$����$��A���$����

��� ���!���������"�(���&(� �������$� �!�������������&����-!������� �� ! ���+ �� ����������

3��$����$��%),�& �!$� ���!�� ���!���� ����&� ��� ����!������ �������'� 1������� ����

�����3 0��8�!������� �������=�1 �������1�������$����7�1 ����>!��������+���?B���8� �3 �&���

($ ��!������� ����.�1 ���� �!� ����3��$��$��#�& ��% �&�������B����8� ���$����

3 �&�������3�������� ���/�C�1 �������1�������$�������+ ��,��& ������& ��B��+8����

�+����!�����������$��%),� �����/�C�1 ����!��&�� ����� ��/���1 ������������$������������

�!��������� �

%�� $�3��$ ��&����-!������� �� ! ���( ���!� ���� ($�!�+ �� ������� ������$�����

%� ��)����� ���& ������ ����+�������!� �����!���������+ �� ���� �����$����� ��+�����

Page 3 of 45

http://mc.manuscriptcentral.com/holocene

HOLOCENE

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960

Page 30: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

For P

eer Review

����

!������������������ ���!�6��&������,������8� ������ ��64 ��)����� ���,������8�3 �������

& � �����$��%),���������$��� �����7�1 �����������!�����!�� $������� &�! �����

����

���

���� ��������� �����

D+����$��( ���3����! �� � ���� ��+��& �� � �!�� �����!�� ��� ��� !�����

&�����������$��)����� ����!��"$����6)�"8� !!�&( ����������$ �!��� !!���� �����������

& ������)����� ��? �& ��������&�� �������������� !��� �6������ 1�� $ +��� ��E� �

5��$��&�� �������� �� F8�$ �����������������6G3 ������� ����//�B�#������ �����

� � � � �� &��//;B������ �������$����//.B�����$������ ����//.B�5�3 ����� �����

�//7��//.B��/��B�"�� ������� ����/�/8��#�!���� ����� �$ +�� ���� �����$ ���!� ����

���!����& ���@���� ���&(��� ���!����������&�������!�� $������� &�! �����$����

�������!�����3 �&����!� ��!�������� �6�����<$�& ��//�B�����$������ ����//�B���

���� !$ ������//;B�5��� ������ ����//.8����

<$��'� 1�����������������%� ��)����� ���� � �1��� �� ������+� ��� ����$���

�������!������!� �����!�������)�"���$ +������<$� ��������$ � ���� ��+����3���� $������

�� � ���!��� �� �$��$-�� �������� ���&��� ��� �!$�+� �3��$��$��(������ ��������!��� ���

������ ����$������� !��������3�����!� ���� ($�!�+ �� ������� ����!�� $������$ +������ �

<$��&������$������ ($�!�!�������� �����$��������� �����&�� ��������$��%� ����

)����� ���,�������6%),�:�������8��<$��3 ����& �!�&(� ����������$��%),�� ���

���1�������$��� ���- ! ���A���$���� ���!�!��& ��� � ��&��#�!���� ����� � $�3��$ ����� ���

&����-��! � ����&� ! �����&(�� �����!$ ��� �3��$����$��%),�$ +�� �(����������

�&( !����� �� ��� !��&����������'� 1���������������� !��� �6������ 1�� $ +��� ��E8���

���� ����������$��� ��;/��� � �65��� ������ ����//.B�#��������� ����/�/B���������� ����

�/��8���!�� $������&�� ����!���� ��%� ��)����� ��� �����!��� �����������$��� ���

)� !� ��� @�&�&�6�)�8��������$ ������ ���� �����$ ���!�� ��� & �& ��$ +����

Page 4 of 45

http://mc.manuscriptcentral.com/holocene

HOLOCENE

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960

Page 31: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

For P

eer Review

����

�@�����������$�� $��������� ��������(�!�� � $���������$ �����$��'� 1����������������

6 ���:��������� ����/��� ����������!� ��$�����8����&������+����!����(��������-� �

((� � �!������$��%),����'� 1����������&����C�����/�1 ����6:������ ���%����!1����

�CC�B���������� ����//=8��� �����6��������� ����//=B�5�� ����� ����/��8� ������

����� ��� ��6%����!1� ��������!1���//7B����������� ����/�/B�H�������� ����/��8����

����� � ���� ���$ ��� 1�� $ +��� ��E�$ ������� ����������$��� �I����������7�.�1 ��������

<$���� ���$�3�+������$��$��� ����������!��� � + �� ���� ( �������$��(����������!�����

����� ��6 �����.�1 ���8� ���&���&�&��!�� $�����@�����6;������1 ���B������%����!1� �����

�����1���//7B����������� ����/�/8���!�&��������$��( � ��!� ���� ($�!��+�������������

'� 1�������6%� ��)����� ��8������

<�� � � �������� � ����$�����1����3�����!� ��!����!���� ����!�� $�������

��� &�! � �������-���&�( � ��!� ���� ($�!�(�� (�!��+��� �������������$� � �����3��� �

�&������+� ��� ����$���!� ���� ($�!�!�������� �����%� ��)����� �����������$�����

�&(��� ���(������3$����$���!�� $��������� �������&�3� ��������� �����'� 1����������

��� �� �F�������������$��� �I�����"(�!���! ����3�� �&���� � ��$��(������ �����1����

���3�����!��& ���������� �� ����!� ����&(�� ���� ���������$� �(�������%����!� �������

���3�& ����� ���&����!�������&��$�� $���� ���$3� �����'� 1������� ( �������$�����

� �����7�1 �����<$��!������ ����� ���! ��������!��������3��$�����3�( �$�����$��%),� �����

� ��@(�!���������!���0��8�&���3 �����������!�����&��$��)�"�6��!��+��� ������$��%� ����

)����� ���& ����� ������&�'� 1������B���8� $��� �����$����� ��+��!����������������$�����

��� ��+����3 �&9 �������� ���!�6��&������,������8� ���!�����9��� $������ ��64 �����

)����� ���,������8�3 ����& � �����$��%),��� � ����+����&��� ����!�� ���!���� �� �

���������������&�����$�!���� &������ �� �&�� ���� � ��%��� ������(��� ����� ��

��� ���!� �����!��!�3 ���� (�!�� � � �(��@��������������F� ��� ��+��!$ ��� ���������&�� ��

3 ����& �(��(����� �����$��%),�6�������������� ����/��B����������� ����/��8��D���� ��

Page 5 of 45

http://mc.manuscriptcentral.com/holocene

HOLOCENE

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960

Page 32: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

For P

eer Review

����

& ������ �����!�� ���!���� �3����(��+���� �$��$-�� ��������������-���&�5���!����� ��

(�� (�!��+������$��( � ��!� ���� ($�!���+���(&�������'� 1����������� ��

�� �

���� ���������� ������������� ������ ��������� �

'� 1�������� � �� ����& ������&� �&����6�////�1&�8����!���� ��%� ��� ��

)����� ���6:�������8��"$ ���3�3 ������(�$ �+ ���������3�����//� ����//�&� ���� ��

��(�! ����������3��$�& @�&�&�3 ������(�$ ��(����C//�&����4���� &�����'��� ��� �

���(�3 ���������$������ !� ���������6����� ���#�������//�B�#����� � ���������//=8������

� 1�� $ +��� ��E��������)����� ��? �� ��� ����������� !��� ����3 ������'� 1�����������

���!����������� �� � �����7J�����$��)�"�6���� $ ������C.�8��<$��(�� ����� ������

�!� ���� ($�!� ����������%� ��)����� ���� ���&�� ��������$��%),�3$�!$�� ����&�������

��� �!�&��� �������0��8���� ��+����3 �&� ��� �������� ���!- ���!���3 �������&��$������

��&������,�������6�,8� � ������ �!$�����$��A���$���� ���!�,�������6A�,8B���8���� �-���

���!���!������3- �������3 �������&��$��4 ��)����� ���,�������64),B���!$��C.�8B����

������8���! ��&���3 ������ !$ ���� ������$��%�)����� ���!� ��6:�������8��<$��%),�����

����� �'� 1����������&��$�� ���$3� �� ������3 �����$3 �� ��@������(��& ������$����$�����

�$��K �� �������� ������ ������� �!$�����$��%),�� ������!���������� ������ ��3� ������� �

'� 1��� � ���3$�����$��& ���!�������!������� �������3� �����%� ��)����� �������

����$3 ������������$����� ������ ��6����� ����C.�B��L!������ ����//�B�#����� ����������

����//;8��<�&(�� ����� ��� �������� � ����&�'� 1�������6����� ����C.�B���!$�����

�C.�B���!$���� ����//�B���������� ����//;B�5 ������� ����//78� $�3��$ ���$��%),�����

6��=M�N,�����M������"*8����& ��$�������&�3 ��� �3��$����$��� �������� ���6�C.�8�����

�������������! ���� ���� �&�@�����������(�� ������ ��3 ��� �����3��//�&�3 �������

��(�$�(����� ����������'� 1��������"��� !��3 ��� �$�3�+��� ����������!���������

&���3 �������@����&�� ����!����� � ����$��(��+��� � � ��? �( !1��!�� �3���� �����

��� ��+������3- �������(�� �� ��� !��3 ���� �+�!�������&�� ������ ������(�� �����$������

Page 6 of 45

http://mc.manuscriptcentral.com/holocene

HOLOCENE

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960

Page 33: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

For P

eer Review

���

��!��!� � -�!����������&��� ��� �������� ������ �����3����"�(��&���� ���� �!$�� ��� �

������I� ������$����'� 1���������� (�����6< ������ ����//�8� ����������!� ��$�� ��� !������

3 ����(����!��+��������$�� �� �6�����5 � ������ ����CCCB���+�� ������ ����///8�������

�����

���� ���� �����������������

<$� � �������!� � �����$��!�&(� ������!������� �&����� ����� +����!��������

��� ��������&� �����"������//�6;.N�.���?A9�=�N//��C?%�:�������8� ���$3� ��������

'� 1�������6!��� ���"�/=9/������$�������������� ���B�5 ������� ����//78��<$�����

&�����!����6�����$0��.�=�!&8� ����� +����!����6��� �������$0������!&��$� � ���������

��!� � ����������$����(�$ �/-�//�!&8�3����������+������&�=�C�&�3 ������(�$��������

4���� &�����'������� �

����!�������� �(��+�������� !!���� ����& � (�!���&�������"��,�� �� ��������

&���� !� $��� � �������$�!���� &������ �6< ������:�������8��<$��!$�������������$������

!�&(� ������!����6� ��7�1 ���8�� �� �������7���"���,�� �� ��<$����"�����

� ���! ������ �� �3����! ���� ����� �����$��� ����/C�6#��&������ ����//C8�����

! ���� �����!��+�����,�����;�/���6"���+��� ���#��&����CC�8��:����3�����$���� ��� �����

���&���������� ���6�/��8�3�� ((����� �& ������� ��+���� ���!����!�����O#������/P�=����

�� � �3$�!$���(�� ��� ��$��&������O#�+ ���������$��'� 1������� �� �����

:�� &������ �� � �� � �3 �! ������������� � � �� ���+���&�����=�&����� $�����

���&���� � 1����������������3 �����+�����$�� ���������� ��+��� ��;��Q&�I� �������������

!���������������!���� &(�� �3����!������� ���-��!&������+ � � ����� +����!������ �

&(�� � ����!&������+ � ��, �! ���� � ��� ������� ������� &������ �3����!��������������

� F� ����(�!1������ �� ����������������� (�!�� ���+��������� � �����&�!�� !�(�����&�����

�$��3����� �����R;��Q&��������!���$���� �����$��&������ ����� ��� !��� � (�!�� �����

! � �������������������� ���&�����<$����� ����&������� (�!�&�� �!�������(�������

&(���� ��� ����&��//���� �����7=/��<$��"$ ����-%����������@�6"6588� �&� ��������

Page 7 of 45

http://mc.manuscriptcentral.com/holocene

HOLOCENE

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960

Page 34: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

For P

eer Review

���

���� �� ����+�� ����3 �! �!�� ���� �( � ����������$����� ��6"658��� �B�:�������8��$�����

������� ����6"658 ������� ���B�:�������8� ����$��! �! ���� �6"658! �! ���� B����

:������=8� �&�� ���������

"���&���� &(�� �6��!&������+ �8�3����3��� ��+��� ���$��;�� ����//�Q&��� �������

������ !�������������&�����$�� ���!��������<$���� !�����;�-�//�Q&�� �� ��� � ��� �

((��@�& ���&� ��������$��%),? �!������� ������$� ��� ���&��� ���(� ���������$�����

�� !�����R�//�Q&�(��+��������! ���� �����!�-� ���������� �6�#'8���(� ����� ���$��!���������

������������� ����!���� �����#'�6R��&&8����S-� ���& �� �3����! �����������<$����� �����

��� ��!�! �����!�������6<D,8�����$�����1� ���&����6��!&������+ �8�� ������&��������

������!������� ���� !������$����� ������� ��!�! ��������&��$����� ��! �����!������������

���

���� ���������

���� ������������� �����!����

"���&��� � ���!�&(� ������&����������+�9������ $���������&���� ������+�����

���3����� ��!���!$�!� ��3��$��!! ��� �� $������ �&��� � ������(� ���� ��<$����(�$-� �

���&�����3 ������������$��! ���� ������,�� �� �� ����&�@�������!��&������������

65��� ������ ����//=8��<$�� ���&���������$��&�����!����� �� ���������� �����

�����(�� ��������3�����$����"���,�� ��� ���;�=�!&���(�$�6< �����8� ����$��&���������

�������//7��$�� &(������� �������$��!������(�6 ������������ ����/��8��:�����������

(�� ��� ��$�� ���&����������$��� ��7���1 ��������$���� +����!������!!�����������������

���&����� �� (�������=//��� � ��@� � ����3�����$��&����� ����� +����!������� ������

�$���((��� ���&��� �� �(�� �& ������������$���� +����!��������!$��F����<$����

���&��� ������ �������$���� +����!���� +�� �� �/����!&9������3����7��� �����=�1 ����

�����!�� �������/�.=�!&�9������3������=� �����1 ���������

<$��!�����������#'�6R��&&��� !����8�� ���3�3��$����$��!���� �((�����������3��� �

+ ��� �����$��R�//�Q&�J��� !������$����$�����$��� �����7�1 ����6:������� 8��<$������

Page 8 of 45

http://mc.manuscriptcentral.com/holocene

HOLOCENE

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960

Page 35: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

For P

eer Review

����

���!�������6;�-�//�Q&�J��� !����8� +�� �� � ������.J����3����7��� ���7�1 ��������

�$�����!�� � ����& @�&�&�+ ��� ����3����7� ���;���1 ����6 +�� �� ��=JB�:����������

��8��:��&� �����;�1 �����$����� � ��� �� ����!�� ������$�� ���!��������� !$��������

�� +�� ������ �����=J� �������=�1 �����<$��<D,�!�������� ������ ������3�3��$� ������

+�� ������T�J����3����7��� ���=�=�1 �����$�����!�� � ��� �� ������ !$���� �����

+�� ������ �������=J� �������=�1 ����6:�������!8��S-� ��� ����� ($ �6���������� ����

��(���� $���� � 8���+� ���3����������� �����$����!�������� ��T��1 ����6�CC�=-�/��=�����

!&�!������(�$B�(� 1���� ���!������B�/�=J����(����<D,�!������8� ������� ��T=�1 �����

���6�C�-�C;�=�!&�!������(�$8��' � ����&��$� ����(�$ �$ +��������@!���������&��$���� �

��!���� ����$�������3������ !� ����������

�����

���� "�������� ������ � ���������������������!�����

����$�!���� &������ �3����!����������&���/� &(�� ����&��$��!�&����������

!��� ������� �����=������$�!���� &������ �� (�!�� �3��������������0��7� ������� ���� �������

�=�! �! ���� � (�!�� �6 ����((����@�������!�&(������ �� ���� �8�����$�! �! ���� � ������

������� ���� (�!�&�� �3����3����(�� ��+��� ��� $�3���&���& ���+����!�����(� �����

&����&�6�� �������8�!$ ��� ��$����$�����$��!�����<$� �� � �((������������ ��+������3�����

!���� ������ �������� �(��� &(���6:�������8��:����3����(��+��� � ����� ����$��$-����

�� �������� ��� ����&��$��'� 1������� �� �6�������������� ����/��B����������� ����/��8�� �

3��(�� ����!$ ��� �����$����� ������$�!���� &������ �� �&�� ���6 ������� ���� ���� ��

! �! ���� � �&�� ��8� �����3��$� �&& ���!��+� ���� �!$��������� ���!�3 ��������(�� ��

6���%8� ��� ����!��!�3 ��������(�6�%8��<$� ������(��� � ���� ��������+����&��� ��� ��

(�������!� �����$�� (�!�� �6 �!� ��������!�������������!����3��$� ������� ���� ��

��&(�� ����8� ��� ���� ���������������!$ ��� �����$����� ��+����&(�� ����� ��� �������� ��

����$��%),� �!� ����3��$�!$ ��� �����$���� (�!��+��3 ����& �!�&(� ������� �

6�,94),��������!�8���������$��5���!������� �

Page 9 of 45

http://mc.manuscriptcentral.com/holocene

HOLOCENE

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960

Page 36: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

For P

eer Review

����

���< ������3��(�� ���� ��� ����� (�!�� ���!����������$�����%� ����%�����(�� ��

�����3��$��������!� � �((������� (�!�� � ���! ���� ��<$�����%�����(���!���� �� ��

(�!�� � �!$� ������� ����������� ������������� ����� �6! �! ���� 8� ����� �

�� ���������� ��� ������������ � �������������� ��������������

6 ������� ���8������$��(�� ������ ����������������� ��$��&� �� ���� ��� (�!�� ��������

�$�����%�����(�����! ����� ���� ��+���� �������,�!�&(����������$��%),��<$��$��$� ������

���� �!������$� � (�!�� �� � �!� ����3��$� � � ���� ���������������$��&� ������

&����� �����!� ��!�!�������� �����$��5���!�����<$���%�����(���!���� � (�!�� �����

�!$� ���� ������������� ������� ������� ���! ��������"������

6 ������� ���8� ���#��������� ��$���������$�� ��������� ���� � � ����

6! �! ���� 8��<$� �� (�!�� � �������! ��+�������� ��+������� $� ���!����3 ����& �����

!$ � !���� ��! �6 ������4),�!�&(������ ��9�����! ��&���3 �����������!�����&��$������

)�"8�3��$����$��%),��<$����� ������$�!���� &������ �� �&�� ��� � ��!��� �� ��� �

+ ���� �(����!��+��������! ���� (�!�� � �!$� �%����� ������ ���������

&�� � �������������������'��� ���������� ������ � ����#�������� �������

$�� ������������� ������!�������� ��� ���(��� ��� (��<$���!!�����!������$� ������

(�!�� �� ���������� �������$��$�(����!��+���� ���$�� � � ��� !��3$�!$���$ �!� ����������

�((�������$�� � ������� ����$�� + �� ����������&��������� ����� ���9 ���������� ��!�����

& �����3��$����$�� ���&��� �6�������������� ����C.�B�, � �(��C.CB����� 1� ������

"��$��&��CC�B�������� ���� ����//�8������

<$����� ��+�� ���� �!��6J8�����$����&�� ��� ������� ���� ���! �! ���� �����

(�!�� �� �������$����� �� �&�� ����+����$��� ��7���1 ����� �(�� ���������:����������

���� ������!$ ��� �3��$����$����� �� �&�� ��� �����3��$�!$ ��� �������%� ����� �

�%�����(��� � �������& �� ����+� ����������$�������� �6�-,8�$ ������& ����<$������

��� ��+�� ���� �!��6J8�����$�� ������� ���� ���! �! ���� �� �� �� � � ��(�����������

�( � ��������:����� ��� ���=���������� ����3��(��+���� � ������ ���� �!����!��� �����

Page 10 of 45

http://mc.manuscriptcentral.com/holocene

HOLOCENE

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960

Page 37: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

For P

eer Review

�� ��

����$�� ������� ���� ���! �! ���� �� �� �6(������� ���� �� (�!�&�� �!�������(���&������

3��� ���&���8� �( � ���������$�� �((��&��� ��� �!�����6:������"�- ������� ��������

(�!�� B�:������"�-! �! ���� � (�!�� 8������

� �����

�#��"������ ������������������

) �� ��������� �� ��$��&� �� ���� ��� (�!�� �����$�� ������� ��������

�&�� �����������$��� ��7���1 ����� ���������&��/����;/J��<$� �� � �!� &�(���� ���� �

(�!�� ��$ ��� �������3�����������!��!� ��� ��-��!��!���+����&��� � ���(��+��� �����

��&����������& ��������( � ����+����&��� ��!$ ����3��$����$� � �������������������&�����

7������;���1 �����%� (�!�� �6���������������� ������8� ������ ��+����!�&&�������

+�� ������/J�����$��� �� ��<$� � ���� � ���� ��+����!���� ������ $������&�3 ��������

& �!�������� ����� �����;�=�1 �����$����� � � ���$����!�� ��������%�� @ �6�������

������� ����������������� �������� ����������������� �8�3$�!$�� �(� ��������1������

����!!�����!�������� ��+����3 �&���3 ����& � � ���$ ����&�������

����������#���$ ����!�� � �����=-�/J����3����;������=�;�1 ���� �������

�� �������� �� (�� +�� �� ��/J���������$� ���&�������+ �����&������� ������������%�����

(�!�� � �����;���1 ���� ���� � � � $���-���&�!������� ������ $��������������&�3 ������ �

!�������� ��:��&����=�=������=�1 ����3���������3� ���!!�����!������$���%�����(��+�������

�$��(������ �������3$�!$�����! �� �&���&�&��������!�����&����$�����! ��&���3 ��������

���!� ����'� 1�������������&��$��4),�!�&(����������$��%),���������$� ���&������

�����+ ��������

��������,����&������7�1 ������3 �� �3������� ��� �� ���� ������+�� �������

���� �!� � �����+�� ������� ������� ���� (�!�&�� �6"658�����@��@!��� ���=8�����%����

(�!�� �6������� ������� ������������������������������ ����� (�8���!�� �����

� (��������&������;�1 ������ !$����(� 1� ���� �!����� ������/J�6:�������8������

"�� �F����������&������;��������1 ���� � ���$������!�������� ���� �!������$� �����(�����

Page 11 of 45

http://mc.manuscriptcentral.com/holocene

HOLOCENE

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960

Page 38: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

For P

eer Review

�����

�!!�� ���� ������/J���%� (�!�� � $�3� ��� �� ����!�� �����&������=�1 ����� �

�� !$����(� 1�+ ��� ���� ((��@�& ������/J����&����/�C�1 ������3 �� �����! ��������

�� �F�������� $������ ���!������������

����

�#��"������������������������

���3����7��� ���;���1 ����6������8����%� (�!�� ���&�� ���6�/-./J8��������

!�-�!!�����!��3��$��%� (�!�� �6�/-�/J8�(�� �& ���������!� �&�@���63 �&� �����

��� $8������&�3 ����!�������� ��<$���+�� ��� ���� �!�����(����!��+��������! ������

(�!�� �6�����%��� �����'�������8�� ���� ��+������3��$����$��$� ������+ ������

#�� ��+����$��$� ���� �!�������� � ����!�&( ������������3���������+ � ����

���� � ��$ ����� ��+�������9���� ������� ��!�& ���� ��� �(�� ���� ���$�� ����3��$�� �

��&�������(���� $&�������&� ��� !��(����!��+���� ���$� ���&���������7�1 ����(� 1����

���� �!������$�����%�����(�6:������=B�"�8������!� ���� ��+����3 �&��������&�3 �������

!�������� ������

����������(� 1� ���� �!�����%��� �����!������� ��;�1 ��������! �� � ����

(���������(���������$��$� ��� !��3 ����(����!��+����! � ������$ �!��� �((���������

��� $�($���������� �����$�� � ����������(������!����� ������%� (�!�� �6�����#�����������

��$���������$������ � � 8�� � � ��������3��$�(� 1� ���� �!�� �����=�=�1 ������

���� �����(� ����������&�3 ����!��������"�� �F������� �(������!�����!���������$�����

���� �!�����#�� ��$���������$��� �������!���!������3��$� ����!�� ��������%����

(�!�� ��:��&� ��������=�=������=�1 �����$�����%�����(���&�� �� ��$�� �&�� ����� �

��!�&���������� ��+����3 �&� ��� &����� ���������&�3 ����!�������� �����$�� �� �����

6:������=B�"�8�������

��������,�3���� ��+�� ��� ������%� (�!�� ����( ���!�� ��#�� ��$�����������

��$������ � �� �&�������!�� ��������� � � ��� !$���� �(� 1� �������7�1 ��������

����! �����!���������������&�3 ����!�������� ��<$�� ���� �!������$�����%�����(�����

Page 12 of 45

http://mc.manuscriptcentral.com/holocene

HOLOCENE

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960

Page 39: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

For P

eer Review

�����

��!���� ��$����$��$� ������+ �� ��$���$� � ������(� 1���� ���� �!��� � ���� �������.����

1 ����!�&( � ������� ���� �!� ����������3�������=�=� �����=�1 �����<$� ����

����! �������� ���� ��+����3 �&�%),�� � !!�&( ����������3� ���� �!������%�����

(�!�� �6�����#�� ��$���������$�8� �������.�1 ����������

<$��&� ��(��&�������� ���������$���((��&� ��( �������$����!����� ��$�� ���(���� �

��!�� �����#�� ��$���������$������������� ������ ����� ����&� �����/�C�1 �����

�����3 �� ��&(������ �!$ �������$ � $�����+����&��� ��!�������� ��$ ��(��+��� ���������

�����

���� � ����� �������

���� $��%�������������������� ���������� ���� � � �!����������#������

D�����3�����$�!���� &������ ����!�������&��$�� $���� ���$3� �����'� 1����������

���� �� �� ��$��(��& �����(�� ��!������$��%),��������!�����$���!� ���� ($�!����

!�������� �3��$����$�� �� ��+����$��� �����7�1 �����:��&������ � ��$������(�����������

���%! �!� ����% �������! ���� (�!�� �3��! ���@�� !���3��& ���� !��� ��$ �� ���!������

3 ����& �(��(����� �����$��%),��+�����&�0��8�&���3 �����������!�����&��$��)�"�� �

��!��+��� ������$��%� ��)����� ���& ����� ������&���! �� ���!� �����$��'� 1�������� ��

������B���8� $��� �����$����� ��+��!���������������3 �&9 �������� ���!�6�,8� ������� ��

!�����9��� $������ ��64),8�3 ����& � �����$��%),��<$��+ �� ���� ������! ��� ��

�������!�����&��$��)�"� ��������� ���!� �����!����3��������� !� �������3���� ��

�� ��

�#������&���� ��������������������'��()*�������+),����-�� ������� ������������ �

� �� �-�� !� ����- ((� � �!������$��%),�� ���(���������&��$��%� ��)����� ���� �

�� � ����$��, � �� ����!��!� ��� ��� ��������C�1 ����6�����5��� ���-� �!������ ���� ��

�//�B���������� ����//=B����� ������ ����//. B�#������ ����//CB�������� ���� ������� ��

(��(�8��4+����!�����&�& ����� �������� ��� ����!��� � ���� ���$ ���$��)�"������ ������ �

���&��$�� $����3� �����'� 1�����������$��� �����( �������$���&� �&�����������/���1 �����

Page 13 of 45

http://mc.manuscriptcentral.com/holocene

HOLOCENE

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960

Page 40: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

For P

eer Review

�����

���6���������� ���#����� ��//�B������ ���#����� ��//�B���������� ����//=B�H���������

��� ����/��8�������

� "������&����������&��$��)�"��� � � ��������������������$���!� ��� ���(����������

���3����.� ���;�1 ����6������ ����� �� 1�� $� ���CC=8� ���� ��$���$���������������

�� (�� ����� �&� ($���!����!��������� �(������!�����&(�� ������� ���+����$��)�"����

6' $�-��� ������ ����CC.B�K���$������ ����//C8����� ������������$� �(��(� ������

�&� ($���!����!����������!�� ���!���� �6������8�(��+�����+����!����� ���!� ������

���!����3��$� ���� ��+����3 �&�%),����������'� 1����������&����7������;���1 ��������

3$�!$�(�� �& ���� �((��� ��!�� $����&��������$�� �� ��<$� ���3���( �������$����!����� ��� �

� ��!$ � !����������� ������+ �� �����������$�����3� ������$�����$��%),��� (� �����������

�$�� ���!�������6:������;!8������� �������3����7��� ���7�1 ������3� ���!�����������

���� � � �3� 1����3�����$��%),�6:������;!8��<$��� �� �� ���&�� ����������%�����

(�!�� �����3��$�+ �� ���� &���� �����%� (�!�� �3$�!$�(�� �& ���������!� � �&�@�������

6��� ��+����3 �&� ������ $8�%),�6:�������8������� ��+����3� 1����3�����$��%),�&��$������

������ �������&���3 �����������!�����&��$��)�"���!��+�����������$���� +�������$�����

!������� ������$��%� ��)����� ���& ������<$� ������+ ��!���!��� � � ��3��$�����!������

��(� ����������������!�! �����6:������;�B��'CC-����8� �����3� ���� �!��������%�����

(�!�� �����$��4 ��)����� ��� $���� ���$����'��& �1�"�� ��� �������������!��������������

�����$ �!���&����������&��$��)�"�6������� ���� ����/��8��:����3�����$� ������ ���� �

(���������&����7�1 ���� ������! �����!�� ������$�� ���!������������!� � �����

������$����������$��%),����3� ��� �& @�&�&�� � �������3����;�=� ���;���1 ��������

6:������;!8��'�������$� �(������(� �-�� !� ������� �����������(�!��+�!������ ���(����������

���&��$��� �� ����"� �65��� ���-� �!������ ����//�8��<$����� ��+������3�<D,�!�����������

������ ��+����$��$� ���� �!�������� � ��������������� ���������� ��!�& ���������

6�����, � �(��C.C8�����! �� ���3���� ����& �����(����!��+���� ���$� ���&���%��(� ��� ������

�$ ����� ��+����3 �&��������&�3 �������3������'� 1������� �((��� 9��$ �!� ��!�� $�������

Page 14 of 45

http://mc.manuscriptcentral.com/holocene

HOLOCENE

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960

Page 41: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

For P

eer Review

�����

����� �� ���! � �����$ �!���&���3 ����(����!������$ ��!��!�� ����3��$����$������

�&� �&���� ���$� ���&������������$� �&���3 ������ !$ �����������!� � ��� !��3 ��������

(����!��+����3$�!$�� ��� � � �������������!���!��!���� ����������� &������ ���� � ��� �

6:�������8� �����3��� ���� �!�����(����!��+��������! ���� (�!�� ��������������� $�����

($���������� �6�����%��� �����:����� �=�"�8��<$� ��������!����� ��� !��3 ��������

(����!��+����� �(��&�������� ����3$���!�&( ������$����� ��+�� ���� �!�� �������

!��!���� �����6������� (�!�&�� �(���&�8�����$�����%�����(�6 ���:������������ ������$������

������ ($ 8��������

<$����!�� ������3�����$��%),� !!�&( �������� ��� ������$��!��!���� �����������

�$�����%! �!�� �� �6:������;�� ���"�8����&����7�1 ����!����� �� �3��$���$ �!������

��(� ����������������!�! ����� ��� �� ���(���� ��������%� (�!�� ���� �!�������&��$������

���$����'��& �1�"�� ��� ��������7�1 ����3$�!$�������� ���� ���6�/��8���� ������ �����

3 �&��� ��� ���������,�6:������;�8��D����� ��� � ���� ���$ ��&���3 ��������������&��� �

�$��)�"� � ����������!����� �����7�1 ���� ����$� �$ ������!����������!������$��3 ��������

& �!�&(� ����������$��%),� ������$��%� ��)����� ���& ������<$� �� � �((����������

�������� ��� ����!�� ���!���� �3$�!$���(���� �� ������� ��-� ����!�� $����������7�1 �����

����$ ��$ ������� ������$������ �(�� ����& ��������� �����'� 1�������6%����!1� �������

�����1���//78�������

����

�#��"��������� ������������ ������ � �����+)*����.*)/����-�� ������� �������

�����������

� �� ������! ��� $��������!� ���� ($�!�!�������� �� ��� ��+������&�;���1 ��������

��3 �� �6������8��<$� �(������ � �� �3��$� �(��&������(� 1����(����!��+���� $�3������ �

�$����&�� �!�����%��� ��������3����;��� ���=�.�1 ����6:������=8��<$� �&� �����

��1������� �� ������$ �!��� ��� !��3 ����(����!��+������ ����������!�� ��� �((���������

��� $�($���������� �6����� �((��8�����$�� � ��������"�!$� � ������(����!��+�����+�������

Page 15 of 45

http://mc.manuscriptcentral.com/holocene

HOLOCENE

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960

Page 42: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

For P

eer Review

�����

����! �� � � $��������$����&��(������3$�����!��!� � -�!����� 1�(��!!�� ���� (��������

&���$ � ��'� 1��������%�� �&���$ ��(�����������;�1 �����$����!��!� � -�!����������

3 �(� ������������$��� ���$����'� 1������� ������ 1�(�����$�� � -�!��������!!��������

������� �&&���&���$ � ��'� 1�������! � ���� ���� ���� ��� ������&��+����$��!������

�����<$� �� �����$��� �((����������$���!!�����!��������� � � � �������� ���������

���3����;��� ���=�=�1 ����6:������=B����� 1� ���"��$��&��CC�8��:��&����=�=�1 �������

��3 �� ��$���� �������������%��� �������& �� � �� �!�������� �����3�����+���� �

���� ���������!��� � -�!��������������!�� ���$3� �����'� 1�����������

)��&��($�����! �� ����� �����$��� �����'� 1������� �� ���(���� �� ������� ��-���

� ����!�� $���� �������!���&���3 ��������������&��$��)�"� ��������;�1 ����6%����!1����

��� ����CC�B�%����!1� ��������!1���//7B����������� ����/�/8���� ��$���!�� $��������$�����

'� 1������� �� �3 ���3�� ������� ��-� ������� ��&��������$����� ��+����3 �&����

%),�������$���&� �&����!�����$ +���������!���&( !������$���!�� $���� ������!����

��$ �!���&��������,�� �F���������! ��&���3 ������ !$ �������&��$��)�"�3����$ +�� ���

&������&������������!������$���!� ���� ($�!���!���� ������!���� ���� ���$3� ��������

'� 1��������:��&��$� ���&����3 �� ��$��%),�(�� �& ������ (� �����$����&�� ������

3 ����& ����'� 1������� ���� ���1�������$ +���������!��� ��� !��3 ����(��(����� � ��� �

3�����5��!�����$� $��� ���� ���� �!������$�����%! �!� ����% �������( �3�������3�����

����! ���!$ ��� �����$��F� ��� ��+��3 ����& �!����������� ����&��$��%),? � ���!������

!������ �64),� ����,��� (�!��+���8��<$���+�� �����&�� �!������$�����%! �!�� �� �����

���3�������=�=������=�1 ����6:������;�8�$��$���$� � ������!���������������&��$���,�����

���$��!�� ���� ��+����3 �&� ��� �����%),�� �(�� �������'� 1���������� ������ �������

��� ��+����3 �&��,�� � � ����(���������&��$��4 ��)����� ��� $����6:������;�B����

������� ���� ����//�B�������� ���� ����/��8� �������$�� ���$�����!�� �����������$� ����

��&�������+ ��6��������� ������ ����//.�8�������

Page 16 of 45

http://mc.manuscriptcentral.com/holocene

HOLOCENE

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960

Page 43: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

For P

eer Review

����

���� ��� �����;�1 ����3���� ��+����!�� ����!������� ������$�����$��%),� ������

�$��!������ ������� ���!�� ������$�� ���!���������� ������=J� ����/�1 ����6:�������� �

;!8��<$������!������3� (��������$��%),����� ������ ���$��!���� ������� ����� ���!������

�$����� ��+��3 �&�$�����$��%),� � $�3������$����&�� �!�� ���$��$�!��!���� ���������

����$�����%! �!�����(� ���$ ����&��6:������;�� ���"�8��%�� �&���$ ���$��& ���!��������

����$��%),�&�+��� 3 �����&��$�� � ������� ���$��!���� �����<$� ��� ������ �����

!!�&( �������� � ���$����!�� ����� ���&��� ������ ���!���!������3��$� ���!�� ��������

<D,�6J8�!�������3$�!$�(�� �& ����! ����� � ����� ���������$ �!������ ����& ��������

(����!��+���� ���$�� � � ��� !��6:����� �; ��8������

���3�������=�=� �����=�1 ����3���������3� ���� �!�������� ���%� (�!�� �����

6�����#�� ��$���������$�B��������� ������ ������B�:����� ���=�;�8������!���������

&���&�&��������!�����!������� $3 �������$������&��$��)�"�&���3 ���� ��9����$��4),�� �

��������$� �(��������!!��������������� ���!� ���� ($�!�!�������� �$ �� � ��������� ��

���3�������=�=� �����=�1 ���� ����$��3 �&� ��&� �� &����� �����!� ���� ($�!�� ��

�����&�3 ����!�������� ������!�����>�$��& ���(��&�&-��1�?�!�������� �(��+ ������� �� ��

������ ��+�� ���� ��+����3 �&�%),�3 � ��� ���(�� ��������$�� �� ����&����7���1 �� ��

�����3 �� ��������������=�=�1 �����$�������� ���!� ���� ($�!� ��� ��3 �� ��

�+��(�����������$���������!������!�� $����&���3 ��������$��%),���� �

<$��� �� ��� � �(�� ������$������������ �((���� �������(��� ���������@�������� �

>�$��& ���(��&�&-��1�?�!�������� ����&����7������=�1 �����<$�� �&(�������� ��������� ��

�(��&�&�3����������� !!��� �!��3��$�(��+��� ���!�� ���!���� �����$��& ���(��&�&�� ��

!�������� ����&������ ��� �� ���& ����� ����� �����$��'� 1������� �� �6:������ ����� �

%����!1��CC�B�:��� 1�����///B���������� ����//7B�H�������� ����/��8��#�� ��+����� �������

�$��& ���(��&�&�!�������� �����$�������&�3 ��� � ���$3� �����'� 1������� � ������

�((��� ��$�� ( �� ����+ �� ����� ��������5���!����<$��& ��� @�&�&�65<�8�����

!�������� �! � ��������! ���!�� $����&�����������!������$��A���$���� ���!��������6 �������

Page 17 of 45

http://mc.manuscriptcentral.com/holocene

HOLOCENE

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960

Page 44: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

For P

eer Review

����

�� !� �������� ��& ����� ����//�B�� (� �� ���%������//;8��A����$��� �����

��!�� ����!!�����!������������!������$��A���$��!�� ���"$�������&�=�=�1 ������3 �� ����

6:������;�8� ������������� ���@( � ��������$��4),�����! �� � �!��& ��!� $������+��+�������

3��� (�� ��!��!�� �����!$ ��� �����$��$��$�� �������A���$���� ���!�6:������;�B����� �����

��� ����//; 8��<$� �&��$��!�� �F������� � �� ���!���$�����3� ������$�����$��%),�����

���$3� �����'� 1������������ �

�����

�#��0��������1���� ������ ���*)/����-�����������������

� :��&� �������=�1 ������3 �� �6�����,8��$������$�!���� &������ �� �&�� �������

��!�&��� �!������9�������� ���������$���!� ���� ($�!9��+����&��� ��!�������� � ������

�$��!���� �����%���� ��+��!������9��� $������6��!�� �������� �� ���� �!���������

������� ���� (�!�&�� � ��� (�!���! ��������$���% ���� �� B�:������;�8� ������

3� 1������6��!�� ����� ���!������B�:������;!8�����$��%),��<$� �!�������������� ����

!�� � �����3��$��� ��� ����&� �(��+��� � ���������� ����!������ ���������/�6:�������B�����

���������� ����/��8� ���� � ������������� ����$ �!����������!������$��4),�����$������

%),��<$� ���!�� ���!������������������ ��+����!���� ������ $�3 ����& � �����$���� �

%),�!����� �� �3��$��$���� ������A���� !� ��!����������%� ��)����� ��� �������$������

A���$���� ���!��������������

��������=�1 �����$�� ���&��� ������ �����!�� � ����&� �� +�� ���� ������/��������

!&9������ �����/�.=�!&9��� !!�&( �������� ��J��� ������$��<D,�!�������6:������; �����

�8��<$� �� ����1��������$ �!������ ����(����!��+���� ���$�� ����3$�!$�& �� � ����� �����

!�� �F���!������$����� ����3� 1���%),�!�&( ��������$��(��!�����������+ � ����

6:������;!8��<$���� ��+����������� ����������+����&��� ��!�������� ������ ���� ���������

��=�1 ����!���� (��� �3����3��$��$����(���������&�� ����������� ��+����3 �&�����

!�������� �����$��A%��!�� ���"$����6�� ������ ����//�8�'��& �1�"�� ���6��!�� ���������

�������!�! �����!�������:������;�B�������� ���� ����/��8� ���3� �9 ���$�)����� ����� �

Page 18 of 45

http://mc.manuscriptcentral.com/holocene

HOLOCENE

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960

Page 45: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

For P

eer Review

�����

6�����:��� 1�����C.���///B������1���///B�� (� ����� ����//�B����I(�� ���� ����//�B�����

� ������ ����//�B����� ���� ����//;�B��U�������� ����//;B�"�����1� ������� �������

�//7��//.B���������� ����//78����� ������������$� ��!� ��!�!������������ ��� ������

��!�� ���!���� � ���� �� �� �+ �!������$��)�"� �������1 ����3��$����$��'� 1�����������

�� �6%����!1� ��������1���//7B����������� ����/�/�H�������� ����/��8� �3���� �����

!��������+����$��)�"�6' $�-��� ������ ����CC.8�!���!������3��$���!�� ���� �&&������

�� ���� �� �����6������� �����������CC�8������

"�(���&(� �������$� �� ���5���!����!�������������3�������&����-!������� ������

! ���+ �� �����������$��%),�!����� �����3��$��$��+ �� ���������(������������������� �������

6�/��8����!������� ��������=�1 ����6��!�� ��� ���� �!������%� (�!�� ����� � � B��� �

:������=�"�8�� � �!� ����3��$��$����7�1 ����>!��������+���?�3$�!$�$ ����������

��!���������+ ���� �& ����� �������� ��� ����!��� �����$��A���$���� ���!��������6���������

D((����� ����//�B�#� ����� 11������ ����//�B�5 ������ ����//�B����� ���� ����//�8��������

(������!������ ��+����3 �&�($ ��� � ���� �������.�1 ����6& �1�����!�� ������$������

���%! �!�� �� B�:������;�8�! ��������1�������$��#�& ��% �&��������>#%�?��<$� �����

(��������!��� ��!� ���� ($�!�!�������� �!�&( � ����������(��$ ( � ���$����3 �&������

�$ ���$��>�$��& ���(��&�&-��1�?�!�������� � �������3�������=�=� �����=�1 �����������

%� ��)����� ����"������! ���3 �&������������$��>#%�?� � ��!����� �� �3��$�������� �����

���&��$��#��1I �� �#���������$��!���� ��A���$���� ���!�6���� ���� ����/��8�������

��������.�1 ����3������� ��� �� ��!���������������&�3 ����!�������� �6�� �� ��� �

�� ������% ��� (�!�� B�:������;�8�3$�!$�����! �� ���$ �!������ $3 �������!�������&����

�$��4),�6!������������� ����/��8� �������!���������$���,�!����������������$��%),�����

A����$��� � �&�����3 �&������������&�3 ����!�������� �� � �������3�������� ������

/�C�1 ����6:������;�8�3$�!$�!���� (��� �����$�������+ ��,��& ������& ���>�,�?����

���� ����� �!�������� � ������! ����,�!����������������$��%),���������$� ���&�����

(�������<$����� &������ ��� �� � $�3 ��$ ���$��>�,�?�3 �&����� ��� �(������!�����

Page 19 of 45

http://mc.manuscriptcentral.com/holocene

HOLOCENE

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960

Page 46: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

For P

eer Review

�����

�$ ���$ ������$��>#%�?� ������� � � ���+�������$ ���$��>#%�?���!��� ��$��3 �&� ����

($ ����������$��� ���5���!����6 ���:������;�B����������� ����/��8��#�� ��+��!����������

����!� ����&(�� ���� ����&��$��>#%�?�����$��>�,�?����3������.� ���/�7�1 �������

���� �3����3��$�(��+��� �������� ����&��$��'� 1������� �� �6���������� ����/��8� ���� �

3��$���$���& �������!��� ����&��$������$����A���$���� ���!�6����������3 � ������

)�� ��� ���//�B����� ���� ����//���//; ��/��B�#�!$������� ����//C8������

A�� ���&��� � �����!�+���������$��(�� ������!�������3����/�7� ���/���1 �������

6� (����!�&(� ������!�������!��������//8��5�3�+��� �+����!�������� � ���� �����/�C����

1 ����!��&�� ���������$��>��������!�����?� ��/���1 ������� ������� �!�������� ���!�� �����

����$��4),�!�&(����������$��%),�6�� ������+�� ��� ���� �!�9��+�� ���������

������� ���� (�!�� � ����$���% ���� �� �:������;�� ��� �((��&������3��$�� � ���

���&�!���������/�6���������� ����/��8B�:������;��M����$�����������;��M����$�����������8�����

4�$ �!���4),�!����������������$��%),���������$��>���?�� � �((��������� ����� ����&����

�$��4 ��)����� ���"$����A���$��!�� ���!�"$����'��& �1�"�� ���"���$� �� ���%� ���� �

)����� �����(��������@( � ���� �������� ���! ���������$��4),������$ �!�������

!������������������ ��+������� $��9!��������� ��3 ����& � � �����!�� ����������!������

6�����:������;�8�3��$����$��4),�6�����3 ���� ����CC7B����I(�� ���� ����//�B�4��V1 �������

��� ����//�B����� ���� ����//; B�������� ���� ����/��B�"$ ���� ����/��8��<$� �����

�!� ��!�!���������!�&( � ��$����(��������- �+ �!������ 1�� $ +��� ��E������ �����

����& @�&�&�(� �������/�1&�3� ������� �!�������(� ������6%����!1���� ����CC/8������

#�!�� ���!���� ����� ��& ����� ���6�//C8����&������ ��� �� �!$�+� ���!�&���� ����

��������!�� ����� �!��!� �&&��� �����&(�� �������������$��� ������//��� � ������

,���� �������$� ������ � � $�3��$ ���!� ���� ($�!�!�������� �6%),8� ������ ��+��������

!���� �����& �����!��������������$��� ���//��� � ��$ ����������$��>�,�?��"�&�� ���� �

�� ��� �3������� ��������"$ ���� ���6�/��8����&� � ��������$��� ���$�����$��%� ������

)����� ���"$�����<$� ����+����&��� ��!�������� � ���(�� �& ���������&�������� �����

Page 20 of 45

http://mc.manuscriptcentral.com/holocene

HOLOCENE

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960

Page 47: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

For P

eer Review

�� ��

��� ��+���� ������!���������������&��$��!����4),���������$��� ���//��� � � ��� ����������

����&����3��$��$����� $���������� ������ �����3�����C�;-�//����(���������G3��������

����W�!$�3�6�//;8������

����

����'����!����#������ �������

����3�5���!��������$�!���� &������ ����!�������&� ���$3� ��'� 1�����������

(��+��� ���� ����������& ��������&����-!������� �� ! ��������&�3 ����6%),8�+ �� �����������

����%� ��)����� ��� ����� ������ !�����3��$��$��%� ��)����� ����!�� $�����D���� �

��!�� ���!���� �(��+���� �����-���&�5���!����(�� (�!��+������$���������!������!� ��� ��

���!��������$��)����� ����!��"$��������$��'� 1������� �� ���� ��

���3�������7� ���;���1 �3���� ��+�� ���� ��+����3 �&� ��� ������%),�� ��

3$�!$�� ���1������� �((�����!�� $����&�������'� 1��������� ����������!�� ���&���3 ����� ��

(����!����� ���!�� �F��������� ��� ������3� ��� !��3 ����(����!��+���� ������ ��+����� ��

!������ ���+ �� ������+����&��� ��!�������� ��,����������&���3 �����������!�����1���� �

����$���������!������$����� ��+����3 �&� ��� ������%),�! � ��� �(����!��+�����+����� �

�����;�1 ��������! ��+������ ������ ����!��!� � -�!�������&��� �������&��� ���! ������ ��

���$����'� 1�����������$3 �� � !�� ��$�� �������(���������3 �&9 � ����($ ������ ��

�$��%),�� �����! �������(�� � �������&�� �!������$����� ���!�% ����� �� ����&����=�=��� �

�����=�1 ���������!�����>�$��& ���(��&�&-��1�?�!�������� �����%� ��)����� ���������

�� ����1���� ���� ��+����3 �&� ��� ������%),�3 �!�������� ���(�� ��������$������

$��������'� 1���������������$���������(���������3�������7� �����=�1 ���� �������� �����

��� ��� ��������9�����!����6�+��(������8��������� � ����3�������7����;���1 ��������$������

&��������!�� $�����:��&� �������=�1 ��������$�!���� &������ ���������� �����-���&�� �������

5���!����!�����������$�������&�3 ��� � �!� ����3��$��$���� ������A���� !� �����

!��������<$� �����! �������� �����-���&�!������� ���� �3����3��$� ����� ����&����

%� �94 ��)����� ����I���� ��� $���� �� �3$�!$���(������ �� ��!�����������$��%),�����

Page 21 of 45

http://mc.manuscriptcentral.com/holocene

HOLOCENE

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960

Page 48: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

For P

eer Review

�����

������� !� ����- �+ �!� ������ ���1�����$ ��!�����������!� ����&(�� ���� �� +�������$������

�� ��+�����- �+ �!������$���!�� $��������$��'� 1������� �� � �����!����=�1 ������� �

"�(���&(� �������$� �!�������������3����!�� ���!��& �1���&����-!������� �� ! �������

+ �� �������3��$����$��%),0��8� �!������� �������=�1 ������� ��������$����7�1 ��������

>!��������+���?B���8� �3 �&�($ �� �������.�1 ����!���� (�����������$��>#�& ��% �&�����

������?B����8������ � ���$��3 �&������������&�3 ��� � ���$���� � ������������$��>�����+ ������

,��& ������& ��?� ��B��+8� ������!����������&������.�1 ����!��&�� ���������$��>�����������

�!�����?�!����(�����������

,���������������&�3 ��� �!�����&������ ��� �� ���� �������!��!�% ���� (�!�� ����

� ����1������ ����$ �!����������!�������� $��9!������3 ����& �!���������������&��$������

4),�����$��%),���������� ���� (�!�� ���&�� ����$������$�!���� &������ ������

�&�� ��� � ����������$��� ���//��� � �!������� ����� �(�� � ����� �������� �

�������!������$��4),�����$��%),�!�� � �����3��$�(��+��� � ����� ����&�'� 1�����������

����$��%� ��)����� ��� $����������

�����

�����&��������������

� <$�� ��$�� ��$ �1��$��'��� !$��:�� !$��� ��&��� !$ ���6':)8�����������������

�$��(��I�!��>'� 1��,��& ��?�6�D����9�-�8��%�� � ���$ �1��$��, (� ��� ���,��3�����$�����

#9K�>� �� �"������ �?������$����� �� ��!�3��1��������!��� ���"�/=9/���%���$ �1����

� ���-"��+����"�����1� ������������������� !� ��������$������$�!���� &������ ������

�&�� ��� ����$���������(��� �����<�& ��)� � �����&����� X�# ���! ���������

� ��� ����� ��� � ��#�!$ ���<����������&��$��*��+�� ������������������(�����&�����$���� �

��-��(�$�&�������������$���� +����!����������

�����

�����

���� ���������������

Page 22 of 45

http://mc.manuscriptcentral.com/holocene

HOLOCENE

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960

Page 49: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

For P

eer Review

�����

������#���� �� 1�� $� ��"�6�CC=8�K �� ���� ����&���-� �������F���!������$��)�"��������

� �!��!���0��&(��! ���� ������$��5���!���� �&&�����&(�� ���� ����!���� ������

� )����� ����&�����������0�;�-7/�����

����� ���D)A�6�C.�8�<$�� ��� ��!�!��������&(�� ����� �������!������ � ��������

3 ����& � ����'� 1������� ��� �I !����3 ��� �%� ��)����� ��������

� �� � �� ���&*����+�'����� �� �=0��-�;����� �

�����3 ��<�"&��$������� ����#�,��(���<�������� ��4�6�CC78�"( �� �� ��������

��&(�� ��( ����� �����!������� ������6�#'8� ������$��� ��)����� ���& ���������

! �;.�A��+����$��� �����! ���1 ��,��������-�� ������ �� ���0��-��������

�����3 ��<�)�� ��� ����6�//�8������-(��@����!��� � $�3���� ������! ���5���!��������

��+����&��� ��+ �� ������0��$��������A���!�� ��� $����65�� ����8��-�� ��������

��� �� �� $� .����0��7=-�C������

�L!����4�, �& !1�,����� &�#)�6�//�8�% ����!���&�� ���!����� �������

!��!�� ���������$��A���$�% ����������� (������� � �����0��(���-������CC.�) ������

� �� � ����C0��C/7-�C�=������

�����1��D�6�//�8�5���!���� � -�!��+ �� ���� ����)����� ��0��� $�����+����!����� �

� !� �/���� � ���0�;/7-;������

�����������������:�6�CC�8��� �� �����+ ��� �����$��!��& �������$��� ���/�&����������

� �� � ��-�� ������ �� �� $� .���/0��C7-��.����

���� !$ �����#��6�C.�8�� 1�� $ +� �)� !������ �� ���� ��B� �� � �!�� � &��������

� ,��������& ���������� � �������0� ������������� ��.C0��/;;-����

� �/7������

���� !$ �����#�6�//;8�5��������$���!��"$��� �%$�������5��� ����� �� ����0�7�/-�7�����

��!$�4�6�C.�8���#�+��3�����$���!� ���� ($�!�!�������� ���� �� �� �D� ���������$������

��! ����C7/-�7C��A�:D�"�&(� ��&����4�+����&��� ��!�������� �����$�����

A���$3� ����� ���!���������C7/-7C��A�:D�"!�������!�,���!���"����� ����=��� �

Page 23 of 45

http://mc.manuscriptcentral.com/holocene

HOLOCENE

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960

Page 50: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

For P

eer Review

�����

��!$�4������ ���"��#����� ����5�6�//�8�4!� � ��&�K �� ����������%� ������

� )����� ���% ��� ��,��������%���.�������1�����������0���-�.������

����������"��3 ���5���H�����A4��$���(( �%��� ���"�6�/�/8�* ����(���� !� �-����

�$�� $����� 1� ����!�� �� ������!�� ���� �����$��� 1�� $ +��� ��E��!��& ��������

3� �����)����� �����������$��5���!�����-�� ������ �� �� $� .���C0����

�.;�-�.7�����

, � �(��5�6�C.C8������ �!�����'������� ������ ���� ������ � ���0����

#�� ���� $�(�����$��F� ��������& �������� ��!�& ������& �2��� �3 �� ��C0�7-���

�������

' $�-��� ���'��� �� �����)���� ���(�A�,��3�)'���$� ���"��5 � ����%���� �

� � ������A�6�CC.8�� ����&(�� ���� �����!�������&��$��)����� ����!��"$���������

� ��� �� ��.�0��;.-�7�������

'�(�� ���,���+ ��+ �4K�����& ��D�� ��������� ��������6�//�8�5���!���������

( � ��!� ���� ($������$������$����� ���� �"� � ���+ �� ���� �����$������

����$3 ���$� ���� � (��������$����� ���!�D!� ���'� ���/0��-�;������

4��Y1 ������ � ���)����� ������5 ���� ���5�5����&������"�&�� � ����������

6�//�8�� ������� ��+���� ���+ �� ������� ���3 ����& ��� ��������������$�����

�!�� ���"� ��-�� ������ �� �� $� .����0����7-��;.������

:��� 1������6�///8�<$��5���!����+���� ���� ��!$ ��� ����Z�F��� � � � � F� �3� �������

� )����� ���� � ����& �����4!����4�����//0�7-������ �

:������"�%����!1���6�CC�8�5���!�������� ��&���� ! ����)����� ���M������

( � ��!� ���� ($�!��&(��! ���� ��(� �� �����+�(� �����������+�����

(� � �������.=0����-�=������

:������"��I��� �������IE���5�[�,�� ��$�,�6�/��8�<$��)����� ����!��"$���������

Page 24 of 45

http://mc.manuscriptcentral.com/holocene

HOLOCENE

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960

Page 51: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

For P

eer Review

�����

� '�������$��� ���/////�H� � 0���#�+��3��������4$��� �)��� ������ �������

� 5��$� ��'������� 0�) $ ���� �������-�� ������ �� ��=��& ���� &����

� <$��A��$��� �� B�;CC-7�������

5 �����"���� �������6�CC;8�����$�!���� &������ � ���! ���� ����� �������������

� ��� ��� !�� ���&��� �����$��� ���� -� ���� � �"� ��' ���� �5������

� (�������������0�CC;�� �

5 �������� ���"�6�CC78�'� �������������&����������$�!���� &������ ����&�� ��

�I��� ����"+ �� ���4���(� ����!��!��,��������1������ ��� � ����70� ��

�/�-����� ��

5 ����)��� �!$��)�4+ � ��#�6�//�8�,������� �����&������� �� ! ���5���!����!��& ��-� ��

���(�3 �������1 �� �����$��A���$���� ���!��-�� ������ �� �� $� .����� ��

�=�C-�=�;�� �

5 � ����%�A��� ���<)���+�� ���5�6�CCC8��� �1����!�&&������ ���!����� ���� �

! �����!�!���������$��3� �����!� �����)����� �����������$�� �� ������� �&&��� ��

��� ������������� ����(� �1������"��������� ���#��������;0����-��C�� ��

5 ������'�����!$�#�4������#�5���� !$������ ����������I(�� ����� � �A����(��<��� �

�����������11�� ���A����� ������������#�!$������#� � ��-����� ���A����

#� � ���"�#�!$����<�" ���������"$� $��1��K�"��3� �����% ���1������

%��������%�%��1�3 1����6�//78�'��� !� �����$� �����!� � ����+���(&�������

�����+����&��� ��!$ ������������$��5���!�������3� �����)����� �������� ����

��������������� ��+����� �����67�68�����

5��� ���4����1 �5���<��������<�6�//=8�#�� ���� $�( ����3����! ���� ���� �� ���

� �����(�$���� �� ��� ($�! �� �F���!� 0� ��� ��& �����(��!���������&�@�����

� ����!������� �����!� �/���� � ��=0�;��-;�.�����

5��� ���-� �!���,����K��� ���������� ��)�%� +�����6�//�8��� ��!���������

Page 25 of 45

http://mc.manuscriptcentral.com/holocene

HOLOCENE

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960

Page 52: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

For P

eer Review

�����

'��(3 �������& ���������$��� �� ����"� ���������$��� ��������� !� ��(�������� �

%�� ���/0��/7�-�/77�����

5�� ����'�@������������������,���������,�6�/��8�A� �� ��� !�� �� ���� ($���������

� �����'� 1�������%� ��)����� ��0��&(��! ���� ������� !�& ��������

���&��� ������,��������-�� ������ �� ��;�7=7-7;;�����

5��� ���'��<$�& �#5�'��H�������#����� ����5�������$���6�//.8����

�!!���� ��������� 1�� $ +��� �� ���������������3 �&� �� ��� !���!� ����

3 ��� ��%�� �& ���� �� ��0�;=C-;;�����

5�3 ���������$�����"! &�� �<��6�//78�# (���!$ ��� �����!���� !$ �������&�����

)����� ������������ !��� ��"!���!����=0��==C-�=;������

5�3 ���������$�����: $�� ��!1���"&��$��4�"! &�� �<��6�//.8�"��!$����� �� �

����� �� ��� !!���� �������� ���$� ��)����� ����� !��� ��///-/;0��!�����

� ��� &�! � ���!��(��������!��& ����,��������&���������=�0�;�;-;;/�����

� $& ��"4�:��������6�CC;8������������$�!���� &��������� ��������������$������

�&�� � ��� �����!��!�D!� ��������� �����������0��/;-��/�����

� 1�� ������ !� ��#�� ����������� ���#�4�3 �� ���5 ��1����"!$��1��5%����

� ��$� �����6�//.8������&(��+���� �$�&����!�(���� � ������$����!��!�D!� �0���

� �&(��! ���� ������!� ��&�������� ����������! �����($� �! �� �����

� �!� ���� ($�!� � �� � ��& ���������� � ���3 �� ���=��/7;/������

� ���0�/��/�C9�//.)�/��=�/�����

������� ��4�5��� �\�����)�6�CC�8�:�� &������ �� �&�� �� ����&��$���I��� � ����� �

� $�������� �����)����� ����,��������1������ ��� � �����0����-�������

������� ��4�5 ����"�5 �� ����������"�����#�D���+����4����� �\�������6�//�8����

�D!� ���� ($�!�!$ ���� �������� ��� ��$�& ���&( !� ���� �(� ����'����//�����

Page 26 of 45

http://mc.manuscriptcentral.com/holocene

HOLOCENE

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960

Page 53: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

For P

eer Review

����

���&������!�������&��$�� ���$3� ���!�� ��� $����������������� ��.����

6"(�!� ��� ���<$���!����������$���� �0�A���$����#� � �!$������� �������>�����

��������!�����?���� �������� �D����+���4� ����\� ���<8�.�-�//����

������� ��4����� ������5 �����5 � ���,K������3 ��<�6�//�8���&��-5���!�������

$���������!��!� � -�!��+ �� �����������$��4 ��)����� ���"$�����!� �/���� � ����

��0��C-=.�����

������� ��4�%������A��5��� �������)������3 ��<�6�//�8����������� &������ ���� �

� �� �����$�� ���$3� ������������$�����!�� ��� $���0��!� ���� ($�!� ������

��+����&��� ��!������ ��,��������1������ ��� � �������./-�/7�����

������� ��4������3 ���%�� �����6�/��8�5���!������+����&��� ���+���������������

�$��"4�)����� ���"$����A���$� ���"���$�����$��'��& �1�"�� ��0���&������ ������

4 ��)����� ���!������������ !���� ��-�� ������ �� �� $� .���/0�C./-���

CC.����

������� ��4�������������� ���% ������������3 ��<�[�,�� ��$�,����(��(������

� 5���!����( �����+����&��� � ������� !� ����$� ��������"%�'� 1�������� ������

� ���&�����(��@�� � �� � ������ ���������,��������-�� ������ �� ������

�� ���5�"�����1� �����"����� ������4��V1 �����6�//�8�� ��-5���!���� �&&���� �

� � ��� !����&(�� ���� �� ������ ��� ��&���!�������&��$������$��!�� ���!���

$�����!� �/���� � ���0���7-��7����

����$�������� � ���%�: $�� ��!1���6�//�8�� �������!�� ���� ���� (���������

� )����� ��? �� 1�� $ +��� ��E��� !�����%�� ����0�;/.-;�/����

����$�����' �"����������"&��$��4�5�3 ����������<�6�//.8�"� �� �����

� (�����(� ������$��3� ������� �1�����$��)����� ����!��"$�������� �� ���/0��

� 7.�M7.����

� (� ���#�%���������������)5�6�//�8�5���!������+����&��� ��+ �� �������������

Page 27 of 45

http://mc.manuscriptcentral.com/holocene

HOLOCENE

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960

Page 54: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

For P

eer Review

����

� ���$����)����� ���������������&�� 1�� ���&��� ��-�� ���� � ���=.0���

� ��C-�=C�� �

� (� ���#�%��������6�//;8�"( �� �� �����&(�� ��+ �� ����������5���!�������

��&(�� ���������� �����$��A���$���� ���!� �!�����-�� ���� � ���;=0����-��

�������

� ��& ��'"������<������� ���A������� �����������3 ��<�� ������������

���� 1������,� � ����,3�� ���,�'�+ ������'�1���"�4�3 �� ��4�4� ������

%#�) I�3 1����)��� �\�������5��:"�������� ��4�� (� ���#����3����%��

���$1����K�� !'�� ���)���������)5���!1�,��D 3 ���%%�D���-���� �����

��������!$��':�#W$� �����"&������"�����4��%��������6�//�8�5���!������

�$��& ��& @�&�&�����$��3� �������!��!�6/M�./N%8��-�� ������ �� ���

� $� .����0�=�C-=;/��� �

� ��& ��'"�"!$�������'���!� ��A���&& ���,���� �����#"������ ��#������������

)5�D���-���� �������D+��(�!1��<�K���$��������!��!�� 1� ��1����I�!�����

��&��� �6�//C8�#�!����3 �&������+�� � �����-���&���!��!�!����������� �� ����

��=0����;-���C�����

���� ������"�����1� �����"�6�CC�8������������ ���������3� (�!�� �����

���&� ���!���� �� ���!���+����&��� �(��+��� �����!������ �������������

��� � ����6,�I��18���������1������������1������ ��� � �����

�� ����(� ����������0�=-�������

���� ������"� �������"�����1� �����"�4��V1 ������� 1�����%�6�//. 8�'��� !� ������

���5���!����!�������� ��������$���&� ��� ������ �0� ���&��� ���� &������ �� �

�� ��& � ��� � ����� ���(� ��'� ���70���;-�7;�����

���� ������"U����� �������4��V1 ������� ���5�6�//.�8�5���!�����$��& ������

Page 28 of 45

http://mc.manuscriptcentral.com/holocene

HOLOCENE

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960

Page 55: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

For P

eer Review

�����

& @�&�&�����A���$��!�� ��0�4+����!�����&�����$�!� ���(� �1����!���� &������ ����

����$��.;//-=�//�! ���� �������&�� ��!������ ������� ���������;70���/-���

��������

�� 3!��1�'�%��1�3 1�������� ���������������I(�� ���������1���6�/�/8�� ��-���

5���!������ ��&-�����������!�� ���!����������&(�� �����+ �� ���� �����$��%� ����

)����� ���,����������&�'� 1�������!���� ��%� ��)����� ����!� �/���� � ����

�/0�;=C-;;;�����

���I(�� ���<���� �� �"#����� ��������$�������1$&���$ ��+�������� 1�"� �

� !$& ����:�� ���"�# &� ���"���� ������6�//�8�� ���F� ���� ��� ��

���&��� ���(��!� � � ����!� ��!��!�� �����!$ ��� � ���$��"���$� �� ��

)����� ���& ��������� �& �������C=0��/C-��C�� ��

� ���"�����I(�� ��������������5�5���& �-%��!1�)���11�� ���A����� ����� ��

6�//�8�� ��-5���!������� ���!������&�3 ����+ �� ������������ ��1��:I����"���$� ��

)����� �����!�� ���!�������&���� &������ �� �� ��!� �/���� � ���0��;=- �

�7��� �

��+�� ���5�<�������<�A��� ���<)�5 � ����%�6�///8�D���$�����($�!�!��(������ ��

� ���3����(���� � � ���!�(�(�� ���� �!��!�& ������!� � ��& ����� �#������� ��

� (�� ���� � ���/�0;=-77��� �

���������� �1�������I(�� ������� ���6�//=8�4 ����5���!����( � ��!� ���� ($������

������� !� ��!$������������'� 1�������%� ��)����� ����-�� ������ �� ����

� $� .����0��7��-�7==�����

���������6�//;8���������� �����������������$�!���� &������ ����&�'� 1�������3� �����

� )����� ����,��������1������ ��� � ����;0���=-���������

������������I(�� �������������� ���� �1����6�//78�:�� &������ ����!�� ���!��������

���&��-����� ��-5���!�����!� ��!��!�� ����� ���!��& ���+ �� ����������'� 1���������

%� ��)����� ����!� �/���� � ��70�/7C-�/C������

Page 29 of 45

http://mc.manuscriptcentral.com/holocene

HOLOCENE

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960

Page 56: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

For P

eer Review

�����

������������� ������������<�������#����I(�� ���� � ���4��!, ��$��'��6�/��8����

���//��� ����!��������!� ����&(�� �����!�����������$�� � ����������� 1�� $ +��� �

� �� ��%� ��)����� ����& �������C0�.;7-.7/�����

��������#����� �'5�6�//�8�����+� ���!$��������������$��]:I����"� ��]�&�� �����������

� ���'� 1�������3� ��)����� ����,��������-�� ������ �� ��70�=;�-=7C�����

��������#����� �'5�6�//�8�� ���%��!$ ��� ������ !� ��$� ��������'� 1�������%� ������

���)����� ��� ����$����� &�! �����$��� 1�� $ +� �� �� ���!�� ��� &���������

���'� ����0��/.-��;�����

�����<�����$�����6�//.8�,$ ��� �����!��������(� ���������)����� ��] ���������� !��� ����

� ���&��CC������//7��,��������& ���������� � ��2#������� ��������

� :/�/������0��/��/�C9�//7�:///C�7�����

���� ���4&�� ���#� ����� 11�����"��3� ��������I(�� ����!� �� ���� � ���4�� �

6�//�8�"� � ��� !����&(�� ���� � ����!��� ����������$��5���!����A���$����

��� ���!0�!��& ����������!� ��������$����4���(�� ���)����� ����-�� ������

��� �� �� $� .����0�����-���;�����

���� ��������3 ��<�4�����''�� � ���4�6�//; 8�5���!����$� ������������

�������!������$������$����A���$���� ���!0�4+����!���������������� ( �� �� ������

��&(�� ��&��� ��(� �� ���������0����0�/��/�C9�//=��//��������

���� ������ ����)����I(�� ���6�//;�8����-����� ��-�5���!����$��������! �� ������

!��& ��!�+ �� ����������'� 1�������!���� ��%� ��)����� ����!� �/���� � ��;0����

�=7M�;7�����

���� ���� � ���4�D((��'�)�� ��� �������I(�� ����6�/��8�#�!�� ���!���������$��� �

� � ���5���!����!$ ��� �����$��"��-��!��!�:�����(� ������ ���$��#��1I �� ����

� #���������$���� ���!��!� �/���� � �.0�.77-..;�����

�U�����5"���� ����)����I(�� ���� � ��-"���� ���"�"�����1� �����-"����� �������

Page 30 of 45

http://mc.manuscriptcentral.com/holocene

HOLOCENE

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960

Page 57: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

For P

eer Review

�� ��

4������#���11�� ���A�6�//;8�� ��-5���!������+����&���� ���!��& ������

!$ ��� �����&�� ��1�:I���� ���$3� ��)����� ��0��+����!�����&��$�����

���&��� �����!�����!� �/���� � ��;0�;.=-;C=����

���������������,4�5 �������K��1 �)�6�C.�8������+ �� ��- � �� � � �����

F� ���� ��+��( ����!�������������$�!���� &������ ���� ��� !�� ���� �������

Z� ���� ��� $���� ���&��� �����$����, � � ����� ������� ���������.0�����

�.�-������ �

���� ���%�6�CC�8�#������������ � ���������� ������������� ��������0����

����& ��� ����

D((��'%��!� �� ��:�,�������#�6�//�8�� � ��!� ���� ($�0����(3 ����+ �� �����������

� ����$��5���!�����(�!$��%�� ����0��77-�7.�����

D ���& ���4�A�� ����#�6�C.C8�� �� ��Z� ���� ��� ���5���!����( ���!� ���� ($�����

����$��� ������ ������ � ���!�������� �� $����, � � 0�����$�!���� &������ ����

�+����!���������,��������#������ �� ��;0����;-���.�����

������������� ���������������I(�� ���<�������#��5 ������6�/��8�,������� �� ! �������

����$�!���� &������ ����!�������� ���5���!�����!� ���� ($�!�+ �� ����������'� 1�����

�����%� ��)����� ����-�� ������ �� �� $� .���/0��.�=-�.�;�� �

���� 1���"��$��&���6�CC�8�� ��-� ���(� ��� !� ����+����&��� �����$������$������

� � ���� �"� �3� �����:� ����� ���� ����(���� � �����0��C7-�/7����

#������� ���5�"�����1� �����"����I(�� ���6�//C8����� ��&-� �����!�� ���!��������

���4 ����5���!����$������ ($�� ���!��& ��!�!$ ������� � ���$3� ��)����� �����

�I�������� ������� ���������7/0��;;-�7;����

#��&������� �������)��� ���4�� ��� �����!1��%��� !13�����)�����1�# & ����

,���!1�,4������)"�4�3 �� �#��:������!$���)����� ����)������ ���<���

5 I� ���5� ����<��5�����)�5��$������� � ����:����&������!,��& !���

:)�� ������"%�#��&���#%�#�!$ �� �'��"���$����#�< � &��"�<��������

Page 31 of 45

http://mc.manuscriptcentral.com/holocene

HOLOCENE

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960

Page 58: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

For P

eer Review

�����

,"��+ ���������!$����%��$��&�����,4�6�//C8����, �/C� ���� ����/C� �

� ���! ����� ���! ���� �����!��+� �/-=////��� � �! ����������� ���=�0���

����-��=/����

#�������"����� ���4���� ��������I(�� ���6�/��8�,��& ���+ �� ����������%� �����

)����� �����������$��( ���=//��� � 0��+����!�����&� �$��$-�� ��������& �������

( ��������! ����!�������&�'� 1��� ������� ���0�;.-.�����

#����� ����5�����&�A��� (�� �����6�//;8�5H,D�������$��A���$���� ���!�D!� ����

� 3��$� (�!� ���&($ � ����%� ��)����� ���% �����! �������� ����6926���

� 333��&���19�&�9��/;-/7���

#�!$����<D������� �:,��+ ��%�������<�6�//C8�� ���5���!����6/M����1 ���8����

��� !��3 ������&(�� ����� ��� �������+ �� �������:����'�����A4���� ���!�� �

D!� ���-�� ������ �� �� $� .���.0��C��M�C==�����

#������4�� � � � �� &���6�//;8�,$ ��� �����$��+���!���� ���!���������$��)����� �������

� �!��"$�������� �� ���0�C.;MCC/�����

#������4���((� ���K���!��� ���6�/�/8�# (��� ��& �����&�����������$��! �+����� !� �����

� ���%� ��)����� ����� !��� ��%�� �& ���� �� ��0�.7-�C������

#� ����� 11������ � ���4������ ���,��I�����4�5�+������6�//�8���$��$-���

�� �������� ��������5���!����( ���!��& ��!� ���( ���!� ���� ($�!�!$ ��� ������

�$��A����!�"� ��(� �� ��������.��/�7-�/�������

���0�/��/�C9�//���///7;�����

#����� �'5���������6�//=8�"��� &�����������!1����� ��� ���� ���!�����3��� �

� 1�� $ +� �� �� ��%� ��)����� ��0��&(��! ���� ������!�� ��� &� ����!�����

$������� &�! ��'� ����0��=-��������

#������:����� ������"�����1� �����"�4��V1 �����6�//�8���������� �����������������

����$�!���� &������ �����$��A���$��!�� ���!� $���� ��� ��(���,�����������

1������ ��� � �����0���7-��������

Page 32 of 45

http://mc.manuscriptcentral.com/holocene

HOLOCENE

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960

Page 59: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

For P

eer Review

�����

"�����1� �����"�� � ��-"U��� ���"�"�� ��W!1�"����I(�� ���� � ����)����

� �����������5�6�//78�5������ ($�� ���!��& �������$��� ����//��� � ���� �"%����

)����� ����I����M��&(��! ���� ������ �� ����"� �( � ��!� ���� ($��!� ����

/���� � ��70��.7-�/������

"�����1� �����"�#��! ��� ���:� !$�����5���& ��-,� � ���,����I(�� ������� �� �

��6�//.8�K �� ����A���$���� ���!� �� 3�( ����� ���!�&��������� �� ����� ��

5���!����& �������!�������&�'� 1�������%� ��)����� ������� �� ��

������ ���������;.0�;;-.���� ��

"�I��(�5�����1 �5�������� ��-��� ��� ���'�� � ���5�6�//�8�����$���!�� ��

��� &������ ���� ��������� � ���F� ���� ��+���� � �������!���� ������$������$3� ��� ��

4���(� ��!�������� ��& ��������� ������� ���������=�0��C7-��;��� �

"$ ����� ���5����� ������6�/��8�'� ��&��+����!�����!��& ��!�!$ �������� �

5�� ���� �����'���3� �����)����� �����������$��� ����//��� � ��!� �� ��

/���� � ���0���7-�=.����� ��

"���� ����������� 1��K�5 �������1$ ���+�K���� ���"�6�CC�8�'� ���������������� �

! �! ���� �����$�!���� &������ ������!���� ���&��� �����$��� ���� � ���� � �����

"� �����"���� �����������$�!���� &������ ���� ��� !�� ���&��� �����$��� ���� �����

���� � �"� 0�&������ ���� ���Z� ���� ��� ((��! �������$�'���$� � �����

'�( ��&�������)��������� ������������������ ���)�������*��+��� ����������

<��& U������

"�� ����:�5 &������)"�"��$��� ���'��"� ��� ����' +�� ���:�5 &&�����D�����

� "��� ���)��#� ���-� +�����6�/�/8��# (���!��!�� ��������3 �&� �����(�! �����

� 3 ��� ���� �& I����� !� ���I�������4 ��)����� ����%�� �& ���� �� ��0��.�M����

� �.;������

"���+�����#��&������6�CC�8�,�����# ���! �����! ���� �����(���� &������� ����� �

� �=0���=-��/������

Page 33 of 45

http://mc.manuscriptcentral.com/holocene

HOLOCENE

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960

Page 60: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

For P

eer Review

�����

< ���,,��#� �,��H ��<�����������'��<� !������'��� (�4�6�//�8�<$�������

!��!�� �����3 ����& � ��� � -�!������ ������ ���(�� ������0� �����������

;�0��.�-��.������

<$�& �#5�6�//�8�:��!�-(������ ����� � �� � ������!�����$������� ��� !!���� ������������

� 1�� $ +��� ��E�)����� ����,��������&���������=/0�=7-;;�����

K��1 �)�6�C./8��� ��� !� ��� ��� ���&��� ���������$��� �� ����"$�����& ������������

� ���� ���������B��-�.������

K��1 �)�6�C.�8�� ����� !� �M(� ��� !� ����� &������ ������� ������ ���&��� ����� ����������

� , � � �'��& �1� ���A��3 ���& ���� �� �������.0��.-=;���� �

K��1 �)�'��� �������6�C..8�� �� ���� $��������$�!���� &������ � ��� � �����@����������

� ���(� ����,���!��� ���� ���� ���� ��������$��� �� ����,������������������

,��������#������ �� ��=0����/-��==������

K���$��������!$ ����"��,� � ���5��' $�-��� ���'���$� ���"���:� $���'������

� ��������#��# �� ���'���(��1�+�K������ ��������������<�# &� ��������

"D�"������ ������"+�� ������6�//C8�5���!�����$�����������$��)����� �������

�!�� $�����%�� ��;�0��.=-�..�����

%����!1���D������5�#��$�A�<$�& ���55�<$�����������CC/8�<$����!� ��������$�������

��� ����!��& �������������$��5���!����!��& ��!��(��&�&�����$��� 1�� $ +������

� �I���� �� ����%� ��)����� ����� � ������� ($��� � ��!��& ��������� �

� � ���!������.���.CM�CC������

%����!1��������1��D�6�//78�Z� ���� ����� !� ���� �$� ����� ����� !���������������

� 1�� $ +��� ��E� ����$��'� 1��������������%� ��)����� ��0� ���+��3������

& ����������$ �����) ��4����& �����'��� ������0�7.((������

%���� & �����������,4����������6�C.�8�:�� &������ ���� ��������������$�������

� !�������� ��& ���������A�+ �"!��� ����� ������� ���������C0���CM��C�����

%���������������� ���� !$�� �����6�//�8�5��$-�� ��������( � ��(����!��+�������

Page 34 of 45

http://mc.manuscriptcentral.com/holocene

HOLOCENE

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960

Page 61: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

For P

eer Review

�����

���!�� ���� ���������$��� �����1�������! �����������$�!���� &������ �����$������

& ���� ����!��!�D!� �0���;��(� �� �����+�(� �����������+�����

(� � ��������/�0��/C-��.���� �

H�����A4�����������"��3 ���5����@�����H�, �$����#����'5�#��1���#,�����

6�/��8�#� (�� ������ 1�� $ +��� ��E�)����� ������5���!����!��& �������

!$ �����& �������C0����-���������

G ����1��4:��6�C./8������(��� �������� $ ���3� �� &�!�(������ ��+����$��!�������� �������

$�������%� ��)����� ������3����� ������ �;�N� ���;CN��/]�A��& ������������

��$ �����& ������ �����//0�=.-;������

G3 ����5����� � ���%�5�������<�� � �����" � ���"���������6�//�8�"��� !��&���-����

� ����!��� !!���� ��������)����� ����!�- $�������3����� �� ��C70���.M���������

G3��������W�!$�3���6�//;8�% �&���� ������ $���������� ������ ���C�;-�//�������

� ,��������& ���������� � ������0�,/7/�;����0�/��/�C9�//=�,//�/C���� �

Page 35 of 45

http://mc.manuscriptcentral.com/holocene

HOLOCENE

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960

Page 62: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

For P

eer Review

��

������������ ���������� ������ ����������������������������� ������������������� !!"#�����$�������������������������%&%%!!���������#�����%&%%�!������������#���������'$�������(����� ������������������������������������������������������������������)�������������$�����������������������������������*����������+����,��������(*-�'�(����*���������-������.�/-�0�/� ������-������.�1*-�0�1����*���������-������.�2-�0�

2��������-�����������343& ��%!!�4�%!!��5/#��

Page 36 of 45

http://mc.manuscriptcentral.com/holocene

HOLOCENE

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960

Page 63: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

For P

eer Review

������������ � �������������������� ����������������� ���� ����������� ���������������������� ���� ������������!����"�������� ��#$�%����&�����%����'��� ��� ������������������������ �#()*��!����%����������+�'��

����,������"�������� ��#$�+����� ���� ����������' ��� ������#-./�$�+��������� ����� ����������� ���������%����&�����%�0��������� � ������12��3�/����� ���' ������ %������� �������� ��������������� 0�������

������������ ����������� �������,4�5���#����4�����*6(���

Page 37 of 45

http://mc.manuscriptcentral.com/holocene

HOLOCENE

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960

Page 64: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

For P

eer Review

��

������������ � �������������������� ����������������� ���� ����������� ���������������������� ���� ������������!����"�������� ��#$�%����&�����%����'��� ��� ������������������������ �#()*��!����%����������+�'��

����,������"�������� ��#$�+����� ���� ����������' ��� ������#-./�$�+��������� ����� ����������� ���������%����&�����%�0��������� � ������12��3�/����� ���' ������ %������� �������� ��������������� 0�������

������������ ����������� �������4533���#����5�����*6(���

Page 38 of 45

http://mc.manuscriptcentral.com/holocene

HOLOCENE

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960

Page 65: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

For P

eer Review

��

��������������� ����������� ����������������������������������������������������� ������������� ����������������������������� ��������������������� ������������ ����� ������ �������������� ���� �� ������������ � �!"������ ��������#���$����%���������������������� �������� �� ����&�$&%��������' �������� (�� ��

) � � *&�� ��*' ����$)$+%%����������������������� �� ��������� �������� ����!,�--���$����������./'%��

Page 39 of 45

http://mc.manuscriptcentral.com/holocene

HOLOCENE

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960

Page 66: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

For P

eer Review

����������� ��������������������������������������������������������������������� �������������������������� ���������������� �� ���������� ������ ���������������� ������� �������� ����������� ���!"�����

�� �������#���$����%� ���������� ���������� ���������� ��&��'�$&'%��������(����������)�� ��* �����+'�����+

(�����$*$,%%����� �� ����������������� �� �� ���������������!-�..���$����������/0(%��

Page 40 of 45

http://mc.manuscriptcentral.com/holocene

HOLOCENE

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960

Page 67: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

For P

eer Review

��

�������������� ������������������������������������������������������������������������ ! ""�#�$�����%����������������&�����'���������������������������������������������������������������()*!��������� ! ""�#����������������������������+� %,""�-�#� ! ""�#�������$�����������������(��������������

�����������(��.�������������������������'���������������� ����������������� ! ""����������������������������������$ ������ ! *"#����/�����������$��������������������������������������)011%, ,,'�0�����&�

�������2��������������'�,"**�#�������$�������������������(���������������������(.������������������������'�$��������������� ����������������� ! ""�����������$�����������������������$ ������ ! *"#����0������������3 �������4����5������������������)011%,,�1'�6.�7��������)�����������'�,""�����8�������������������������

�9�����������������:�����.����;�������:.;�'�����)����9�����������(����� ��)�(����������<������7���(����<7(���������&��������$���&��������������������������������������������$������������������������������$�����

���=%�� %�������������(��2�������'�����$����������������>3* ����� ""�3� ""�0;7���

Page 41 of 45

http://mc.manuscriptcentral.com/holocene

HOLOCENE

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960

Page 68: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

For P

eer Review

Page 42 of 45

http://mc.manuscriptcentral.com/holocene

HOLOCENE

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960

Page 69: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

For P

eer Review

��

�������������� ��� ����������������������������������� ����������������������������������������������������������������� � ������������������ ��� ����������������� ������������ �

������� �� ����!���"��������������������������������� #���$�!� �$"����������

%&�%���!����������'()"��

Page 43 of 45

http://mc.manuscriptcentral.com/holocene

HOLOCENE

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960

Page 70: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

For P

eer Review

��

����������� �������������������� ������� �������������������������������� ���������������������������������� ������������� ������������������������������� ���������������� ��� ���!��� �������������������� �����

����"��#$� #� $!���������%�&&��� ����������'()!��

Page 44 of 45

http://mc.manuscriptcentral.com/holocene

HOLOCENE

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960

Page 71: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

For P

eer Review

������������� ����������� �� ������� �������������� ������������������������

� ���������� �������

���������

�� ������� ��������� ��������

���������

������������� ������������������

���� ����!"��

#������$�%���

� � � � � � �

�&��"�""��'(�� !����������"�#���$�

� � � � �

�#��%�

�&�'(�%��)�

�*+���������� �,��� ��

�-.�

�/��0���

����(#���

�.1�����(��)��

� � � � � � �

)��"�""��'"� � � � � �

%�%� &�'(�)�%#� *+���������� �,��� �� -.� ���%0�%� /�/(��%� .1�����(���%�

��� &�'(�)�%�� *+���������� �,��� �� -.� ���%0��� ))�(���/� .1�)��(����

/�� &�'(����)� *+���������� �,��� �� -.� �))�0%�� ��#�(����� .1��#�(����

����%� &�'(�)��/� *+���������� �,��� �� -.� #��%0��� ��)/(���/� .1�#%�(����

��)�%� &�'(�)���� *+���������� �,��� �� -.� #/%�0��� #��/(#�%�� #�/(����23�

��)�%� &�'(����%� *+���������� �,��� �� -.� ���%0�%� #%��(#/��� ���(/���23�

�)�� ..(������ �� ���������������� -.� �#��0��� #���(#)%�� �%�(�����23�

#���%� &�'(��)�%� ��� ������� �����4������� ��� ����

-.� �/�%0�%� ����(�%�#� ��%�(�%�#�23�

#�)�%� &�'(������ *+���������� �,��� �� -.� ��#�0%�� �%�/(�%�#� ��%�(�%�#�23�

#�)�%� &�'(����/� *+���������� �,��� �� -.� ����0%�� ���%(����� �)�%(#����23�

#���%� &�'(���%�� ��� ������� �����4������� ��� ����

-.� ��)�0��� ����(�%%%� #���(#��%�23�

#)/�%� &�'(���%/� ������ ��� ���� -.� �)/�0��� %���(%##�� ��)�(�#/��23�

��)�%� &�'(�)�%�� *+���������� �,��� �� -.� %���0��� %%)�(%/��� ����(�/%��23�

���� ..(����/� ��� ������� �����4������� ��� ����

-.� %�##0%/� ����(��/�� ��%�(�##��23�

�%)� &�'(�)�%�� *+���������� �,��� �� -.� �%��0%�� �/��(�)�%� �/)�(�)%%�23�

�))�%� &�'(�)�%%� *+���������� �,��� �� -.� /�)�0%�� /��)(//�#� %�))(%��#�23�

Page 45 of 45

http://mc.manuscriptcentral.com/holocene

HOLOCENE

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960

Page 72: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

For P

eer Review

������������ �������������� ����������� ����������� ��������� �������������

�� � ��������� ���������

�������������� ���������� �������

� ������������� ������������ ����� ��������� !"�#��$�����%��$��&�������'"�%����

���(���������)"�*��+����!!,����� ������������� ��� ���������-���������� ������������������ ��������� !"�#��$�����%��$��&�������'"�%����

���(���������)���������� � ����� ��������� !"�#��$�����%��$��&�������'"�%����

���(���������)����������� ��������� ��������� !"�. ����������������"�#��$�����

%��$��&�������'"�%�������(���������)�

� ����������� ������� ������������ %�������.����������,"�/������������0�����)�

�� ������ ������� ��������$�����0���!!'��� ���� ����������� ��������� !"�1���������0���� '"�%�������(������

���)"�-������+�����0���!!�"�*��+����!!,�

� ������������� �������� �

� ������������� ������������� 1��������(���������'��#��$������0���!!�"�

*��+����!!,������� �������������� . ���������2������� ,"�#��$�����%��$��&����

���'"�1��������(���������'"�(��������%������!!!�

����� ���������� 3��������4���+�����,�� ����������� �� ���������������0�� ��� %�������(���������)"�5���������6�������� �"�

����������0���� ���� ���� ��� ���� (��������7��+������ �"�.����������0�����'�

�������������� ����� (��������.�������8�����'�

Page 46 of 45

http://mc.manuscriptcentral.com/holocene

HOLOCENE

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960

Page 73: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

For P

eer Review

������������������� ������ �������

��������������

����������� ���� ��� ���������

���� ������������� ��� ������������������

������������� ���� �������������� �����!�"

�� ����������������� #$%�&����!'�

����� �������� �(&��������!))�

����� ��������� ���(&��������(������!"*

������ ������������� �+����, ���-���!!�

������ ����������� �./ 0��%���!'�

���������� ���� �� �����,� ���1��������!��

����������������������� ��.� ����������

������������������������ ���������������!���

��������������� � 2

������������ �� ���������

���� ��� � 2

��������������� ������������������

���������� � 2

������ ����� ��(&��������!))�

� ������� ����� ����� ���������!�'�

� ���������� �����(&��������!""

� �������� ������� ��-�����!'"

� ������������� ���� 3&����� ���� �� �(&��������!"*

� ������� � 2

��������� ������ �4� ,� ���!�)

��������� � 2

� ��� ��� � 2

� ����� ��������� �������� �#$%�&����!�'�

� ���� ��� ��� �5�����%6#����������&-�����!�7

� ���� ����������� �./ 0��%���!'��

!������ �� � 2

"� ������� ������ ������������������

#������ �������� 0� 2������� �./ 0��%���!'�

#������ ������ �#� ��6��������8� ������!"*

#������ ��� ������� ��9�:�������7*�

$���������� � 2

$����������� � 2

$� ������ ������ �;< ��%������)7�

$� ������ ������ 5�����%6#���������!�'

$������ ���� � 2

%���&�� ��� ��� � 2

'�������������������� ��� ���������

'��������������� �������������������

'���������� ��� �=��� ���!**�

'�������� � ����� ���������'

'�������������� ;< ��%������'7

(��������� ��������� �� �������!�

(����� ������������� ��4� ,� ���1��������7��

(������������� ���� �=�&������+����, ���-���!!'

(���������� ��� ����� �5�����%6#���������!7'�

(���������� � 2

)���� ����� ���� 4���%� ���!�)

)���� ������&�� �4� ,� ���!�)

)�������� ����� ������!'��

Page 47 of 45

http://mc.manuscriptcentral.com/holocene

HOLOCENE

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960

Page 74: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

Centennial scale benthic foraminiferal record of late Holocene oceanographic

variability in Disko Bugt, West Greenland

70

5.2 Centennial scale benthic foraminiferal record of late Holocene

oceanographic variability in Disko Bugt, West Greenland

Published in Quaternary Science Reviews vol. 30 (19-20), pp. 2815-2826.

Page 75: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

Centennial scale benthic foraminiferal record of late Holocene oceanographicvariability in Disko Bugt, West Greenland

K. Perner a,*, M. Moros a,b, J.M. Lloyd c, A. Kuijpers d, R.J. Telford b,e, J. Harff a, f

a Leibniz Institute for Baltic Sea Research Warnemuende, Department of Marine Geology, GermanybBjerknes Centre for Climate Research, NorwaycDurham University, Department of Geography, UKdGeological Survey of Denmark and Greenland, Copenhagen, DenmarkeDepartment of Biology, University of Bergen, NorwayfUniversity of Szczecin, Institute of Marine and Coastal Sciences, Poland

a r t i c l e i n f o

Article history:

Received 17 December 2010Received in revised form22 June 2011Accepted 22 June 2011Available online 18 July 2011

Keywords:

Late HoloceneBenthic foraminiferaWest Greenland CurrentEast Greenland CurrentIrminger CurrentNAO

a b s t r a c t

A new centennial scale benthic foraminiferal record of late Holocene climate variability and oceano-graphic changes off West Greenland (Disko Bugt) highlights substantial subsurface water mass changes(e.g. temperature and salinity) of the West Greenland Current (WGC) over the past 3.6 ka BP. Benthicforaminifera reveal a long-term late Holocene cooling trend, which may be attributed to increasedadvection of cold, low-salinity water masses derived from the East Greenland Current (EGC). Coolingbecomes most pronounced from c. 1.7 ka BP onwards. At this point the calcareous Atlantic benthicforaminiferal fauna decrease significantly and is replaced by an agglutinated Arctic fauna. Superimposedon this cooling trend, centennial scale variability in the WGC reveals a marked cold phase at c. 2.5 ka BP,which may correspond to the 2.7 ka BP cooling-event recorded in marine and terrestrial archives else-where in the North Atlantic region. A warm phase recognized at c. 1.8 ka BP is likely to correspond to the‘Roman Warm Period’ and represents the warmest bottom water conditions. During the time period ofthe ‘Medieval Climate Anomaly’ we observe only a slight warming of the WGC. A progressively moredominant cold water contribution from the EGC on the WGC is documented by the prominent rise inabundance of agglutinated Arctic water species from 0.9 ka BP onwards. This cooling event culminates atc. 0.3 ka BP and represents the coldest episode of the ‘Little Ice Age’.

Gradually increased influence of cold, low-salinity water masses derived from the EGC may be linkedto enhanced advection of Polar and Arctic water by the EGC. These changes are possibly associated witha reported shift in the large-scale North Atlantic Oscillation atmospheric circulation pattern towardsa more frequent negative North Atlantic Oscillation mode during the late Holocene.

! 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The Disko Bugt area in central West Greenland (Fig. 1) is linkedto the large-scale North Atlantic current system and climate vari-ability via the West Greenland Current (WGC). The relative influ-ence of Atlantic (e.g. Irminger Current) vs. Arctic (e.g. EastGreenland Current) derived water masses within the WGC deter-mines the hydrographic conditions off West Greenland withsignificant impact on the benthic foraminiferal fauna. Previousstudies reported postglacial re-appearance of theWGC in the DiskoBugt area from c. 9 to 10 ka BP, based on mollusc, dinocyst and

foraminifera data (e.g. Kelly, 1979, 1985; Osterman and Nelson,1989; Feyling-Hansen and Funder, 1990; Funder and Weidick,1991; Lloyd et al., 2005). Cooling is reported from c. 5 ka BP in DiskoBugt, possibly associated with Neoglacial cooling identifiedthroughout much of western Greenland (Kelly, 1980; Dahl-Jensenet al., 1998; Kaufman et al., 2004). A variety of studies from DiskoBugt and the West Greenland margin document increasedtemperature and salinity variability in the WGC during the lateHolocene (Lassen et al., 2004; Lloyd, 2006a,b; Møller et al., 2006;Moros et al., 2006b; Lloyd et al., 2007; Seidenkrantz et al., 2007,2008; Krawczyk et al., 2010). In addition, it has been noted thatWGC temperature changes on a multi-decadal timescale havea profound impact on subsurface melting of Disko Bugt outletglaciers (e.g. Jakobshavn Isbræ), at least during the last 60 years(Holland et al., 2008; Rignot et al., 2010; Lloyd et al., in press).

* Corresponding author. Tel.: þ49 3815197251; fax: þ49 3815197352.E-mail address: [email protected] (K. Perner).

Contents lists available at ScienceDirect

Quaternary Science Reviews

journal homepage: www.elsevier .com/locate/quascirev

0277-3791/$ e see front matter ! 2011 Elsevier Ltd. All rights reserved.doi:10.1016/j.quascirev.2011.06.018

Quaternary Science Reviews 30 (2011) 2815e2826

Page 76: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

One proxy method to investigate changes in ocean currentproperties is to study benthic foraminifera. Their faunal diversityand species distribution is highly dependent on ecological param-eters (Murray, 1991). The distribution of certain species, particu-larly in high arctic environments, is strongly controlled by watermass characteristics, such as temperature and salinity (e.g. Rytteret al., 2002; Sejrup et al., 2004) and surface water productivity(i.e. food supply). This close relationship has beenwell documentedin benthic foraminiferal studies from a number of locationsincluding west and south Greenland (e.g. Lassen et al., 2004; Lloyd,2006a,b; Seidenkrantz et al., 2007); the Baffin Bay area (e.g. Schaferand Cole, 1986; Schröder-Adams et al., 1990); fjords along the EastGreenland margin and northern North Atlantic region, includingIceland (e.g. Jennings and Helgadottir, 1994; Andrews et al., 2001;Jennings et al., 2002) and Svalbard (e.g. Hald and Steinsund, 1992).

In the present study a new marine sediment core from south-western Disko Bugt is used for high-resolution paleoenvir-onmental reconstruction to elucidate qualitative changes in bottomwater mass properties of theWGC through the late Holocene (since3.6 ka BP). We use benthic foraminifera to achieve this aim,providing a detailed picture of late Holocene oceanographicevolution in West Greenland. In addition, our data will allow

investigation of the link between oceanographic changes off WestGreenland and North Atlantic circulation changes as recorded inother marine and terrestrial records in the North Atlantic region.

2. Study area and oceanographic setting

Disko Bugt, located in central West Greenland, is a large marineembayment (Fig. 1). The topography of the area is characterized bya rugged sea bed with relatively shallow water depths, typicallyvarying between 200 and 400 m. Maximumwater depths of up to990 m occur in the deep-water trough, ‘Egedesminde Dyb’ (Fig. 1).The Egedesminde Dyb channel has a glacial origin and continues tothe shelf edge where a large trough-mouth fan is found (Zarudzki,1980). CTD data from Disko Bugt (Andresen, 1981; Buch, 1981;Buch et al., 2004; Lloyd et al., 2006b) show that the WGC(3.5e4 "C, 34.2e34.4 PSU) forms the bottom waters in the bay.Surface waters, in contrast, are influenced by fresh meltwater fluxfrom land, icebergs and the previous season’s pack ice as well asrelatively low-salinity polar surface water advected from BaffinBay. Temperature and salinity profiles along a transect fromsouthwest to central Disko Bugt show that the WGC constitutesthe water mass below c. 150 m water depth (Harff et al., 2007).

Fig. 1. Map of Disko Bugt showing location of core 343310 in south-western Egedesminde Dyb. Star shaped symbols mark the position of core DA00-02 and DA00-03. The insertmap shows the present day oceanographic setting of the study area. Abbreviations are as follow: EGC e East Greenland Current; IC e Irminger Current; WGC e West GreenlandCurrent; LC e Labrador Current.

K. Perner et al. / Quaternary Science Reviews 30 (2011) 2815e28262816

Page 77: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

Andresen (1981) found no indications of admixture of deep BaffinBay waters below 300 mwater depth, penetrating into Disko Bugt.The WGC constitutes a mixture of the following water masses:Atlantic-sourced relatively warm and saline water from the NorthAtlantic Irminger Current (IC), a side branch of the North AtlanticCurrent (NAC); Arctic-sourced cold, low-salinity water from theEast Greenland Current (EGC) (Buch, 1981); and local meltwaterdischarge into the WGC along the SW Greenland coast (see Fig. 1).The WGC enters Disko Bugt from the southwest and flows north-wards exiting primarily through the Vaigat into Baffin Bay. Abranch of the WGC is deflected into Baffin Bay in an anticyclonicgyre west of Disko Island, while the remainder of the WGCcontinues to flow northward into northern Baffin Bay (Andresen,1981; Humlum, 1999; Bâcle et al., 2002). Recent studies showthat the WGC also penetrates the deeper parts of the fjords inDisko Bugt, for example Jakobshavn Isfjord and Torssukatak(Holland et al., 2008; Rignot et al., 2010). The presence of the WGCin Disko Bugt has a significant impact on the distribution ofagglutinated and calcareous benthic foraminifera (Lloyd, 2006b;Lloyd et al., in press). The modern environment of the study siteis characterized by open-marine rather than glaciomarine condi-tions. These conditions are likely to have persisted for the durationof the record presented here.

3. Material and methods

3.1. Sediment sampling

Sediments were collected from site MSM 343310 (68"380861N,53"490493W, Fig. 1) by using a multi and a gravity core in the deep-water trough Egedesminde Dyb, south-western Disko Bugt (waterdepth: 855 m) during cruise MSM05/03 of the R/V “Maria S. Mer-ian” (Harff et al., 2007). Themulti core (length: 32 cm)was sampledat 0.5 cm and the gravity core (length: 939 cm) at 1 cm intervals andstored at 4 "C in a cold storage facility.

3.2. Chronology

Age control is provided by accelerator mass spectrometry AMS14C dates onmollusc shells and benthic foraminifera (Table 1, Fig. 2).The chronology of the multi core is based on 10 AMS 14C dates,210Pb/137Cs measurements and other chronological evidence (Lloyd

et al., in press). The chronology of the gravity core is based on 20AMS 14C dates. AMS radiocarbon dates were calibrated with theMarine09 (Reimer et al., 2009) calibration curve using OxCal 4.1(Bronk Ramsey, 2009). The marine reservoir offset was estimatedusing the marine reservoir age database of Reimer and Reimer(2001). This database includes six entries for Disko Bugt frombivalves (Mytilus edulis and Astarte montagui) and seal bones (Krogand Tauber, 1974; Tauber, 1979; McNeely et al., 2006). Most of thesesamples are from shallow water with rather large uncertainties.Therefore we use the dates from deeper water that provide a moreprecise DR of 140 $ 30 years, based on two measurements onAstarte collected in 60e70 m water (McNeely et al., 2006). An agemodel was fitted to the calibrated 14C dates using a mixed effectmodel (Heegaard et al., 2005).

3.3. Foraminiferal sample processing

For foraminiferal analysis of the calcareous and agglutinatedfauna, a standard volume of 5 ml sediment was soaked in deionizedwater overnight and sieved at 63 mm just before counting. Themulticore was counted at 0.5 cm intervals and gravity core at 4 cmintervals. Foraminifera were counted from the wet residue >63 mmto reduce the loss of the more fragile arenaceous species caused bydrying out of sediment. More than 350 benthic foraminiferalspecimens were counted per sample, on a squared picking tray andidentified to species level under a stereomicroscope. Planktonicforaminifera, all Neogloboquadrina pachyderma (sin.), were alsopicked and identified from the >63 mm fraction. However, abun-dance of N. pachyderma is very low (<1%) and therefore notincluded in the following discussion.

4. Results

4.1. Lithology

Sediments from site 343310 are composed of moderate olivebrown to olive grey mottled organic rich silty clay. The total organiccarbon content is on average 2.8%. The sand content (fraction>63 mm) of the sediment is relatively low and averages c. 4% of dryweight. X-radiograph analysis reveals very minor contribution ofidentifiable clasts of ice-rafted detritus (IRD) in the sediments.Importantly there is no evidence of turbites found in the core.

Table 1

Radiocarbon dates for gravity core 343310. Uncertainties include 68% of the probability distribution.

Depth (cm) Lab. code Material Mass mgC 14C date yrs BP (pMC) Calibrated yrsBP 1950

Years (A.D./B.C.)

6e10 Poz-33417 Mix benthic forams NA 671 $ 29 (92 $ 0.4 pMC) 110e250 AD 1840e171018e20 Poz-33412 Mix benthic forams NA 659 $ 33 (92.1 $ 0.4 pMC) 90e240 AD 1860e171018e19 Poz-22357 Mollusc shell NA 682 $ 32 (91.8 $ 0.4 pMC) 120e260 AD 1830e169090e92 Poz-33453 Mix benthic forams NA 909 $ 35 (89.3 $ 0.4 pMC) 360e470 AD 1590e1480149e151 Poz-33411 Mix benthic forams NA 1216 $ 30 (86 $ 0.3 pMC) 600e680 AD 1350e1270204e205 Poz-30969 Mollusc shell NA 1384 $ 27 (84.2 $ 0.3 pMC) 730e840 AD 1220e1270269e271 Poz-33413 Mix benthic forams NA 1526 $ 34 (82.7 $ 0.4 pMC) 880e990 AD 1070e960340e342 Poz-33488 Mix benthic forams NA 1768 $ 46 (80.2 $ 0.5 pMC) 1130e1260 AD 820e690400e401 Poz-33414 Mix benthic forams NA 2074 $ 29 (77.2 $ 0.3 pMC) 1410e1530 AD 540e420401e402 Poz-22359 Mollusc shell NA 2029 $ 28 (77.7 $ 0.3 pMC) 1380e1490 AD 570e460457e458 Poz-30970 Mix benthic forams NA 2198 $ 31 (76.1 $ 0.3 pMC) 1560e1690 AD 390e260519e521 Poz-33416 Mix benthic forams NA 2356 $ 35 (74.6 $ 0.3 pMC) 1750e1880 AD 200e70600e601 Poz-30971 Mollusc shell NA 2733 $ 30 (71.2 $ 0.3 pMC) 2210e2330 260e380 BC633e634 AAR-1699 Mollusc shell NA 2845 $ 37 (70.2 $ 0.3 pMC) 2330e2460 380e510 BC691e692 Poz-30972 Mollusc shell NA 2956 $ 30 (69.2 $ 0.3 pMC) 2500e2660 550e710 BC740e742 Poz-33418 Mix benthic forams NA 3217 $ 34 (67 $ 0.3 pMC) 2780e2910 830e960 BC782e783 Poz-30973 Mollusc shell NA 3430 $ 33 (65.2 $ 0.3 pMC) 3060e3210 1110e1260 BC856e857 Poz-30974 Mollusc shell NA 3544 $ 32 (64.3 $ 0.3 pMC) 3220e3340 1270e1390 BC855e857 Poz-33419 Mix benthic forams NA 3541 $ 36 (64.4 $ 0.4 pMC) 3220e3340 1270e1390 BC905e906 Poz-30975 Mollusc shell NA 3746 $ 26 (62.7 $ 0.2 pMC) 3440e3550 1490e1600 BC

K. Perner et al. / Quaternary Science Reviews 30 (2011) 2815e2826 2817

Page 78: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

4.2. Age models

The age model reveals a high and almost linear sedimentationrate of 3.5 mm per year (Fig. 2). Hence, our sample resolution of4 cm produces a decadally resolved record (12e15 years, Fig. 2).According to our age models the multi and gravity core do notoverlap. The composite record shows a gap of approximately 100years, which is due to the gravity coring technique. Parallel datingof mollusc shells and benthic foraminifera from same depth inter-vals revealed no divergence between respective AMS 14C dates asvariation is within the error (see Table 1). The applied DR of

140 $ 30 years (Lloyd et al., in press) represents the modern dayvalue in Disko Bugt, as the water mass composition of the WGC ispredominantly influenced by the EGC. This DR fits with the repor-ted range of DR of 130 to 115 $ 25 years for the EGC (Tauber andFunder, 1975). Because of the variable influence of the EGC onWGC water mass properties through time (see following discus-sion) we are aware of possible variations in DR with time, whichshould be considered when comparing our results to other records/events in the North Atlantic region.

4.3. Benthic foraminifera

4.3.1. General faunal characteristics

A total of 53 benthic foraminiferal species were identified: 20agglutinated and 33 calcareous taxa. A complete list of identifiedspecies is given in Appendix A1. An average of 30 species persample was identified and foraminiferal abundance averages 150specimens per ml of wet sediment per sample. We find goodpreservation of agglutinated and calcareous taxa and only minimalevidence of post mortem (dissolution) changes, supported by lownumbers of counted test linings per sample (Fig. 3). The totalbenthic foraminiferal fauna is characterized by high abundance ofCuneata arctica, Deuterammina ochracea, Eggerella advena and Spi-

roplectammina biformis (agglutinated taxa) and by Cassidulina

reniforme, Elphidium excavatum forma clavata, Islandiella norcrossi

and Nonionellina labradorica (calcareous taxa, Fig. 3).To address and identify changes in water mass characteristics of

the WGC we use summary curves of benthic foraminifera based ontheir ecological tolerance (associated directly or indirectly withtemperature and salinity). We use a chilled Atlantic water group(AtlW), including relative warm water taxa and an Arctic watergroup (AW), including relatively cold water taxa (see Table 2).Atlantic water indicators are: Cassidulina neoteretis, C. reniforme, I.norcrossi, Pullenia osloensis (calcareous species), and Adercotryma

glomerata, Ammoscalaria pseudospiralis, Reophax fusiformis andReophax pilulifer (agglutinated species). These species are often

Fig. 3. Combined calcareous and agglutinated foraminiferal assemblage from site 343310 vs. age. Foraminiferal frequencies are expressed as a percentage of the total specimenscounted. Only species with an abundance greater than 10% are included. Additionally, the total number of benthic foraminifera, number of benthics per ml wet sediment, the ratio ofcalcareous vs. agglutinated specimens, number of test linings and grouping of AtlW (red colour) and AW (blue colour) indicator species are presented. (For interpretation of thereferences to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 2. Age/depth model of 343310 (gravity core). AMS 14C dates are calibrated withthe Marine09 (Reimer et al., 2009) calibration curve using OxCal 4.1 (Bronk Ramsey,2009). For AMS 14C dates refer to Table 1.

K. Perner et al. / Quaternary Science Reviews 30 (2011) 2815e28262818

Page 79: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

reported from fjord and shelf areas associated with Atlantic waterinfluence (Vilks, 1981; Mudie et al., 1984; Mackensen et al., 1985;Jennings and Helgadottir, 1994; Hald and Steinsund, 1996; Haldand Korsun, 1997; Duplessy et al., 2001; Wollenburg et al., 2004;Lloyd, 2006a). The species C. reniforme is often associated withglaciomarine conditions from relatively shallow and glaciallyinfluenced fjords (e.g. Nagy, 1965; Elverhøi et al., 1980; Ostermanand Nelson, 1989; Vilks, 1989; Jennings and Helgadottir, 1994;Hansen and Knudsen, 1995; Hald and Korsun, 1997; Lloyd et al.,2005). However, we include C. reniforme in the Atlantic group, asthis species has also been associated with chilled Atlantic water(e.g. Hald and Steinsund, 1996). This is supported by the context ofour study, as the site investigated here is from a deep-water trough(855 mwater depth) in relatively open water conditions (relativelyhigh TOC content, average of 2.8%) under the direct influence of theWGC (Atlantic sourced water) and approximately 100 km frommodern tidewater glaciers in the fjords of Disko Bugt. Importantlythe site is not subjected to any direct meltwater discharge from theGreenland Ice Sheet during the late Holocene (Andresen, 1981;Buch, 1981; Buch et al., 2004; Lloyd, 2006a).

The Arctic water group (Table 2) includes E. excavatum f. clavata,Islandiella helenae and Stainforthia feylingi (calcareous taxa) and C.

arctica, Recurvoides turbinatus and S. biformis (agglutinated taxa). E.excavatum f. clavata, a known opportunistic species, is able totolerate relatively unstable and colder environmental conditions(e.g. variability in food supply, salinity and temperature)(Osterman and Nelson, 1989; Vilks, 1989; Hald et al., 1994; Haldand Korsun, 1997). This species is also found in high abundance(up to 30% of the total assemblage) in certain intervals, whichcannot be linked to any direct meltwater discharge, and hence wecannot consider E. excavatum f. clavata as a glaciomarine species inthis context, though we classify it as a AW indicator in terms ofrepresenting relatively harsh and variable environmental condi-tions. S. feylingi is described by Knudsen and Seidenkrantz (1994)as indicative and tolerant of unstable environmental conditions.There is generally poor knowledge of the environmental controlson S. feylingi. Species of the genus Stainforthia are commonlyrecorded in areas of very harsh, limiting ecological conditions,often with only episodic food supply, variable salinity levels andanoxic conditions when most species are unable to survive/compete (Alve, 1994; Knudsen and Seidenkrantz, 1994; Bernhardand Alve, 1996; Rasmussen et al., 2002). Polyak and Solheim(1994) and Steinsund et al. (1994) link relatively high abundanceof I. helenae to summer ice-edge productivity in areas of seasonalsea-ice cover in the Barents Sea. C. arctica and S. biformis areassociated with cold less saline or arctic sourced waters(Williamson et al., 1984; Schafer and Cole, 1986; Alve, 1990, 1991;Jennings and Helgadottir, 1994; Madsen and Knudsen, 1994;Korsun and Hald, 1998; Jennings et al., 2001).

In our record we use the calcareous AtlW species (AtlWcalc) asthe ‘warm end member’ assemblage, representing the NAC/ICinfluence on the WGC, whereas agglutinated AW species (AWagg)are the ‘cold end member’ assemblage, representing predominant

EGC influence. A subdivision of our benthic foraminiferal recordinto 4 zones (AeD) is based on distinct changes in the combinedpercentage abundance of agglutinated and calcareous species; theratio of calcareous vs. agglutinated specimens (Fig. 3) and is sup-ported by the distribution of AtlW and AW indicator species(Table 2).

The calculated ratio of calcareous vs. agglutinated specimensreveals marked shifts from a predominantly calcareous to agglu-tinated fauna through the last 3.6 ka BP (Fig. 3). We find highestabundance of calcareous foraminifera in zones A and C, (up to 70%of the total assemblage). By contrast, zones B and D are charac-terized by a dominant agglutinated foraminiferal fauna (up to 80%of the total assemblage). Therefore, a more detailed considerationof the agglutinated and calcareous fauna is useful. The highabundance of total foraminifera (>100 specimens per ml sedi-ment) allows this. Accordingly, percentage calculations for agglu-tinated and calcareous species were made separately and arepresented in Fig. 4 (agglutinated species) and Fig. 5 (calcareousspecies). In the following sections the faunal composition of zonesAeD is presented separately for the calcareous and agglutinatedspecies.

4.3.2. Agglutinated species distribution

The assemblage zone A (3.6 to c. 2.6 ka BP) is characterized byhigh abundance of D. ochracea (mean 40%) and E. advena (mean35%). From 2.6 to c. 1.9 ka BP (zone B) the abundance of AWaggspecies increases to above 20%. An increase of AWagg species C.arctica (15%) and S. biformis (10%) is seen in this interval. A notablepeak abundance of R. turbinatus (up to 20%), is found at c. 2.4 and2.1 ka BP (see Fig. 4). Lowest percentage abundance of totalagglutinated species is found between 1.9 and 1.7 ka BP (zone C,Fig. 4). By 1.3 ka BP AWagg species (C. arctica and S. biformis)become more important and reach a maximum of c. 45% by 0.9 kaBP. A rise in AtlWagg species (up to c. 10%, Fig. 4) is noted from1.5 ka BP onwards. In assemblage zone D (0.9 ka BP to the present)we find a major increase of AWagg species C. arctica (average 35%)and S. biformis (average 20%) with maximum abundance at 0.3 kaBP (Fig. 4). We also note a prominent rise in abundance of Textu-laria torquata (>10%) and R. turbinatus (up to 10%). AtlW speciesR. fusiformis (12%) along with lower levels of R. pilulifer (6%)become an important component of the assemblage over the lastcentury (Fig. 4).

4.3.3. Calcareous species distribution

From 3.6 to c. 2.6 ka BP (zone A) we find a calcareous faunawhich is dominated by the AtlWcalc species C. reniforme and I.norcrossi, with maximum abundance of 60% at 3.2 ka BP. Theinfaunal species N. labradorica averages 20% in this zone. A rela-tively high abundance of E. excavatum f. clavata is found, witha distinct drop in abundance from c. 40% to below 5% seen at c. 3.5and 3.0 ka BP (Fig. 5). In assemblage zone B (2.6e1.9 ka BP) AtlW-calc species average 30% and decrease to c. 20% at c. 2.5 ka BP, drivenby a pronounced drop in abundance of C. reniforme (10% at 2.5 kaBP, Fig. 5). In this interval AWcalc species E. excavatum f. clavatafluctuates markedly in abundance and at 2.7 ka BP and 2.4 ka BPa peak of c. 40% is found. Detritus feeder N. labradorica averages c.20%, with notably low abundance (below 10%) at c. 2.5 ka BP (seeFig. 5). In zone C (1.9e0.9 ka BP) we record marked changes in thecalcareous fauna. From 1.9 to 1.7 ka BP AtlWcalc species dominatethe calcareous assemblage (up to 50%), accompanied by highabundance of N. labradorica (25%) and Globobulimina auriculata

arctica (30%, see Fig. 5). Relatively low abundance of AWcalc speciesE. excavatum f. clavata (w5%) is recorded from 1.9 to 1.6 ka BP. From1.5 ka BP a pronounced rise in abundance of E. excavatum f. clavata(up to 30%) is seen alongside a gradual fall at 1.0 ka BP in the

Table 2

Grouping of chilled Atlantic water species (AtlW) and Arctic water species (AW).

Atlantic Water Species (AtlW) Arctic Water species (AW)

Agglutinated speciesAmmoscalaria pseudospiralis Cuneata arctica

Reophax fusiformis Recurvoides turbinatus

Reophax pilulifer Spiroplectammina biformis

Calcareous speciesCassidulina reniforme Elphidium excavatum f. clavataPullenia osloenesis Islandiella helenae

Islandiella norcrossi Stainforthia feylingi

K. Perner et al. / Quaternary Science Reviews 30 (2011) 2815e2826 2819

Page 80: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

abundance of AtlWcalc species, which average c. 25% from 1.5 to0.9 ka BP. From 0.9 ka BP onwards (zone D) we record a sharpchange in the calcareous assemblage. A notable decrease in abun-dance of AtlWcalc species C. reniforme and I. norcrossi at 0.9 ka BPand calcAW species E. excavatum f. clavata down to c. 5% is seen at0.7 ka BP. These species are replaced by amajor rise in abundance ofAWcalc species S. feylingi up to 40%, with a large spike at 0.3 ka BP(see Figs. 3 and 5). Additionally, we find increasing abundance ofI. helenae (5%) during this interval. Detritus feeders such asN. labradorica, G. auriculata arctica and B. pseudopunctata stillrepresent about 30% of the calcareous assemblage (Fig. 5), but showlow abundance at 0.3 ka BP.

5. Discussion

5.1. Long-term late Holocene cooling and paleoceanographic

implications

Our new high-resolution benthic foraminiferal record fromDisko Bugt documents a marked long-term cooling trend over thelast 3.6 ka BP. This trend is clearly seen in the percentage decreaseof the chilled Atlantic Water species C. reniforme (see Figs. 3e5) andaverage increase of AWagg indicators, reflecting the graduallyenhanced influence of the EGC within the WGC over the lateHolocene. Trends we recognized in AtlWcalc and AWagg indicators

Fig. 5. Calcareous foraminiferal assemblage of site 343310. Foraminiferal frequencies are expressed as a percentage of total calcareous specimens counted. Only species with anabundance greater than 5% are included plus selected specimens.

Fig. 4. Agglutinated foraminiferal assemblage of site 343310 vs. age. Foraminiferal frequencies are expressed as a percentage of total agglutinated specimens counted. Only specieswith an abundance greater than 5% are included.

K. Perner et al. / Quaternary Science Reviews 30 (2011) 2815e28262820

Page 81: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

show cooling becomes most pronounced from c.1.7 ka BP onwards,as AtlWcalc species decrease significantly and AWagg speciesincrease notably (Fig. 6). We suggest that this cooling is a conse-quence of increasing EGC influence on the water mass composition

of the WGC. This agrees with studies from the Denmark Strait andSE Greenland margin, documenting an expansion and intensifica-tion of the EGC during the late Holocene (Kuijpers et al., 2003;Jennings et al., 2011). Jennings et al. (2011) report a predominant

Fig. 6. Summary from 343310 and other regional datasets for comparison. (a) Ratio of calcareous vs. agglutinated specimens; (b) Relative abundance of agglutinated Arctic waterspecies, note the inverse scale; (c) Relative abundance of calcareous chilled Atlantic water species; (d) Relative abundance of sea-ice diatoms from site DA00-03 from Moros et al.(2006b); (e) mean-annual temperature reconstructions from GISP2 ice core from Alley et al. (1999); (f) Reconstructed arctic summer temperature from Kaufman et al. (2009).Known climatic events such as the Roman Warm Period (RWP), The Dark Ages (DA), the Medieval Climate Anomaly (MCA) and the ‘Little Ice Age’ (LIA) are indicated. Grey arrowsindicate 2.7e2.8 ka cooling event.

K. Perner et al. / Quaternary Science Reviews 30 (2011) 2815e2826 2821

Page 82: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

agglutinated fauna, marking the strong EGC influence in theDenmark Strait from 3.3 ka BP. Further studies reported anincreased contribution of colder/fresher arctic water masses andincreased drift ice within the EGC from c. 5.0 ka BP (Andrews et al.,1997; Eiríksson et al., 2004; Moros et al., 2006a). From c. 0.9 ka BPonwards, we find this influence to be more persistent and intense,as a dominant agglutinated fauna is established and peak abun-dance of AWagg species mark the culmination of the cooling trendat c. 0.3 ka BP during the Little Ice Age (LIA). Longer-term lateHolocene cooling is recognized in a variety of marine (Jenningset al., 2002; Andersson et al., 2003; Risebrobakken et al., 2003;Giraudeau et al., 2004; Eiríksson et al., 2004; Hall et al., 2004;Moros et al., 2004; de Vernal and Hillaire-Marcel, 2006; Kaufmanet al., 2009; Ólafsdóttir et al., 2010) and terrestrial arctic tempera-ture proxy data from the North Atlantic region (e.g. Alley et al.,1999; Kaufman et al., 2009, see Fig. 6d and e).

5.2. Millennial to centennial scale variability in subsurface waters

of the WGC

Superimposed on the longer-term late Holocene cooling trendwe identify millennial to centennial scale variability in DiskoBugt bottom waters since 3.6 ka BP. The basal part of the record,Zone A e spanning the interval 3.6 to 2.6 ka BP, is characterizedby high abundance of AtlWcalc species (Fig. 6c). Hence, we inferwarmer bottom water conditions prevailing in Egedesminde Dyband accordingly a relatively strong influence of the NAC/IC. Thisassumption is supported by a relatively low abundance of AWaggspecies (Fig. 6b). The occurrence of detritus feeders N. labradoricaand G. auriculata arctica (Schafer and Cole, 1986; Corliss andChen, 1988; Corliss, 1991; Rytter et al., 2002; Jennings et al.,2004, see Fig. 5) reflects relatively high food availability andsupply of phytodetritus to the seafloor. Hence, this interval isassociated with a stronger NAC/IC influence. The warm WGCcorresponds to relatively high and stable air temperatures overthe Greenland ice cap (Alley et al., 1999, Fig. 6e) and is associatedwith enhanced meltwater production as demonstrated in sedi-ment core records from Ammarilik fjord, West Greenland (e.g.Møller et al., 2006).

We recognize a marked change to relatively colder oceano-graphic conditions off West Greenland in the 2.6 to 1.9 ka BPinterval (Zone B). The prominent rise in agglutinated AW species atc. 2.4e2.5 ka BP, reflects cooling and freshening of bottomwaters inDisko Bugt. This is highlighted by a pronounced peak in cold waterspecies C. arctica, S. biformis and R. turbinatus and E. excavatum f.clavata (Figs. 5 and 6aec). Additionally, we note the reducedabundance of organic detritus feeders N. labradorica andG. auriculata arctica (Figs. 3 and 5) suggesting that environmentalconditions became harsher compared to the previous interval. Weinterpret this as a result of a relatively colder WGC reaching DiskoBugt, as a consequence of an increased EGC contribution to theWGC. During this interval, the abundance of sea-ice diatoms fromsite DA00-03 increases significantly, indicating colder surfacewaters in Disko Bugt (Fig. 6d; Moros et al., 2006b). The pronouncedcooling inferred from benthic foraminifera at c. 2.5 ka BP (Fig. 6b) ispossibly related to the 2.8e2.7 ka BP cooling event, given the DR

uncertainty in the age-depth model (see Section 4.1). This coldevent is widely reported from marine and terrestrial records overthe North Atlantic region (e.g. Oppo et al., 2003; Risebrobakkenet al., 2003; Hall et al., 2004; Moros et al., 2004). At about thistime, there is evidence of relatively colder temperatures over theGreenland ice sheet; additionally a cold and relatively fresher EGCalong the East Greenland shelf as well as reduced influence of the ICoff North Iceland is found (Alley et al., 1999, see Fig. 6e; Andrewset al., 2001; Jennings et al., 2002).

A shift towards relatively warmer bottom water conditions offWest Greenland is documented from 1.9 to 1.7 ka BP. We findhighest abundance of AtlWcalc species at c. 1.8 ka BP, implyinga warm phase (see Fig. 6c), which possibly corresponds to the‘Roman Warm Period’ (RWP) and documents the overall ‘warmest’bottomwater conditions during the last 3.6 ka BP. The predominantcalcareous fauna and minimum percentages of AW speciesC. arctica, S. biformis and E. excavatum f. clavata during the RWP(Figs. 4 and 5) documents reduced contribution of the EGC to theWGC at this time in Disko Bugt. A warm phase between 2.2 and1.4 ka BP in bottom and surface waters (reduced abundance of sea-ice diatoms, see Fig. 6d, Moros et al., 2006b) is also reported fromsite DA00-03 (Lloyd et al., 2007). In addition, reconstructedtemperatures from GISP2 indicate relatively warm atmosphericconditions over the Greenland ice sheet at this time (Alley et al.,1999). This is supported by findings from Jennings et al. (2002),who report a warming within the EGC on the East Greenland shelffrom c. 2.1 to 1.4 ka BP, promoted by increased advection of inter-mediate Atlantic water, which is possibly linked to a stronger flowof the NAC.

From c. 1.7 ka BP onwards a gradual cooling with decreasinginfluence of NAC/IC and enhanced advection of EGC waters into theWGC is demonstrated by a progressive rise in abundance of AWspecies (e.g. E. excavatum f. clavata, C. arctica and S. biformis, seeFig. 3 Zone-C). A notable decrease in AtlWcalc species is seen at c.1.5 ka BP, which coincides remarkably well with a pronounced dropin reconstructed air temperatures from GISP2 ice core (Alley et al.,1999, Fig. 6c and e). These colder conditions in bottomwaters lastedonly a few decades and possibly correspond to the time period ofthe Dark Ages.

At the transition from the Dark Ages to the time period of the‘Medieval Climate Anomaly’ (MCA) we observe only a slightwarming in bottom waters in Disko Bugt (rise in AtlWcalc indi-cators, Fig. 6c), as found in studies off East Greenland (Jenningsand Weiner, 1996) and the North Iceland shelf (Eiríksson et al.,2006). Compared to the preceding warm phase, the RWP,benthic foraminifera record relatively colder bottomwaters duringthe MCA. This coincides with a pronounced decrease in mean-annual air temperatures recorded in the GISP2 ice core (Alleyet al., 1999, Fig. 6e). In support, diatom and dinoflagellate cystsstudies from nearby coring sites in Disko Bugt (DA00-02 andDA00-03, Fig. 1) identified surface water cooling at about the sametime interval (Moros et al., 2006b, see Fig. 6d; Seidenkrantz et al.,2008; Krawczyk et al., 2010). From c. 0.9 ka BP to the present wefind a predominant agglutinated fauna established, which indi-cates a distinct reduction in the contribution of Atlantic watermasses (NAC/IC) to the WGC during the LIA. Simultaneously,a decrease in Atlantic water influence on surface-water masses inDisko Bugt is also documented from 0.9 ka BP at sites DA00-02and DA00-03 (Moros et al., 2006b; Lloyd et al., 2007;Seidenkrantz et al., 2008). An ecological threshold was exceededat 0.7 ka BP. The sudden fall in abundance of I. norcrossi,C. reniforme and E. excavatum f. clavata (Figs. 3 and 5, Zone D) andhigh abundance of AWagg species C. arctica and S. biformis,confirms that environmental conditions became much harsherduring this interval. Thus, bottom water temperatures (andpossibly salinity) must have dropped to a critical point and chilledAtlW species such as I. norcrossi and C. reniforme were not able tocompete anymore. The disappearance of E. excavatum f. clavataand other species (e.g. I. norcrossi and C. reniforme) at the sametime as S. feylingi increases significantly, supports the interpreta-tion of coldest and harshest conditions in bottom waters from0.7 ka BP. The peak in S. feylingi might also indicate poor venti-lation of the water column and depleted/low oxygen content. Webelieve that S. feylingi replaces E. excavatum f. clavata as

K. Perner et al. / Quaternary Science Reviews 30 (2011) 2815e28262822

Page 83: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

a consequence of these extreme environmental conditions, sup-ported by highest abundances of agglutinated species. During thistime the EGC influence on the bottom water mass composition ofthe WGC is at its strongest over the last 3.6 ka BP (see Figs. 5 and6b). This interval also coincides with coldest temperaturesreconstructed from the GISP2 ice core and reconstructed arcticsummer temperatures (Alley et al., 1999; Kaufman et al., 2009, seeFig. 6e and f). There is also evidence of a prolonged drift ice pulseoff East Greenland during the time of the LIA (Jennings et al.,2002; Moros et al., 2006a) and several authors document glacialadvance around Greenland at the same time (e.g. Weidick, 1968;Weidick et al., 1990; Geirsdóttir et al., 2000). Reconstructionsfrom terrestrial archives by Kaufman et al. (2009) documenta strong increase in arctic summer temperature during the last c.100 years. A comparable trend is not observed in subsurfacewaters in Disko Bugt.

5.3. Regional climatic implications

The distinct variability in subsurface water mass properties inDisko Bugt point to broader scale changes in ocean circulationpatterns in the source regions of the WGC (e.g. variability in thewater mass contribution of the NAC/IC and the EGC). The stronginfluence of the EGC we document during the late Holocenemight be linked to enhanced outflow of arctic water masses intothe polar North Atlantic. This is supported by evidence ofincreased drift ice occurrence (Andrews et al., 1997; Jenningset al., 2002; Moros et al., 2006a) and increased IRD depositionin the Denmark Strait (Jennings et al., 2011). Increased advectionof fresher Arctic-derived waters into the northern North Atlanticby the EGC can lead to reduced deep-water formation in theLabrador and Nordic Seas and can consequently cause a weak-ening of the Subpolar Gyre (SPG). Weakening of the SPG may inturn have a strong impact on the flow of the NAC and AtlanticMeridional Overturning Circulation (Hillaire-Marcel et al., 2001;Häkkinen and Rhines, 2004; Hátún et al., 2005). However,Thornalley et al. (2009) discuss a relatively reduced and morefluctuating SPG activity during the late Holocene and suggesta weakened SPG circulation is likely to be linked to atmosphericcirculation, i.e. decreased wind stress rather than enhancedfreshwater flux from the Arctic. This would allow a stronger EGCinflux to the WGC. Studies from eastern Canada (Kasper andAllard, 2001) and south Greenland (Lassen et al., 2004; Kuijpersand Mikkelsen, 2009; Jessen et al., 2011), relate changes inatmospheric circulation patterns to a shift from a predominantNAOþ to a NAO% regime over this time period. Intervals of rela-tive increase in the influence of the warm NAC/IC on the WGC at3.6 to 2.6 ka BP and at c. 1.8 ka BP, may imply a more NAOþ

regime, while intervals of stronger EGC influence at 2.6 to 1.9 kaBP and from 0.9 ka BP onwards, possibly reflect a more NAO% likeregime in West Greenland.

6. Summary and conclusions

Our new high-resolution benthic foraminiferal study fromEgedesminde Dyb provides a long-term record at decadal reso-lution of variations in subsurface water mass (WGC) compositionoff West Greenland during the late Holocene (since 3.6 ka BP). Alonger-term cooling trend is observed, which becomes mostpronounced from c. 1.7 ka BP onwards, as calcareous Atlanticwater species decrease significantly and agglutinated Arcticwater species increase. This cooling trend reflects increasing EGCinfluence on the WGC. This can be either attributed to increasingmeltwater and drift ice input in the EGC source region, or tochanges in the atmospheric North Atlantic Oscillation system

from a NAOþ to a predominant NAO% regime over the lateHolocene. This longer-term late Holocene cooling trend in thebasal waters of Disko Bugt culminates with the Little Ice Age at0.3 ka BP.

Our findings support previous studies from Disko Bugt andadjacent West Greenland fjords, which reported a gradual coolingof subsurface waters since the Holocene Thermal Maximum at c. 6to 5 ka BP. Superimposed on this longer-term late Holocene coolingtrend, we document millennial to centennial scale variability. Apronounced cooling event is found at c. 2.5 ka BP (corresponding tothe 2.7e2.8 ka BP cooling event), which is also recorded in marineand terrestrial archives elsewhere in the North Atlantic region. Awarm phase in bottom waters is recorded at c. 1.8 ka BP, whichcorresponds to the ‘Roman Warm Period’ and is seen to representthe warmest bottom water conditions recorded in Disko Bugtduring the last 3.6 ka BP. However, only a slight warming isobserved in subsurface waters during the ‘Medieval ClimateAnomaly’. From 0.9 ka BP we find pervasive and even harsherenvironmental conditions (e.g. limited food availability), high-lighted by the sudden fall in abundance of C. reniforme, I. norcrossiand E. excavatum f. clavata as an ecological threshold is exceeded.Peak abundance of S. feylingi and agglutinated Arctic water species(e.g. C. arctica and S. biformis) reflect the culmination of this coolingtrend at 0.3 ka BP (Little Ice Age). Reconstructions from arcticterrestrial archives match, to some extent, the late Holocenelonger-term cooling trend in the basal waters in Disko Bugt. Thereconstructed increased influence of the EGC on bottom waters inDisko Bugt may also have a strong influence on the flow of theNorth Atlantic Current.

Acknowledgements

The authors thank the Deutsche Forschungsgemeinschaft (DFG)for funding the project ‘Disko Climate’ (MO 1422/2-1). We alsothank the Captain and Crew of the R/V ‘Maria S. Merian’ for theirfantastic work during cruise MSM05/03. We thank Anne Jennings,Karen Luise Knudsen and Marit Solveig Seidenkrantz for fruitfuldiscussion of the benthic foraminiferal assemblage and theirinterpretation. We thank Bernd Wagner and Volker Wennrich forproducing X-radiographs of the sediment core at the University ofCologne and Tomasz Goslar from Pozna"n Radiocarbon Laboratory.The constructive comments of 2 anonymous reviewers also helpedto improve the manuscript.

Appendix 1

A1: List of identified foraminiferal taxa.

Foraminiferal list

Adercotryma glomerata (Brady, 1878)Ammoscalaria pseudospiralis (Williamson, 1858)Astrononion gallowayi Loeblich and Tappan, 1953Bolivina pseudopuncata Höglund, 1947Buccella frigida (Cushman, 1922)Buccella frigida calida Cushman and Cole, 1930Cassidulina neoteretis Seidenkrantz, 1995Cassidulina reniforme Nørvang, 1945Cibicides lobatulus (Walker & Jacob, 1798)Cribrostomoides crassimargo (Norman, 1858)Cribrostomoides jeffreysi (Williamson, 1958)Cribsostomoides sp.Cuneata arctica (Brady, 1881)Dentalina sp.

(continued on next page)

K. Perner et al. / Quaternary Science Reviews 30 (2011) 2815e2826 2823

Page 84: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

References

Alley, R.B., Agustsdottir, A.M., Fawcett, P.J., 1999. Ice-core evidence of late-Holocenereduction in North Atlantic Ocean heat transport. Geophysical Monograph 112,301e312.

Alve, E., 1990. Variations in estuarine foraminiferal biofacies with diminishingoxygen conditions in Drammensfjord, SE Norway. In: Hemleben, C.,Kaminski, M.A., Kuhnt, W., Scott, D.B. (Eds.), Paleoecology, Biostratigraphy,Paleoceanography and Taxonomy of Agglutinated Foraminifera: NATO AS1Series C, Mathematical and Physical Sciences, 327. Kluwer Academic Publishers,Dordrecht, pp. 661e694.

Alve, E., 1991. Foraminifera, climatic change and pollution: a study of Late Holocenesediments in Drammensfjord, SE Norway. The Holocene 1, 243e261.

Alve, E., 1994. Opportunistic features of the foraminifer Stainforthia fusiformis(Williamson): evidence from Frierfjord, Norway. Journal of Micropalaeontology13, 24.

Andersson, C., Risebrobakken, B., Jansen, E., Dahl, S.O., 2003. Late Holocene surfaceocean conditions of the Norwegian Sea (Vøhring Plateau). Paleoceanography 18,PA1044. doi:10.1029/2001PA000654.

Andresen, O.G.N., 1981. The annual cycle of temperature, salinity, currents andwater masses in Disko Bugt and adjacent waters, West Greenland. Meddelelserom Grønland. Bioscience 5, 1e36.

Andrews, J.T., Smith, L.M., Preston, R., Cooper, T., Jennings, A.E., 1997. Spatial andtemporal patterns of iceberg rafting (IRD) along the East Greenland margin, ca.68 N, over the last 14 cal. ka. Journal of Quaternary Science 12, 1e13.

Andrews, J.T., Caseldine, C., Weiner, N.J., Hatton, J., 2001. Late Quaternary (4 ka)marine and terrestrial environmental change in Reykjarfj}ordur, N. Iceland:climate and/or settlement? Journal of Quaternary Science 16, 133e144.

Bâcle, J.E., Carmack, C., Ingram, R.G., 2002. Water column structure and circulationin the North water during spring transition: aprilejuly 1998. Deep Sea Research49, 4907e4925.

Bernhard, J.M., Alve, E., 1996. Survival, ATP pool, and ultrastructural characterizationof benthic foraminifera from Drammensfjord (Norway): response to anoxia.Marine Micropaleontology 28, 5e17.

Bronk Ramsey, C., 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51, 337.

Buch, E., 1981. A Review of the Oceanographic Conditions in Subarea O and 1 in theDecade 1970e79. In: NAFO Symposium on Environmental Conditions in theNorthwest Atlantic during 1970e79, NAFO Scientific Council Studies no. 5.

Buch, E., Pedersen, S.A., Ribergaard, M.H., 2004. Ecosystem variability in WestGreenland waters. Journal of Northwest Atlantic Fishery Science 34, 13e28.

Corliss, B.H., 1991. Morphology andmicrohabitat preferences of benthic foraminiferafrom the northwest Atlantic Ocean. Marine Micropaleontology 17, 195e236.

Corliss, B.H., Chen, C., 1988. Morphotype patterns of Norwegian Sea deep-seabenthic foraminifera and ecological implications. Geology 16, 716e719.

Dahl-Jensen, D., Mosegaard, K., Gundestrup, N., Clow, G.D., Johnsen, S.J.,Hansen, A.W., Balling, N., 1998. Past temperature directly from the greenland icesheet. Science 282, 268e271.

de Vernal, A., Hillaire-Marcel, C., 2006. Provincialism in trends and high frequencychanges in the northwest North Atlantic during the Holocene. Global andPlanetary Change 54, 263e390.

Duplessy, J.-C., Invanova, E.V., Murdmaa, I.O., Paterne, M., Labyrie, L., 2001. Holocenepalaeoceanography of the northern Barents Sea and variations of the northwardheat transport by the Atlantic Ocean. Boreas 30 (1), 2e16.

Eiríksson, J., Larsen, G., Knudsen, K.L., Haflidason, H., Heinemeier, J.,Simonarson, L.A., 2004. Marine reservoir age variability and water massdistribution in the Iceland Sea. Quaternary Science Reviews 23, 2247e2268.

Eiríksson, J., Bartels-Jónsdóttir, H.B., Cage, A.G., Gudmundsdóttir, E.R., Klitgaard-Kristensen, D., Marret, F., Rodrigues, T., Abrantes, F., Austin, W.E.N, Jiang, H.,Knudsen, K.L., Sejrup, H.P., 2006. Variability of the North Atlantic current duringthe last 2000 years based on shelf bottom water and sea surface temperaturesalong an open ocean/shallow marine transect in Western Europe. Holocene 16,1017e1029.

Elverhøi, A., Liestøl, O., Nagy, J., 1980. Glacial Erosion, Sedimentation and Micro-fauna in the Inner Part of Kongsfjord, vol. 172. Norsk Polarinstitutt Skrifter,Spitsbergen, pp. 33e61.

Feyling-Hansen, R., Funder, S., 1990. Fauna and flora. In: Funder, S. (Ed.), LateQuaternary Stratigraphy and Glaciology in the Thule Area. Medd. Gronl. Geosci.,vol. 22, pp. 19e33.

Funder, S., Weidick, A., 1991. Holocene boreal molluscs in Greenland e palae-oceanographic implications. Palaeogeography, Palaeoclimatology, Palae-oecology 85, 123e135.

Geirsdóttir, A., Hardardóttir, J., Andrews, J.T., 2000. Late-Holocene terrestrial glacialhistory of Miki and I.C. Jacobsen Fjords, East Greenland. The Holocene 10,123e134.

Giraudeau, J., Jennings, A.E., Andrews, J.T., 2004. Timing and mechanisms of surfaceand intermediate water circulation changes in the Nordic Seas over the last 10000 cal. Years: a view from the North Iceland shelf. Quaternary Science Reviews23, 2127e2139.

Hald, M., Steinsund, P.I., 1992. Distribution of surface sediment benthic foraminiferain the southwestern Barents Sea. Journal of Foraminiferal Research 21,347e362.

Hald, M., Dokken, T., Korsun, S., Polyak, L., Aspeli, R., 1994. Recent and LateQuaternary Distribution of Elphidium excavatum f. clavata in Arctic Seas. In:Cushman Foundation Special Publication, vol. 32 141e153.

Hald, M., Steinsund, P.I., 1996. Benthic foraminifera and carbonate dissolution insurface sediments of the Barents- and Kara Seas. Berichte zur Polarforschung212, 285e307.

Hald, M., Korsun, S., 1997. Distribution of modern benthic foraminifera from fjordsof Svalbard, European Arctic. Journal of Foraminiferal Research 27, 101e122.

Hall, I.G., Bianchi, G., Evans, J.R., 2004. Centennial to millennial scale Holoceneclimate-deep water linkages in the North Atlantic. Quaternary Science Reviews23, 1529e1536.

Hansen, A., Knudsen, K.L., 1995. Recent foraminiferal distribution in Freemansundetand early Holocene stratigraphy on Edgeøya, Svalbard. Polar Research 14,215e238.

Harff, J., Dietrich, R., Endler, R., Hentzsch, B., Jensen, J.B., Kuijpers, A., Krauss, N.,Leipe, Th., Lloyd, J., Mikkelsen, N., Moros, M., Perner, K., Richter, A., Risgaard-Petersen, N., Rysgaard, S., Richter, Th., Sandgren, P., Sheshenko, V., Snowball, I.,Waniek, J., Weinrebe, W., Witkowski, A., 2007. Deglaciation History, CoastalDevelopment, and Environmental Change during the Holocene in WesternGreenland Cruise Report R/V Maria S. Merian, Cruise MSM 05/03.

Häkkinen, S., Rhines, P.B., 2004. Decline of subpolar North Atlantic circulationduring the 1990s. Science 304, 555e559.

Hátún, H., Sando, A.B., Drange, H., Hansen, B., Valdimarsson, H., 2005. Influence ofthe Atlantic subpolar gyre on the thermohaline circulation. Science 309,1841e1844.

Heegaard, E., Birks, H.J.B., Telford, J.T., 2005. Relationships between calibrated agesand depth in stratigraphical sequences: an estimation procedure by mixedeffectregression. The Holocene 15, 612e618.

Hillaire-Marcel, C., de Vernal, A., Bilodeau, G., Weaver, A., 2001. Absence of deep-water formation in the Labrador Sea during the last interglacial period. Nature410, 1073e1077.

Holland, D.M., Thomas, R.H., De Young, B., Ribergaard, M.H., Lyberth, B., 2008.Acceleration of Jakobshavn Isbrae triggered by warm subsurface ocean waters.Nature Geoscience 1, 659.

Humlum, O., 1999. Late Holocene climate in central West Greenland: meteorolog-ical data and rock glacier isotope evidence. The Holocene 9 (5), 581e594.

Jennings, A.E., Helgadottir, G., 1994. Foraminiferal assemblages from the fjords andshelf of eastern Greenland. Journal of Foraminiferal Research 24, 123e144.

Appendix (continued )

Foraminiferal list

Deuterammina ochracea (Williamson, 1858)Discorbia sp.Eggerella advena (Cushman, 1922)Elphidium albiumbilicatum (Weiss, 1954)Elphidium bartletti Cushman, 1933Elphidium excavatum (Terquem) forma clavata Cushman,

1930Elphidium sp.Epistominella vitrea Parker, 1952Fissurina sp.Globobulimina auriculata arctica (Höglund, 1954)Islandiella helenae Feyling-Hanssen and Buzas, 1976Islandiella norcrossi (Nørvang, 1945)Melonis barleeanus (Williamson, 1858)Nonionella tugida var. digitata NørvangNonionellina auricula Heron-Allen and Earland, 1930Nonionellina labradorica (Dawson, 1860)Patellina corrugata Williamson, 1858Parafissurina sp.Portatrochammina antarctica wiesneri (Parr, 1950)Portatrochammina sp.Pullenia osloensis Feyling-Hanssen, 1954Procerolagena sp.Pyrgo williamsoni (Silvestri, 1923)Quinqueloculina sp.Recurvoides turbinatus (Brady, 1881)Reophax fusiformis (Williamson, 1858)Reophax gracilis (Kiear)Reophax pilulifer Bandy, 1884Robertina arctica d’Orbigny, 1846Saccammina diflugiformis (Brady, 1879)Silicosigmoilina groenlandica (Cushman, 1933)Spiroplectammina biformis (Parker and Jones, 1865)Stainforthia feylingi Knudsen & Seidenkrantz, 1994Stainforthia sp.Textularia earlandi Phleger, 1952Textularia torquata Parker, 1952Triloculina sp.Trochammina nana (Brady, 1881)Trochammina sp.

K. Perner et al. / Quaternary Science Reviews 30 (2011) 2815e28262824

Page 85: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

Jennings, A., Weiner, N., 1996. Environmental change in eastern Greenland duringthe last 1300 years: evidence from foraminifera and lithofacies in Nansen Fjord,68"N. The Holocene 6, 179e191.

Jennings, A.E., Hagen, S., Hardardottir, J., Stein, R., Ogilvie, A.E.J., Jonsdottir, I., 2001.Oceanographic change and terrestrial human impacts in a post A.D. 1400sediment record from the southwest Iceland shelf. Climatic Change 48, 83e100.Special Issue, The Iceberg in the Mist: Northern Research in Pursuit of ‘A LittleIce Age’, guest editors Ogilive, A.E., Jónsson, T.

Jennings, A., Knudsen, K.L., Hald, M., Hansen, C.V., Andrews, J.T., 2002. A mid-Holocene shift in Arctic sea-ice variability on the East Greenland shelf. TheHolocene 12, 49e58.

Jennings, A., Weiner, N.J., Helgadottir, G., Andrews, J.T., 2004. Modern foraminiferalfaunas of the southwestern to northern Iceland shelf: oceanographic andenvironmental controls. Journal of Foraminiferal Research 34, 180e207.

Jennings, A., Andrews, J., Wilson, L., 2011. Holocene environmental evolution ofthe SE Greenland shelf north and south of the Denmark Strait: Irminger andeast Greenland current interactions. Quaternary Science Reviews 30,980e998.

Jessen, C., Solignac, S., Nørgaard-Pedersen, N., Kuijpers, A., Seidenkrantz, M.S., 2011.Exotic pollen as an indicator of variable atmospheric circulation over the Lab-rador Sea region during the mid to late Holocene. Journal of Quaternary Science26, 286e296.

Kaufman, D.S., Ager, T.A., Anderson, N.J., Anderson, P.M., Andrews, J.T., Bartlein, P.J.,Brubaker, L.B., Coats, L.L., Cwynar, L.C., Duvall, M.L., Dyke, A.S., Edwards, M.E.,Eisner, W.R., Gajewski, K., Geirsdóttir, A., Hu, F.S., Jennings, A.E., Kaplan, M.R.,Kerwin, M.W., Lozhkin, A.V., MacDonald, G.M., Miller, G.H., Mock, C.J.,Oswald, W.W., Otto-Bliesner, B.L., Porinchu, D.F., Rühland, K., Smol, J.P.,Steig, E.J., Wolfe, B.B., 2004. Holocene thermal maximum in the western Arctic(0e180"W). Quaternary Science Reviews 23, 529e560.

Kaufman, D.S., Schneider, D.P., McKay, N.P., Ammann, C.A., Bradley, R.S., Briffa, K.R.,Miller, G.H., Otto-Bliesner, B.L., Overpeck, J.T., Vinther, B.M., Arctic Lakes 2kProject Members, 2009. Recent warming reverses long-term Arctic cooling.Science 325, 1236.

Kasper, J.N., Allard, M., 2001. Late Holocene climatic changes as detected by thegrowth and decay of ice wedges on the southern shore of Hudson Strait,northern Quebec, Canada. The Holocene 11, 563e577.

Kelly, M., 1979. Comments on the Implications of New Radiocarbon Dates from theHolsteinsborg Region, Central West Greenland, Gronl. Geol. Unders. Rep. vol. 95,pp. 35e42.

Kelly, M., 1980. The Status of the Neoglacial in Western Greenland, RapportGrønlands Geologiske Undersøgelse vol. 96, pp. 1e24.

Kelly, M., 1985. A review of the Quaternary geology of western Greenland. In:Andrews, J.T. (Ed.), Quaternary Environments Eastern Canadian Arctic, BaffinBay and Western Greenland. Allen and Unwin, Boston, pp. 461e501.

Knudsen, K.L., Seidenkrantz, M.-S., 1994. Stainforthia feylingi new Species from Articto Subartic Environments, Previously Recorded as Stainforthia schreibersiana

(Czjzek). Cushman Foundation for Foraminiferal Research Special Publication,vol. 32 5e13.

Korsun, S., Hald, M., 1998. Modern benthic foraminifera off Novaya Zemlya tide-water glaciers, Russian Arctic. Arctic and Alpine Research 30, 61e77.

Krawczyk, D., Witkowski, A., Moros, M., Lloyd, J.M., Kuijpers, A., Kierzek, A., 2010.Late-Holocene diatom-inferred reconstruction of temperature variations of theWest Greenland current from Disko Bugt, central West Greenland. The Holo-cene 20 (5), 659e666.

Krog, H., Tauber, H., 1974. C-14 Chronology of Late and Postglacial Marine Depositsin North Jutland, Danmarks Geologiske Undersøgelse Årbog 1973, pp. 93e105.

Kuijpers, A., Troelstra, S.R., Prins, M.A., Linthout, K., Akhmetzhanov, A., Bouryak, S.,Bachmann, M.F., Lassen, S., Rasmussen, S., Jensen, J.B., 2003. Late quaternarysedimentary processes and ocean circulation changes at the SoutheastGreenland margin. Marine Geology 195, 109e129.

Kuijpers, A., Mikkelsen, N., 2009. Geological records of changes in wind regime oversouth Greenland since the Medieval Warm Period: a tentative reconstruction.Polar Record 45 (232), 1e8.

Lassen, S.J., Kuijpers, A., Kunzendorf, H., Hoffman-Wieck, G., Mikkelsen, N.,Konradi, P., 2004. Late-Holocene Atlantic bottom water variability in IgalikuFjord, South Greenland, reconstructed from foraminifera faunas. The Holocene14, 165e171.

Lloyd, J.M., Park, L.A., Kuijpers, A., Moros, M., 2005. Early Holocene palae-oceanography and deglacial chronology of Disko Bugt, West Greenland.Quaternary Science Reviews 24, 1741e1755.

Lloyd, J.M., 2006a. Late Holocene environmental change in Disko Bugt, WestGreenland: interaction between climate, ocean circulation and JakobshavnIsbræ. Boreas 35, 36e49.

Lloyd, J.M., 2006b. Modern distribution of benthic foraminifera from Disko Bugt,West Greenland. Journal of Foraminiferal Research 36, 315e331.

Lloyd, J.M., Kuijpers, A., Long, A., Moros, M., Park, L.A., 2007. Foraminiferal recon-struction of mid- to late-Holocene ocean circulation and climate variability inDisko Bugt, West Greenland. The Holocene 17, 1079e1091.

Lloyd, J.M., Moros, M., Perner, K., Telford, R., Kuijpers, A., Jansen, E., and McCarthy,D.J. A 100 year record of ocean temperature control on the stability of Jakob-shavn Isbrae, West Greenland. Geology, in press.

Mackensen, A., Sejrup, H.P., Jansen, E., 1985. The distribution of living benthicforaminifera on the continental slope and rise off southwest Norway. MarineMicropaleontology 9, 275e306.

Madsen, H.B., Knudsen, K.L., 1994. Recent foraminifera in shelf sediments of theScoresby Sund Fjord, East Greenland. Boreas 23, 495e504.

McNeely, R., Dyke, A.S., Southon, J.R., 2006. Canadian Marine Reservoir Ages,Preliminary Data Assessment. Open File 5049, Geological Survey of Canada, pp. 3.

Møller, H.S., Jensen, K.G., Kuijpers, A., Aagaard-Sørensen, S., Seidenkrantz, M.-S.,Prins, M., Endler, R., Mikkelsen, N., 2006. Late-Holocene environment andclimatic changes in Ameralik Fjord, southwest Greenland: evidence from thesedimentary record. The Holocene 16, 685e695.

Moros, M., Emeis, K., Risebrobakken, B., Snowball, I., Kuijpers, A., McManus, J.,Jansen, E., 2004. Sea surface temperatures and ice rafting in the Holocene NorthAtlantic: climate influences on northern Europe and Greenland. QuaternaryScience Reviews 23, 2113e2126.

Moros, M., Andrews, J.T., Eberl, D.D., Jansen, E., 2006a. Holocene history of drift icein the northern North Atlantic: evidence for different spatial and temporalmodes. Paleoceanography 21, PA2017. doi:10.1029/2005PA001214.

Moros, M., Jensen, K.G., Kuijpers, A., 2006b. Mid- to late-Holocene hydrological andclimaticvariability inDiskoBugt, centralWestGreenland.TheHolocene16,357e367.

Mudie, P.J., Keen, C.E., Hardy, I.E., Vilks, G., 1984. Multivariate analysis and quanti-tative paleoecology of benthic foraminifera in surface and late Quaternary shelfsediments, northern Canada. Marine Micropaleontology 8, 283e313.

Murray, J.W., 1991. Ecology and Palaeoecology of Benthic Foraminifera. Longman,London, 397 pp.

Nagy, J., 1965. Foraminifera in Some Bottom Samples from Shallow Waters inVestspitsbergen, Norks Polarinstitutt Arbok 1963, pp. 109e125.

Oppo, D.W., McManus, J.F., Cullen, J.R., 2003. Palaeoceanography: deepwater vari-ability in the Holocene epoch. Nature 422, 277.

Osterman, L.E., Nelson, A.R., 1989. Latest Quaternary and Holocene paleoceanog-raphy of the eastern Baffin Island continental shelf, Canada: benthic forami-niferal evidence. Canadian Journal of Earth Sciences 26, 2236e2248.

Ólafsdóttir, S., Jennings, A.E., Geisdóttir, Á, Andrews, J., Miller, G., 2010. Holocenevariability of the North Atlantic Irminger current on the south- and northwestshelf of Iceland. Marine Micropaleontology 77 (3e4), 101e118.

Polyak, L., Solheim, A., 1994. Late- and postglacial environments in the northernBarents Sea west of Franz Josef land. Polar Research 13, 197e207.

Rasmussen, T.L., Thomsen, E., Troelstra, S.R., Kuijpers, A., Prins, M.A., 2002.Millennial-scale glacial variability versus Holocene stability: changes in plankticand benthic foraminifera faunas and ocean circulation in the North Atlanticduring the last 60 000 years. Marine Micropaleontology 47, 143e176.

Reimer, P.J., Reimer, R.W., 2001. A marine reservoir correction database and on-lineinterface. Radiocarbon 43, 46.

Reimer, P.J., Baillie, M.G.L., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., BronkRamsey, C., Buck, C.E., Burr, G.S., Edwards, R.L., Friedrich, M., Grootes, P.M.,Guilderson, T.P., Hajdas, I., Heaton, T.J., Hogg, A.G., Hughen, K.A., Kaiser, K.F.,Kromer, B., McCormac, F.G., Manning, S.W., Reimer, R.W., Richards, D.A.,Southon, J.R., Talamo, S., Turney, C.S.M., van der Plicht, J., Weyhenmeyer, C.E.,2009. IntCal09 and Marine09 radiocarbon age calibration curves, 0e50,000years cal BP. Radiocarbon 51, 1111e1150.

Rignot, E., Koppes, M., Velicogna, I., 2010. Rapid submarine melting of the calvingfaces of West Greenland glaciers. Nature Geoscience 3, 187.

Risebrobakken, B., Jansen, E., Andersson, C., Mjelde, E., Hevroy, K., 2003. A high-resolution study of Holocene paleoclimatic and paleoceanographic changes inthe Nordic Seas. Paleoceanography 18, 1017e1031.

Rytter, F., Knudsen, K.L., Seidenkrantz, S., Eiriksson, J., 2002. Modern distribution ofbenthic foraminifera on the North Icelandic shelf and slope. Journal of Fora-miniferal Research 32, 217e244.

Schafer, C.T., Cole, F.E., 1986. Reconnaissance survey of benthonic foraminifera fromBaffin Fjord environments. Arctic 39, 232e239.

Schröder-Adams, C.J., Mudie, P.J., Cole, F.E., MedioliI, F.S., 1990. Late Holocenebenthic foraminifera beneath Perennial Sea ice on an Arctic continental shelf.Marine Geology 93, 225e242.

Seidenkrantz, M.-S., Aagaard-Sørensen, S., Sulsbrück, S., Kuijpers, A., Jansen, K.G.,Kunzendorf, H., 2007. Hydrography and climate of the last 4400 years in a SWGreenland fjord e implications for Labrador Sea palaeoceanography. TheHolocene 17, 387e401.

Seidenkrantz, M.-S., Roncaglia, L., Fischel, A., Heilmann-Clausen, C., Kuijpers, A.,Moros, M., 2008. Variable North Atlantic seesaw patterns documented by a lateHolocene marine record from Disko Bugt, West Greenland. Marine Micropale-ontology 68, 66e83.

Sejrup, H.P., Birks, H.J.B., Klitgaard-Kristensen, D., Madsen, H., 2004. Benthonicforaminiferal distributions and quantitative transfer functions for the north-west European continental margin. Marine Micropaleontology 53, 197e226.

Steinsund, P.I., Polyak, L., Hald, M., Mikhailov, V., Korsun, S., 1994. Distribution ofcalcareous benthic foraminifera in recent sediments of the Barents and KaraSea. In: Steinsund, P.I., Benthic Foraminifera in Surface Sediments of the Barentsand Kara Seas: Modern and Late Quaternary Application. Ph.D. thesis, Depart-ment of Geology, Institute of Biology and Geology, University of Tromsø.

Tauber, H., Funder, S., 1975. 14C Content of Recent Molluscs from Scoresby Sund,central East Greenland, Gronlands Geologiske Undersogelse, Rapport vol. 75,pp. 95e99.

Tauber, H., 1979. 14C activity of Arctic marine mammals. In: Berger, R., Suess, H.E.(Eds.), Radiocarbon Dating. University of California Press, pp. 447e452.

Thornalley, D.J.R., Elderfield, H., McCave, I.N., 2009. Holocene oscillations intemperature and salinity of the surface subpolar North Atlantic. Nature 457 (5),711e714.

K. Perner et al. / Quaternary Science Reviews 30 (2011) 2815e2826 2825

Page 86: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

Vilks, G., 1981. Late glacialepostglacial foraminiferal boundary in sediments ofeastern Canada, Denmark and Norway. Geoscience Canadian 8, 48e56.

Vilks, G., 1989. Ecology of recent foraminifera on the Canadian continental shelfof the Arctic Ocean. In: Herman, Y. (Ed.), The Arctic SeasdClimatology,Oceanography, Geology and Biology. Van Nostrand Reinhold, New York, pp.497e569.

Weidick, A., 1968. Observations on some Holocene glacier fluctuations in WestGreenland. Meddelelser om Grønland 165 (6), 202.

Weidick, A., Oerter, H., Reeh, N., Thomsen, H.H., Thorning, L., 1990. The recession ofthe Inland ice margin during the Holocene climatic optimum in the Jakobshavn

Isfjord area of West Greenland. Palaeogeography, Palaeoclimatology, Palae-oecology 82, 389e399.

Williamson, M.A., Keen, C.E., Mudie, P.J., 1984. Foraminiferal distribution on thecontinental margin off Nova Scotia. Marine Micropaleontology 9, 219e239.

Wollenburg, J., Knies, J., Machensen, A., 2004. High-resolution palaeoproductivity fluc-tuations245during the last 24kyr indicatedbybenthic foraminifera in themarginalArctic Ocean. Palaeogeography, Palaeoclimatology, Palaeoecology 204, 209e238.

Zarudzki, E.F.K., 1980. Interpretation of Shallow Seismic Profiles Over The Conti-nental Shelf in West Greenland between Latitudes 64" and 69"30’N, GeologicalSurvey of Greenland Report, vol. 100, pp. 58e61.

K. Perner et al. / Quaternary Science Reviews 30 (2011) 2815e28262826

Page 87: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

A 100 year record of ocean temperature control on the stability of Jakobshavn Isbræ,

West Greenland

83

5.3. A 100 year record of ocean temperature control on the stability of

Jakobshavn Isbræ, West Greenland

Published in Geology 39 (9), pp. 867-870

Page 88: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

Geology

doi: 10.1130/G32076.1 2011;39;867-870Geology

and David McCarthyJeremy Lloyd, Matthias Moros, Kerstin Perner, Richard J. Telford, Antoon Kuijpers, Eystein Jansen Isbrae, West GreenlandA 100 yr record of ocean temperature control on the stability of Jakobshavn

Email alerting servicesarticles cite this article

to receive free e-mail alerts when newwww.gsapubs.org/cgi/alertsclick

Subscribe to subscribe to Geologywww.gsapubs.org/subscriptions/click

Permission request to contact GSAhttp://www.geosociety.org/pubs/copyrt.htm#gsaclick

official positions of the Society.citizenship, gender, religion, or political viewpoint. Opinions presented in this publication do not reflectpresentation of diverse opinions and positions by scientists worldwide, regardless of their race, includes a reference to the article's full citation. GSA provides this and other forums for thethe abstracts only of their articles on their own or their organization's Web site providing the posting to further education and science. This file may not be posted to any Web site, but authors may postworks and to make unlimited copies of items in GSA's journals for noncommercial use in classrooms requests to GSA, to use a single figure, a single table, and/or a brief paragraph of text in subsequenttheir employment. Individual scientists are hereby granted permission, without fees or further Copyright not claimed on content prepared wholly by U.S. government employees within scope of

Notes

© 2011 Geological Society of America

on August 22, 2011geology.gsapubs.orgDownloaded from

Page 89: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

GEOLOGY, September 2011 867

INTRODUCTION

Recent research has highlighted dramatic

changes at the ocean margins of major ice sheets

associated with glacier dynamics (Howat et al.,

2007; Pritchard et al., 2009). However, the contri-

bution of ice loss to future sea-level rise due to ice

sheet dynamics remains poorly constrained and

at present is not included realistically in models

used to project future sea-level rise (Solomon

et al., 2007; Pritchard et al., 2009). Recent obser-

vations have identifi ed signifi cant acceleration

and retreat of many of Greenland’s tidewater

glaciers (Rignot and Kanagaratnam, 2006; Moon

and Joughin, 2008). The recent increase in ice

discharge from many of Greenland’s outlet gla-

ciers, characterized by acceleration and retreat,

has led to an increase of >0.25 mm/yr in the ice

sheet’s contribution to sea-level rise (Rignot and

Kanagaratnam, 2006; Moon and Joughin, 2008).

This suggests that ice dynamics have a more

important infl uence on ice sheet mass balance

than previously thought (Howat et al., 2007). A

strong link to climate change has been suggested

based on a recent analysis of Greenland tide water

glaciers (Moon and Joughin, 2008). However,

the link between ice dynamics and climate is not

well understood, and is not realistically included

in current ice sheet and climate models. An

important question is whether the recent behavior

of many of the tidewater glaciers draining the

Greenland Ice Sheet is a response to recent

global warming (amplifi ed in the Arctic; Serreze

and Francis, 2006; Kaufman et al., 2009) or part

of natural climate variability. A full understand-

ing of the mechanisms driving this behavior is

lacking, though suggested mechanisms include

basal lubrication from increased surface melting

due to increased air temperatures (Zwally et al.,

2002); reduction in buttressing of the glacier due

to breakup of the fl oating ice tongue (Joughin

et al., 2004; Thomas, 2004); and increased

basal melting due to increased subsurface

ocean water temperature (Holland et al., 2008;

Rignot et al., 2010).

Support for an ocean forcing comes from

direct observations from the past few years

identifying signifi cant warming of subsurface

ocean water temperatures advected into several

Greenland fjords with the potential to infl u-

ence glacier dynamics through submarine basal

melting (Holland et al., 2008; Rignot et al.,

2010). The source of warmer subsurface waters

along the western Greenland margin is the West

Greenland Current (Fig. 1). The West Green-

land Current is formed of two components, the

relatively warm and saline Irminger Current,

sourced from the subpolar North Atlantic gyre,

and the Arctic-sourced East Greenland Current

(Myers et al., 2007). These two components

gradually mix as they fl ow northward. In Disko

Bugt, the deeper part of the West Greenland

Current is warmer and more saline (denser),

while the shallow part is cooler and less saline

(less dense) (Holland et al., 2008).

We investigated Jakobshavn Isbrae, one of

Greenland’s largest outlet glaciers, that drains

~7% of the ice sheet. The glacier drains through

the 50-km-long Jakobshavn Isfjord to a bay,

Disko Bugt, on the west coast of Greenland

(Fig. 1). The position of the calving margin has

been well documented since the 19th century

(Podlech and Weidick, 2004; Thomas et al.,

2003), but particularly since the mid-1990s,

based on remote sensing techniques (Joughin

et al., 2004; Rignot and Kanagaratnam, 2006;

Dietrich et al., 2007; Moon and Joughin, 2008;

Joughin et al., 2008). Dramatic thinning and

breakup of the fl oating tongue of Jakobshavn

Isbrae since the late 1990s are well docu-

mented, and coincide with warming of ocean

water in Jakobshavn Isfjord (Holland et al.,

2008). Detailed instrumental measurements

of West Greenland Current in Disko Bugt and

Jakobshavn Isfjord are sparse, with an annual

time series only extending back to 1980 from

a point just north of Ilulissat (SJA3, Fig. 1) and

a further measurement from 1954 (Holland

et al., 2008). We aim to reconstruct the rela-

tive temperature of the West Greenland Current

entering Disko Bugt over the past 100 yr using

benthic foraminifera. Such longer term records

of relative ocean temperature will improve

our understanding of the link between glacier

dynamics and ocean forcing.

MATERIALS AND METHODS

We present a high-resolution (average of

1.4 yr per sample) benthic foraminiferal record

from multicore 343310 collected in June 2007

from the deep-water trough at the western margin

of Disko Bugt (852 m water depth, 68°38.9′N,

53°49.5′W; Fig. 1). Supporting foraminiferal

data from a transect of multicores across Disko

Bugt are presented in Figure DR1 and Table

DR1 in the GSA Data Repository.1 The chronol-

ogy for 343310 is based on 210Pb dates, sup-

ported by a series of calibrated accelerator mass

spectrometry 14C dates, 137Cs measurements, and

other chronological evidence (for details, see

Geology, September 2011; v. 39; no. 9; p. 867–870; doi:10.1130/G32076.1; 3 fi gures; Data Repository item 2011251.© 2011 The Geological Society of America. For permission to copy, contact Copyright Permissions, GSA, or [email protected].

A 100 yr record of ocean temperature control on the stability of

Jakobshavn Isbrae, West Greenland

Jeremy Lloyd1, Matthias Moros2,3, Kerstin Perner2, Richard J. Telford3,4, Antoon Kuijpers5, Eystein Jansen3,6, and

David McCarthy1

1Department of Geography, Durham University, South Road, Durham DH1 3LE, UK2Baltic Sea Research Institute, Seestrasse 15, 18119 Rostock, Germany3Uni Bjerknes Centre for Climate Research, Allégaten 55, 5007 Bergen, Norway4Department of Biology, University of Bergen, Thormøhlensgate 53A, 5008 Bergen, Norway5Geological Survey of Denmark and Greenland, Øster Voldgade 10, DK-1350, Copenhagen K, Denmark6Department of Earth Science, University of Bergen, Allégaten 55, 5007 Bergen, Norway

ABSTRACT

An understanding of the interaction between ice sheet dynamics and forcing mechanisms,

such as oceanic and atmospheric circulation, is important because of the potential contribu-

tion of these processes to constraining models that seek to predict future rates of sea-level

change. Here we report new benthic foraminiferal data from Disko Bugt, West Greenland,

showing a close correlation between subsurface ocean temperature changes and the ice mar-

gin position of the glacier Jakobshavn Isbrae over the past 100 yr. In particular, our faunal

data show that warm ocean currents entered a bay, Disko Bugt, during the retreat phases of

Jakobshavn Isbrae from A.D. 1920 to 1950 and since 1998. We also show a link between West

Greenland ocean temperature and the Atlantic Multidecadal Oscillation, a key climate indica-

tor in the North Atlantic Ocean. The close coupling between the oceans and the cryosphere

identifi ed here should be assessed in future projections of sea-level change.

1GSA Data Repository item 2011251, full details of chronology, full faunal data from core 343310, and faunal data from supporting cores, is available online at www.geosociety.org/pubs/ft2011.htm, or on request from [email protected] or Documents Secre-tary, GSA, P.O. Box 9140, Boulder, CO 80301, USA.

on August 22, 2011geology.gsapubs.orgDownloaded from

Page 90: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

868 GEOLOGY, September 2011

Tables DR2–DR4 and Figs. DR2–DR4). The

relationship between log 210Pb activity and depth

is almost linear, producing the age-depth model

shown in Figure 2, also supported by the 137Cs in

1963, 14C accelerator mass spectrometry (AMS)

dates (Tables DR3, DR4), and the post−A.D.

1950 (post-bomb) ages. A long gravity core

was also collected from the site of multicore

343310. The long-term sedimentation rate from

the gravity core (dashed line in Fig. 2), based on

a chronol ogy from 20 calibrated AMS 14C dates

(using a reservoir correction of 540 yr; Table

DR4; Fig. DR4), also supports the 210Pb model.

OCEAN TEMPERATURE VARIABILITY

IN DISKO BUGT

Benthic foraminifera are sensitive to a range

of ecological parameters (Murray, 1991). In high

northern latitudes certain species are particularly

sensitive to water mass characteristics such as

temperature and salinity (e.g., Rytter et al., 2002;

Sejrup et al., 2004; Lloyd, 2006). Modern ocean-

ographic measurements show that along the West

Greenland margin temperature and salinity covary

(Andersen, 1981), hence variations in such water

mass–sensitive species provide a proxy record of

variations in subsurface water temperature at the

western entrance to Disko Bugt. These tempera-

ture variations can be traced coherently through

Disko Bugt to the eastern margins via the tran-

sect of multicores (Fig. DR6). We present sum-

mary curves of benthic foraminif era that have

been grouped based on their tolerance of water

mass characteristics (associated directly or indi-

rectly with temperature) labeled relatively warm

taxa and relatively cold taxa groups (for detailed

discussion of groupings, see the Data Reposi-

tory). Relatively warm water indicator species

are Adercotryma glomerata, Ammoscalaria

pseudospiralis, Reophax fusiformis, Reophax

pilulifer, Saccammina diffl ugiformis, Cassidu-

lina reniforme, and Pullenia osloensis. Relatively

cold water indicators are Cuneata arctica, Spiro-

plectammina biformis, Elphidium excavatum

f. clavata, and Stainforthia feylingi.

The relative abundance of warm and cold

water taxa records signifi cant changes in ocean

temperature in Disko Bugt from 1910 to 2007

(Figs. 3C and 3D). Benthic foraminifera record

relatively cold water conditions from 1910 until

ca. 1925, with 30%–35% cold water taxa and

<5% warm water taxa. There is a pronounced

warming from ca. 1925 until the late 1940s.

Deep waters then cool, and the warm water taxa

drop to <5% until the late 1980s. There is evi-

dence of gradual warming during the late 1980s,

but increasing dramatically from the mid-1990s

(warm water taxa increase to 10%–20% of the

assemblage). The benthic foraminiferal assem-

blage correlates remarkably well with the

instrumental measurements of average summer

water temperatures at 300 m from eastern Disko

Bugt from 1980 onward (SJA3, Fig. 1; gray line

in Fig. 3D). Both data sets show a sharp rise in

the mid- to late 1990s. The warm water faunal

abundance increases one or two years before

the water temperature, but this is most likely an

artifact of the age model. The clear correlation

confi rms that faunal changes refl ect changes in

subsurface ocean water temperature.

DISCUSSION AND CONCLUSIONS

The proxy ocean temperature record derived

from benthic foraminifera appears to show a

good correlation to the position of Jakobshavn

Isbrae calving margin (Figs. 3D and 3E). The

calving margin gradually retreated from the

Little Ice Age maximum position of 1850 to

1950 (Podlech and Weidick, 2004) (Fig. 3E;

blue line shows cumulative glacier retreat from

the 1850 position); the later part of this retreat

in particular occurred during a period of distinct

warming in ocean conditions. The stabilization

of the margin from the 1950s to 1998 correlates

with a period of relatively cold water conditions

identifi ed from the foraminifera. There is also

evidence of thickening of the fl oating terminus

of Jakobshavn Isbrae during the early to mid-

1990s (Thomas et al., 1995, 2003). From 1998,

the fl oating ice tongue began to thin and retreat,

0 10 20 30 40

18

00

18

50

19

00

19

50

20

00

Depth (cm)

Da

te (

yr

A.D

.)

X

+

Figure 2. Age model of multicore 343310. Solid line—210Pb constant fl ux:constant sedi-mentation (extrapolation dashed). Dotted line—sedimentation rate based on adjacent long core. X—137Cs peak. Triangles—forami-niferal 14C dates (post−A.D. 1950 ages) (cali-brated ages are marked with 1σ error bars). Plus sign represents marker for A.D. 2000 based on foraminiferal assemblage from DA00–02 collected from same location in 2000.

Gr

ee

nl

an

d

I

ce

S

he

et

Ilulissat

Aasiaat

400

400

600

0 30km

Qeqertarsuaq(Disko)

343310

SJA3JakobshavnIsbrae

N

69°

68°30′N

54°W 52° 50°

69°30′69°30′

70°G r e e n l a n d

DavisStrait

EGC

ICBaffin

Island

Labrador

DiskoBugt

Thule

Baffin

Bay

0 km 400

WGC

WGC

Figure 1. Location of study area. Map of Disko Bugt showing location of coring sites; core 343310 is labeled; squares show locations of other cores. Location of site of ocean temperature measurements is shown (SJA3—diamond) . Inset map shows location of Disko Bugt and general ocean circulation system. EGC—East Greenland Current, IC—Irminger Current, WGC—West Greenland Current.

on August 22, 2011geology.gsapubs.orgDownloaded from

Page 91: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

GEOLOGY, September 2011 869

reaching the current position near the grounding

line in 2005 (Thomas et al., 2003; Joughin et al.,

2008). Over this period the speed of the glacier

nearly doubled, reaching 12.6 km yr–1 in 2003

(Joughin et al., 2004). These dramatic changes

occurred during a period of infl ux of warmer

water shown by both instrumental measure-

ments and foraminiferal assemblages (Fig. 3D).

This infl ux of warmer water provides a clear

mechanism to drive the thinning and marginal

retreat of Jakobshavn Isbrae. There is also a rea-

sonable correlation between our foraminiferal-

based proxy of ocean temperature and Arctic-

wide surface temperature anomaly (Polyakov

et al., 2002) (Fig. 3B).

Ocean temperature does not affect ice mar-

gin position directly, but it can have an impact

indirectly through increased melting at the

grounding line and at the base of a fl oating

ice shelf. Tidewater glaciers in Greenland are

often constrained to deep-water troughs with

the grounding line often in water depths as

much as 1000 m below sea level. Warm saline

water entering these troughs will sink below

cold fresher meltwater and hence will reach the

grounding line, leading to increased melting

(Bindschadler, 2006). This will lead to accel-

eration due to reduced basal friction and reduce

buttressing of any fl oating ice (Thomas, 2004;

Bindschadler, 2006). To increase melting of the

underside of an ice shelf or fl oating tongue will

require circulation within the fjord to bring the

warm salty water into contact with the fl oating

ice. Recent research from Greenland fjords sug-

gests that complex processes involving wind cir-

culation and mixing within the fjords driven by

meltwater fl ux from the ice and infl ow of warm

saline water infl uence the degree of connectivity

between the warm water and the base of fl oating

ice tongues (Straneo et al., 2010; Rignot et al.,

2010). Thinning of the fl oating tongue would

lead to it being more prone to disintegration, and

therefore to increased acceleration due to stress

redistribution and reduced frictional buttressing

of the glacier terminus (Thomas, 2004).

Data from recent instrumental ocean measure-

ments (Holland et al., 2008; Rignot et al., 2010)

along with proxy data presented here highlight

the key infl uence of ocean temperature on tide-

water glacier stability. It is therefore important

to investigate the link between ocean water tem-

perature along the West Greenland margin and

broader oceanic and climatic conditions in the

North Atlantic region. The recent increase in

ocean temperatures identifi ed along the West

Greenland margin from the mid- to late 1990s

is linked to North Atlantic circulation. There

is evidence of increased ocean salinity and

temperature across the North Atlantic Current

region since the mid-1990s (Hátún et al., 2005)

leading to enhanced entrainment of high-salinity

Atlantic water into the northeast Labrador Sea

off southwest Greenland (Lazier et al., 2002). A

general warming of eastern Baffi n Bay waters

has been identifi ed throughout the 20th century,

including the subsurface West Greenland Cur-

rent (Zweng and Münchow, 2006).

Our reconstructed subsurface ocean tempera-

ture record shows some similarities with the

Atlantic Multidecadal Oscillation (AMO; Figs.

3A and 3D) over the past 100 yr. The AMO

represents periodic variations in sea-surface

temperature measurements identifi ed across

the North Atlantic basin (Kerr, 2000). Periods

of high AMO index correlate with periods of

high subsurface ocean temperatures in Disko

Bugt (e.g., 1920s to 1950s and from 1995). The

infl uence of North Atlantic Ocean circulation

therefore propagates through to the West Green-

land margin, affecting the relative warmth of the

West Greenland Current. This mechanism may

well have an important control over the terminus

evolution of Jakobshavn Isbrae.

There is also increasing evidence linking vari-

ous modes of North Atlantic climate variability

such as the AMO and NAO (North Atlantic

Oscillation), suggesting a close connection

between atmospheric and oceanic mechanisms

that infl uence ice sheet dynamics (Grossmann

and Klotzbach, 2009). Observations and model

runs show that the AMO is coupled to the

strength of the thermohaline circulation and to

the NAO; positive phases of the NAO coincide

with negative phases of the AMO (Kerr, 2000;

Delworth and Mann, 2000). A link has also been

postulated between West Greenland ocean tem-

peratures and the NAO (Zweng and Münchow,

2006; Holland et al., 2008). A change from

a strong positive phase of NAO to a negative

phase from 1995 to 1996 led to weaker west-

erly winds, thus weakening the subpolar gyre

(Häkkinen and Rhines, 2004). Weakening of the

subpolar gyre allows an increase in fl ow of rela-

tively warm subpolar water westward through

the Irminger Current to the Greenland margin,

matching observations showing warming of

the subpolar gyre from the mid-1990s (Stein,

2005). This supports a link between NAO, West

Greenland ocean temperature, and, through the

AMO, oceanic conditions in the North Atlantic.

However, note that the earlier period of strong

negative NAO (1960s to early 1970s) actually

correlates with a period of negative AMO and

relatively cold waters in Disko Bugt, suggest-

ing a more complex relationship between atmo-

spheric and oceanic circulation.

This rather simplifi ed mechanism also fi ts

with the postulated association between calv-

ing stability of Jakosbhavn Isbrae and sea ice

concentration. The formation of sea ice within

Jakob shavn Isfjord is thought to have a buttress-

ing effect on the calving margin, thereby reduc-

ing iceberg calving (Sohn et al., 1998; Amundson

et al., 2010). The collapse of the fl oating ice

tongue in the late 1990s followed a period of

decreasing sea ice concentration in Disko Bugt

from 1996 (Hansen et al., 2006). Conditions

that infl uence sea ice growth in Disko Bugt and

other fjords around Greenland might therefore

exert a control on outlet glacier stability, provid-

ing a mechanism for synchronous behavior over

large areas. Sea ice concentration in Disko Bugt

correlates with the NAO index (Joughin et al.,

2008); therefore changes in Jakobshavn Isbrae

and other Greenland glaciers could be associ-

ated with the shift from high NAO in the early

to mid-1990s to more moderate values from the

late 1990s onward.

Based on ocean measurements limited to the

last few years, it has been suggested that ocean

warming triggered the recent acceleration and

increase in ice discharge of Jakobshavn Isbrae

(Holland et al., 2008). Data presented here

Age (yr A.D.)

0

5

10

15

20

% w

arm

ta

xa

10

20

30

40

Cum

ulative ice retreat (k

m)

50

40

30

20

10

% c

old

ta

xa

–0.6

–0.4

–0.2

0

0.2

0.4

AM

O index

1.5

2

2.5

3Tem

pera

ture

(°C

), D

isko B

ugt

300 m

wate

r depth

–1

0

1

Arc

tic-w

ide surface tem

pera

ture

anom

alie

s (°C

)

Jacobshavns Isbrae

Bottom

wate

r pro

xy d

ata

A

B

C

D

E

5 km

Age (yr A.D.)

1900 1920 1940 1960 1980 2000

1900 1920 1940 1960 1980 2000

2003

1902

1953

2001

Figure 3. Comparison of temperature recon-structions and measurements with ice stream position. A: AMO (Atlantic Multidecadal Oscil-lation) (Gray et al., 2004). B: Arctic-wide sur-face air temperature anomaly (Polyakov et al., 2002). C: Relative abundance (%) of cold wa-ter benthic foraminiferal taxa (note inverse vertical axis scale). D: Relative abundance (%) of warm water benthic foraminiferal taxa (red curve) and ocean temperature measure-ments from Disko Bugt (gray curve) (Holland et al., 2008). E: Historical record of ice front retreat illustrated on aerial photograph; blue line shows cumulative ice front retreat from Little Ice Age maximum position in A.D. 1850.

on August 22, 2011geology.gsapubs.orgDownloaded from

Page 92: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

870 GEOLOGY, September 2011

provide support for a mechanism linking sub-

surface ocean temperature with variations in

terminus position and, therefore, ice discharge

of Jakobshavn Isbrae, one of the largest outlet

glaciers draining the Greenland Ice Sheet, over

the past 100 yr. Variations in the temperature

of the West Greenland Current entering Disko

Bugt are closely coupled to the broader North

Atlantic climate through the AMO. There is

also a close link between ocean conditions and

atmospheric conditions (NAO) for part of the

record showing a close coupling of the oceans

and atmosphere with the cryosphere. This rela-

tionship does not hold for the full record, high-

lighting the need for further studies to put the

recent behavior of glaciers such as Jakobshavn

Isbrae into a longer-term perspective. The pro-

posed link with AMO-controlled subsurface

warming may facilitate future prediction of

calving rate and glacier fl ow activity, but a more

detailed understanding of past ice-ocean inter-

actions is necessary to further support predic-

tions of future behavior of the Greenland Ice

Sheet (Rignot et al., 2010).

ACKNOWLEDGMENTS

We thank the skipper and crew of the RV Maria S.

Merian for excellent logistical support and Jan Harff (Chief Scientist of the Deutsche Forschungsgemein-schaft [DFG] funded MSM 05/03 cruise). Post-cruise research was completed as part of the DFG-funded project “Disco Climate” (MO1422/2-1 to Moros and Lloyd). McCarthy was funded through a Durham University Ph.D. studentship. We also thank Tomasz Goslar and Soren Rysgaard for fruitful discussions of the research. Moros, Telford, and Jansen were sup-ported by a CoE (Center of Excellence) grant from the Research Council of Norway to the Bjerknes Centre. The constructive comments of three anonymous re-viewers also helped improve the manuscript.

REFERENCES CITED

Amundson, J.M., Fahnestock, M., Truffer, M., Brown, J., Lüthi, M.P., and Motyka, R.J., 2010, Ice mélange dynamics and implications for terminus stability, Jakobshavn Isbrae, Green-land: Journal of Geophysical Research, v. 115, doi:10.1029/2009JF001405.

Andersen, O.N., 1981, The annual cycle of tem-perature, salinity, currents and water masses in Disko Bugt and adjacent waters, West Green-land: Meddeleser om GrØnland, Bioscience, v. 5, 33 p.

Bindschadler, R., 2006, Hitting the ice sheets where it hurts: Science, v. 311, p. 1720–1721, doi:10.1126/science.1125226.

Delworth, T.L., and Mann, M.E., 2000, Observed and simulated multidecadal variability in the North-ern Hemisphere: Climate Dynamics, v. 16, p. 661–676, doi:10.1007/s003820000075.

Dietrich, R., Maas, H.-G., Baessler, M., Rülke, A., Richter, A., Schwalbe, E., and Westfeld, P., 2007, Jakobshavn Isbrae, West Greenland: Flow velocities and tidal interaction of the front area from 2004 fi eld observations: Jour-nal of Geophysical Research, v. 112, F03S21, doi:10.1029/2006JF000601.

Gray, S.T., Graumlich, L.J., Betancourt, J.L., and Pederson, G.T., 2004, A tree-ring based re-construction of the Atlantic Multidecadal Oscillation since 1567 A.D: Geophysical Re-

search Letters, v. 31, L12205, doi:10.1029/2004GL019932.

Grossmann, I., and Klotzbach, P.J., 2009, A review of North Atlantic modes of natural variabil-ity and their driving mechanisms: Journal of Geophysical Research, v. 114, D24107, doi:10.1029/2009JD012728.

Häkkinen, S., and Rhines, P.B., 2004, Decline of subpolar North Atlantic circulation dur-ing the 1990s: Science, v. 304, p. 555–559, doi:10.1126/science.1094917.

Hansen, B.U., Elberling, B., Humlum, O., and Nielsen, N., 2006, Meteorological trends (1991–2004) at Arctic Station, central West Greenland (69°15′N) in a 130 years perspec-tive: Geografi sk Tidsskrift, v. 106, p. 45–55.

Hátún, H., Sandø, A., Drange, H., Hansen, B., and Valdimarsson, H., 2005, Infl uence of the At-lantic Subpolar Gyre on the thermohaline circulation: Science, v. 309, p. 1841–1844, doi:10.1126/science.1114777.

Holland, D.M., Thomas, R.H., De Young, B., Riber-gaard, M.H., and Lyberth, B., 2008, Accelera-tion of Jakobshavn Isbrae triggered by warm subsurface ocean waters: Nature Geoscience, v. 1, p. 659–664, doi:10.1038/ngeo316.

Howat, I.M., Joughin, I., and Scambos, T.A., 2007, Rapid changes in ice discharge from Greenland outlet glaciers: Science, v. 315, p. 1559–1561, doi:10.1126/science.1138478.

Joughin, I., Abdalati, W., and Fahnestock, M., 2004, Large fl uctuations in the speed on Greenland’s Jakobshavn Isbrae glacier: Nature, v. 432, p. 608–610, doi:10.1038/nature03130.

Joughin, I., Howat, I., Fahnestock, M., Smith, B., Krabill, W., Alley, R., Stern, H., and Truffer, M., 2008, Continued evolution of Jakobshavn Isbrae following its rapid speedup: Journal of Geophysical Research, v. 113, F04006, doi:10.1029/2008JF001023.

Kaufman, D.S., and Arctic Lakes 2k Project Mem-bers, 2009, Recent warming reverses long-term Arctic cooling: Science, v. 325, p. 1236–1239, doi:10.1126/science.1173983.

Kerr, R.A., 2000, A North Atlantic climate pacemaker for the centuries: Science, v. 288, p. 1984–1985, doi:10.1126/science.288.5473.1984.

Lazier, J., Hendry, R., Clarke, A., Yashayaev, I., and Rhines, P., 2002, Convection and restratifi ca-tion in the Labrador Sea, 1990–2000: Deep-Sea Research, v. 49, p. 1819–1835, doi:10.1016/S0967-0637(02)00064-X.

Lloyd, J., 2006, Modern distribution of benthic foraminifera from Disko Bay, West Green-land: Journal of Foraminiferal Research, v. 36, p. 315–331, doi:10.2113/gsjfr.36.4.315.

Moon, T., and Joughin, I., 2008, Changes in ice front position on Greenland’s outlet glaciers from 1992 to 2007: Journal of Geophysical Research, v. 113, F02022, doi:10.1029/2007JF000927.

Murray, J.W., 1991, Ecology and palaeoecology of benthic foraminifera. Longman, London, 397 p.

Myers, P.G., Kulan, N., and Ribergaard, M.H., 2007, Irminger water variability in the West Green-land Current: Geophysical Research Letters, v. 34, doi:L27601/10.1029/2007GL030419.

Podlech, S., and Weidick, A., 2004, A catastrophic break-up of the front of Jakobshavn Isbrae, West Greenland, 2002/03: Journal of Glaciology, v. 50, p. 153–154, doi:10.3189/172756504781830231.

Polyakov, I., Bekryaev, R.V., Alekseev, G.V., Bhatt, U., Colony, R., Johnson, M.A., Walsh, D., and Makshtas, A.P., 2002, Variability and trends of air temperature and pressure in the maritime Arctic, 1875–2000: Journal of Climate, v. 16, p. 2067–2077.

Pritchard, H.D., Arthern, R.J., Vaughan, D.G., and Edwards, L.A., 2009, Extensive dynamic thin-ning on the margins of the Greenland and Ant-arctic ice sheets: Nature, v. 461, p. 971–975, doi:10.1038/nature08471.

Rignot, E., and Kanagaratnam, P., 2006, Changes in the velocity structure of the Greenland Ice Sheet: Science, v. 311, p. 986–990, doi:10.1126/science.1121381.

Rignot, E., Koppes, M., and Velicogna, I., 2010, Rapid submarine melting of the calving faces of West Greenland glaciers: Nature Geosci-ence, v. 3, p. 187–191, doi:10.1038/ngeo765.

Rytter, F., Knudsen, K.L., Seidenkrantz, M.-S., and Eiriksson, J., 2002, Modern distribution of ben-thic foraminifera on the northern Icelandic shelf and slope: Journal of Foraminiferal Research, v. 32, p. 217–244, doi:10.2113/32.3.217.

Sejrup, H.P., Birks, H.J.B., Klitgaard-Kristensen, D., and Madsen, H., 2004, Benthonic foraminiferal distributions and quantitative transfer functions for the northwest European continental margin: Marine Micropaleontology, v. 53, p. 197–226, doi:10.1016/j.marmicro.2004.05.009.

Serreze, M.C., and Francis, J.A., 2006, The Arctic amplifi cation debate: Climatic Change, v. 76, p. 241–264, doi:10.1007/s10584-005-9017-y.

Sohn, H.-G., Jezek, K.C., and Van der Veen, C.J., 1998, Jakobshavn Glacier, West Greenland: 30 years of spaceborne observations: Journal of Geophysical Research, v. 25, p. 2699–2702, doi:10.1029/98GL01973.

Solomon, S., Qin, D., Manning, M., Chen, Z., Mar-quis, M., Averyt, K., Tignor, M., and Miller, H., eds., 2007, Contribution of Working Group I to the Fourth Assessment Report of the Intergov-ernmental Panel on Climate Change: Cambridge, U.K., Cambridge University Press, 996 p.

Stein, M., 2005, North Atlantic subpolar gyre warm-ing—Impacts on Greenland offshore waters: Journal of Northwest Atlantic Fishery Science, v. 36, p. 43, doi:10.2960/J.v36.m568.

Straneo, F., Hamilton, G., Sutherland, D., Stearns, L., Davidson, F., Hammill, M., Stenson, G., and Rosing-Asvid, A., 2010, Rapid circulation of warm subtropical waters in a major glacial fjord in East Greenland: Nature Geoscience, v. 3, p. 182–186, doi:10.1038/ngeo764.

Thomas, R.H., 2004, Force-perturbation analysis of recent thinning and acceleration of Jakobshavn Isbrae, Greenland: Journal of Glaciology, v. 50, p. 57–66, doi:10.3189/172756504781830321.

Thomas, R.H., Krabill, W., Frederick, E., and Jezek, K., 1995, Thickening of Jakobshavns Isbrae, West Greenland, measured by airbourne laser al-timetry: Annals of Glaciology, v. 21, p. 259–262.

Thomas, R.H., Abdalati, W., Frederick, E., Krabill, W.B., Manizade, S., and Steffen, K., 2003, Investigation of surface melting and dynamic thinning on Jakobshavn Isbrae, Greenland: Journal of Glaciology, v. 49, p. 231–239, doi:10.3189/172756503781830764.

Zwally, J., Abdalati, W., Herring, T., Larson, K., Saba, J., and Steffen, K., 2002, Surface melt-induced acceleration of Greenland ice-sheet fl ow: Science, v. 297, p. 218–222, doi:10.1126/science.1072708.

Zweng, M.M., and Münchow, A., 2006, Warming and freshening of Baffi n Bay, 1916–2003: Jour-nal of Geophysical Research, v. 111, C07016, doi:10.1029/2005JC003093.

Manuscript received 17 January 2011Revised manuscript received 8 April 2011Manuscript accepted 18 April 2011

Printed in USA

on August 22, 2011geology.gsapubs.orgDownloaded from

Page 93: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

1

GSA DATA REPOSITORY 2011251

Supplementary Information

A 100 year record of ocean temperature control on the stability of Jakobshavn Isbrae, West

Greenland

Jeremy Lloyd, Matthias Moros, Kerstin Perner, Richard J. Telford, Antoon Kuijpers, Eystein

Jansen, David McCarthy

1. Site location

Cores 343300, 343310, 343320 and 343410 (Figure DR1, Table DR1) were taken during cruise

MSM05/03 with the German Research Vessel “Maria S. Merian” in 2007 (Harff et al., 2008). All

sites lie below the modern flow path of the West Greenland Current (WGC). Core 343310 was

chosen as the main core for our study based on the high sedimentation rate of this core and the high

abundance and preservation of benthic foraminifera.

Table DR1. Location of cores collected during R/V “Maria S. Merian” cruise in 2007

Core latitude longitude Water depth

(m)

Coring device

343300 68°28,311’N 54°00,118’W 520 Multi-core 343310 68°38,869’N 53°49,486’W 852 Multi-core 343310 68°38,861’N 53°49,493’W 856 Gravity core 343320 68°51,879’N 53°19,719’W 862 Multi-core 343410 69°10,998’N 51°29,499’W 399 Multi-core

2. Age / depth model for multi-cores

A robust chronology has been developed for the multicore 343310 based on 210Pb and supported by 137Cs, 14C dates and additional sedimentological information.

2.1. 210

Pb / 137

Cs chronology

Samples for analysis were freeze-dried and ground to a fine powder in a ball mill. A known mass of

homogenised sample was packed into a 40 mm PTFE tube. The sample tube was then closed with a

rubber Supraseal and the seal painted with paraffin wax to form an air tight barrier to prevent 222Rn

gas escape. The tubes were then left to stand for at least 21 days to allow the unsupported 210Pb

activities to reach equilibrium with 222Rn.

Page 94: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

2

Figure DR1. Map of Disko Bugt showing location of additional multi-cores. Location of core DA00-02

(collected in 2000) is shown along with location of surface samples POR20 and POR21 collected in 1999.

WGC - West Greenland Current.

A low background hyper pure germanium well detector was used to perform the analysis. The

endcap well has a diameter of 10mm and a depth of 40mm. The germanium crystal has an active

crystal volume of 232cm3. A DSPEC Jnr 2.0 amplifier was a set to 8000 channels with the gain

adjusted to give a spectral range from 30 to 1500keV.

The energy, FWHM and Efficiency calibrations were performed using 3 sets of certified sealed

standards (Eckert & Ziegler Nuclitec GmbH) encapsulated into the same type of PTFE tubes as are

used for the samples. The individual calibration standards consist of 210Pb, 226Ra (for 214Pb) and a

mixed standard of 241Am, 137Cs, and 60Co (for 137Cs). The calibration standard activities give a dead

time of <7%. Sample count times were typically in excess of 450,000 seconds and counting errors

were typically less than 10%. Monthly background counts were taken and stripped from measured

spectra using the ratios of live times using EG&G GammaVision® software.

For multicore 343310, the relationship between log 210Pb activity and depth is almost linear, but the

full 210Pb inventory is not recovered. Because of this, the constant flux:constant sedimentation

model was fitted. The cumulative dry mass was used instead of depth in the model.

Page 95: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

3

Figure DR2. 210Pb (filled circles) and 137Cs (open circles) activities for multicore 343310.

137Cs activities in Arctic waters peaked about 1963 (Aarkrog et al., 1999), followed by a slow

decline as 137Cs from weapons testing fallout is augmented by reprocessing discharges and the

Chernobyl accident. The peak in the sediment may postdate 1963 because of bioturbation. The 210Pb model passes very close to the 137Cs peak (Fig. DR2).

2.2. AMS14

C chronology

AMS radiocarbon dates (Tables DR3 and DR4) were calibrated with the Marine09 (Reimer et al.,

2009) calibration curve using OxCal 4.1 (Bronk Ramsey, 2009). The marine reservoir offset was

estimated using Reimer and Reimer (2001). This database includes six entries for Disko Bugt.

Three samples are from Mytilus edulis collected in shallow water. These samples, measured in the

1970s, have a ΔR of less than 80 years (two are negative), with large uncertainties (Krog and

Tauber, 1974). A fourth sample of seal bones, has a ΔR of 75 years (Tauber, 1979). These shallow

water, or mobile, samples may not accurately reflect sub-surface conditions in Disko Bugt, so we

focus on the two dates from deeper (60-70m) water (McNeely et al., 2006). These two dates are

duplicates on the suspension feeder Astarte montagui and have a higher and more precise estimate

of the ΔR than the shallow water samples. We, therefore, use a value of 140 ± 30 yr for ΔR in this

study.

Radiocarbon dates younger than the reservoir age were assumed to indicate the incorporation of

bomb radiocarbon. Bomb radiocarbon in the North Atlantic began to rise rapidly in the late 1950s

Page 96: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

4

carbon are assumed to be from between 1950 and 1962, those with more than 100% modern carbon

are assumed to post-date 1962. For multicore 343310, the dates support the 210Pb model and the

choice of ΔR (Fig. DR3).

Table DR3. Multicore and box core (DA00-02 taken in 2000) radiocarbon dates.

core depth (cm)

Lab. code Material Mass mgC

14C date Calibrated AD

343310 1-3 Poz-30979 N. labradorica 0.4 101 ± 0.4 pMC NA

343310 5.5-6.5 Lu-8700 mix benthic forams 0.31 101.6 ± 0.7 pMC NA

343310 8.5-10.5 Lu-8701 mix benthic forams 0.17 101.3 ± 0.7 pMC NA

343310 12.5-14 Poz-30980 mix benthic forams 0.32 25 ± 35 BP NA

343310 13-17.5 Lu-8702 mix benthic forams 0.19 215 ± 60 BP NA

343310 22.5-24 Lu-8703 mix benthic forams 0.14 600 ± 60 BP 1950 - 1810

343310 26.5-27 Poz-30981 Shell 0.7 545 ± 30 BP 1950 - 1880

343310 26.5-27.5 Lu-8704 mix benthic forams 0.25 575 ± 60 BP 1950 - 1830

343310 29.5-31 Lu-8705 mix benthic forams 0.28 545 ± 60 BP 1950 - 1850

343310 31.5-32.5 Poz-30982 N. labradorica 0.3 565 ± 35 BP 1950 - 1860

343320 16 Poz-28421 mix benthic forams NA 101.8 ± 0.4 pMC NA

343320 29 Poz-28422 mix benthic forams NA 540 ± 25 BP 1950 - 1890

343320 50 Poz-28423 mix benthic forams NA 625 ± 35 BP 1950 - 1810

DA00-02 14 AAR10551 mix benthic forams NA Modern NA

DA00-02 36 KIA27912 mix benthic forams 0.5 510 ± 40 BP 1950 - 1890

343410 1-3 LuS-8476 mix benthic forams NA 30 ± 60 BP NA

343410 2.5-3 LuS-8475 Shell NA 101.7 ± 0.6 pMC NA

343410 14-15.5 LuS-8699 mix benthic forams NA 20 ± 60 BP NA

343410 34-36 LuS-8474 mix benthic forams NA 720 ± 60 BP 1830-1660

343300 25-28 Poz-35009 mix benthic forams NA 700 ± 30 BP 1810 – 1690

2.3. Other chronological evidence

2.3.1. Holocene Sedimentation rates

Long gravity cores are available from sites 343310. If the sedimentation rate in the multicore is

assumed to be equal to or similar to that in the upper metre of the gravity core, this can be used as a

check on the chronologies used on the multicores.

The chronology for gravity core 343310 (Table DR4 and Figure DR4) is based on 20 AMS 14C

dates calibrated with OxCal4.1 (Bronk Ramsey, 2009) and fitted with a mixed effect model. The

sedimentation rate for the upper metre of gravity core 343310 is 3.5 mm/yr, very close to the value

for the multi-core calculated based on the 210Pb model of 3.7 mm/yr.

Page 97: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

5

Figure DR3. Chronological data for multicore 343310, 210Pb constant flux:constant sedimentation - red line

(extrapolation dashed). Sedimentation rate based on adjacent long gravity core, blue line. The 137Cs peak is

marked by the ‘X’. Foraminiferal 14C dates - modern 14C dates are marked by a filled triangle, other 14C

dates are marked by black crosses.

Figure DR4. Age model developed from 14C radiocarbon dates from gravity core 343310 (see Table DR4

for details of individual 14C dates).

Page 98: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

6

Table DR4. Radiocarbon dates from gravity core 343310

depth (cm)

Lab. code Material Mass mgC

C14 age yr BP Calibrated yr BP 1950

Years (AD/BC)

6 - 10 Poz-33417 mix benthic forams NA 670 ± 30 BP 110 - 250 1840 - 1710

18 - 20 Poz-33412 mix benthic forams NA 660 ± 35 BP 90 – 240 1860 - 1710 AD

18 - 19 Poz-22357 Mollusc shell NA 685 ± 35 BP 120 - 260 1830 - 1690 AD

90 - 92 Poz-33453 mix benthic forams NA 910 ± 35 BP 360 - 470 1590 - 1480 AD

149 - 151 Poz-33411 mix benthic forams NA 1215 ± 30 BP 600 - 680 1350 - 1270 AD

204 - 205 Poz-30969 Mollusc shell NA 1385 ± 30 BP 730 - 840 1220 - 1270 AD

269 - 271 Poz-33413 mix benthic forams NA 1525 ± 35 BP 880 - 990 1070 - 960 AD

340 - 342 Poz-33488 mix benthic forams NA 1770 ± 50 BP 1130 - 1260 820 - 690 AD

400 - 401 Poz-33414 mix benthic forams NA 2075 ± 30 BP 1410 - 1530 540 - 420 AD

401 - 402 Poz-22359 Mollusc shell NA 2030 ± 30 BP 1380 - 1490 570 - 460 AD

457 - 458 Poz-30970 mix benthic forams NA 2200 ± 35 BP 1560 - 1690 390 - 260 AD

519 - 521 Poz-33416 mix benthic forams NA 2355 ± 35 BP 1750 - 1880 200 - 70 AD

600 - 601 Poz-30971 Mollusc shell NA 2735 ± 30 BP 2210 - 2330 260 - 380 BC

633 - 634 AAR-1699 Mollusc shell NA 2845 ± 37 BP 2330 - 2460 380 - 510 BC

691 - 692 Poz-30972 Mollusc shell NA 2955 ± 30 BP 2500 - 2660 550 - 710 BC

740 - 742 Poz-33418 mix benthic forams NA 3220 ± 35 BP 2780 - 2910 830 - 960 BC

782 - 783 Poz-30973 Mollusc shell NA 3430 ± 35 BP 3060 - 3210 1110 - 1260 BC

856 - 857 Poz-30974 Mollusc shell NA 3545 ± 35 BP 3220 - 3340 1270 - 1390 BC

855 - 857 Poz-33419 mix benthic forams NA 3540 ± 35 BP 3220 - 3340 1270 - 1390 BC

905 - 906 Poz-30975 Mollusc shell NA 3745 ± 25 BP 3440 - 3550 1490 - 1600 BC

2.3.2. Benthic foraminifera assemblage changes between 1999/2000 and 2007

A short core collected in 2000 did not contain the peak in warm water taxa found at the top of the

multicore collected from the same location in 2007 (Fig DR5, see section 3 below for definition

and justification of warm water group). Box core DA00-02 was taken at the site of multicore

343320 in 2000 (Fig DR1) and contains 23% warm water fauna at the surface (Fig. DR5).

Page 99: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

7

Multicore 343320 shows a rise in warm water fauna from 20% to > 80% at the top of the core. This

supports an age model correlating the rise in warm water fauna in multicore 343320 with the similar

rise in the other multicores.

50 40 30 20 10 0

depth [cm] - 343320-2

0

20

40

60

% w

arm

taxa

40 30 20 10 0

depth [cm] - DA00-02

2007

2000

1810-1950 1890-1950

1890-1950

Figure DR5. Comparison of warm water fauna collected from previous cruises in similar locations (see Fig.

S1 for locations). (a) Abundance of relatively warm water fauna from multi-core 343320 collected in 2007

(red) and box core DA00-02 collected in 2000 (yellow). Position (▼) and age of a calibrated 14C date is also

shown, position of modern 14C dates also shown (*).

3. Preparation and analysis of foraminifera

A standard volume of sediment (8ml) was soaked overnight then sieved at 63 μm. All foraminifera

were counted from the wet residue fraction coarser than 63 μm. Samples were counted wet to

reduce any loss caused by drying of the more fragile arenaceaous species as advocated and used in

previous studies (Scott and Vilks, 1991; Lloyd et al., 2005).

The fauna from multicore 343310 has calcareous and agglutinated foraminifera throughout, but

does show rather large changes in relative abundance of calcareous and agglutinated specimens.

Therefore we have plotted the relative abundance of foraminifera separately for the calcareous and

agglutinated fauna (Fig. DR6). The summary graphs of relatively warm (Atlantic Water) and

relatively cold (Arctic Water) indicators shown in Fig. DR6 for calcareous and agglutinated

specimens show the same trends. This supports our decision to combine calcareous and

agglutinated specimens and plot total assemblages in our interpretation of oceanic conditions. As

we present percentage data the graphs will be influenced by the ‘closed array’ issue (a rise in one

variable will automatically force a fall in another variable). However, the trends identified are

still significant.

Page 100: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

8

Figure DR6. Benthic foraminiferal assemblages from core 343310 split into calcareous only and

agglutinated only groups. Species shaded blue represent relatively cold water (Arctic Water) fauna, species

shaded red represent relatively warm water (Atlantic Water) fauna.

Benthic foraminifera are sensitive to a range of ecological parameters (Murray, 1991). In high

northern latitudes certain species are particularly sensitive to water mass characteristics, such as

temperature and salinity (e.g. Rytter et al., 2002; Sejrup et al., 2004; Lloyd, 2006). These areas are

strongly influenced by inflowing Atlantic sourced waters and, therefore, show a good correlation

between temperature and salinity – a stronger Atlantic water influence brings more saline and

warmer water, while a decrease leads to cooler and lower salinity water. There are certain benthic

foraminifera species that are indicative of warmer more saline Atlantic water and others that are

indicative of colder less saline Arctic water. We have used these characteristics to group species

into a relatively warm water group (Atlantic water indicator species) and cold water group (Arctic

water indicator species).

The ecological groupings used in this study are as follows;

Relatively warm water indicators: Adercotryma glomerata, Ammoscalaria pseudospiralis, Reophax fusiformis, Reophax pilulifer, Saccammina difflugiformis, Cassidulina reniforme, and Pullenia osloensis. The majority of these species are well documented as indicators of relatively

Page 101: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

9

warm water conditions in high latitude studies from fjords and shelf areas associated with Atlantic

water influence (Vilks, 1980; Mudie et al., 1984; Jennings and Helgadottir, 1994; Steinsund et al.,

1994; Hald and Steinsund, 1996; Hald and Korsun, 1997; Lloyd, 2006). We also include

Cassidulina reniforme, which has been associated with chilled Atlantic water (Hald and Steinsund,

1996; Guilbault et al., 1997) and Pullenia osloensis (associated with increased nutrient supply via

the Atlantic water flux, Wollenburg et al., 2004). These species are, therefore, correlated with

relatively warmer waters associated with a stronger Atlantic water influence in the WGC.

Relatively cold water indicators: Cuneata arctica, Spiroplectammina biformis, Elphidium

excavatum f. clavata and Islandiella hellenae. These species have been identified in many studies

of high latitude areas associated with relatively cold arctic waters or glaciomarine conditions (Vilks,

1964; Schafer and Cole, 1986; Jennings and Helgadottir, 1994; Korsun and Hald, 1998; Korsun and

Hald, 2000; Lloyd, 2006). Stainforthia feylingi is also included in this group. This is predominantly

an opportunistic species able to compete and bloom in environmental conditions with only episodic

food supply, low oxygen levels, but also low salinity levels – conditions in which most species are

unable to survive/ compete (Alve, 1994; Bernhard and Alve, 1996; Knudsen and Seidenkrantz,

1994). In this location S. feylingi, therefore, indicates conditions with reduced Atlantic water

influence – hence colder waters.

The trends in foraminiferal assemblage from multi-core 343310 are supported by similar trends

seen from the series of multi-cores studied (Fig. DR7). The actual percentage values vary due to

differences in modern conditions produced by different sample site water depths. In particular all

cores show a significant increase in warm water fauna towards the top of each core (shown by red

arrows in Fig. DR7). Multi-cores 343310, 343320 and 343410 also show a similar reduced

amplitude increase in warm water fauna lower down in each core (shown by red arrows in Fig.

DR7).

Page 102: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

10

DR7).

Figure DR7. Location of additional multicores along with summary foraminiferal curves. Abundance of

relatively warm (red) benthic foraminifera are shown from each core along with relatively cold fauna (blue)

from multicore 343310. Red arrows on the graphs highlight the peaks in warm water fauna that can be

correlated with the peaks identified from the main core (343310).

Page 103: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

11

Supplementary References

Aarkrog, A., Dahlgaard, H. and Nielsen, S.P., 1999, Marine radioactivity in the Arctic: a retrospect

of environmental studies in Greenland waters with emphasis on transport of 90Sr and 137Cs with

the East Greenland Current: The Science of the Total Environment, v. 237/238, p. 143.

Bronk Ramsey, C., 2009, Bayesian analysis of radiocarbon dates: Radiocarbon, v. 51, p. 337.

Hald, M. and Korsun, S., 1997, Distribution of modern benthic foraminifera from fjords of

Svalbard, European Arctic: Journal of Foraminiferal Research, v. 27, p. 101-122.

Hald, M. and Steinsund, P.I., 1996, Benthic foraminifera and carbonate dissolution in surface

sediments of the Barents- and Kara Seas: Ber. Polarforschung, v. 21, p. 2.

Harff, J. and cruise participants, 2008, Cruise report MSM 05/03 R/V “Maria S. Merian”:

Deglaciation history, coastal development, and environmental change during the Holocene in

western Greenland: Baltic Sea Research Institute Rostock, Germany.

Kalish, J.M., Nydal, R., Nedreaas, K.H., Burr, G.S. and Eine, G.L., 2001, A time history of pre- and

post-bomb radiocarbon in the Barents Sea derived from Arcto-Norwegian cod otoliths:

Radiocarbon, v. 43, p. 843-855.

Korsun, S. and Hald, M., 1998, Modern benthic foraminifera off Novaya Zemlya tidewater glaciers,

Russian Arctic: Arctic and Alpine Research, v. 30, p. 61-77.

Korsun, S. and Hald, M., 2000, Seasonal dynamics of benthic foraminifera in a glacially fed fjord

off Svalbard, European Arctic: Journal of Foraminiferal Research, v. 30, p. 251-271.

Krog, H. and Tauber, H., 1974, C-14 chronology of late- and post-glacial marine deposits in north

Jutland: Danmarks Geologiske Undersøgelse, Årbog, v. 1973, p. 93.

Jennings, A.E. and Helgadottir, G., 1994, Foraminiferal assemblages from the fjords and shelf of

eastern Greenland: Journal of Foraminiferal Research, v. 24, p. 123-144.

Lloyd, J.M., Park, L.A., Kuijpers, A. and Morros, M., 2005, Early Holocene palaeoceanography

and deglacial chronology of Disko Bugt, west Greenland: Quaternary Science Reviews, v. 24,

p. 1741-1755.

Lloyd, J.M., 2006, Modern distribution of benthic foraminifera from Disko Bugt, West Greenland:

Journal of Foraminiferal Research, v. 36, p. 315-331.

Lloyd, J.M., 2006, Late Holocene environmental change in Disko Bugt, west Greenland: interaction

between climate, ocean circulation and Jakobshavn Isbrae: Boreas, v. 35, p. 35-49.

McNeely, R., Dyke, A.S. and Southon, J.R., 2006, Canadian marine reservoir ages, preliminary data

assessment: Geological Survey Canada Open File, v. 5049, pp. 3.

Mudie, P.J., Keen, C.E., Hardy, I.E. and Vilks, G., 1984, Multivariate analysis and quantitative

paleoecology of benthic foraminifera in surface and Late Quaternary shelf sediments, northern

Canada: Marine Micropalaeontology, v. 8, p. 283–313

Page 104: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

12

Reimer, P.J. et al., 2009, IntCal09 and Marine09 radiocarbon age calibration curves, 0-50,000 years

cal BP: Radiocarbon, v. 51, p. 1111-1150.

Reimer, P.J. and Reimer, R.W., 2001, A marine reservoir correction database and on-line interface:

Radiocarbon, v. 43, p. 461-463.

Schafer, C.T. and Cole, F.E., 1986, Reconnaissance survey of benthonic foraminifera from Baffin

Fjord environments: Arctic, v. 39, p. 232-239.

Scott, D.B. and Vilks, G., 1991, Benthonic foraminifera in the surface sediments of the deep-sea

Arctic Ocean: Journal of Foraminiferal Research, v. 21, p. 20.

Seidenkrantz, M-S., Roncaglia, L., Fischel, A., Heilmann-Clausen, C., Kuijpers, A. and Moros, M.,

1998, Variable North Atlantic climate seesaw patterns documented by a late Holocene marine

record from Disko Bugt, West Greenland: Marine Micropaleontology, v. 68, p. 66-83.

Steinsund, P.I., Polyak, L., Hald, M., Mikhailov, V. and Korsun, S., 1994, Distribution of

calcareous benthic foraminifera in recent sediments of the Barents and Kara Sea. In Steinsund,

P.I., Benthic foraminifera in surface sediments of the Barents and Kara Seas: modern and late

Quaternary application. Ph.D. thesis, Department of Geology, Institute of Biology and

Geology, Univeristy of Tromsø.

Tauber, H., 1979, 14C activity of Arctic marine mammals. In: Radiocarbon dating, 95th

International radiocarbon conference, Proceedings, R. Berger and H.E. Suess, eds., Berkeley,

University of California Press, p. 447-452.

Vilks, G., 1980, Postglacial basin sedimentation on the Labrador Shelf: Geological Society of

Canada, Paper 78, p. 1-28.

Vilks, G., 1964, Foraminiferal study of East Bay, Mackenzie King Island, District of Franklin

(Polar Continental Shelf Project): Canada Geological Survey, Paper 64, p. 1-26.

Page 105: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

Summary and Outlook

97

6. Summary and Outlook

High-resolution studies of the benthic calcareous and agglutinated

foraminiferal fauna, presented within the frame of this thesis provide a long-term,

perspective of the Holocene palaeoceanographic evolution off West Greenland and

the interaction between ocean forcing with the Greenland ice sheet (GIS) through the

last 8 cal. ka BP. Changes in the relative abundance of Arctic (AW) and Atlantic

(AtlW) water species indicate relative changes in temperatures of the West

Greenland Current (WGC), which influences the oceanographic setting off West

Greenland and the Disko Bugt area. The palaeoceanographic variability of the WGC

is linked to the large-scale North Atlantic current system, via its tributaries, i.e. the

Irminger Current (IC) and the East Greenland Current (EGC). The presented

palaeoceanographic reconstructions highlight the strong control of ocean

temperatures on ice margin stability/position on a range of time scales form the mid

Holocene to the present day. Thus, warm ocean temperatures influence marine based

ice sheets, by enhancing basal melting, leading to increased glacier acceleration, and

thus triggering ice retreat. As for the mid Holocene (8-6 cal. ka BP), ‘thermal

optimum-like’ oceanographic conditions (5.5-3.5 cal. ka BP) and also for the most

recent past of the last few decades, ice retreat in Disko Bugt, West Greenland,

occurred in response to warming’s of the WGC and not exclusively in response to

increasing atmospheric temperatures. Therefore, ocean forcing displays an important

mechanism influencing ice sheet behavior (i.e. calving rates, glacier flow activity,

meltwater production). The interaction between ice and ocean needs to be considered

when predicting future ice sheet behavior and the sea level change involved.

The high-resolution benthic foraminiferal assemblage data sets, presented in

this study, provide information on qualitative ocean temperature variations, and thus

a solid baseline for future quantitative studies using geochemical trace element

analyses on foraminifera. Future work will involve stable isotopes δ18O and δ

13C

analyses, which will provide supportive information on temperature and productivity

variability in bottom waters (WGC) in Disko Bugt through time. To calibrate

geochemical proxies and benthic foraminiferal assemblage changes against

instrumental records, extensive investigations of modern benthic foraminiferal

distribution, accompanied by oceanographic measurements (e.g. temperature and

salinity) and stable isotope analysis are needed, in the Disko Bugt area and on the

West Greenland shelf. Within this thesis it has been shown, that oceanographic

Page 106: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

Summary and Outlook

98

variability (WGC) off West Greenland is influenced by relative changes in the water

mass contribution of the WGC’s source currents, the IC and the EGC. This relation

to the large-scale North Atlantic current system needs to be further investigated. Of

particular interest would be the identification of forcing (atmospheric versus oceanic

forcing) mechanism influencing: i) oceanographic variability in the IC and EGC

source regions, controlling water mass contribution to the WGC and ii) variability

during gradual mixing of the IC and EGC, i.e. formation of the WGC, south of

Greenland. The high-resolution records presented in this thesis are based on a sound

chronology. Therefore, future work could also involve time-series analyses, to

investigate periodicity at centennial time-scale in West Greenland sediments.

Page 107: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

References

99

References

Alley, R.B., Agustsdottir, A.M., and Fawcett, P.J., (1999) Ice-core evidence of late-

Holocene reduction in North Atlantic Ocean heat transport. Geophysical

Monograph 112: 301–312.

Andersen, O.G.N. (1981) The annual cycle of temperature, salinity, currents and

water masses in Disko Bugt and adjacent waters, West Greenland.

Meddelelserom Grønland, Bioscience 5: 1-36.

Andresen, C.S., McCarthy, D.J., Dylmer, C.V., Seidenkrantz, M.S., Kuijpers, A.,

Lloyd, J.M. (2011) Interaction between subsurface ocean waters and calving

of the Jakobshavn Isbræ during the late Holocene. The Holocene 21: 211-

224.

Bartholomew, I., Nienow, P., Mair, D., Hubbard, A., King, M.A., Sole, A. (2010)

Seasonal evolution of subglacial drainage and acceleration in a Greenland

outlet glacier. Nature Geoscience 3: 408–411.

Bâcle, J.E., Carmack, C., Ingram, R.G. (2002) Water column structure and c

irculation in the North Water during spring transition: April-July 1998.

Deep Sea Research 49: 4907-4925.

Bindschadler, R. (2006) Hitting the Ice Sheets Where It Hurts. Science 311:1720-

1721.

Box, J.E. (2002) Survey of Greenland instrumental temperature records: 1873-2001.

International Journal of Climatology 22: 1829-1847.

Box, J.E., Yang, L., Bromwich, D.H., Bai, L.-S. (2009) Greenland ice sheet surface

air temperature variability: 1840–2007. Journal of Climate 22: 4029–4049.

Buch, E. (1981) A Review of the oceanographic conditions in subarea O and 1 in the

decade 1970- 79. NAFO Symposium on Environmental conditions in the

Northwest Atlantic during 1970-79. NAFO Scientific Council Studies no.5

Buch E, Pedersen SA, Ribergaard MH (2004) Ecosystem Variability in West

Greenland Waters. Journal of Northwest Atlantic Fishery Science 34: 13-28.

Briner, J.P., Stewart, H.A.M., Young, N.E., Philipps, W., Losee, S. (2010) Using

proglacial-threshold lakes to constrain fluctuations of the Jakobshavn Isbræ

ice margin, western Greenland, during the Holocene. Quaternary Science

Reviews 29: 3861-3874.

Page 108: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

References

100

Corliss, B. H. (1985) Microhabitats of benthic foraminifera within deep sea

sediments. Nature 314, 435–438.

Corliss, B.H. (1991) Morphology and microhabitat preferences of benthic

foraminifera from the northwest Atlantic Ocean. Marine Micropaleontology

17: 195-236.

Dietrich, R., H. G. Maas, M. Baessler, A. Ruelke, A. Richter, E. Schwalbe, and P.

Westfeld (2007) Jakobshavn Isbrae, west Greenland: Flow velocities and tidal

interaction of the front area from 2 004 field observations. Journal of

Geophysical Research 112: F03S21, doi:10.1029/2006JF000601.

Duplessy, J.C., Invanova, E.V., Murdmaa, I.O., Paterne, M., Labyrie, L. (2001)

Holocene palaeoceanography of the northern Barents Sea and variations of

the northward heat transport by the Atlantic Ocean. Boreas 30: 2-16.

Geirsdóttir, A., Hardardóttir, J. and Andrews, J.T., (2000) Late-Holocene terrestrial

glacial history of Miki and I.C. Jacobsen Fjords,East Greenland. The

Holocene 10: 123–34.

Gray, S.T., Graumlich, L.J., Betancourt, J.L., Pederson, G.T. (2004) A tree-ring

based reconstruction of the Atlantic Multidecadal Oscillation since 1567 A.D.

Geophysical Research Letters 31: L12205, doi:10.1029/2004GL019932.

Hald, M., Steinsund, P.I. (1992) Distribution of surface sediment benthic

foraminifera in the southwestern Barents Sea. Journal of Foraminiferal

Research 22: 347-362

Hald, M., Steinsund, P. I., Dokken, T., Korsun, S., Polyak, L., Aspeli, R. (1994)

Recent late Quaternary distribution of Elphidium excavatum clavatum in

Arctic seas. Cushman Foundation Special Publication 32: 141–153.

Hald, M., Steinsund, P.I. (1996) Benthic foraminifera and carbonate dissolution in

surface sediments of the Barents and Kara Seas. Reports on Polar Research

212: 285-303. In: R. Stein, G.I. Ivanov, M.A. Levitan, K. Fahl (eds.) Surface-

sediment composition and sedimentary processes in the central Arctic Ocean

and along the Eurasian Continental Margin. Berichte zur Polarforschung

212: p. 285-307.

Hald, M., Korsun, S. (1997) Distribution of modern benthic foraminifera from fjords

of Svalbard, European Arctic. Journal of Foraminiferal Research 27: 101-

122.

Page 109: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

References

101

Hall, D.K., Williams, Jr, R.S., Luthcke, S.B., Digirolamo, N.E. (2008) Greenland ice

sheet surface temperature, melt and mass loss: 2000–2006. Journal of

Glaciology 54: 81–93.

Harff, J., Dietrich, R., Endler, R., Hentzsch, B., Jensen, J.B., Kuijpers, A., Krauss,

N., Leipe, T., Lloyd, J.M., Mikkelsen, N., Moros, M., Perner, K., Richter, A.,

Risgaard-Petersen, N., Rysgaard, S., Richter, T., Sandgren, P., Sheshenko, V.,

Snowball, I., Waniek, J., Weinrebe, W., Witkowski, A. (2007) Deglaciation

history, coastal development, and environmental change during the Holocene

in western Greenland. Cruise report R/V Maria S. Merian, cruise MSM

05/03.

Holland, D.M., Thomas, R.H., de Young, B. , Ribergaard, M.H., Lyberth, B. (2008)

Acceleration of Jakobshavn Isbræ triggered by warm subsurface ocean

waters. Nature Geoscience 1: 659–664.

Howat, I.M., Joughin, I., Tulaczyk, S., Gogineni, S. (2005) Rapid retreat and

acceleration of Helheim Glacier, east Greenland. Geophysical Research

Letters 32: L22502, doi:10.1029/2005GL024737.

Howat, I.M., Joughin, I., Scambos, T.A. (2007) Rapid changes in ice discharge from

Greenland outlet glaciers. Science 315: 1559-1561.

Howat, I.M., Joughin, I., Fahnestock, M., Smith, B.E., Scambos, T.A. (2008)

Synchronous retreat and acceleration of southeast Greenland glaciers 2000-

06: ice dynamics and coupling to climate. Journal of Glaciology 54: 646-660.

Jennings, A.E., Helgadóttir, G. (1994) Foraminiferal assemblages from the fjords and

shelf of eastern Greenland. Journal of Foraminiferal Research 24: 123-44.

Jennings, A.E., Knudsen, K.L., Hald, M., Hansen, C.V., Andrews, J.T. (2002) A

mid-Holocene shift in Arctic sea-ice variability on the East Greenland Shelf.

The Holocene 12: 49-58.

Jennings, A.E., Andrews, J., Wilson, L. (2011) Holocene environmental evolution of

the SE Greenland Shelf North and South of the Denmark Strait: Irminger and

East Greenland current interactions. Quaternary Science Reviews 30: 980-

998.

Joughin, I., Abdalati, W., Fahnestock, M. (2004) Large fluctuations in speed on

Greenland’s Jakobshavn Isbræ glacier. Nature 432: 608-610.

Page 110: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

References

102

Joughin, I., Das, S.B., King, M.A., Smith, B.E., Howat, I.M., Moon, T. (2008)

Seasonal speed up along the western flank of the Greenland Ice Sheet.

Science 320: 781–783.

Kaplan, M.R., Wolfe, A.P. (2006) Spatial and temporal variability of Holocene

temperature trends in the North Atlantic sector. Quaternary Research 65:

223-231.

Kaufman, D.S., Ager, T.A., Anderson, N.J., Anderson, P.M., Andrews, J.T., Bartlein,

P.J., Brubaker, L.B., Coats, L.L., Cwynar, L.C., Duvall, M.L., Dyke, A.S.,

Edwards, M.E., Eisner, W.R., Gajewski, K., Geirsdóttir, A., Hu, F.S.,

Jennings, A.E., Kaplan, M.R., Kerwin, M.W., Lozhkin, A.V., MacDonald,

G.M., Miller, G.H., Mock, C.J., Oswald, W.W., Otto-Bliesner, B.L.,

Porinchu, D.F., Rühland, K., Smol, J.P., Steig, E.J., Wolfe, B.B. (2004)

Holocene thermal maximum in the western Arctic (0–180°W). Quaternary

Science Reviews 23: 529-560.

Kaufman, D.S., Schneider, D.P., McKay, N.P., Ammann, C.A., Bradley, R.S., Briffa,

K.R., Miller, G.H., Otto-Bliesner, B.L., Overpeck, J.T., Vinther, B.M., and

Arctic Lakes 2k Project Members (2009) Recent warming reverses long-term

Arctic cooling. Science 325, 1236.

Kerr, R.A. (2000) A North Atlantic climate pacemaker for the centuries. Science

288: 1984–1985, doi:10.1126/science.288.5473.1984.

Korsun, S., Hald, M. (2000) Seasonal dynamics of benthic foraminifera in a glacially

fed fjord of Svalbard, European Arctic. Journal of Foraminiferal Research

30: 251-271.

Krawczyk, D., Witkowski, A., Moros, M., Lloyd, J.M., Kuijpers, A., Kierzek, A.

(2010) Late-Holocene diatom-inferred reconstruction of temperature

variations of the West Greenland Current from Disko Bugt, central West

Greenland. The Holocene 20: 659-666.

Kuijpers, A., Lloyd, J.M., Jensen, J.B., Endler, R., Moros, M., Park, L.A., Schulz, B.,

Gutfelt, J., Laier, T. (2001) Late Quaternary circulation changes and

sedimentation in Disko Bugt and adjacent fjords, central West Greenland.

Geology of Greenland Survey Bulletin 189: 41-47.

Loeblich, A., and Tappan, H. (1987) Foraminiferal Genera and their Classification

Vol. 1–2. Van Nostrand Reinhold, New York.

Page 111: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

References

103

Lloyd, J.M., Park, L.A., Kuijpers, A., Moros, M. (2005) Early Holocene

palaeoceanography and deglacial chronology of Disko Bugt, West Greenland.

Quaternary Science Reviews 24: 1741-1755.

Lloyd, J.M. (2006a) Modern distribution of benthic foraminifera from Disko Bugt,

West Greenland. Journal of Foraminiferal Research 36: 315-331.

Lloyd, J.M. (2006b) Late Holocene environmental change in Disko Bugt, west

Greenland: interaction between climate, ocean circulation and Jakobshavn

Isbrae. Boreas 35: 35-49.

Lloyd, J.M., Kuijpers, A., Long, A., Moros, M., Park, L.A. (2007) Foraminiferal

reconstruction of mid- to late-Holocene ocean circulation and climate

variability in Disko Bugt, West Greenland. The Holocene 17: 1079-1091.

Lloyd, J.M., Moros, M., Perner, K., Telford, R., Kuijpers, A., Jansen, E., McCarthy,

D.J. (2011) A 100 year record of ocean temperature control on the stability of

Jakobshavn Isbrae, West Greenland. Geology 39: 867-870.

Long, A.J., Roberts, D.H. (2002) A revised chronology for the 'Fjord Stade' moraine

in Disko Bugt, west Greenland. Journal of Quaternary Science 17: 561-579.

Long, A.J., Roberts, D.H., Dawson, S. (2006) Early Holocene history of the west

Greenland Ice Sheet and the GH-8.2 event. Quaternary Science Reviews 25:

904-922

Moros, M., Emeis, K., Risebrobakken, B., Snowball, I., Kuijpers, A., McManus,

J. and Jansen, E. (2004) Sea surface temperatures and ice rafting in the

Holocene North Atlantic: climate influences on northern Europe and

Greenland. Quaternary Science Reviews 23: 2113–2126.

Moros M, Andrews JT, Eberl DD, Jansen E (2006a) Holocene history of drift ice in

the northern North Atlantic: Evidence for different spatial and temporal

modes. Paleoceanography 21: doi:10.1029/2005PA001214.

Moros, M., Jensen, K.G., Kuijpers, A. (2006) Mid- to late-Holocene hydrological

and climatic variability in Disko Bugt, central West Greenland. The Holocene

16: 357-367.

Murray, J.W. (1991) Ecology and Palaeoecology of Benthic Foraminifera, p. 397.

Longman: Harlow and Essex.

Oppo, D.W., McManus, J.F., and Cullen, J.R. (2003) Palaeoceanography:

deepwater variability in the Holocene epoch. Nature 422: 277-278.

Page 112: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

References

104

Osterman, L.E., Nelson, A.R. (1989) Latest Quaternary and Holocene

paleoceanography of the eastern Baffin Island continental shelf, Canada:

benthic foraminiferal evidence. Canadian Journal of Earth Science 26: 2236-

2248.

Perner, K., Moros, M., Lloyd, J.M., Kuijpers, A., Telford, R.J., Harff, J. (2011)

Centennial scale benthic foraminiferal record of late Holocene oceanographic

variability in Disko Bugt, West Greenland. Quaternary Science Reviews 30:

2815-2826.

Perner, K., Moros, M., Jennings, A.E., Lloyd, J.M., Knudsen, K.L. Holocene

palaeoceanographic evolution of West Greenland. Submitted to The

Holocene.

Pritchard, H.D., Arthern, R.J., Vaughan, D.G., Edwards, L.A. (2009) Extensive

dynamic thinning on the margins of the Greenland and Antarctic ice sheets.

Nature 461: 971–975.

Polyakov, I., Bekryaev, R.V., Alekseev, G.V., Bhatt, U., Colony, R., Johnson, M.A.,

Walsh, D., and Makshtas, A.P. (2002) Variability and trends of air

temperature and pressure in the maritime Arctic, 1875–2000. Journal of

Climate 16: 2067–2077.

Ribeiro, S., Moros, M., Ellegaard, M., Kuijpers, A. (2012) Climate variability in

West Greenland during the past 1500 years: evidence from a high-resolution

marine palynological record from Disko Bay. Boreas 41: 68-83.

Ribergaard, M.H., Kliem, N., Jespersen, M. (2006) HYCOM for the North Atlantic

Ocean with special emphasis on West Greenland Water. Technical Report

06-0. www.dmi.dk/dmi/tr06-07

Ribergaard, M.H. (2011) Oceanographic Investigations off West Greenland 2010.

NAFO Scientific Council Documents11/001.

Rignot, E., Kanagaratnam, P. (2006) Changes in the velocity structure of the

Greenland Ice Sheet. Science 11: 986–990.

Risebrobakken, B., Jansen, E., Andersson, C., Mjelde, E., and Hevroy, K. (2003)

A high-resolution study of Holocene paleoclimatic and paleoceanographic

changes in the Nordic Seas. Paleoceanography 18: 1017–1031.

Rytter, F., Knudsen, K.L., Seidenkrantz, M.-S., Eiríksson, J. (2002) Modern

distribution of benthic foraminifera on the north Icelandic shelf and slope.

Journal of Foraminiferal Research 32: 217-244.

Page 113: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

References

105

Schafer, C.T., Cole, F.E. (1988) Distribution of benthic foraminifera: Their use in

delimiting local nearshore environments. Offshore Geology of Canada,

Eastern Canada. Geological Survey of Canada 1:103-108.

Schröder, C.J., Scott, D.B., Medioli, F.S. (1987) Can smaller foraminifera be ignored

in paleoenvironmental analysis? Journal of Foraminiferal Research 17: 101–

105.

Schröder, C.J., (1988) Subsurface preservation of agglutinated foraminifera in the

northwest Atlantic Ocean. In Rögel, F. and Gradstein, F.M. (eds.),

Proceedings, 2nd Workshop on Agglutinated Foraminifera, Vienna, Austria,

Abhandlungen Geologische Bundesansalt, v. 41, p. 325–336.

Schröder-Adams, C.J., Cole, F.E., Medioli, F.S., Mudie, P.J., Scott, D.B., Dobbin,

L., (1990) Recent Arctic shelf foraminifera. Seasonally ice-covered vs.

perennially ice-covered areas. Journal of Foraminiferal Research 20: 8–36.

Scott, D.B., Vilks, G., 1991. Benthonic foraminifera in the surface sediments of the

deep-sea Arctic Ocean. Journal of Foraminiferal Research 21: 20–38.

Scott, D.D., Schell, T., St-Onge, G., Rochon, A., Blasco, S. (2009) Foraminiferal

assemblage changes over the last 15,000 years on the Mackenzie-Beaufort

Sea Slope and Amundsen Gulf, Canada: Implications for past sea ice

conditions. Paleoceanography 24: PA2219, doi:10.1029/2007PA001575

Sha, L., Jiang, H., Knudsen, K.L. (2011) Diatom evidence of climatic change in

Holsteinsborg Dyb, west of Greenland, during the last 1200 years. The

Holocene. DOI: 10.1177/0959683611423684

Seidenkrantz, M.S., Roncaglia, L., Fischel, A., Heilmann-Clausen, C., Kuijpers, A.,

Moros, M. (2008) Variable North Atlantic seesaw patterns documented by a

late Holocene marine record from Disko Bugt, West Greenland. Marine

Micropaleontology 68: 66-83.

Sejrup, H. P., Birks, H. J. B., Klitgaard, K. D., Madsen, H. (2004) Benthonic

foraminiferal distributions and quantitative transfer functions for the

northwest European continental margin. Marine Micropaleontology 53: 197–

226.

Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K., Tignor, M.,

and Miller, H., eds.,( 2007) Contribution of Working Group I to the Fourth

Assessment Report of the Intergovernmental Panel on Climate Change:

Cambridge, U.K., Cambridge University Press, 996 p.

Page 114: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

References

106

Straneo, F., Hamilton, G.S., Sutherland, D.A., Staerns, L.A., Davidson, F., Hammill,

M.O., Stenson, G.B., Rosing-Asvid. A. (2010) Rapid circulation of warm

subtropical waters in a major glacial fjord in East Greenland. Nature

Geoscience 3: 182–186.

Thomas, R.H., Abdalati, W., Frederick, E., Krabill, W.B., Manizade, S., and Steffen,

K. (2003) Investigation of surface melting and dynamic thinning on

Jakobshavn Isbrae, Greenland. Journal of Glaciology 49: 231–239,

doi:10.3189/172756503781830764.

Thomas, R.H. (2004) Force-perturbation analysis of recent thinning and acceleration

of Jakobshavn Isbrae, Greenland. Journal of Glaciology 50: 57-66.

Van de Wal, R.S.W., Boot, W., van den Broeke, M.R., Smeets, C.J.P.P., Reijmer,

C.H., Donker, J.J.A., Oerlemans, J. (2008) Large and rapid melt induced

velocity changes in the ablation zone of the Greenland Ice Sheet. Science 321:

111–113.

Vilks, G. (1969) Recent foraminifera from the Canadian Arctic. Micropaleontology

15: 35- 60.

Vilks, G. (1989) Ecology of recent Foraminifera on the Canadian continental shelf of

the Arctic Ocean. The Arctic Seas, pp. 497-569.

Weidick, A., Oerter, H., Reeh, N., Thomsen, H.H., Thorning, L. (1990) The

recession of the Inland Ice margin during the Holocene climatic optimum in

the Jakobshavn Isfjord area of West Greenland. Palaeogeography,

Palaeoclimatology, Palaeoecology 82, 389–399.

Weidick, A. (1995) Greenland. In: Williams, R.S., Ferigno, J.G. (eds.), Satellite

Image Atlas of Glaciers of the World: Greenland. U.S. Geological Survey

Professional Paper 1386- C. United States Government Printing Office,

Washington. 141 pp.

Weidick, A., Mikkelsen, N., Mayer, C., Podlech, S. (2003) Jakobshavn Isbrae, West

Greenland: the 2002-2003 collapse and nomination for the UNESCO World

Heritage List. Geological Survey of Denmark and Greenland Bulletin 4: 85-

88.

Weidick, A., Bennike, O. (2007) Quaternary glaciation history and glaciology of

Jakobshavn Isbræ and the Disko Bugt region, West Greenland: a review.

Geological Survey of Denmark and Greenland Bulletin 14: 78 pp.

Page 115: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

References

107

Wollenburg, J.E., Kuhnt, W., Mackensen, A., (2001) Changes in Arctic Ocean

paleoproductivity and hydrography during the last 145 kyrs: the benthic

foraminiferal record. Paleoceanography 16: 65–77.

Wollenburg, J., Knies, J., Machensen, A. (2004) High-resolution palaeoproductivity

fluctuations during the last 24 kyr indicated by benthic foraminifera in the

marginal Arctic Ocean. Palaeogeography, Palaeoclimatology, Palaeoecology

204: 209-238.

Wollenburg, J., Mackensen, A., Kuhnt, W. (2007) Benthic foraminiferal biodiversity

respons to a changing Arctic palaeoclimate in the last 24.000 years.

Palaeogeography, Palaeoclimatology, Palaeoecology 255: 195-222.

Young, N.E., Briner, J.P., Stewart, H.A.M., Axford, Y., Csatho, B., Rood, D.H.,

Finkel, R.C. (2011) Response of Jakobshavn Isbræ, Greenland, to Holocene

climate change. Geology 39: 131-134.

Zwally, H.J., Abdalati, W., Herring, T., Larson, K., Saba, J., Steffen, K. (2002)

Surface melt-induced acceleration of Greenland ice-sheet flow. Science 297:

218–222.

Page 116: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

Erklärung

109

Erklärung

Hiermit erkläre ich, dass diese Arbeit bisher von mir weder an der Mathematisch-

Naturwissenschaftlichen Fakultät der Ernst-Moritz-Arndt-Universität Greifswald

noch einer anderen wissenschaftlichen Einrichtung zum Zwecke der Promotion

eingereicht wurde.

Ferner erkläre ich, dass ich diese Arbeit selbständig verfasst und keine anderen als

die darin angegebenen Hilfsmittel benutzt und keine Textabschnitte eines Dritten

ohne Kennzeichnung übernommen habe.

Greifswald, 31.01.2012

Page 117: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

110

Page 118: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

Acknowledgements/Danksagung

111

Acknowledgements/Danksagung

Ich möchte mich ganz herzlich bei allen bedanken, die zum Abschluss dieser

Arbeit beigetragen haben.

Professor Jan Harff danke ich für das Angebot dieser Promotionsarbeit, die ich mit

Freuden angenommen habe, für ihre Unterstützung, beginnend schon mit der

Ermöglichung der Teilnahme an der Forschungsreise nach Westgrönland, bis hin zu

Ihrer ausschöpfenden Betreuung in den vergangenen Jahren, in denen Sie mir auch

die Freiheit gelassen haben, meine wissenschaftliche Arbeit eigenverantwortlich

durchzuführen. Weiterhin danke ich Ihnen für die Begutachtung dieser Arbeit.

Matthias Moros danke ich für das Angebot dieser Promotionsarbeit, für die sehr gute

Betreuung, für die vielen Gespräche/Diskussionen, die offene Kritik und die vielen

ehrlichen Worte, die Motivation, Geduld, Förderung und für das entgegengebrachte

Vertrauen. Danke für alles!

Jerry Lloyd danke ich für die tatkräftige Unterstützung beim erlernen der

Bestimmung benthischer Foraminiferen, der schönen Zeit die ich in Durham

verbringen durfte, den vielen Gesprächen und der entgegengebrachten Geduld, der

Hilfe beim formulieren und Schreiben der Manuskripte und dieser Arbeit.

Karen Luise Knudsen und Anne Jennings danke ich vielmals für die vielen

Gespräche und Konsultationen, die mir sehr bei der Interpretation der Daten geholfen

haben. Ein Kurzbesuch in Århus oder auch am INSTAAR ist und wird für mich

immer ein Highlight bleiben.

Antoon Kuijpers, dir möchte ich ebenfalls herzlichst danken für die fachliche

Unterstützung und die vielen angenehmen Gespräche, seit wir uns auf der

Grönlandreise kennengelernt haben.

Ich danke ebenfalls dem Kapitän und der Mannschaft der FS ‚Maria S. Merian‘ für

ihre kompetente Arbeit an Deck. Bei Andreas Frahm und Michael Pötzsch möchte

ich mich für ihre einwandfreie Arbeit bei der Kerngewinnung bedanken. Thomas

Leipe möchte ich danken für fachliche Begleitung in den vergangen Jahren. Die

Zusammenarbeit mit dir ist immer eine Freude. Danke! Zudem, möchte ich mich bei

den Kollegen der Sektion ‚Marine Geologie‘ für die gute Zusammenarbeit bedanken.

Page 119: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

Acknowledgements/Danksagung

112

Dagmar Benesch und Sylvia Klein danke ich für ihre Hilfe im Labor, Rainer Bahlo

danke ich für die aufgewendeten Stunden am REM. Richard Telford danke ich für

die Unterstützung beim Erstellen der Altersmodelle.

Nicole Kowalski, Karoline Kabel, Anna Orlikowska, Jenny Mahnke und Nicola

Raschke danke ich ganz herzlichst für die vielen angenehmen Gespräche und

Diskussionen und Unterstützung im Verlauf der letzten drei Jahre. Danke!

Vor allem aber danke ich bei meiner Familie, insbesondere bei meinen Eltern, die

stets an den erfolgreichen Abschluss dieser Arbeit geglaubt und mir damit

Motivation und persönlichen Halt gegeben haben.

Page 120: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

Appendix

113

Appendix

Plate I, II, III: Scan electron microscopy photographs of selected benthic

foraminifer from the Disko Bugt area

Table I Benthic foraminiferal counts from multi core 343300-2-2

Table II Benthic foraminiferal counts from multi core 343310-2-2

Table III Benthic foraminiferal counts from multi core 343410-2-2

Table IV Benthic foraminiferal counts from gravity core 343300-3-1

Table V Benthic foraminiferal counts from gravity core 343310-5-1

Page 121: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

Appendix

114

- Plate I –

Scan electron microscope photographs of selected agglutinated foraminifera from Disko Bugt. 1)

Adercotryma glomerata (Brady, 1878); 2) Ammoscalaria pseudospiralis (Williamson, 1858); 3/4)

Cribrostomoides crassimargo (Norman, 1858); 5/6) Cribrostomoides sp.; 7) Cuneata arctica (Brady, 1881); 8)

(ventral view) Deuterammina ochracea (Williamson, 1858); 9) Eggerella advena (Cushman, 1922); 10)

Portatrochammina sp.; 11) Recurvoides turbinatus (Brady, 1881); 12) Reophax fusiformis (Williamson, 1858);

13) Reophax gracilis (Kiear); 14/15) Reophax pilulifer Bandy, 1884; 16) Saccammina diflugiformis (Brady,

1879); 17) Silicosigmoilina groenlandica (Cushman, 1933); 18) Spiroplectammina biformis (Parker & Jones,

1865); 19) Textularia earlandi Phleger, 1952; 20) Textularia torquata Parker, 1952.

Page 122: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

Appendix

115

- Plate II –

Scan electron microscope photographs of selected calcareous foraminifera from Disko Bugt. 1) Astrononion

gallowayi Loeblich & Tappan, 1953; 2) Bolivina pseudopuncata Höglund, 1947; 3) (dorsal), 4) (ventral) Buccella

frigida (Cushman, 1922); 5) (dorsal) 6) (ventral) Buccella frigida calida Cushman & Cole, 1930; 7) Cassidulina

neoteretis Seidenkrantz, 1995; 8) Cassidulina reniforme Nørvang, 1945; 9) (ventral view) Cibicides lobatulus

(Walker & Jacob, 1798); 10/11) Dentalina sp.; 12/13) Elphidium albiumbilicatum (Weiss, 1954); 14) Elphidium

bartletti Cushman, 1933; 15/16) Elphidium excavatum (Terquem) forma clavata Cushman, 1930; 17) Elphidium

halandese Brotzen, 1943; 18) (ventral view) Epistominella vitrea Parker, 1952; 19) Gladulina sp.; 20)

Globobulimina auriculata arctica (Höglund, 1954).

Page 123: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

Appendix

116

- Plate III –

Scan electron microscope photographs of selected calcareous foraminifera from Disko Bugt. 1)

Globobulimina auriculata arctica (Höglund, 1954), species with two apertures; 3/4/5) Islandiella helenae

Feyling-Hanssen & Buzas, 1976; 6) Islandiella norcrossi (Nørvang, 1945); 7) Melonis barleeanus (Williamson,

1858); 8/9) Nonionella tugida var. digitata Nørvang; 10) Nonionella auricula Heron-Allen & Earland, 1930; 11)

Nonionellina labradorica (Dawson, 1860); 12) Pullenia osloensis Feyling-Hanssen, 1954; 13) Quinqueloculina

sp.; 14) Stainforthia feylingi Knudsen & Seidenkrantz, 1994; 15) Stainforthia loeblichi (Feyling-Hanssen, 1954);

16) Trifarina fluens (Todd,

Page 124: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

Appendix- Table I Benthic foraminiferal countings from multi core 343300-2-2

117

Table I Benthic foraminiferal countings from multicore 343300-2-2

Dep

th (

cm

)

AD

Aderc

otr

ym

a

glo

mer

ata

Am

modis

cus

gu

llm

are

nsi

s

Am

mosc

ala

ria

pse

ud

osp

irali

s

Cri

bro

sto

moid

es

cra

ssim

ago

Cri

bro

sto

moid

es

jeff

reysi

Cri

bro

sto

moid

es

sp.

Cu

neata

arc

tica

Deu

tera

mm

ina

gri

sea

Deu

tera

mm

ina

och

race

a

Egg

ere

lla a

dve

na

Recu

rvoid

es

turb

inatu

s

Reo

ph

ax

gra

cil

is

Reo

ph

ax

fu

sifo

rmis

1 1996 25 2 2 0 0 1 31 0 100 40 5 7 26 2 1984 28 2 5 1 0 2 35 1 91 47 3 8 20 3 1973 35 0 4 2 0 0 36 0 91 51 4 5 12 4 1962 33 1 9 3 0 0 40 1 98 45 2 6 12 5 1950 35 1 6 10 0 0 31 0 80 40 1 5 7 6 1939 23 1 0 8 0 3 39 0 109 52 4 4 1 7 1928 22 1 2 5 0 2 30 0 124 60 5 4 2 8 1916 28 1 0 3 0 1 25 0 137 59 2 5 2 9 1905 25 0 0 0 0 0 27 1 143 59 3 3 1

10 1894 19 0 4 7 0 1 34 0 149 51 5 11 5 12 1871 24 0 2 5 0 1 29 1 134 60 4 2 8 20 1781 15 0 6 6 0 0 33 0 124 48 6 12 11 26 1713 18 0 4 3 0 1 28 0 78 46 8 3 0 27 1702 12 0 0 2 0 0 31 0 98 39 6 2 0 28 1690 28 0 1 6 2 1 26 0 62 43 5 9 0 30 1668 23 0 2 4 0 0 30 0 99 44 4 8 0

Dep

th (

cm)

AD

Reo

ph

ax

pil

uli

fer

Reo

ph

ax

sp

.

Sa

cca

mm

ina

dif

lug

ifo

rmis

Sp

iro

ple

cta

mm

ina

bif

orm

is

Textu

lari

a e

arl

an

di

Textu

lari

a t

orq

ua

ta

Tro

cha

mm

ina n

an

a

Po

rtatr

och

am

min

a

sp.

Ast

ron

on

ion

gall

ow

ayi

Boli

vin

a

pse

ud

op

un

ctata

Bu

ccel

la f

rig

ida

Ca

ssid

uli

na

neo

tere

tis

Ca

ssid

uli

na

ren

ifo

rme

1 1996 20 0 0 26 4 65 5 0 4 0 3 0 0

2 1984 16 0 2 26 0 66 2 1 6 0 3 0 0

3 1973 4 0 3 22 2 53 2 0 7 1 6 0 0

4 1962 2 0 2 22 0 30 3 0 3 1 3 0 0

5 1950 14 0 1 24 2 32 3 0 3 3 3 1 1

6 1939 7 0 0 20 0 39 0 0 1 0 0 0 2

7 1928 6 0 0 23 0 31 2 0 0 2 1 0 1

8 1916 3 0 2 16 0 35 0 0 1 5 3 0 0

9 1905 2 0 1 16 0 22 1 0 1 1 0 0 0

10 1894 2 0 1 14 1 21 0 0 0 2 3 0 0

12 1871 0 0 2 16 1 22 1 0 4 0 1 0 1

20 1781 0 0 1 18 1 20 1 0 22 11 21 0 7

26 1713 0 5 1 19 0 21 0 0 7 8 29 1 6

27 1702 2 2 1 12 0 23 0 0 9 5 32 1 4

28 1690 2 0 0 25 0 24 0 0 12 8 22 1 2

30 1668 2 0 2 27 0 22 0 0 15 18 24 0 4

Page 125: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

Appendix- Table I Benthic foraminiferal countings from multi core 343300-2-2

118

Dep

th (

cm

)

AD

Cib

icid

es

loba

tulu

s

Epis

tom

inell

a v

itre

a

Elp

hid

ium

alb

ium

bil

ica

tum

Elp

hid

ium

ex

cava

tum

f. c

lava

ta

Glo

bob

uli

min

a

au

ricu

lata

arc

tica

Isla

nd

iell

a h

ele

nae

Isla

nd

iell

a n

orc

ross

i

Mel

on

is b

arl

eea

nu

s

No

nio

nell

ina

lab

rado

rica

Pu

llen

ia o

slo

en

sis

Sta

info

rth

ia f

eyl

ing

i

Sta

info

rth

ia l

oeb

lich

i

Tri

fari

na f

luen

s

1 1996 1 0 0 1 5 0 0 3 19 3 0 0 1 2 1984 0 0 1 0 2 0 1 1 16 5 1 0 0 3 1973 1 1 1 1 2 1 0 2 21 16 0 3 0 4 1962 0 0 1 0 1 2 2 1 34 2 1 0 0 5 1950 1 0 0 0 5 2 3 2 88 2 1 1 2 6 1939 0 1 1 1 2 0 0 0 56 2 0 1 0 7 1928 0 0 0 0 2 0 0 0 33 1 0 0 0 8 1916 0 0 0 0 6 0 0 1 44 1 0 0 1 9 1905 0 0 0 0 2 2 0 1 12 0 0 0 1

10 1894 0 0 0 0 4 2 0 3 24 0 0 0 0 12 1871 0 0 0 0 1 2 0 4 24 1 0 1 2 20 1781 4 7 2 5 6 6 0 8 41 0 7 3 3 26 1713 6 5 4 5 5 3 0 21 38 6 8 5 6 27 1702 0 7 4 3 13 1 0 21 56 11 3 5 5 28 1690 3 5 1 0 8 4 1 14 51 13 10 2 1 30 1668 3 7 1 3 11 8 1 4 48 3 8 2 0

Dep

th (

cm)

AD

tota

l co

un

ts

No

. A

gglu

tin

ate

d

speci

men

s co

un

ted

No

. C

alc

are

ou

s

speci

men

s co

un

ted

No

. T

est

lin

ing

s

AW

to

tal

(%)

Atl

W t

ota

l (%

)

Ca

lca

reo

us

vs.

Ag

glu

tin

ate

d

speci

men

s

fora

min

ifer

al

con

cen

tra

tio

n (

test

per

ml)

1 1996 399 359 40 7 31,20 18,67 0,12 101,75 2 1984 392 356 36 4 32,00 19,25 0,11 88,89 3 1973 389 326 63 4 28,86 18,73 0,20 98,75 4 1962 360 309 51 9 25,20 16,80 0,17 76,88 5 1950 410 292 118 6 21,63 16,59 0,41 104,00 6 1939 377 310 67 3 26,05 9,21 0,22 63,33 7 1928 359 319 40 5 23,08 9,34 0,13 72,80 8 1916 381 319 62 9 19,39 9,18 0,20 78,40 9 1905 324 304 20 15 19,17 8,55 0,07 37,67

10 1894 363 325 38 5 18,92 8,38 0,12 37,00 12 1871 353 312 41 8 18,78 10,50 0,13 72,40 20 1781 455 302 153 11 17,72 8,44 0,51 103,04 26 1713 398 235 163 2 20,05 9,90 0,70 101,00 27 1702 410 230 180 4 17,18 7,64 0,78 119,71 28 1690 392 234 158 2 21,41 11,84 0,68 113,43 30 1668 427 267 160 8 20,69 8,51 0,60 108,75

Page 126: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

Appendix- Table II Benthic foraminiferal countings from multi core 343310-2-2

117

Table II Foraminiferal countings from multicore 343310-2-2

Dep

th (

cm

)

AD

Aderc

otr

ym

a

glo

mer

ata

Am

modis

cus

gu

llm

are

nsi

s

Am

mosc

ala

ria

pse

ud

osp

irali

s

Cri

bro

sto

moid

es

cra

ssim

arg

o

Cri

bro

sto

moid

es

jeff

reysi

Cri

bro

sto

moid

es

sp.

Cu

neata

arc

tica

Deu

tera

mm

ina

gri

sea

Deu

tera

mm

ina

och

race

a

Egg

ere

lla a

dve

na

Po

rtatr

och

am

min

a

sp.

Recu

rvoid

es

turb

inatu

s

0,5 2006 4 0 0 3 0 2 32 0 9 4 0 0 1 2005 15 2 1 3 0 1 60 2 36 20 0 0

1,5 2004 12 0 0 3 1 0 51 1 32 12 0 5 2 2002 15 0 0 6 1 1 64 3 39 21 0 8

2,5 2001 9 2 0 2 0 1 69 3 63 9 0 4 3 1999 13 2 0 5 1 0 64 1 52 22 0 10

3,5 1998 12 0 1 2 1 0 49 1 42 7 0 8 4 1997 13 0 0 4 1 0 66 4 54 8 0 8

4,5 1995 17 2 0 5 1 0 69 0 34 5 0 7 5 1994 12 1 0 5 0 2 73 1 26 7 2 4

5,5 1992 8 0 0 2 0 0 80 2 50 15 0 11 6 1991 16 1 0 1 0 2 88 3 31 20 0 8

6,5 1989 26 0 0 1 1 5 76 4 56 18 0 13 7 1988 12 4 0 8 0 2 85 3 47 19 1 18

7,5 1986 23 6 1 10 0 1 67 4 56 34 0 17 8 1985 17 0 1 10 0 4 124 5 62 23 0 21

8,5 1983 15 1 1 9 0 0 91 4 72 27 0 15 9 1982 13 3 0 5 0 2 74 1 67 18 0 10

9,5 1980 15 3 0 6 0 3 94 2 80 25 0 19 10,0 1978 16 1 0 8 5 8 88 4 37 10 0 12 10,5 1977 16 2 0 6 0 1 113 10 62 20 5 11 11,0 1975 8 0 0 6 0 3 100 2 45 7 2 7 11,5 1974 14 4 0 11 0 5 123 2 45 9 0 17 12,0 1972 20 0 0 11 0 0 123 5 70 23 0 14 12,5 1971 14 2 0 6 1 1 101 6 53 5 1 14 13,0 1969 17 0 0 3 0 2 109 2 70 12 0 13 13,5 1967 24 1 0 7 0 0 111 3 83 16 0 17 14,0 1966 19 2 0 4 0 0 123 2 59 16 1 16 14,5 1965 11 2 0 8 1 1 95 2 50 3 1 8 15,0 1963 13 2 0 7 0 0 111 2 59 17 0 9 15,5 1962 13 2 1 4 0 0 111 4 87 30 0 13 16,0 1960 18 1 0 6 0 4 83 3 53 16 0 4 16,5 1959 11 3 1 5 0 0 97 6 91 31 0 10 17,0 1957 12 3 1 16 0 0 115 5 52 30 0 8 17,5 1955 12 2 0 2 0 1 121 4 51 15 1 7 18,0 1954 25 3 0 14 0 0 132 6 87 40 0 10 18,5 1952 14 2 0 6 0 2 69 4 34 21 0 18 19,0 1950 18 1 1 6 1 0 93 6 54 26 0 11 19,5 1949 10 1 0 3 0 0 86 2 62 17 0 9 20,0 1947 11 0 0 7 0 5 110 1 38 15 1 12 20,5 1946 8 2 0 6 0 2 85 6 54 15 2 5 21,0 1944 17 1 2 4 0 0 115 4 40 12 0 18 21,5 1942 19 0 2 8 1 2 114 9 69 17 0 10 22,0 1941 19 2 0 4 0 2 99 1 32 8 0 7 22,5 1939 8 2 1 2 3 0 74 8 59 32 1 6 23,0 1938 26 1 1 5 3 1 74 5 71 30 0 7 23,5 1936 16 2 4 5 1 2 78 7 45 18 0 7 24,0 1934 13 0 3 5 0 3 61 2 57 28 3 8 24,5 1933 21 0 2 9 2 0 56 3 44 16 1 5 25,0 1931 16 2 1 4 0 4 51 4 36 16 0 2 25,5 1930 6 1 7 1 0 4 42 6 56 26 1 3 26,0 1928 12 3 1 8 1 2 31 8 59 26 0 2 26,5 1926 8 0 2 2 2 1 47 1 31 5 0 2 27,0 1925 9 1 4 5 0 0 46 0 32 10 0 4 27,5 1923 9 1 2 4 0 0 48 0 40 21 0 1 28,0 1922 5 0 0 2 0 0 58 10 29 16 0 0 28,5 1920 9 2 2 5 1 2 57 0 47 17 0 3 29,0 1919 13 1 5 4 1 1 53 1 29 17 0 0 29,5 1917 14 1 3 6 0 1 72 3 50 12 0 1 30,0 1915 12 0 2 14 3 1 66 1 56 16 0 0 30,5 1914 12 0 0 15 0 1 67 0 51 14 0 8 31,0 1912 8 1 0 12 0 1 67 1 58 10 0 8 31,5 1911 9 2 2 17 0 3 59 0 43 15 0 13 32,0 1909 7 0 0 29 0 0 81 0 33 5 0 17 32,5 1908 4 3 0 3 0 0 90 1 52 13 0 9

Page 127: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

Appendix- Table II Benthic foraminiferal countings from multi core 343310-2-2

118

Dep

th (

cm

)

AD

Reo

ph

ax

gra

cil

is

Reo

ph

ax

fusi

form

is

Reo

ph

ax

pil

uli

fer

Reo

ph

ax

sp

.

Sa

cca

mm

ina

dif

lug

ifo

rmis

Sp

iro

ple

cta

mm

ina

bif

orm

is

Textu

lari

a

ea

rla

nd

i

Textu

lari

a

torq

uata

Tro

ch

am

min

a

na

na

Ast

ron

on

ion

gall

ow

ayi

Boli

vin

a

pse

ud

op

un

ctata

Bu

cce

lla f

rig

ida

0,5 2006 13 31 2 0 0 5 0 6 2 0 46 0 1 2005 11 56 2 0 0 23 0 17 0 2 5 1

1,5 2004 7 53 4 0 0 32 0 21 5 3 26 5 2 2002 3 43 3 0 0 21 1 18 1 1 27 2

2,5 2001 9 58 5 0 0 21 0 17 2 1 38 6 3 1999 5 71 2 0 1 24 3 18 2 3 12 1

3,5 1998 10 49 1 0 0 25 1 17 3 1 20 5 4 1997 19 55 3 0 0 31 2 23 1 4 13 1

4,5 1995 12 79 2 0 0 26 4 13 1 2 15 1 5 1994 14 63 7 0 1 16 4 18 3 6 46 5

5,5 1992 12 27 2 0 1 37 1 31 2 5 10 1 6 1991 19 22 1 0 0 45 4 23 3 1 16 0

6,5 1989 9 33 0 0 0 34 12 23 3 5 29 2 7 1988 14 15 2 0 0 60 5 35 2 4 9 1

7,5 1986 8 17 2 0 0 67 4 26 0 3 4 1 8 1985 25 5 0 1 0 51 7 30 2 0 14 3

8,5 1983 15 3 1 0 0 50 5 24 1 1 3 0 9 1982 26 5 0 0 0 36 10 30 5 4 35 4

9,5 1980 8 4 3 0 0 55 14 37 4 0 2 0 10,0 1978 4 3 1 0 0 36 17 23 6 6 16 4 10,5 1977 15 2 2 0 0 67 9 33 5 0 2 0 11,0 1975 10 0 1 0 0 47 5 28 2 0 1 1 11,5 1974 13 6 2 0 0 37 13 29 2 5 6 4 12,0 1972 7 1 2 0 0 65 10 31 2 3 0 1 12,5 1971 8 3 1 0 0 26 18 20 3 10 17 2 13,0 1969 14 3 0 0 0 41 8 28 6 0 4 2 13,5 1967 11 3 2 0 0 55 6 19 1 0 4 2 14,0 1966 6 4 2 0 0 51 8 40 4 2 1 0 14,5 1965 11 4 1 0 0 22 9 12 2 13 16 2 15,0 1963 8 5 3 0 0 60 4 39 0 0 2 1 15,5 1962 4 4 1 0 0 55 3 33 4 3 0 1 16,0 1960 12 2 0 0 0 22 7 19 7 8 16 5 16,5 1959 8 5 1 0 0 63 6 30 1 0 0 0 17,0 1957 8 5 1 0 0 65 3 37 1 0 0 0 17,5 1955 8 10 0 0 0 24 11 21 10 8 22 3 18,0 1954 4 9 0 0 0 73 2 46 5 0 0 3 18,5 1952 5 2 1 0 0 30 12 21 6 2 14 5 19,0 1950 5 0 3 0 0 58 5 20 7 4 2 1 19,5 1949 4 2 0 0 0 52 5 20 2 2 7 5 20,0 1947 5 1 2 0 1 28 11 16 2 1 7 7 20,5 1946 3 8 2 0 0 49 1 29 0 1 11 4 21,0 1944 7 10 3 0 0 40 2 19 3 4 5 2 21,5 1942 8 6 7 0 0 46 0 16 1 1 3 0 22,0 1941 6 23 2 0 0 23 6 7 3 1 22 9 22,5 1939 16 6 5 0 0 45 2 19 0 7 15 7 23,0 1938 8 9 2 0 0 48 1 31 2 1 15 4 23,5 1936 5 30 4 0 0 18 0 11 5 2 34 5 24,0 1934 3 9 2 0 0 26 0 21 1 3 16 11 24,5 1933 13 35 5 0 0 32 0 25 1 2 9 6 25,0 1931 6 29 3 0 0 25 0 23 6 11 38 3 25,5 1930 8 20 2 0 0 50 3 21 2 6 12 12 26,0 1928 9 11 3 0 0 46 2 19 3 4 8 9 26,5 1926 3 14 0 0 0 30 3 15 1 8 26 12 27,0 1925 12 2 0 0 0 39 0 14 3 6 28 12 27,5 1923 8 0 2 0 0 46 0 17 3 7 28 12 28,0 1922 7 8 1 0 0 28 0 20 3 4 39 5 28,5 1920 4 5 0 0 1 40 3 20 5 5 20 3 29,0 1919 7 2 1 0 1 37 0 21 0 4 29 11 29,5 1917 21 13 1 0 0 32 0 30 3 1 21 7 30,0 1915 16 3 2 0 0 42 5 29 1 7 14 0 30,5 1914 13 2 1 0 0 45 0 30 2 2 17 3 31,0 1912 13 2 1 0 0 45 0 18 3 0 53 8 31,5 1911 15 1 0 0 0 44 4 35 1 2 13 2 32,0 1909 22 1 1 0 0 24 0 11 0 0 42 3 32,5 1908 12 18 2 0 0 29 0 21 0 3 38 9

Page 128: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

Appendix- Table II Benthic foraminiferal countings from multi core 343310-2-2

119

Dep

th (

cm

)

AD

Bu

cce

lla f

rig

ida

cali

da

Ca

ssid

uli

na

ren

ifo

rme

Cib

icid

es

lob

atu

lus

Ca

ssid

uli

na

neo

tere

tis

Elp

hid

ium

alb

ium

bil

ica

tum

Elp

hid

ium

ex

cavatu

m f

.

cla

vata

Glo

bob

uli

min

a

au

ricu

lata

arc

tica

Isla

nd

iell

a

hele

na

e

Mel

on

is

ba

rlee

an

us

No

nio

nell

a

turg

ida

f. dig

itata

No

nio

nell

ina

lab

rado

rica

Pu

llen

ia o

sloen

sis

0,5 2006 0 5 1 0 0 0 37 0 0 10 221 17 1 2005 0 3 1 0 0 0 7 3 0 0 86 2

1,5 2004 0 9 2 0 1 0 21 3 1 0 153 16 2 2002 0 6 6 0 7 1 7 2 0 6 142 11

2,5 2001 0 5 3 0 0 1 7 4 2 0 91 12 3 1999 0 12 3 2 3 1 6 10 0 0 92 10

3,5 1998 0 11 5 2 2 0 8 10 2 1 161 5 4 1997 0 5 5 0 2 2 5 3 4 6 74 6

4,5 1995 1 13 2 0 3 0 2 6 1 2 76 5 5 1994 0 19 12 0 0 0 11 9 0 6 103 5

5,5 1992 0 2 3 0 1 0 2 2 0 0 57 1 6 1991 0 7 5 0 2 1 3 3 0 2 62 5

6,5 1989 9 17 12 0 0 11 3 9 0 4 75 4 7 1988 0 8 2 0 0 0 1 5 0 3 39 0

7,5 1986 0 6 1 0 0 0 4 4 0 1 46 0 8 1985 1 5 5 0 2 0 6 3 0 3 86 2

8,5 1983 0 1 2 0 0 0 2 1 0 0 33 0 9 1982 2 19 16 0 0 1 2 12 0 2 83 1

9,5 1980 0 3 0 1 0 0 2 3 0 0 37 0 10,0 1978 0 7 11 0 4 0 7 6 0 2 77 0 10,5 1977 0 1 2 0 0 2 2 1 0 0 21 0 11,0 1975 0 0 0 0 0 1 2 1 0 0 9 0 11,5 1974 0 2 3 0 0 2 6 7 0 1 63 0 12,0 1972 0 0 3 0 0 0 1 1 2 0 20 1 12,5 1971 4 2 7 0 0 0 3 10 0 3 78 0 13,0 1969 0 1 1 0 0 0 2 3 0 0 45 0 13,5 1967 0 0 3 0 1 0 5 6 1 2 65 0 14,0 1966 0 0 3 0 0 0 1 2 0 0 46 0 14,5 1965 3 5 8 0 0 0 5 4 0 0 80 5 15,0 1963 0 1 0 0 0 0 0 4 0 0 31 1 15,5 1962 0 0 2 0 0 1 0 3 0 0 21 1 16,0 1960 1 4 16 1 0 2 5 14 0 1 60 4 16,5 1959 0 0 0 0 0 0 0 1 0 0 6 0 17,0 1957 0 0 0 0 0 0 0 0 0 0 6 0 17,5 1955 0 12 14 0 0 3 4 8 0 1 27 5 18,0 1954 2 0 1 0 0 0 1 3 0 0 13 0 18,5 1952 2 13 15 0 0 4 2 9 0 2 49 2 19,0 1950 1 1 1 0 1 2 1 3 0 2 26 0 19,5 1949 0 4 6 0 5 3 3 7 2 2 44 4 20,0 1947 2 12 8 0 2 1 7 6 0 1 96 2 20,5 1946 0 3 5 0 1 1 5 0 0 0 53 4 21,0 1944 0 3 2 0 0 0 4 5 0 0 74 1 21,5 1942 0 2 1 0 0 2 2 4 0 0 32 0 22,0 1941 5 12 8 0 3 4 7 19 0 2 90 3 22,5 1939 0 4 8 0 2 2 10 4 0 10 70 8 23,0 1938 2 2 5 0 4 3 3 6 2 4 58 4 23,5 1936 2 16 16 0 9 3 14 26 4 2 131 18 24,0 1934 2 2 7 0 7 0 19 7 2 5 109 16 24,5 1933 1 5 9 0 3 5 18 12 5 6 94 14 25,0 1931 5 3 15 0 6 0 10 22 1 1 96 18 25,5 1930 1 3 7 3 2 0 8 12 9 6 93 13 26,0 1928 3 2 11 0 3 0 17 4 4 3 77 19 26,5 1926 0 15 14 0 4 3 16 15 0 7 106 22 27,0 1925 3 8 11 2 7 4 15 9 0 6 132 17 27,5 1923 3 9 15 1 12 3 18 14 1 10 136 30 28,0 1922 7 6 13 0 4 2 17 13 0 16 141 28 28,5 1920 4 4 4 1 5 1 7 5 1 6 93 22 29,0 1919 0 10 16 0 5 0 13 7 2 6 93 23 29,5 1917 1 11 8 0 0 2 12 11 2 17 98 20 30,0 1915 0 0 4 1 1 1 4 4 0 5 71 5 30,5 1914 1 4 4 0 1 2 4 7 1 4 73 1 31,0 1912 1 2 7 0 3 1 16 3 1 12 94 2 31,5 1911 1 1 4 0 0 0 13 2 0 2 74 3 32,0 1909 2 7 9 3 5 2 16 5 0 9 113 0 32,5 1908 2 3 15 0

1 7 10 4 1 115 9

Page 129: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

Appendix- Table II Benthic foraminiferal countings from multi core 343310-2-2

120

Dep

th (

cm

)

AD

Sta

info

rth

ia

feyli

ngi

Sta

info

rth

ia

loebli

ch

i

Tri

fari

na f

luen

s

tota

l co

un

ts

No

. A

gglu

tin

ate

s

specim

en

s

co

un

ted

No

. C

alc

areo

us

specim

en

s

co

un

ted

No

. T

est

lin

ing

s

AW

to

tal

(%)

Atl

W t

ota

l (%

)

Ca

lca

reo

us

vs.

Ag

glu

tin

ate

s

specim

en

s

fora

min

ifera

l

co

nce

ntr

ati

on

(test

per m

l)

0,5 2006 11 4 0 461 113 348 2 10,3 11,8 3,12 93,6 1 2005 0 0 1 360 249 111 5 23,6 17,5 0,46 91,3

1,5 2004 6 0 2 487 239 248 2 19,8 16,7 1,04 123 2 2002 5 2 1 474 248 226 2 21 13,1 0,93 120

2,5 2001 13 3 0 457 274 183 3 24,3 17,4 0,69 115 3 1999 7 4 2 460 296 164 4 24,7 20,9 0,57 118

3,5 1998 11 2 1 474 229 245 3 21,4 14,3 1,08 121 4 1997 7 3 2 431 292 139 8 26,3 15,5 0,5 111

4,5 1995 2 1 0 408 277 131 3 26,8 24,1 0,48 103 5 1994 26 0 0 507 259 248 6 24,8 18,4 0,97 172

5,5 1992 10 0 0 375 281 94 6 36,3 8,55 0,34 77,2 6 1991 7 1 0 405 287 118 7 36,5 8,41 0,41 104

6,5 1989 41 4 0 535 314 221 4 33,6 9,87 0,73 137 7 1988 8 0 0 412 332 80 7 42,3 6,01 0,25 104

7,5 1986 5 0 1 419 343 76 3 38,2 6,21 0,24 105 8 1985 24 0 0 544 388 156 7 40,3 2,53 0,41 139

8,5 1983 1 1 0 378 334 44 4 41,4 1,57 0,15 95,5 9 1982 35 2 0 521 305 216 3 32,1 4,77 0,73 131

9,5 1980 4 0 0 424 372 52 5 41 2,58 0,15 107 10,0 1978 39 3 0 458 279 179 2 38,5 2,34 0,67 118 10,5 1977 5 0 1 416 379 37 5 47,5 1,19 0,12 105 11,0 1975 1 0 0 289 273 16 2 54 0,34 0,07 72,8 11,5 1974 16 2 0 447 332 115 6 44,6 2,21 0,36 113 12,0 1972 7 0 0 423 384 39 5 49 0,93 0,11 107 12,5 1971 64 1 1 486 283 203 3 43,8 1,22 0,74 123 13,0 1969 20 0 2 408 328 80 9 44,5 0,96 0,25 105 13,5 1967 9 1 1 458 359 99 5 42,7 1,08 0,29 116 14,0 1966 1 0 0 413 357 56 5 46,1 1,43 0,16 83,8 14,5 1965 46 1 0 432 243 189 2 40 3,42 0,79 87,6 15,0 1963 11 0 0 390 339 51 5 49,4 2,53 0,16 79 15,5 1962 2 0 1 404 369 35 3 45,2 1,71 0,11 102 16,0 1960 41 2 2 443 257 186 9 35,9 2,38 0,73 116 16,5 1959 0 0 0 376 369 7 1 45,6 1,87 0,04 93,8 17,0 1957 0 0 0 368 362 6 1 51,4 1,91 0,03 91,5 17,5 1955 79 3 1 490 300 190 15 47,6 5,31 0,65 127 18,0 1954 2 0 0 481 456 25 2 45,8 1,88 0,07 120 18,5 1952 57 6 0 424 247 177 11 42,2 4,06 0,76 111 19,0 1950 18 1 0 378 315 63 8 47,7 1,29 0,22 97 19,5 1949 18 4 0 387 275 112 5 44,1 2,52 0,43 99,3 20,0 1947 17 2 1 438 266 172 5 38,8 4,02 0,65 149 20,5 1946 23 4 0 389 277 112 5 41,2 4,29 0,44 99 21,0 1944 5 2 2 404 297 107 8 44,3 4,6 0,38 138 21,5 1942 2 0 0 385 335 50 5 45,4 4,34 0,18 131 22,0 1941 40 3 0 473 244 229 7 39,8 8,28 0,95 121 22,5 1939 14 1 1 451 289 162 6 31,5 5,21 0,59 115 23,0 1938 15 2 0 454 325 129 5 32,7 3,85 0,42 117 23,5 1936 35 8 1 584 258 326 3 28,1 12,1 1,29 198 24,0 1934 1 2 0 453 245 208 6 22,2 6,88 0,86 116 24,5 1933 7 2 0 467 270 197 3 24,6 12,8 0,75 158 25,0 1931 11 9 0 470 228 242 3 23 11,2 1,12 121 25,5 1930 7 5 0 453 259 194 6 24,5 10,3 0,79 155 26,0 1928 9 5 0 420 246 174 6 21,5 8,41 0,77 107 26,5 1926 29 4 0 446 167 279 5 27,5 11,6 1,7 115 27,0 1925 8 2 1 453 181 272 4 23,8 7,14 1,51 154 27,5 1923 16 4 1 520 202 318 3 24,3 8,37 1,59 105 28,0 1922 40 4 0 522 187 335 3 26,7 8,13 1,87 176 28,5 1920 23 10 0 430 223 207 3 28,9 7,83 0,97 149 29,0 1919 8 0 0 423 194 229 2 24,8 9,91 1,18 141 29,5 1917 30 1 0 506 263 243 3 28,9 9,36 0,94 128 30,0 1915 8 2 1 395 269 126 5 30,1 3,23 0,48 101 30,5 1914 8 0 0 393 261 132 5 34,3 2,01 0,51 99,8 31,0 1912 49 1 0 500 248 252 1 34,3 1,39 1,03 126 31,5 1911 8 0 1 389 263 126 5 32,1 1,79 0,48 98 32,0 1909 36 1 1 487 231 256 3 33,5 2,43 1,1 123 32,5 1908 27 1 0 504 257 247 3 32,8 6,32 0,97 127

Page 130: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

Appendix- Table III Benthic foraminiferal countings from multi core 343410-2-2

121

Table III Foraminiferal countings from multicore 343410-2-2

Dep

th (

cm

)

AD

Aderc

otr

ym

a

glo

mer

ata

Am

modis

cus

gu

llm

are

nsi

s

Am

mod

scala

ria

pse

ud

osp

irali

s

Cri

bro

sto

moid

es

cra

ssim

ago

Cri

bro

sto

moid

es

jeff

reysi

Cu

neata

arc

tica

Deu

tera

mm

ina

gri

sea

Egg

ere

lla a

dve

na

Recu

rvoid

es

turb

inatu

s

Reo

ph

ax

gra

cil

is

Reo

ph

ax

fu

sifo

rmis

Reo

ph

ax

pil

uli

fer

0,5 2006 48 3 0 5 0 36 9 1 2 2 38 27

1 2004 47 0 0 0 0 33 5 1 5 1 15 9

1,5 2003 79 3 0 5 0 24 15 0 11 3 15 13

2 2001 94 1 0 6 0 42 4 1 13 0 8 6

2,5 2000 104 2 1 13 0 51 20 0 13 2 13 11

3 1998 93 4 0 11 0 80 21 0 16 1 6 10

3,5 1997 114 2 1 7 0 26 9 3 14 2 5 9

4 1995 115 2 0 9 0 41 13 0 10 0 5 11

4,5 1993 110 7 0 9 0 48 14 0 13 0 11 7

5 1992 127 0 0 14 0 39 6 1 13 1 16 20

5,5 1990 100 3 0 4 0 57 11 2 7 3 6 10

6 1988 127 2 1 12 0 56 9 1 15 1 8 14

6,5 1987 139 3 1 17 0 65 15 0 13 1 16 19

7 1985 117 3 0 3 0 21 15 1 19 0 27 23

7,5 1983 116 1 0 10 0 36 9 0 11 2 13 16

8 1982 104 3 0 7 0 37 19 2 14 4 16 13

8,5 1980 143 1 0 9 0 42 13 0 21 0 8 21

9 1979 124 0 0 10 0 44 4 4 22 0 20 13

9,5 1977 130 2 0 13 0 76 12 1 18 2 56 12

10 1975 102 0 0 6 0 45 6 2 21 4 24 15

10,5 1974 111 3 0 17 0 42 4 0 17 2 35 22

11 1972 129 0 1 16 0 30 7 0 15 3 55 27

11,5 1971 133 0 0 12 0 25 3 1 14 1 25 35

12 1969 128 2 0 7 0 29 10 0 7 2 10 12

12,5 1968 137 3 0 13 0 41 14 0 11 0 10 13

13 1966 154 1 0 7 0 35 4 0 11 1 8 10

13,5 1964 162 0 0 13 0 46 7 2 9 1 7 8

14 1963 151 4 0 13 0 32 8 0 17 0 6 11

14,5 1961 152 1 0 19 0 40 7 0 10 2 5 24

15 1959 127 4 0 12 0 40 6 0 17 0 8 13

15,5 1958 140 3 0 7 0 65 22 0 17 4 5 20

16 1956 142 1 0 24 0 17 4 0 23 2 2 25

16,5 1954 131 3 0 11 0 14 7 0 26 1 3 23

17 1952 135 2 0 16 0 10 7 0 21 0 1 16

17,5 1950 142 1 0 9 0 13 22 1 19 0 4 26

18 1948 156 2 0 8 0 17 7 0 21 0 5 18

18,5 1946 137 3 0 5 0 53 39 0 22 12 7 3

19 1944 117 1 0 11 0 34 9 0 15 2 8 7

19,5 1942 154 1 0 24 0 13 3 1 29 0 11 21

20 1940 103 0 0 15 0 38 7 1 35 1 5 13

Page 131: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

Appendix- Table III Benthic foraminiferal countings from multi core 343410-2-2

122

Dep

th (

cm

)

AD

Reo

ph

ax

sp

.

Sa

cca

mm

ina

dif

lug

ifo

rmis

Sil

ico

sig

moil

ina

gro

en

lan

dic

a

Sp

iro

ple

cta

mm

ina

bif

orm

is

Textu

lari

a e

arl

an

di

Textu

lari

a t

orq

ua

ta

Tro

ch

am

min

a n

an

a

Lag

en

am

ina

sp

.

Po

rtro

ch

am

min

a s

p.

Ast

ron

on

ion

gall

ow

ayi

Boli

vin

a

pse

ud

op

un

ctata

Bu

cce

lla f

rig

ida

0,5 2006 0 0 0 4 6 16 23 8

0 6 52

1 2004 0 0 0 12 15 39 42 7 0 2 3 14

1,5 2003 0 0 5 8 12 38 47 6 2 0 1 8

2 2001 0 0 4 14 19 31 47 8 3 0 1 8

2,5 2000 0 1 2 23 11 46 54 11 8 0 2 3

3 1998 0 2 3 32 9 49 49 8 19 1 5 11

3,5 1997 0 0 0 31 31 52 69 7 15 0 6 4

4 1995 0 0 1 25 25 55 61 16 11 0 9 9

4,5 1993 0 1 5 23 15 45 41 13 10 0 13 5

5 1992 0 8 4 28 26 41 42 7 8 0 7 3

5,5 1990 0 2 6 27 16 46 49 6 8 0 2 7

6 1988 0 7 1 22 23 43 45 6 14 0 9 4

6,5 1987 0 0 11 19 21 59 63 32 4 2 11 8

7 1985 0 7 4 26 42 55 60 5 14 0 1 2

7,5 1983 0 4 4 28 76 78 71 6 6 0 1 2

8 1982 0 0 3 34 54 74 58 5 8 0 0 0

8,5 1980 0 6 6 38 45 64 58 2 7 0 1 0

9 1979 0 2 3 34 39 49 44 3 9 0 1 0

9,5 1977 0 11 1 17 35 47 47 10 2 1 5 5

10 1975 0 2 4 49 25 65 57 4 9 0 1 2

10,5 1974 0 1 3 28 49 75 38 10 4 0 0 3

11 1972 0 10 1 29 44 47 61 13 5 0 0 1

11,5 1971 0 4 2 18 41 40 52 8 3 0 0 2

12 1969 0 5 5 16 39 78 37 3 7 0 0 0

12,5 1968 0 4 4 23 45 65 54 11 8 0 1 1

13 1966 0 3 3 18 15 49 66 6 5 0 0 0

13,5 1964 0 6 9 17 14 32 61 14 9 0 1 1

14 1963 0 2 4 20 19 40 68 8 7 0 1 3

14,5 1961 0 8 2 11 17 22 48 9 11 0 3 2

15 1959 0 1 2 9 18 25 67 22 14 4 1 10

15,5 1958 0 5 7 6 23 35 61 12 4 1 5 7

16 1956 0 9 5 8 10 15 53 9 7 0 2 6

16,5 1954 0 2 5 8 24 35 71 3 13 0 7 3

17 1952 0 2 2 11 24 37 72 4 12 5 5 6

17,5 1950 0 3 5 4 18 47 57 8 8 0 2 10

18 1948 0 0 1 12 13 29 79 3 3 3 3 3

18,5 1946 4 1 2 15 25 53 70 11 3 2 9 3

19 1944 0 1 3 29 17 57 50 5 3 2 2 2

19,5 1942 0 0 3 28 8 27 52 6 1 3 2 11

20 1940 0 1 0 24 18 58 56 1 5 1 6 1

Page 132: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

Appendix- Table III Benthic foraminiferal countings from multi core 343410-2-2

123

Dep

th (

cm

)

AD

Ca

ssid

uli

na

neo

tere

tis

Ca

ssid

uli

na

ren

ifo

rme

Cib

icid

es

loba

tulu

s

Elp

hid

ium

ex

cavatu

m f

. cla

vata

Glo

bob

uli

min

a

au

ricu

lata

arc

tica

Isla

nd

iell

a h

ele

nae

Mel

on

is b

arl

eea

nu

s

No

nio

nell

ina

lab

rado

rica

No

nio

nell

a t

urg

ida

f. d

igit

ata

Pu

llen

ia o

slo

en

sis

Sta

info

rth

ia f

eyl

ing

i

Sta

info

rth

ia

loebli

ch

i

0,5 2006 0 0 0 1 5 4 5 54 0 9 41 3

1 2004 0 0 0 0 3 2 9 19 2 2 21 1

1,5 2003 0 0 0 0 6 1 8 54 0 0 9 0

2 2001 0 0 0 1 2 0 4 17 0 0 8 1

2,5 2000 0 0 0 0 2 0 1 10 0 0 15 3

3 1998 0 0 0 0 1 1 5 21 1 2 23 0

3,5 1997 0 0 0 0 1 1 7 7 0 0 6 1

4 1995 0 0 0 0 1 2 13 14 1 1 13 3

4,5 1993 0 1 0 0 0 1 11 14 2 0 22 1

5 1992 0 0 0 0 0 1 18 9 0 0 12 0

5,5 1990 0 0 0 1 0 0 9 5 0 0 17 3

6 1988 0 1 0 1 0 1 11 8 0 0 14 1

6,5 1987 0 2 0 0 0 4 10 19 2 2 11 2

7 1985 0 0 0 0 0 0 16 1 0 0 1 1

7,5 1983 0 0 0 0 1 0 8 0 0 0 2 0

8 1982 1 0 0 0 0 1 5 0 0 0 1 1

8,5 1980 0 0 0 0 0 0 6 0 0 0 0 0

9 1979 0 0 0 0 0 5 0 0 0 0 0

9,5 1977 0 0 0 0 0 9 11 17 2 3 28 11

10 1975 0 0 0 0 0 0 7 0 0 0 4 0

10,5 1974 0 0 0 0 0 1 3 2 0 0 0 0

11 1972 0 0 0 0 0 0 0 0 0 0 0 0

11,5 1971 0 0 0 0 0 0 0 0 0 0 0 0

12 1969 0 0 0 0 0 0 1 2 0 0 0 0

12,5 1968 0 0 0 0 0 0 8 4 0 0 1 0

13 1966 0 0 0 0 0 0 1 2 0 0 0 0

13,5 1964 0 0 0 0 0 0 3 6 0 0 2 0

14 1963 0 0 0 0 0 1 6 5 0 0 2 2

14,5 1961 0 0 0 0 0 0 10 4 0 0 0 0

15 1959 0 0 1 0 0 0 11 6 2 0 10 3

15,5 1958 0 2 0 0 1 0 20 5 0 3 15 4

16 1956 0 1 0 0 0 2 8 7 1 0 4 2

16,5 1954 0 0 0 0 0 1 10 5 1 2 10 0

17 1952 0 1 0 0 0 8 4 3 0 2 14 0

17,5 1950 0 0 0 0 0 4 15 3 5 6 12 1

18 1948 0 0 0 0 1 12 10 3 3 2 12 4

18,5 1946 0 0 0 0 1 16 3 0 1 0 25 0

19 1944 0 0 0 0 1 9 9 1 0 0 14 1

19,5 1942 0 0 0 0 1 15 1 0 0 1 9 2

20 1940 0 0 0 1 1 10 3 0 0 1 10 2

Page 133: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

Appendix- Table III Benthic foraminiferal countings from multi core 343410-2-2

124

Dep

th (

cm

)

AD

Tri

fari

na f

luen

s

tota

l co

un

ts

No

. A

gglu

tin

ate

s

specim

en

s co

un

ted

No

. C

alc

areo

us

specim

en

s co

un

ted

No

. T

est

lin

ing

s

AW

to

tal

(%)

Atl

W t

ota

l (%

)

Ca

lca

reo

us

vs.

Ag

glu

tin

ate

s

specim

en

s

fora

min

ifera

l

co

nce

ntr

ati

on

(te

st

per m

l)

0,5 2006 2 590 228 362 3 26,02 29,40 0,89 103,8

1 2004 1 494 231 263 6 38,61 23,10 1,67 79

1,5 2003 0 580 286 294 3 25,59 28,23 0,91 94,75

2 2001 1 551 301 250 4 33,81 30,68 1,10 88

2,5 2000 3 707 386 321 4 34,18 29,79 1,15 108,3

3 1998 8 812 413 399 2 39,48 22,65 1,74 124,8

3,5 1997 7 720 397 323 2 33,18 28,89 1,15 110,8

4 1995 3 754 400 354 3 33,61 27,39 1,23 120,5

4,5 1993 3 707 372 335 3 35,41 28,95 1,22 112,3

5 1992 1 726 401 325 3 32,97 37,34 0,88 114,5

5,5 1990 4 674 363 311 3 40,77 28,30 1,44 104,3

6 1988 5 742 407 335 3 34,40 33,55 1,03 117

6,5 1987 1 931 498 433 4 32,82 30,74 1,07 144,8

7 1985 2 791 442 349 1 31,57 36,86 0,86 118

7,5 1983 0 872 487 385 6 44,18 29,39 1,50 126,8

8 1982 1 816 455 361 2 43,40 28,30 1,53 117,5

8,5 1980 2 834 484 350 5 39,08 35,67 1,10 124,8

9 1979 0 730 424 306 2 38,85 36,55 1,06 108,8

9,5 1977 7 953 492 461 5 35,32 35,16 1,00 150,8

10 1975 0 792 440 352 6 41,65 31,02 1,34 115,3

10,5 1974 0 820 461 359 4 41,60 35,50 1,17 119

11 1972 0 858 493 365 2 30,38 44,47 0,68 124,3

11,5 1971 0 703 417 286 0 29,86 46,68 0,64 105,5

12 1969 0 669 397 272 4 41,13 38,18 1,08 101,5

12,5 1968 2 792 456 336 2 37,45 34,31 1,09 119,5

13 1966 2 643 396 247 2 29,78 43,42 0,69 100,8

13,5 1964 1 686 417 269 1 27,59 42,07 0,66 108,8

14 1963 3 692 410 282 2 26,76 38,55 0,69 110,3

14,5 1961 6 649 388 261 1 22,17 45,54 0,49 103,8

15 1959 2 693 385 308 2 23,64 33,86 0,70 110

15,5 1958 3 798 436 362 7 29,55 34,25 0,86 127,8

16 1956 3 606 356 250 3 15,21 44,64 0,34 100,3

16,5 1954 5 673 380 293 2 22,56 37,44 0,60 107,5

17 1952 13 670 372 298 0 23,77 35,20 0,68 111,5

17,5 1950 13 703 387 316 5 21,55 37,87 0,57 119,5

18 1948 7 655 374 281 3 21,33 40,22 0,53 112,5

18,5 1946 13 866 465 401 14 33,69 26,38 1,28 140,3

19 1944 5 667 369 298 3 38,63 31,52 1,23 105,5

19,5 1942 24 679 382 297 1 22,44 40,74 0,55 114,8

20 1940 4 699 381 318 2 37,32 28,87 1,29 106,5

Page 134: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

Appendix- Table III Benthic foraminiferal countings from multi core 343410-2-2

125

Dep

th (

cm

)

AD

Aderc

otr

ym

a

glo

mer

ata

Am

modis

cus

gu

llm

are

nsi

s

Am

mod

scala

ria

pse

ud

osp

irali

s

Cri

bro

sto

moid

e

s cra

ssim

ag

o

Cri

bro

sto

moid

e

s je

ffre

ysi

Cu

neata

arc

tica

Deu

tera

mm

ina

gri

sea

Egg

ere

lla

adven

a

Recu

rvoid

es

turb

inatu

s

Reo

ph

ax

gra

cil

is

Reo

ph

ax

fusi

form

is

Reo

ph

ax

pil

uli

fer

20,5 1938 103 2 0 13 0 33 10 0 29 3 4 5

21 1936 115 1 0 8 0 31 6 0 27 4 3 5

21,5 1934 114 1 0 9 0 64 7 3 36 15 15 5

22 1932 98 1 0 15 1 38 1 3 43 6 2 9

22,5 1930 119 1 0 14 0 43 5 1 35 9 3 13

23 1928 90 0 0 13 0 33 1 1 34 3 2 7

23,5 1926 121 0 0 13 0 23 3 1 37 1 1 5

24 1924 127 1 0 15 0 34 3 0 49 5 4 12

24,5 1922 92 0 0 16 0 50 0 4 50 4 5 9

25 1920 123 0 1 26 0 24 3 0 69 0 5 13

25,5 1918 105 0 0 12 0 37 0 0 65 1 5 5

26 1916 84 0 1 15 0 15 0 0 41 5 7 13

26,5 1913 82 0 0 14 2 26 0 1 61 6 6 5

27 1911 102 1 1 8 0 23 0 0 35 4 0 1

27,5 1909 91 0 2 14 0 30 0 0 48 6 2 8

28 1907 50 0 0 9 0 38 0 0 32 10 2 2

28,5 1905 51 1 0 6 0 30 0 1 19 6 0 1

29 1903 77 0 0 18 0 33 0 0 61 1 0 5

29,5 1901 72 0 0 11 0 40 0 0 42 9 1 4

30 1899 71 0 0 11 0 30 0 0 37 8 0 3

30,5 1897 63 1 1 8 0 59 0 1 33 17 2 1

31 1895 87 0 2 12 1 43 0 1 21 3 1 6

31,5 1893 95 0 1 9 0 50 0 2 24 3 4 3

32 1891 100 2 1 7 0 31 1 0 32 5 3 5

32,5 1889 64 0 2 11 0 56 0 0 28 4 3 6

33 1887 81 1 1 11 0 33 0 3 20 2 2 7

33,5 1885 103 0 3 14 0 54 0 2 45 7 2 10

34 1883 69 1 1 3 0 53 0 4 28 5 1 3

34,5 1881 54 0 1 8 0 48 0 0 18 8 1 2

35 1879 64 0 1 12 0 49 0 0 24 13 3 2

35,5 1877 43 1 3 5 0 50 0 2 38 18 0 0

36 1875 37 1 2 9 33 1 0 55 7 0 0 0

Page 135: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

Appendix- Table III Benthic foraminiferal countings from multi core 343410-2-2

126

Dep

th (

cm

)

AD

Reo

ph

ax

sp

.

Sa

cca

mm

ina

dif

lug

ifo

rmis

Sil

ico

sig

moil

ina

gro

en

lan

dic

a

Sp

iro

ple

cta

mm

in

a b

ifo

rmis

Textu

lari

a

ea

rla

nd

i

Textu

lari

a

torq

uata

Tro

ch

am

min

a

na

na

Lag

en

am

ina

sp

.

Po

rtro

ch

am

min

a

sp.

Ast

ron

on

ion

gall

ow

ayi

Boli

vin

a

pse

ud

op

un

ctata

Bu

cce

lla f

rig

ida

20,5 1938 0 2 1 33 18 57 53 2 1 0 5 5

21 1936 0 2 2 37 13 56 61 0 1 0 3 6

21,5 1934 1 0 1 42 32 53 45 1 0 4 15 2

22 1932 0 2 0 44 14 80 26 1 0 2 15 5

22,5 1930 0 1 1 52 6 69 40 1 0 1 6 10

23 1928 0 0 1 64 10 51 36 4 0 0 13 21

23,5 1926 0 1 1 64 6 53 41 7 0 3 7 7

24 1924 0 1 1 68 6 46 29 1 2 1 7 12

24,5 1922 0 0 0 85 5 49 20 2 0 1 8 0

25 1920 0 0 3 60 8 41 26 2 0 1 10 13

25,5 1918 0 1 5 74 6 36 19 4 0 1 8 15

26 1916 0 1 2 60 2 31 12 0 1 1 8 3

26,5 1913 5 4 1 43 17 42 14 5 0 0 15 13

27 1911 0 0 0 77 3 40 9 0 0 2 10 8

27,5 1909 0 1 0 70 0 41 8 1 0 0 6 3

28 1907 0 0 0 47 2 42 10 1 0 2 13 11

28,5 1905 0 1 0 59 4 32 7 1 0 0 17 5

29 1903 0 2 0 60 0 19 3 0 0 0 5 3

29,5 1901 0 2 1 82 0 63 10 0 0 0 18 5

30 1899 0 1 1 67 0 41 14 0 0 2 11 8

30,5 1897 0 1 3 71 11 45 11 4 1 1 33 7

31 1895 0 0 1 63 2 59 16 3 0 1 17 8

31,5 1893 0 1 4 82 0 50 6 3 0 1 21 11

32 1891 0 0 0 70 0 50 12 3 0 0 14 10

32,5 1889 0 0 1 77 3 68 13 1 0 1 19 10

33 1887 0 0 2 71 0 57 8 0 0 0 18 7

33,5 1885 0 1 0 44 0 47 8 5 0 2 14 10

34 1883 0 0 0 92 0 46 4 0 0 2 24 11

34,5 1881 0 0 0 85 0 53 9 3 0 3 23 7

35 1879 0 0 0 58 4 44 6 3 1 0 21 6

35,5 1877 3 2 0 70 2 47 7 0 0 3 20 10

36 1875 0 1 0 57 0 20 1 0 0 0 18 5

Page 136: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

Appendix- Table III Benthic foraminiferal countings from multi core 343410-2-2

127

Dep

th (

cm

)

AD

Ca

ssid

uli

na

neo

tere

tis

Ca

ssid

uli

na

ren

ifo

rme

Cib

icid

es

loba

tulu

s

Elp

hid

ium

ex

cavatu

m f

. cla

vata

Glo

bob

uli

min

a

au

ricu

lata

arc

tica

Isla

nd

iell

a h

ele

nae

Mel

on

is b

arl

eea

nu

s

No

nio

nell

ina

lab

rado

rica

No

nio

nell

a t

urg

ida

f. d

igit

ata

Pu

llen

ia o

slo

en

sis

Sta

info

rth

ia f

eyl

ing

i

Sta

info

rth

ia

loebli

ch

i

20,5 1938 0 0 0 0 2 7 5 2 0 1 11 1

21 1936 0 0 0 0 0 10 7 0 0 0 4 2

21,5 1934 0 0 0 0 1 18 2 6 0 3 16 2

22 1932 0 0 0 0 2 6 0 3 1 1 18 3

22,5 1930 0 0 0 0 0 6 1 5 1 0 15 2

23 1928 0 0 0 0 1 3 2 6 0 1 27 1

23,5 1926 0 0 0 2 1 6 5 11 0 0 16 2

24 1924 0 0 0 1 0 19 7 17 0 3 21 2

24,5 1922 0 2 0 2 2 17 3 7 0 2 29 2

25 1920 0 0 0 11 1 15 8 16 0 0 26 10

25,5 1918 0 0 1 10 1 15 3 11 2 0 32 3

26 1916 0 0 2 11 2 13 1 14 0 2 36 1

26,5 1913 0 1 1 30 0 12 2 16 3 2 35 3

27 1911 0 1 0 29 0 16 2 5 1 2 54 1

27,5 1909 0 1 1 37 0 9 2 13 1 0 33 4

28 1907 0 1 1 30 1 3 3 6 1 2 56 2

28,5 1905 0 2 0 29 0 4 1 9 1 1 46 3

29 1903 0 0 0 68 2 7 2 11 0 0 20 3

29,5 1901 1 0 0 18 2 15 1 7 2 0 45 4

30 1899 1 2 0 21 4 10 2 13 0 0 32 2

30,5 1897 0 1 0 20 1 7 3 19 3 0 73 1

31 1895 0 0 0 12 0 4 4 16 0 0 36 6

31,5 1893 0 0 0 15 1 5 3 13 0 0 40 2

32 1891 0 0 0 6 0 10 3 18 1 1 17 2

32,5 1889 0 1 0 7 0 5 5 22 1 0 27 2

33 1887 0 0 0 21 0 8 4 12 1 0 56 2

33,5 1885 0 0 0 17 1 9 4 15 9 0 37 4

34 1883 0 0 2 22 2 11 4 27 1 0 35 4

34,5 1881 0 3 0 28 0 9 0 19 2 1 55 3

35 1879 0 0 0 25 2 9 3 27 1 0 37 4

35,5 1877 0 3 1 41 2 14 2 15 2 1 59 4

36 1875 0 1 2 84 1 15 2 19 0 0 39 7

Page 137: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

Appendix- Table III Benthic foraminiferal countings from multi core 343410-2-2

128

Dep

th (

cm

)

AD

Tri

fari

na f

luen

s

tota

l co

un

ts

No

. A

gglu

tin

ate

s

specim

en

s co

un

ted

No

. C

alc

areo

us

specim

en

s co

un

ted

No

. T

est

lin

ing

s

AW

to

tal

(%)

Atl

W t

ota

l (%

)

Ca

lca

reo

us

vs.

Ag

glu

tin

ate

s

specim

en

s

fora

min

ifera

l

co

nce

ntr

ati

on

(te

st

per m

l)

20,5 1938 12 686 369 317 6 37,04 26,62 1,39 108

21 1936 10 671 372 299 3 36,08 29,48 1,22 106

21,5 1934 15 858 444 414 6 41,93 25,42 1,65 134,8

22 1932 8 734 384 350 3 44,15 24,72 1,79 113,3

22,5 1930 11 765 413 352 10 39,34 27,87 1,41 122

23 1928 4 689 350 339 9 42,95 22,73 1,89 110

23,5 1926 9 704 378 326 4 37,17 27,83 1,34 115

24 1924 8 779 404 375 16 37,76 28,32 1,33 129,8

24,5 1922 11 776 391 385 10 47,78 22,18 2,15 124

25 1920 11 807 404 403 6 34,94 26,21 1,33 134,5

25,5 1918 15 762 375 387 10 42,16 22,75 1,85 127,5

26 1916 7 597 290 307 2 42,61 26,82 1,59 99,75

26,5 1913 14 733 334 399 6 41,70 20,24 2,06 123,5

27 1911 5 642 304 338 3 54,14 23,71 2,28 111,8

27,5 1909 10 673 322 351 3 48,46 22,69 2,14 113,5

28 1907 4 576 245 331 3 55,19 14,43 3,82 98,75

28,5 1905 3 508 219 289 6 57,30 15,73 3,64 89

29 1903 6 608 279 329 4 50,00 20,29 2,46 103,5

29,5 1901 3 723 337 386 2 56,90 17,03 3,34 116

30 1899 6 611 284 327 6 49,51 18,87 2,62 102

30,5 1897 3 775 333 442 10 55,68 13,10 4,25 129,8

31 1895 8 667 321 346 3 50,00 21,36 2,34 110

31,5 1893 5 696 337 359 4 53,48 22,39 2,39 115

32 1891 7 633 322 311 5 43,71 25,89 1,69 105,3

32,5 1889 7 717 337 380 9 53,51 16,23 3,30 114

33 1887 4 650 299 351 4 56,88 20,64 2,76 109

33,5 1885 8 717 345 372 2 43,33 24,17 1,79 120

34 1883 5 701 310 391 4 55,82 15,73 3,55 116

34,5 1881 5 684 290 394 3 61,37 13,47 4,56 113,3

35 1879 2 641 284 357 10 52,07 15,90 3,28 108,5

35,5 1877 2 718 291 427 4 58,47 10,12 5,78 121

36 1875 0 604 224 380 5 50,94 9,20 5,54 106

Page 138: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

Appendix- Table IV Benthic foraminiferal countings from gravity core 343300-3-1

129

Table IV Benthic foraminiferal countings from gravitycore 343300-3-1

Dep

th (

cm

)

AD

/BC

Aderc

otr

ym

a g

lom

era

ta

Am

mod

scala

ria

pse

ud

osp

irali

s

Cri

bro

sto

moid

es

cra

ssim

ago

Cri

bro

sto

moid

es

jeff

reysi

Cri

bro

sto

moid

es

sp.

Cu

neata

arc

tica

Deu

tera

mm

ina

gri

sea

Deu

tera

mm

ina

och

racea

Egg

ere

lla a

dve

na

Recu

rvoid

es

turb

ina

tus

Reo

ph

ax

gra

cil

is

1 1166 AD 25 2 4 0 1 50 0 108 54 8 17 5 1129 AD 30 15 1 0 1 34 0 83 42 5 10 6 1119 AD 56 15 4 0 0 46 0 65 29 8 2 7 1110 AD 30 11 1 0 0 26 0 72 41 6 2 9 1092 AD 42 5 1 0 0 17 0 54 37 6 4

13 1054 AD 32 8 1 1 0 24 0 86 31 3 4 17 1017 AD 60 6 4 2 0 33 0 109 52 1 11 21 980 AD 22 5 1 0 0 16 0 53 25 0 1 25 943 AD 38 6 0 0 0 40 0 50 37 2 9 29 906 AD 21 4 0 0 1 20 0 38 34 5 5 30 897 AD 18 3 2 0 1 17 0 41 27 4 5 33 872 AD 22 4 2 0 0 15 0 49 24 1 0 37 838 AD 36 0 2 0 1 19 0 59 42 2 9 39 822 AD 34 1 4 0 3 17 0 63 39 4 9 41 805 AD 30 1 3 0 1 14 0 45 34 2 2 45 772 AD 39 3 2 0 0 10 0 50 29 1 1 49 738 AD 15 3 0 0 0 8 0 29 25 0 3 51 722 AD 27 2 3 0 1 27 0 57 31 5 0 54 697 AD 22 1 4 0 1 12 0 112 25 3 4 57 672 AD 33 1 0 0 1 16 0 74 24 1 7 61 638 AD 23 0 3 1 0 12 0 44 18 3 1 65 605 AD 19 0 0 0 0 4 0 20 13 3 2 69 572 AD 37 1 0 0 1 11 0 67 26 3 2 73 531 AD 39 4 1 1 0 6 0 55 29 5 0 77 481 AD 25 1 0 0 0 12 0 63 35 3 2 81 432 AD 26 1 0 0 2 3 0 58 23 1 1 85 383 AD 11 1 3 0 2 10 0 65 32 2 2 89 334 AD 5 0 0 0 0 11 0 56 25 0 0 93 285 AD 2 1 0 0 1 9 0 26 20 2 1 97 236 AD 3 0 0 0 3 7 0 78 11 2 1

101 183 AD 5 1 0 0 1 2 0 48 17 0 0 105 101 AD 5 0 0 0 1 6 0 63 25 0 1 109 19 AD 8 2 0 0 2 6 0 101 25 3 2 113 113 BC 0 0 0 0 0 8 0 94 17 0 0 117 117 BC 4 1 2 0 0 16 0 99 34 3 5 121 121 BC 13 3 16 0 0 11 0 82 25 0 2 125 125 BC 9 1 0 0 1 8 0 87 31 0 3 129 129 BC 3 6 2 0 2 5 0 96 33 1 3 131 131 BC 12 2 1 0 4 20 0 75 39 1 12 133 133 BC 8 2 0 0 1 15 0 81 29 0 8 134 134 BC 5 2 0 1 1 4 0 73 31 1 17 137 137 BC 11 2 0 0 0 8 0 89 30 2 9 141 141 BC 10 3 2 0 3 12 0 61 31 1 4 145 145 BC 6 1 0 1 2 6 0 92 44 0 0 149 149 BC 1 2 0 0 0 1 0 30 37 0 1 151 151 BC 1 1 0 0 1 11 0 71 34 0 2 153 153 BC 3 0 0 0 0 3 0 65 26 0 0 157 157 BC 1 0 1 0 0 4 0 51 34 0 2 161 161 BC 1 0 0 0 3 8 0 76 35 0 1 165 165 BC 0 0 0 1 0 6 0 75 24 0 1 169 169 BC 0 1 1 0 2 0 0 59 22 1 3 170 170 BC 1 0 0 0 0 2 0 57 16 0 2 173 173 BC 0 0 0 0 1 2 0 41 22 0 2 177 177 BC 0 1 0 0 1 3 0 46 21 0 1

Page 139: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

Appendix- Table IV Benthic foraminiferal countings from gravity core 343300-3-1

130

Dep

th (

cm

)

AD

/BC

Reo

ph

ax

fu

sifo

rmis

Reo

ph

ax

pil

uli

fer

Reo

ph

ax

sp

.

Sa

cca

mm

ina

dif

lug

ifo

rmis

Sil

ico

sig

moil

ina

gro

en

lan

dic

a

Sp

iro

ple

cta

mm

ina

bif

orm

is

Textu

lari

a e

arl

an

di

Textu

lari

a t

orq

ua

ta

Po

rtro

ch

am

min

a s

p.

Ast

ron

on

ion

ga

llo

wa

yi

Boli

vin

a p

seu

dop

un

ctata

Bu

cce

lla f

rig

ida

1 1166 AD 0 0 2 0 0 39 1 38 0 2 1 14 5 1129 AD 0 0 4 0 0 20 1 28 0 3 0 24 6 1119 AD 0 0 3 0 0 33 2 26 0 1 1 27 7 1110 AD 0 0 2 0 0 27 3 21 0 2 2 22 9 1092 AD 0 1 2 0 0 13 0 20 0 4 6 42

13 1054 AD 0 0 2 0 0 22 0 22 0 3 4 27 17 1017 AD 0 0 4 0 0 18 4 29 0 2 2 25 21 980 AD 0 0 0 1 0 6 0 12 0 6 7 49 25 943 AD 0 2 6 1 0 22 0 40 0 16 3 27 29 906 AD 0 0 1 0 0 17 2 25 0 9 4 33 30 897 AD 0 0 2 1 0 8 0 26 0 3 6 38 33 872 AD 1 0 0 0 0 10 0 15 1 10 4 25 37 838 AD 0 0 5 1 0 14 1 32 3 8 1 29 39 822 AD 0 0 5 1 0 8 2 17 0 5 1 33 41 805 AD 0 1 3 1 0 5 0 12 0 20 3 50 45 772 AD 0 0 3 0 0 7 1 15 1 17 24 56 49 738 AD 0 0 1 2 0 8 0 14 0 14 4 50 51 722 AD 0 0 0 1 0 13 0 19 0 16 32 18 54 697 AD 0 0 3 2 0 14 0 21 0 9 4 82 57 672 AD 0 1 3 3 0 7 2 17 4 10 2 65 61 638 AD 0 1 6 2 0 4 1 10 1 18 13 63 65 605 AD 0 2 3 1 0 6 1 5 0 14 7 66 69 572 AD 0 1 2 1 0 7 0 9 1 12 3 48 73 531 AD 0 7 0 8 0 4 1 9 0 20 5 73 77 481 AD 0 4 0 7 0 4 0 5 1 18 11 39 81 432 AD 0 6 6 3 0 7 1 7 0 25 13 35 85 383 AD 0 1 0 1 0 3 0 2 0 13 7 40 89 334 AD 0 1 0 0 0 7 1 3 1 12 14 26 93 285 AD 0 3 2 0 0 4 0 2 0 28 5 15 97 236 AD 0 1 2 0 0 2 0 0 0 10 3 20

101 183 AD 0 1 2 1 0 2 0 0 0 22 4 13 105 101 AD 0 0 0 0 0 2 0 3 0 24 4 18 109 19 AD 0 0 0 0 0 7 0 5 0 7 2 16 113 113 BC 0 0 0 0 0 3 0 1 0 3 4 15 117 117 BC 0 0 0 1 0 5 0 4 0 2 3 22 121 121 BC 0 2 0 0 0 11 0 11 0 9 5 14 125 125 BC 0 1 0 0 0 1 0 7 0 33 17 15 129 129 BC 0 0 1 0 0 11 0 7 0 16 4 27 131 131 BC 0 0 3 0 0 9 0 16 0 9 2 16 133 133 BC 0 0 2 0 0 4 0 8 0 4 0 8 134 134 BC 0 0 0 0 0 9 0 4 0 8 1 9 137 137 BC 0 0 0 0 0 12 0 13 0 5 1 25 141 141 BC 0 0 1 0 0 10 0 7 0 4 4 32 145 145 BC 0 0 0 0 0 6 0 1 0 7 7 22 149 149 BC 0 0 0 0 0 2 0 2 0 5 3 17 151 151 BC 0 0 0 2 0 4 0 3 0 12 10 6 153 153 BC 0 1 1 0 0 3 0 2 0 10 2 9 157 157 BC 0 0 0 0 0 3 0 4 0 15 3 27 161 161 BC 0 0 1 0 0 3 0 5 0 17 8 6 165 165 BC 0 0 0 0 0 3 0 1 0 7 11 10 169 169 BC 0 0 0 0 0 4 0 2 0 8 15 6 170 170 BC 0 0 0 0 0 2 0 1 0 13 21 13 173 173 BC 0 0 0 0 0 4 0 2 0 11 18 17 177 177 BC 0 0 0 0 0 2 0 1 0 5 6 16

Page 140: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

Appendix- Table IV Benthic foraminiferal countings from gravity core 343300-3-1

131

Dep

th (

cm

)

AD

/BC

Ca

ssid

uli

na

neote

reti

s

Ca

ssid

uli

na

ren

ifo

rme

Cib

icid

es

loba

tulu

s

Den

tali

na

sp

.

Dis

corb

is s

p.

Elp

hid

ium

alb

ium

bil

ica

tum

Elp

hid

ium

ba

rtle

tti

Elp

hid

ium

ex

cava

tum

f.

cla

vata

Elp

hid

ium

sp

.

Epis

tom

inell

a v

itre

a

Gla

du

lin

a s

p.

Glo

bob

uli

min

a

au

ricu

lata

arc

tica

1 1166 AD 0 0 1 1 0 1 0 9 0 1 0 2 5 1129 AD 0 1 0 0 0 1 0 51 0 1 0 2 6 1119 AD 0 6 4 1 0 0 0 30 0 2 0 4 7 1110 AD 0 5 0 0 0 1 0 51 0 1 0 6 9 1092 AD 0 7 3 1 0 1 0 82 1 1 0 13

13 1054 AD 0 8 2 0 0 1 1 69 1 2 0 5 17 1017 AD 0 7 0 0 0 0 0 59 2 1 0 3 21 980 AD 0 20 2 0 0 4 0 74 1 2 0 4 25 943 AD 0 32 4 0 0 6 0 111 3 7 0 3 29 906 AD 0 12 3 1 0 4 0 102 0 6 1 4 30 897 AD 0 27 2 0 0 3 0 198 1 2 0 7 33 872 AD 0 12 2 0 0 3 0 76 1 4 0 10 37 838 AD 0 9 1 1 0 1 0 69 0 1 0 0 39 822 AD 0 11 1 0 0 1 0 33 0 0 0 4 41 805 AD 0 10 2 0 0 10 0 24 1 4 0 5 45 772 AD 2 23 1 1 0 7 0 81 1 2 0 11 49 738 AD 1 32 3 0 0 1 0 134 0 4 0 12 51 722 AD 2 55 1 0 2 3 1 134 3 3 0 5 54 697 AD 0 10 0 1 0 2 0 76 0 0 0 6 57 672 AD 0 8 0 0 0 0 0 13 2 3 0 4 61 638 AD 0 13 2 0 0 15 0 29 0 1 0 9 65 605 AD 0 38 2 0 0 0 0 107 0 4 0 12 69 572 AD 0 12 0 0 0 9 0 32 0 4 0 8 73 531 AD 0 14 0 0 1 5 0 48 1 2 0 6 77 481 AD 0 44 2 0 0 11 0 76 1 2 0 18 81 432 AD 0 25 2 0 0 9 0 72 1 4 0 8 85 383 AD 1 44 1 0 0 5 0 138 0 5 0 13 89 334 AD 1 105 6 0 0 12 0 285 4 4 0 14 93 285 AD 2 131 10 0 0 14 0 171 9 3 0 17 97 236 AD 0 62 5 0 0 6 1 62 1 3 0 19

101 183 AD 2 49 3 1 0 7 0 32 0 4 1 12 105 101 AD 0 65 6 0 0 7 0 58 0 5 0 18 109 19 AD 0 33 3 0 0 4 0 62 0 8 0 7 113 113 BC 0 19 5 0 0 1 0 73 0 5 0 28 117 117 BC 0 15 2 0 0 0 1 74 0 3 0 19 121 121 BC 2 20 3 0 0 1 0 88 1 6 0 12 125 125 BC 6 81 8 0 1 14 0 57 0 11 0 16 129 129 BC 3 66 2 0 0 5 0 85 0 6 0 44 131 131 BC 1 35 1 0 0 0 0 64 0 3 0 28 133 133 BC 0 19 1 1 0 4 0 42 0 1 0 15 134 134 BC 0 14 2 0 0 0 0 60 0 4 0 10 137 137 BC 0 18 3 0 0 2 0 87 0 6 0 9 141 141 BC 0 28 2 0 0 4 0 161 0 1 0 15 145 145 BC 0 42 6 3 0 2 0 150 0 8 0 36 149 149 BC 1 86 5 0 0 5 0 103 0 4 0 13 151 151 BC 7 118 7 0 0 3 0 75 0 7 0 24 153 153 BC 5 83 11 1 0 9 0 103 0 0 0 19 157 157 BC 2 99 7 0 0 9 1 210 1 6 0 28 161 161 BC 3 57 10 0 0 4 0 63 0 1 2 33 165 165 BC 2 106 10 1 0 9 0 150 0 4 0 26 169 169 BC 3 104 4 0 0 4 1 228 1 2 0 30 170 170 BC 2 101 9 0 0 10 0 121 0 2 0 32 173 173 BC 7 175 13 0 2 3 0 240 1 8 0 21 177 177 BC 1 100 3 1 0 5 1 263 0 11 0 24

Page 141: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

Appendix- Table IV Benthic foraminiferal countings from gravity core 343300-3-1

132

Dep

th (

cm

)

AD

/BC

Isla

nd

iell

a h

ele

nae

Isla

nd

iell

a n

orc

ross

i

Len

ticu

lin

a s

p.

Mel

on

is b

arl

eea

nu

s

No

nio

nell

ina

au

ricu

la

No

nio

nell

ina

lab

rado

rica

No

nio

nell

a t

urg

ida

f.

dig

itata

Pa

rafi

ssu

rin

a s

p.

Pu

llen

ia b

ull

oid

es

Pu

llen

ia o

sloen

sis

Pro

cero

lagen

a s

p.

Rob

ert

ina

arc

tica

1 1166 AD 2 4 0 2 1 5 0 0 0 0 0 0 5 1129 AD 2 34 0 1 0 8 0 0 0 0 0 0 6 1119 AD 0 40 0 0 0 5 0 0 0 2 0 0 7 1110 AD 0 59 0 1 1 12 0 0 0 4 0 0 9 1092 AD 3 86 0 1 0 21 0 0 0 1 0 0

13 1054 AD 1 75 0 2 0 9 0 0 0 1 0 0 17 1017 AD 0 86 0 3 0 15 0 0 0 6 0 0 21 980 AD 0 133 0 11 0 23 0 2 0 11 0 0 25 943 AD 0 129 0 7 3 33 0 1 0 1 0 0 29 906 AD 0 84 0 3 0 11 0 0 0 3 0 0 30 897 AD 1 134 0 4 0 11 0 0 0 1 0 0 33 872 AD 0 124 0 3 3 16 0 0 0 6 0 0 37 838 AD 0 75 0 1 0 8 0 0 0 4 0 0 39 822 AD 0 69 0 6 0 7 0 0 0 9 0 0 41 805 AD 0 130 0 26 3 30 0 1 0 12 1 0 45 772 AD 0 119 0 29 5 43 0 1 0 13 0 0 49 738 AD 0 108 0 12 1 41 0 1 0 26 0 0 51 722 AD 3 82 0 8 1 52 0 0 0 8 0 0 54 697 AD 0 131 0 9 0 19 0 0 0 1 1 0 57 672 AD 0 99 0 10 0 23 0 0 0 0 0 0 61 638 AD 0 120 0 12 1 34 0 0 0 2 0 0 65 605 AD 9 167 0 26 0 19 0 0 0 4 0 0 69 572 AD 0 116 0 8 1 43 0 0 0 4 0 0 73 531 AD 4 143 0 31 1 36 0 1 1 10 0 0 77 481 AD 0 139 0 16 7 63 0 0 2 7 1 0 81 432 AD 0 134 0 21 3 69 0 2 3 10 0 0 85 383 AD 2 129 0 3 3 50 0 1 0 7 0 0 89 334 AD 0 101 0 3 3 44 0 1 0 13 0 0 93 285 AD 0 146 0 6 3 81 1 0 0 20 1 0 97 236 AD 0 250 0 0 0 39 0 0 0 1 0 0 101 183 AD 1 258 0 0 5 41 0 0 0 18 0 0 105 101 AD 1 225 0 0 1 43 0 1 0 11 0 0 109 19 AD 1 168 0 0 1 15 0 0 0 7 0 0 113 113 BC 1 219 0 0 1 34 0 0 0 1 0 0 117 117 BC 4 98 0 0 0 32 0 0 0 0 0 0 121 121 BC 3 105 0 0 1 30 0 0 0 0 1 0 125 125 BC 4 166 0 0 3 28 0 1 0 22 0 0 129 129 BC 3 164 0 1 0 36 0 0 0 1 0 0 131 131 BC 4 87 0 0 0 9 0 0 0 0 0 0 133 133 BC 3 75 0 0 3 6 0 0 0 4 0 0 134 134 BC 6 92 0 1 0 12 0 0 0 2 0 0 137 137 BC 8 54 0 0 0 10 0 0 0 0 1 0 141 141 BC 5 94 0 0 0 18 0 0 0 1 0 0 145 145 BC 7 103 0 0 1 60 0 0 0 1 0 0 149 149 BC 3 85 0 0 4 55 0 1 0 1 0 0 151 151 BC 5 96 0 1 3 57 2 1 0 14 0 0 153 153 BC 6 153 0 0 1 65 0 0 0 4 0 0 157 157 BC 7 111 0 0 2 64 0 0 0 3 1 0 161 161 BC 5 118 0 0 2 75 0 0 1 12 0 0 165 165 BC 4 76 0 0 0 50 0 2 0 6 0 0 169 169 BC 2 79 0 0 2 51 0 0 0 2 0 0 170 170 BC 2 51 1 0 6 38 0 0 0 0 0 0 173 173 BC 4 71 0 0 1 43 0 0 0 2 0 0 177 177 BC 3 114 0 0 2 33 0 0 0 0 0 0

Page 142: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

Appendix- Table IV Benthic foraminiferal countings from gravity core 343300-3-1

133

Dep

th (

cm

)

AD

/BC

Fis

suri

na

sp

.

Sta

info

rth

ia f

eyl

ing

i

Sta

info

rth

ia l

oeb

lich

i

Tri

fari

na f

luen

s

tota

l co

un

ts

No

. A

gglu

tin

ate

s

specim

en

s co

un

ted

No

. C

alc

areo

us

specim

en

s co

un

ted

No

. T

est

lin

ing

s

AW

to

tal

(%)

Atl

W t

ota

l (%

)

Ca

lca

reo

us

vs.

Ag

glu

tin

ate

s sp

ecim

en

s

fora

min

ifera

l

co

nce

ntr

ati

on

(te

st p

er

ml)

1 1166 AD 0 0 0 0 395 349 46 30 33,33 7,94 0,13 176,40 5 1129 AD 0 1 2 1 406 274 132 24 31,56 18,67 0,48 180,00 6 1119 AD 0 2 1 1 416 289 127 31 30,56 24,12 0,44 192,40 7 1110 AD 0 1 4 0 414 242 172 40 29,03 23,01 0,71 186,00 9 1092 AD 0 3 3 2 483 202 281 35 26,47 25,37 1,39 217,60

13 1054 AD 0 5 3 2 457 236 221 21 29,38 24,14 0,94 198,80 17 1017 AD 0 2 3 3 552 333 219 49 23,36 26,40 0,66 250,00 21 980 AD 0 2 6 2 501 142 359 18 20,07 33,39 2,53 219,20 25 943 AD 0 5 4 2 650 253 397 42 30,01 25,92 1,56 293,20 29 906 AD 0 1 6 2 462 173 289 28 33,27 22,44 1,67 172,33 30 897 AD 0 5 5 3 606 155 451 17 38,60 24,29 2,91 223,67 33 872 AD 0 2 3 1 449 144 305 10 24,74 33,26 2,12 160,33 37 838 AD 0 1 2 3 440 226 214 29 28,45 25,15 0,94 121,25 39 822 AD 0 1 5 3 396 207 189 25 19,25 29,34 0,91 106,50 41 805 AD 0 2 9 4 501 154 347 8 11,37 39,31 2,22 173,00 45 772 AD 0 7 10 5 620 162 458 13 18,60 31,40 2,81 218,67 49 738 AD 0 12 5 3 572 108 464 6 29,63 28,11 4,30 198,00 51 722 AD 0 21 6 0 642 186 456 20 31,85 18,36 2,45 232,33 54 697 AD 0 4 2 2 583 224 359 22 21,28 27,66 1,60 203,67 57 672 AD 0 2 5 2 442 194 248 18 11,98 30,99 1,26 121,00 61 638 AD 0 5 6 3 476 130 346 9 12,93 33,54 2,66 141,43 65 605 AD 0 4 14 2 574 79 495 5 23,40 37,37 6,27 198,00 69 572 AD 0 4 7 3 483 169 314 13 12,84 33,07 1,86 171,33 73 531 AD 1 4 4 2 582 169 413 12 13,50 40,33 2,44 200,00 77 481 AD 1 12 10 2 644 162 482 10 16,82 29,88 2,96 222,00 81 432 AD 0 6 12 3 602 145 457 9 15,72 33,55 3,13 154,25 85 383 AD 0 3 11 2 613 135 478 5 25,72 24,60 3,54 155,50 89 334 AD 0 9 5 1 773 110 663 4 40,46 15,75 6,03 260,33 93 285 AD 1 4 7 1 749 73 676 5 25,40 23,81 9,26 252,00 97 236 AD 0 3 6 1 602 110 492 4 12,38 41,86 4,47 204,67

101 183 AD 2 1 8 0 564 80 484 2 6,57 49,48 5,98 192,67 105 101 AD 0 2 3 0 598 106 492 4 11,90 39,83 4,64 201,67 109 19 AD 0 2 4 2 503 161 342 8 16,67 35,85 2,12 114,67 113 113 BC 0 1 6 2 541 123 418 13 15,51 39,22 3,40 124,67 117 117 BC 0 0 3 1 453 174 279 10 22,75 22,32 1,60 103,56 121 121 BC 0 0 4 1 482 176 306 17 24,75 24,55 1,74 125,25 125 125 BC 0 3 10 0 645 149 496 10 12,16 30,24 3,33 188,00 129 129 BC 0 3 5 0 641 170 471 4 17,83 27,29 2,77 161,25 131 131 BC 0 1 0 0 454 194 260 23 24,11 21,80 1,34 95,40 133 133 BC 0 1 2 0 347 158 189 19 19,89 24,80 1,20 73,40 134 134 BC 0 0 4 1 374 148 226 18 20,79 25,25 1,53 80,80 137 137 BC 0 0 2 0 407 176 231 19 29,95 15,44 1,31 96,44 141 141 BC 0 0 3 0 517 145 372 8 37,05 20,60 2,57 132,25 145 145 BC 0 1 3 0 618 159 459 10 26,89 17,45 2,89 181,71 149 149 BC 0 3 6 1 477 76 401 3 23,27 18,16 5,28 163,33 151 151 BC 0 2 6 0 586 130 456 19 16,08 18,49 3,51 207,33 153 153 BC 0 1 10 1 597 104 493 6 19,25 26,43 4,74 175,14 157 157 BC 1 0 5 1 703 100 603 5 32,11 16,20 6,03 236,67 161 161 BC 0 2 6 1 559 133 426 7 15,14 23,24 3,20 189,33 165 165 BC 0 1 1 0 587 111 476 5 27,68 13,76 4,29 198,67 169 169 BC 0 1 2 1 641 95 546 4 36,79 12,67 5,75 215,67 170 170 BC 0 3 2 0 508 81 427 2 25,64 10,18 5,27 170,33 173 173 BC 0 0 3 0 714 74 640 2 35,05 10,15 8,65 239,67 177 177 BC 0 0 4 0 668 76 592 2 40,42 17,09 7,79 224,33

Page 143: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

Appendix- Table IV Benthic foraminiferal countings from gravity core 343300-3-1

134

Dep

th (

cm

)

AD

/BC

Aderc

otr

ym

a g

lom

era

ta

Am

mod

scala

ria

pse

ud

osp

irali

s

Cri

bro

sto

moid

es

cra

ssim

ago

Cri

bro

sto

moid

es

jeff

reysi

Cri

bro

sto

moid

es

sp.

Cu

neata

arc

tica

Deu

tera

mm

ina

gri

sea

Deu

tera

mm

ina

och

racea

Egg

ere

lla a

dve

na

Recu

rvoid

es

turb

ina

tus

Reo

ph

ax

gra

cil

is

185 185 BC 0 0 0 0 2 3 0 50 10 1 1 189 189 BC 0 2 1 0 2 3 0 28 9 0 0 193 193 BC 2 0 0 0 2 4 0 48 9 0 1 205 205 BC 2 1 2 0 1 5 0 42 14 0 2 209 209 BC 0 1 1 0 3 1 0 38 4 0 0 213 213 BC 0 0 0 0 1 3 0 74 14 0 0 217 217 BC 3 0 0 1 4 4 0 33 11 1 0 220 220 BC 0 0 0 0 2 3 0 52 7 1 0 221 221 BC 0 0 0 0 3 3 0 47 6 0 0 225 225 BC 0 0 1 0 1 3 0 87 5 0 4 229 229 BC 1 0 0 0 2 1 0 41 8 0 0 233 233 BC 2 0 1 0 3 5 0 103 10 0 1 237 237 BC 1 0 0 1 3 1 0 121 13 0 0 240 240 BC 1 1 0 0 5 1 0 49 8 0 1 245 245 BC 1 0 0 0 5 2 0 75 11 0 0 249 249 BC 2 0 0 0 1 1 0 52 9 0 0 250 250 BC 10 0 0 1 0 3 3 72 18 0 5 253 253 BC 0 0 0 0 0 0 0 55 6 0 0 257 257 BC 0 0 0 0 2 1 0 61 1 0 1 261 261 BC 2 0 0 1 1 3 0 76 10 0 0 265 265 BC 0 0 0 0 0 3 0 50 8 0 0 269 269 BC 1 0 0 0 2 1 0 46 10 0 1 273 273 BC 0 0 0 0 3 0 0 49 2 0 0 277 277 BC 2 0 0 0 0 2 0 55 5 0 0 281 281 BC 0 0 0 0 2 1 0 61 4 0 0 285 285 BC 0 0 0 0 6 2 0 46 5 0 0 289 289 BC 1 0 0 0 6 3 0 47 4 0 2 301 301 BC 0 0 0 0 0 1 0 47 4 0 2 305 305 BC 0 0 0 0 4 1 0 47 2 0 0 309 309 BC 0 2 0 0 6 1 0 49 3 1 1 313 313 BC 0 0 0 0 5 1 0 51 3 0 0 317 317 BC 0 0 0 0 3 3 0 58 12 0 0 320 320 BC 0 3 0 0 2 2 0 47 8 0 0 321 321 BC 0 0 0 0 4 2 0 45 6 0 1 325 325 BC 0 1 0 0 3 2 0 53 12 0 1 329 329 BC 0 0 0 0 5 2 0 37 8 0 0 333 333 BC 0 0 0 0 4 3 0 39 13 0 0 337 337 BC 0 0 0 0 2 3 0 50 9 0 2 341 341 BC 0 0 0 0 5 7 0 42 7 0 1 343 343 BC 0 0 0 0 4 5 0 48 4 1 2 345 345 BC 2 1 0 0 4 7 0 51 4 1 0 349 349 BC 3 0 0 0 5 2 0 50 4 1 0 353 353 BC 1 1 0 0 6 2 0 44 3 0 0 355 355 BC 1 0 0 0 5 3 0 39 4 0 1 358 358 BC 5 4 2 0 4 4 0 34 13 2 2 360 360 BC 3 1 0 0 4 4 0 36 5 0 1 365 365 BC 1 0 0 0 6 3 0 45 4 0 1 369 369 BC 0 1 0 0 12 5 0 43 3 0 1 373 373 BC 0 0 0 0 13 6 0 36 2 0 2 377 377 BC 3 0 0 0 11 5 0 47 2 0 2 381 381 BC 2 0 0 0 8 4 0 50 2 2 1 385 385 BC 3 0 0 0 4 5 0 41 3 0 1 389 389 BC 1 0 0 0 5 2 0 43 3 2 2 393 393 BC 6 0 0 0 7 6 0 41 4 0 2 397 397 BC 1 0 0 0 8 3 0 39 0 0 1 400 400 BC 1 0 0 0 11 2 0 31 0 0 0 405 405 BC 3 0 0 0 19 3 0 20 1 1 0

Page 144: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

Appendix- Table IV Benthic foraminiferal countings from gravity core 343300-3-1

135

Dep

th (

cm

)

AD

/BC

Reo

ph

ax

fu

sifo

rmis

Reo

ph

ax

pil

uli

fer

Reo

ph

ax

sp

.

Sa

cca

mm

ina

dif

lug

ifo

rmis

Sil

ico

sig

moil

ina

gro

en

lan

dic

a

Sp

iro

ple

cta

mm

ina

bif

orm

is

Textu

lari

a e

arl

an

di

Textu

lari

a t

orq

ua

ta

Po

rtro

ch

am

min

a s

p.

Ast

ron

on

ion

ga

llo

wa

yi

Boli

vin

a p

seu

dop

un

ctata

Bu

cce

lla f

rig

ida

185 185 BC 0 0 0 0 0 4 0 1 0 6 11 14 189 189 BC 0 0 0 0 0 5 0 1 0 8 2 7 193 193 BC 0 0 0 0 0 4 0 0 0 6 2 22 205 205 BC 0 0 0 2 0 2 0 2 0 12 30 13 209 209 BC 0 0 5 0 0 1 0 0 0 11 10 13 213 213 BC 0 0 1 1 0 0 0 0 0 17 16 5 217 217 BC 0 1 0 1 0 1 0 2 0 9 9 8 220 220 BC 0 0 0 1 0 0 0 1 0 7 3 14 221 221 BC 0 0 1 1 0 0 0 0 0 10 8 19 225 225 BC 0 0 1 7 0 3 0 0 0 7 4 25 229 229 BC 0 0 2 0 0 1 0 0 0 5 4 18 233 233 BC 0 0 1 2 0 0 0 2 0 7 2 35 237 237 BC 0 0 1 1 0 0 0 4 1 12 2 27 240 240 BC 0 0 0 2 0 0 0 2 0 3 0 21 245 245 BC 0 1 0 3 0 0 0 0 0 5 1 11 249 249 BC 0 0 1 6 0 0 0 0 0 12 1 15 250 250 BC 0 2 8 1 0 1 1 2 0 11 17 6 253 253 BC 0 0 2 3 0 0 0 0 0 17 8 20 257 257 BC 0 0 2 5 0 0 0 0 0 9 1 26 261 261 BC 0 0 2 1 0 0 0 0 0 7 5 25 265 265 BC 0 0 2 1 0 0 0 0 0 1 0 24 269 269 BC 0 0 0 2 0 1 0 0 0 2 5 22 273 273 BC 0 0 0 1 0 0 0 0 0 4 0 18 277 277 BC 0 0 0 0 0 1 0 0 0 7 2 19 281 281 BC 0 0 0 2 0 2 0 0 0 7 2 14 285 285 BC 0 0 0 0 0 0 0 0 0 4 0 30 289 289 BC 0 1 0 0 0 2 0 2 0 0 0 23 301 301 BC 0 0 0 0 0 1 0 0 0 7 12 13 305 305 BC 0 0 0 0 0 0 0 0 0 2 1 22 309 309 BC 0 0 0 0 0 0 0 0 0 7 5 14 313 313 BC 0 0 0 0 0 0 0 0 0 1 5 10 317 317 BC 0 0 1 0 0 0 0 0 0 3 10 8 320 320 BC 0 0 0 0 0 0 0 0 0 4 15 16 321 321 BC 0 0 0 0 0 1 0 0 0 1 2 20 325 325 BC 0 0 0 0 0 1 0 1 0 10 37 12 329 329 BC 0 0 0 0 0 0 0 0 0 3 21 25 333 333 BC 0 0 0 0 0 2 1 0 0 7 27 14 337 337 BC 0 0 0 0 0 4 0 1 0 7 5 14 341 341 BC 0 0 0 0 0 2 0 0 0 6 28 16 343 343 BC 0 0 2 0 0 3 0 1 0 4 0 14 345 345 BC 0 0 1 0 0 4 0 0 0 7 0 8 349 349 BC 0 0 4 0 0 3 0 0 0 0 0 16 353 353 BC 0 0 3 2 0 0 0 0 0 5 0 10 355 355 BC 0 0 0 3 0 1 0 0 0 0 0 5 358 358 BC 1 7 5 5 0 2 0 0 0 8 12 6 360 360 BC 0 13 5 0 0 2 0 1 0 31 10 5 365 365 BC 0 2 0 0 0 1 0 1 0 9 0 6 369 369 BC 0 0 0 0 0 2 0 0 0 3 2 45 373 373 BC 0 0 0 0 0 2 0 0 0 0 0 28 377 377 BC 0 0 0 0 0 2 0 0 0 0 0 18 381 381 BC 0 0 2 0 0 4 0 2 0 0 1 7 385 385 BC 0 0 0 2 0 1 0 0 0 0 0 8 389 389 BC 0 0 0 0 0 0 0 0 0 3 0 66 393 393 BC 0 0 0 0 0 0 0 0 0 5 2 51 397 397 BC 0 0 0 0 0 0 0 1 0 4 1 28 400 400 BC 0 0 2 0 0 1 0 2 0 5 4 17 405 405 BC 0 1 1 0 0 0 0 3 0 2 1 11

Page 145: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

Appendix- Table IV Benthic foraminiferal countings from gravity core 343300-3-1

136

Dep

th (

cm

)

AD

/BC

Ca

ssid

uli

na

neote

reti

s

Ca

ssid

uli

na

ren

ifo

rme

Cib

icid

es

loba

tulu

s

Den

tali

na

sp

.

Dis

corb

is s

p.

Elp

hid

ium

alb

ium

bil

ica

tum

Elp

hid

ium

ba

rtle

tti

Elp

hid

ium

ex

cava

tum

f.

cla

vata

Elp

hid

ium

sp

.

Epis

tom

inell

a v

itre

a

Gla

du

lin

a s

p.

Glo

bob

uli

min

a

au

ricu

lata

arc

tica

185 185 BC 1 76 6 1 1 3 4 233 2 7 0 24 189 189 BC 0 71 7 1 0 1 0 203 0 0 0 32 193 193 BC 2 79 6 1 0 3 1 225 0 4 0 50 205 205 BC 3 82 15 1 0 2 3 190 1 3 0 15 209 209 BC 11 79 6 0 0 6 1 147 0 6 0 25 213 213 BC 5 62 3 4 0 4 0 99 0 4 0 11 217 217 BC 2 57 6 1 0 5 0 110 0 5 0 16 220 220 BC 0 33 4 0 0 0 0 85 0 4 0 13 221 221 BC 1 54 5 0 1 7 0 84 0 11 1 8 225 225 BC 0 12 2 2 0 2 0 68 2 9 0 10 229 229 BC 1 18 0 0 0 5 0 56 0 7 0 21 233 233 BC 0 4 1 2 1 5 0 61 2 2 1 20 237 237 BC 0 15 2 2 0 3 0 78 0 12 1 10 240 240 BC 0 6 0 0 0 5 0 56 0 6 1 15 245 245 BC 0 15 0 0 1 4 0 50 1 8 0 16 249 249 BC 4 6 1 0 0 3 0 39 0 16 0 17 250 250 BC 8 36 6 1 0 5 0 51 1 6 1 16 253 253 BC 2 21 5 1 0 2 0 70 0 5 1 15 257 257 BC 0 6 3 2 0 0 0 68 0 9 0 12 261 261 BC 2 16 4 2 0 2 0 99 0 6 0 20 265 265 BC 1 11 6 0 0 3 0 125 0 7 0 8 269 269 BC 3 19 2 1 0 2 0 103 0 3 0 29 273 273 BC 0 13 1 1 0 1 0 109 0 8 0 11 277 277 BC 0 14 5 1 0 1 0 86 0 5 0 12 281 281 BC 0 19 2 1 0 2 0 108 0 2 0 7 285 285 BC 0 24 3 3 0 1 0 115 2 6 0 7 289 289 BC 0 22 2 0 0 2 0 106 0 5 0 8 301 301 BC 1 50 9 3 0 1 0 190 0 7 0 8 305 305 BC 0 52 6 0 0 3 0 243 0 9 0 2 309 309 BC 2 40 9 0 0 5 0 199 0 4 0 1 313 313 BC 6 41 12 2 0 2 0 277 0 4 0 2 317 317 BC 4 46 4 0 0 2 0 182 1 5 0 5 320 320 BC 1 72 5 1 0 3 0 185 0 0 0 11 321 321 BC 2 35 11 1 0 0 1 280 0 3 0 6 325 325 BC 6 57 9 2 0 4 0 145 0 9 0 7 329 329 BC 2 39 5 0 1 3 0 218 0 4 0 14 333 333 BC 1 60 5 3 0 2 0 142 0 10 0 45 337 337 BC 2 56 5 0 0 4 0 125 1 3 0 24 341 341 BC 1 63 8 2 0 0 0 196 0 4 0 27 343 343 BC 0 16 7 2 0 2 0 110 0 8 0 52 345 345 BC 0 1 4 1 0 1 0 36 0 4 0 1 349 349 BC 0 3 1 1 0 0 0 81 0 12 0 18 353 353 BC 0 0 1 1 0 1 0 19 0 6 0 4 355 355 BC 0 2 0 1 0 0 0 11 0 1 0 0 358 358 BC 2 18 6 0 0 2 0 41 0 3 0 11 360 360 BC 1 15 8 1 0 7 0 64 0 7 0 9 365 365 BC 0 5 3 0 0 1 0 26 0 6 0 3 369 369 BC 0 6 2 0 0 2 0 102 0 4 0 4 373 373 BC 0 3 2 0 0 0 0 28 0 8 0 2 377 377 BC 0 1 1 0 0 0 0 9 0 1 0 6 381 381 BC 0 0 0 2 0 0 0 16 0 1 0 15 385 385 BC 0 1 1 0 0 0 0 5 0 0 0 3 389 389 BC 2 18 19 0 0 2 0 169 0 4 0 9 393 393 BC 0 8 17 0 0 6 0 244 0 6 0 6 397 397 BC 5 16 9 1 0 0 0 91 0 3 0 0 400 400 BC 10 30 13 0 0 0 0 122 0 1 0 3 405 405 BC 2 1 2 0 0 1 0 91 0 3 0 2

Page 146: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

Appendix- Table IV Benthic foraminiferal countings from gravity core 343300-3-1

137

Dep

th (

cm

)

AD

/BC

Isla

nd

iell

a h

ele

nae

Isla

nd

iell

a n

orc

ross

i

Len

ticu

lin

a s

p.

Mel

on

is b

arl

eea

nu

s

No

nio

nell

ina

au

ricu

la

No

nio

nell

ina

lab

rado

rica

No

nio

nell

a t

urg

ida

f.

dig

itata

Pa

rafi

ssu

rin

a s

p.

Pu

llen

ia b

ull

oid

es

Pu

llen

ia o

sloen

sis

Pro

cero

lagen

a s

p.

Rob

ert

ina

arc

tica

185 185 BC 2 145 0 0 4 50 0 0 0 1 0 0 189 189 BC 1 132 0 2 4 90 0 0 0 1 0 0 193 193 BC 2 168 0 0 7 98 0 0 0 3 2 0 205 205 BC 0 158 0 9 6 96 4 0 0 2 0 0 209 209 BC 0 170 0 6 3 60 1 0 0 10 0 0 213 213 BC 1 112 0 8 5 66 1 0 0 12 0 0 217 217 BC 0 147 0 11 6 42 0 0 0 6 0 1 220 220 BC 0 195 0 14 3 53 0 0 0 4 1 0 221 221 BC 0 158 0 5 3 55 0 0 0 7 1 0 225 225 BC 0 202 0 10 1 61 0 0 0 3 0 0 229 229 BC 0 228 0 3 1 52 0 0 0 4 1 0 233 233 BC 0 226 0 2 3 33 0 0 0 2 2 0 237 237 BC 0 187 0 3 1 44 0 0 0 1 0 0 240 240 BC 1 261 0 12 3 38 0 0 0 1 1 0 245 245 BC 1 202 0 7 6 58 0 0 0 4 2 0 249 249 BC 0 259 0 11 3 64 0 0 1 6 3 0 250 250 BC 0 239 0 12 8 41 2 0 0 23 0 0 253 253 BC 0 251 0 24 5 73 1 0 6 6 3 0 257 257 BC 0 240 0 18 0 40 0 0 0 0 1 0 261 261 BC 0 225 0 10 5 60 0 0 0 7 1 0 265 265 BC 0 224 1 5 4 77 0 0 0 0 0 0 269 269 BC 0 235 0 8 5 60 0 0 0 4 0 0 273 273 BC 1 271 0 12 3 51 0 0 0 0 2 0 277 277 BC 4 239 0 13 3 75 0 0 0 0 1 0 281 281 BC 1 244 0 13 1 81 0 0 0 1 1 0 285 285 BC 6 253 0 2 1 88 0 0 0 0 0 0 289 289 BC 4 238 0 5 3 129 0 0 0 1 0 0 301 301 BC 10 198 0 2 3 69 2 1 0 0 0 0 305 305 BC 4 247 0 1 2 78 0 0 0 0 0 0 309 309 BC 2 224 0 0 1 92 0 0 0 0 0 0 313 313 BC 8 220 0 0 1 78 0 0 0 0 3 0 317 317 BC 3 118 0 1 4 59 0 0 0 0 0 0 320 320 BC 7 96 0 0 4 75 4 0 0 0 0 1 321 321 BC 13 119 0 0 1 91 0 0 0 0 0 0 325 325 BC 6 103 0 0 3 73 1 0 0 4 0 0 329 329 BC 14 153 0 1 3 141 0 0 0 0 0 0 333 333 BC 3 122 0 13 15 208 1 0 0 2 0 0 337 337 BC 4 108 0 8 2 324 0 0 0 4 0 0 341 341 BC 5 92 0 6 7 148 1 0 0 0 0 0 343 343 BC 6 234 0 9 4 201 0 0 0 0 0 0 345 345 BC 1 189 0 17 2 30 2 0 0 0 0 0 349 349 BC 1 227 0 14 0 40 0 0 0 1 0 0 353 353 BC 1 269 0 16 1 36 0 0 0 0 0 0 355 355 BC 1 89 0 17 0 5 0 0 0 0 0 0 358 358 BC 1 91 0 45 6 97 0 0 0 4 0 0 360 360 BC 2 117 0 16 2 65 0 0 0 3 0 0 365 365 BC 0 67 0 14 0 27 0 0 0 1 0 0 369 369 BC 0 118 0 10 0 83 0 0 0 0 0 0 373 373 BC 0 89 0 18 0 18 0 0 0 0 0 0 377 377 BC 1 146 0 46 0 7 0 0 0 0 0 0 381 381 BC 0 73 0 6 0 7 0 0 0 0 0 0 385 385 BC 0 78 0 24 0 4 0 0 0 0 0 0 389 389 BC 0 184 0 49 1 32 0 0 0 0 1 0 393 393 BC 1 178 0 73 1 32 0 0 0 1 0 0 397 397 BC 0 136 0 26 1 18 0 0 0 1 0 0 400 400 BC 0 130 0 18 1 25 0 0 0 0 0 0 405 405 BC 0 99 0 29 0 24 0 0 0 1 0 0

Page 147: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

Appendix- Table IV Benthic foraminiferal countings from gravity core 343300-3-1

138

Dep

th (

cm

)

AD

/BC

Fis

suri

na

sp

.

Sta

info

rth

ia f

eyl

ing

i

Sta

info

rth

ia l

oeb

lich

i

Tri

fari

na f

luen

s

tota

l co

un

ts

No

. A

gglu

tin

ate

s

specim

en

s co

un

ted

No

. C

alc

areo

us

specim

en

s co

un

ted

No

. T

est

lin

ing

s

AW

to

tal

(%)

Atl

W t

ota

l (%

)

Ca

lca

reo

us

vs.

Ag

glu

tin

ate

s sp

ecim

en

s

fora

min

ifera

l

co

nce

ntr

ati

on

(te

st p

er

ml)

185 185 BC 1 0 3 2 669 72 597 2 36,20 21,66 8,29 224,67 189 189 BC 0 1 5 0 619 51 568 2 34,29 21,96 11,14 208,00 193 193 BC 1 0 3 0 755 70 685 2 30,92 22,76 9,79 253,33 205 205 BC 0 8 11 2 741 75 666 4 25,18 21,17 8,88 274,00 209 209 BC 0 6 9 1 635 54 581 4 24,03 29,77 10,76 215,00 213 213 BC 0 5 4 4 542 94 448 8 19,64 24,36 4,77 183,33 217 217 BC 0 6 6 3 518 62 456 5 23,53 32,07 7,35 175,67 220 220 BC 0 2 12 4 518 67 451 1 17,66 41,07 6,73 173,67 221 221 BC 0 2 7 4 512 61 451 8 16,95 32,76 7,39 175,00 225 225 BC 0 3 7 4 546 112 434 20 13,46 38,99 3,88 190,67 229 229 BC 0 4 7 5 496 56 440 15 11,92 45,77 7,86 173,33 233 233 BC 0 0 1 3 545 130 415 28 11,76 40,66 3,19 192,67 237 237 BC 0 4 4 6 561 147 414 15 14,92 33,28 2,82 194,33 240 240 BC 0 0 2 4 506 70 436 2 11,54 53,46 6,23 173,33 245 245 BC 0 1 4 3 498 98 400 12 10,47 42,25 4,08 172,00 249 249 BC 0 1 12 1 547 72 475 3 7,41 51,54 6,60 184,33 250 250 BC 0 2 6 1 626 127 499 61 8,36 41,09 3,84 239,33 253 253 BC 0 1 4 3 610 66 544 11 11,13 44,83 8,24 212,67 257 257 BC 0 2 3 6 519 73 446 1 13,65 50,96 6,11 173,33 261 261 BC 0 2 8 3 605 96 509 13 16,75 39,77 5,30 207,00 265 265 BC 0 0 2 0 563 64 499 3 22,42 40,63 7,80 190,33 269 269 BC 0 2 6 1 576 64 512 12 17,92 41,88 8,00 199,00 273 273 BC 0 0 6 1 568 55 513 0 19,30 49,82 9,33 190,00 277 277 BC 0 3 8 3 566 65 501 6 16,55 43,79 7,71 193,33 281 281 BC 0 2 6 0 586 72 514 3 19,26 43,92 7,14 197,33 285 285 BC 0 0 6 1 611 59 552 3 19,65 40,73 9,36 208,67 289 289 BC 0 0 3 2 621 68 553 3 18,40 38,68 8,13 212,00 301 301 BC 0 5 8 1 655 55 600 2 31,08 30,03 10,91 222,00 305 305 BC 0 0 6 2 734 54 680 2 33,29 33,29 12,59 248,33 309 309 BC 0 3 9 2 682 63 619 6 29,86 32,75 9,83 230,00 313 313 BC 0 2 15 1 750 60 690 11 37,65 28,76 11,50 255,00 317 317 BC 0 0 14 1 547 77 470 18 32,30 20,62 6,10 194,00 320 320 BC 0 3 10 1 576 62 514 5 33,22 16,69 8,31 197,67 321 321 BC 0 0 9 1 655 59 596 3 44,71 17,98 10,10 220,67 325 325 BC 0 17 6 3 588 74 514 11 28,15 17,68 6,85 203,67 329 329 BC 0 2 11 0 712 52 660 8 32,46 21,18 12,69 242,33 333 333 BC 0 5 13 1 761 62 699 12 19,97 17,54 11,27 260,33 337 337 BC 0 3 12 0 782 71 711 9 17,54 15,04 10,01 266,00 341 341 BC 0 7 6 2 689 64 625 12 30,69 13,86 9,77 235,67 343 343 BC 0 0 12 2 753 70 683 3 16,49 32,07 9,76 254,67 345 345 BC 0 0 2 2 383 75 308 8 11,86 50,85 4,11 82,60 349 349 BC 0 1 2 5 495 72 423 6 17,18 48,07 5,88 129,50 353 353 BC 0 0 1 3 436 62 374 2 4,87 64,60 6,03 113,00 355 355 BC 0 0 0 3 192 57 135 0 8,21 56,41 2,37 39,00 358 358 BC 0 12 5 1 461 90 371 30 11,88 31,99 4,12 149,14 360 360 BC 0 13 8 2 461 75 386 16 17,48 32,11 5,08 123,00 365 365 BC 0 7 3 1 243 64 179 7 15,20 34,00 2,80 50,00 369 369 BC 0 1 2 4 455 67 388 20 22,92 26,88 5,79 96,00 373 373 BC 0 0 2 2 261 61 200 26 11,76 34,97 3,28 61,20 377 377 BC 0 0 0 4 312 72 240 16 4,91 56,36 3,33 69,20 381 381 BC 0 0 0 0 205 77 128 20 11,76 34,87 1,66 47,60 385 385 BC 0 0 0 2 186 60 126 26 4,87 47,35 2,10 45,20 389 389 BC 0 1 4 4 626 58 568 3 26,77 36,00 9,79 144,44 393 393 BC 0 2 1 6 706 66 640 13 34,42 35,10 9,70 147,00 397 397 BC 0 2 2 1 398 53 345 9 23,60 39,90 6,51 82,20 400 400 BC 0 16 4 1 450 50 400 8 29,30 30,94 7,84 162,67 405 405 BC 0 5 0 2 328 52 276 18 28,69 37,33 5,31 71,80

Page 148: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

Appendix- Table V Benthic foraminiferal counts from gravity core 343310-5

139

Table V Foraminiferal countings from multicore 343310-5-1

Dep

th (

cm

)

AD

/BC

Aderc

otr

ym

a

glo

mer

ata

Am

modis

cus

gu

llm

are

nsi

s

Am

mosc

ala

ria

pse

ud

osp

irali

s

Cri

bro

sto

moid

es

cra

ssim

ago

Cri

bro

sto

moid

es

jeff

reysi

Cri

bro

sto

moid

es

sp.

Cu

neata

arc

tica

Deu

tera

mm

ina

gri

sea

Deu

tera

mm

ina

och

race

a

Egg

ere

lla a

dve

na

Egg

ere

lla s

p.

Po

rtatr

och

am

min

a s

p.

1 1815 AD 25 3 0 6 0 0 121 2 60 44 2 1 4 1806 AD 29 1 0 14 0 0 90 1 51 35 4 0 5 1802 AD 19 1 0 22 1 1 99 0 56 32 2 0 6 1799 AD 16 0 3 14 1 0 98 0 65 27 5 0 7 1796 AD 21 2 1 13 0 0 72 1 29 25 3 0 8 1793 AD 17 1 2 7 1 0 66 0 73 33 4 0 9 1790 AD 19 0 5 15 0 0 79 0 78 51 3 1

10 1786 AD 20 2 1 17 0 0 71 0 85 61 4 0 11 1783 AD 18 1 1 12 0 0 94 0 59 30 4 0 15 1771 AD 15 1 0 5 0 3 98 0 103 25 10 0 18 1761 AD 17 0 1 6 0 0 68 0 60 30 3 0 19 1758 AD 20 0 1 1 0 0 95 0 51 11 5 0 20 1755 AD 16 0 1 1 0 0 77 0 42 30 1 1 23 1745 AD 6 0 1 7 0 0 66 0 34 23 1 0 27 1732 AD 17 1 3 4 0 0 91 0 28 21 3 0 31 1720 AD 14 1 2 3 0 0 61 1 47 18 2 0 35 1707 AD 16 1 0 6 0 0 78 0 52 21 1 0 39 1694 AD 5 0 0 6 0 0 84 0 48 21 0 0 43 1682 AD 4 1 2 8 0 0 130 0 63 14 2 0 47 1669 AD 3 0 0 11 0 0 48 0 15 13 1 0 51 1656 AD 3 0 0 6 0 0 99 0 33 16 0 0 55 1644 AD 9 2 1 1 2 0 117 0 43 40 2 0 59 1631 AD 4 0 1 4 0 0 130 0 25 20 1 0 60 1628 AD 8 0 0 2 0 0 100 0 48 24 2 0 63 1618 AD 10 0 2 2 2 0 101 0 72 32 3 0 67 1606 AD 8 0 0 3 1 0 86 0 44 20 0 0 71 1593 AD 15 0 0 4 0 0 100 0 66 17 6 1 75 1580 AD 15 0 5 25 1 0 57 0 17 13 0 0 79 1567 AD 14 0 0 3 0 0 120 0 66 14 5 0 83 1555 AD 9 0 0 3 0 0 108 0 72 18 2 0 87 1542 AD 7 1 3 8 0 0 88 0 60 17 0 0 90 1533 AD 14 0 2 22 1 0 76 0 31 20 2 0 91 1530 AD 17 0 2 7 1 0 79 1 32 13 4 0 92 1526 AD 22 0 2 10 1 0 59 0 30 22 2 0 95 1517 AD 12 0 1 4 1 0 79 0 63 35 2 0 97 1511 AD 14 0 0 6 0 0 78 0 77 61 0 0 99 1504 AD 12 0 1 16 2 0 67 0 49 46 0 0

103 1492 AD 7 0 4 13 0 0 53 0 43 36 0 0 107 1479 AD 13 0 0 3 0 0 57 0 83 30 2 0 111 1466 AD 6 0 9 8 2 0 87 0 50 20 2 0 115 1454 AD 10 0 6 27 1 0 82 0 58 22 1 0 119 1441 AD 11 1 0 19 2 0 72 0 60 23 5 0 123 1429 AD 7 0 3 12 0 0 87 0 74 33 1 0 127 1416 AD 12 0 1 4 0 0 64 0 60 31 4 1 131 1404 AD 7 0 6 18 0 0 89 0 78 34 2 0 135 1391 AD 18 1 3 11 0 0 94 0 84 37 3 0 140 1376 AD 14 0 3 11 0 0 65 0 94 54 3 0 143 1366 AD 10 0 2 2 0 0 67 0 73 47 1 0 147 1354 AD 10 0 2 14 1 0 60 0 67 41 1 0 149 1348 AD 10 0 3 5 0 0 84 0 62 32 3 0 150 1344 AD 6 0 2 6 0 2 54 0 54 26 4 1 151 1341 AD 2 0 2 10 1 0 55 0 42 23 1 0 155 1329 AD 8 0 2 4 1 0 66 0 58 36 4 0 159 1317 AD 6 0 4 12 2 0 86 0 50 39 4 1 163 1304 AD 5 0 3 3 0 0 44 0 40 28 1 0

Page 149: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

Appendix- Table V Benthic foraminiferal counts from gravity core 343310-5-1

140

Dep

th (

cm

)

AD

/BC

Recu

rvoid

es

turb

inatu

s

Reo

ph

ax

gra

cil

is

Reo

ph

ax

fu

sifo

rmis

Reo

ph

ax

pil

uli

fer

Reo

ph

ax

sp

.

Sa

cca

mm

ina

dif

lug

ifo

rmis

Sil

ico

sig

moil

ina

gro

en

lan

dic

a

Sp

iro

ple

cta

mm

ina

bif

orm

is

Textu

lari

a e

arl

an

di

Textu

lari

a t

orq

ua

ta

Tro

ch

am

min

a n

an

a

Ast

ron

on

ion

ga

llo

wa

yi

Boli

vin

a

pse

ud

op

un

ctata

Bu

cce

lla f

rig

ida

1 1815 AD 16 5 0 0 9 0 0 52 1 30 1 0 1 0 4 1806 AD 18 15 0 0 0 0 1 70 0 51 1 1 2 0 5 1802 AD 23 11 0 0 1 1 0 62 8 33 0 0 0 0 6 1799 AD 23 20 0 0 0 0 0 74 6 35 2 0 0 0 7 1796 AD 25 6 0 0 0 0 0 43 0 30 1 0 10 3 8 1793 AD 16 17 0 0 0 1 0 50 12 27 3 2 7 2 9 1790 AD 33 15 0 0 1 0 0 65 6 36 1 0 0 0

10 1786 AD 24 17 0 0 2 2 0 54 7 22 1 0 0 0 11 1783 AD 21 23 0 0 1 0 0 72 4 30 0 2 5 0 15 1771 AD 9 24 0 0 4 0 0 73 1 42 0 0 0 0 18 1761 AD 7 19 0 0 0 0 0 46 8 25 4 3 36 6 19 1758 AD 4 27 0 0 0 0 0 58 2 33 1 1 35 2 20 1755 AD 3 18 0 0 1 0 0 47 0 28 2 3 27 4 23 1745 AD 12 5 0 0 1 0 0 62 1 17 1 7 27 7 27 1732 AD 19 4 0 0 0 0 0 73 0 25 3 0 9 5 31 1720 AD 4 11 0 0 1 0 0 43 1 30 2 5 38 5 35 1707 AD 5 5 0 0 1 0 0 51 4 40 2 5 18 2 39 1694 AD 4 18 0 0 0 0 0 51 9 34 1 6 19 3 43 1682 AD 5 28 0 0 0 0 0 78 1 23 4 5 28 3 47 1669 AD 10 8 0 0 0 0 0 43 2 18 0 5 57 6 51 1656 AD 10 4 0 0 0 0 0 39 2 14 0 2 34 5 55 1644 AD 6 10 0 0 0 0 0 82 5 32 3 2 12 4 59 1631 AD 1 8 0 0 0 0 0 92 3 38 0 1 23 5 60 1628 AD 0 2 0 0 0 0 0 53 6 7 1 10 28 6 63 1618 AD 6 3 0 0 0 0 0 42 1 28 0 2 9 3 67 1606 AD 2 22 0 0 0 0 0 46 4 23 1 7 28 4 71 1593 AD 4 10 0 0 0 0 0 71 5 25 1 2 30 3 75 1580 AD 23 11 0 0 0 0 0 44 2 16 1 5 39 5 79 1567 AD 7 17 0 0 0 0 0 50 4 35 1 3 13 2 83 1555 AD 12 40 0 0 0 0 0 41 7 25 2 5 10 5 87 1542 AD 12 29 0 0 0 0 0 58 3 30 2 3 24 4 90 1533 AD 22 9 0 0 0 0 0 42 6 18 0 6 25 8 91 1530 AD 16 13 0 0 0 0 0 29 6 15 3 5 32 7 92 1526 AD 14 8 0 0 0 0 0 51 3 12 1 3 30 7 95 1517 AD 10 7 0 0 0 0 0 60 8 29 1 1 12 2 97 1511 AD 3 2 0 0 0 0 0 29 4 13 0 21 11 12 99 1504 AD 3 18 0 0 0 0 0 28 5 19 0 10 35 5

103 1492 AD 11 18 0 0 0 0 0 33 3 18 0 6 46 8 107 1479 AD 9 7 0 0 0 0 0 51 3 29 0 7 33 7 111 1466 AD 20 21 0 0 0 0 0 65 5 24 0 6 22 0 115 1454 AD 54 8 0 0 0 0 0 71 3 22 2 3 15 3 119 1441 AD 21 14 0 0 1 0 0 65 6 11 0 7 20 4 123 1429 AD 12 14 0 0 0 0 0 71 8 24 1 4 29 4 127 1416 AD 10 9 0 0 1 0 0 55 1 24 2 4 30 6 131 1404 AD 7 6 0 0 1 0 0 58 7 19 0 3 17 5 135 1391 AD 6 6 0 0 0 0 0 68 2 17 1 3 9 8 140 1376 AD 12 14 0 0 0 0 0 72 5 21 2 2 11 4 143 1366 AD 7 7 0 0 0 0 0 53 0 11 1 4 21 5 147 1354 AD 16 9 0 0 0 0 0 42 3 14 0 2 14 0 149 1348 AD 8 14 0 0 0 0 0 37 8 25 0 8 30 1 150 1344 AD 14 10 0 0 0 0 0 34 4 12 0 3 29 5 151 1341 AD 11 3 0 0 0 0 0 24 2 20 0 5 38 5 155 1329 AD 14 6 0 0 0 0 0 66 2 11 0 2 28 3 159 1317 AD 21 8 0 0 0 0 0 53 2 21 0 0 5 3 163 1304 AD 16 6 0 0 0 0 0 35 3 17 0 2 12 2

Page 150: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

Appendix- Table V Benthic foraminiferal counts from gravity core 343310-5-1

141

Dep

th (

cm

)

AD

/BC

Bu

cce

lla f

rig

ida c

ali

da

Ca

ssid

uli

na

neote

reti

s

Ca

ssid

uli

na

ren

ifo

rme

Cib

icid

es

loba

tulu

s

Den

tali

na

sp

.

Dis

corb

is s

p.

Elp

hid

ium

sp

.

Elp

hid

ium

alb

ium

bil

ica

tum

Elp

hid

ium

ba

rtle

tti

Elp

hid

ium

ex

cava

tum

f. c

lava

ta

Epis

tom

inell

a v

itre

a

Fis

suri

na

sp

.

Gla

du

lin

a s

p.

Glo

bob

uli

min

a

au

ricu

lata

arc

tica

Isla

nd

iell

a h

ele

nae

1 1815 AD 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 4 1806 AD 0 0 0 0 0 0 1 0 0 0 0 0 0 5 3 5 1802 AD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 1799 AD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 1796 AD 4 0 1 4 0 0 1 0 0 0 2 0 0 17 2 8 1793 AD 0 0 2 3 0 0 0 0 0 2 1 0 0 5 2 9 1790 AD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10 1786 AD 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 11 1783 AD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 1771 AD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 18 1761 AD 2 0 12 15 0 0 2 1 0 4 2 0 0 3 7 19 1758 AD 4 0 4 5 0 0 0 0 0 3 1 0 0 12 2 20 1755 AD 0 0 10 15 0 0 2 0 0 0 3 0 0 10 11 23 1745 AD 3 0 16 20 0 0 3 0 0 8 2 0 0 13 17 27 1732 AD 0 0 6 9 0 0 2 0 0 3 0 0 0 7 8 31 1720 AD 3 0 4 3 0 0 1 0 0 8 1 0 0 21 5 35 1707 AD 3 0 1 6 0 0 4 0 0 3 1 0 0 8 1 39 1694 AD 2 0 2 18 0 0 2 0 0 3 2 0 0 27 14 43 1682 AD 6 0 3 19 0 0 1 0 0 2 2 0 0 14 4 47 1669 AD 6 2 17 17 0 0 3 0 0 1 2 0 0 4 10 51 1656 AD 2 0 14 6 0 0 1 0 0 1 2 0 0 3 5 55 1644 AD 1 0 6 9 0 0 0 0 0 1 2 0 0 0 10 59 1631 AD 5 0 30 14 0 0 2 0 0 3 3 0 0 0 5 60 1628 AD 0 0 35 7 0 0 0 1 0 1 1 0 0 1 7 63 1618 AD 0 0 4 17 0 0 3 0 0 3 0 0 0 9 3 67 1606 AD 7 0 10 16 1 0 4 0 0 2 0 0 0 7 7 71 1593 AD 3 0 4 7 0 0 3 0 0 2 3 0 0 5 7 75 1580 AD 2 1 11 22 0 0 0 0 0 5 3 0 0 11 12 79 1567 AD 0 0 0 6 0 0 0 0 0 2 2 0 0 0 0 83 1555 AD 0 0 0 7 0 0 1 0 0 0 2 1 0 3 2 87 1542 AD 4 0 1 16 0 0 0 0 0 2 1 0 0 9 5 90 1533 AD 5 0 8 10 0 0 2 0 0 2 2 0 0 13 6 91 1530 AD 0 0 8 10 0 0 1 0 0 0 3 0 0 12 2 92 1526 AD 4 0 9 14 0 0 0 0 0 3 2 0 0 19 11 95 1517 AD 7 0 3 10 0 0 1 0 0 0 1 0 0 2 0 97 1511 AD 8 5 15 19 0 0 4 1 0 4 3 0 0 8 4 99 1504 AD 9 0 8 30 0 0 3 0 0 0 8 0 0 13 18

103 1492 AD 10 0 13 14 0 0 5 3 0 2 5 0 0 16 4 107 1479 AD 9 0 7 19 0 0 1 0 0 4 7 0 0 15 4 111 1466 AD 3 0 3 9 0 0 1 0 0 1 0 0 0 7 2 115 1454 AD 0 0 4 5 0 0 0 0 0 1 0 0 0 6 2 119 1441 AD 2 0 5 11 0 0 2 0 0 3 3 0 0 11 3 123 1429 AD 0 0 4 9 0 0 4 0 0 1 0 0 0 12 3 127 1416 AD 8 0 14 17 0 0 3 0 0 4 7 0 0 27 5 131 1404 AD 10 0 3 18 0 0 1 2 0 3 9 0 0 14 1 135 1391 AD 1 0 2 14 0 0 1 0 0 3 1 0 0 13 5 140 1376 AD 0 0 5 1 0 0 0 0 0 2 2 0 0 3 5 143 1366 AD 8 0 9 24 0 0 1 0 0 11 8 0 0 15 11 147 1354 AD 5 0 6 13 0 0 0 0 0 10 3 0 0 32 6 149 1348 AD 4 0 14 8 0 0 1 0 0 18 2 0 0 24 2 150 1344 AD 10 0 34 13 0 0 5 0 0 19 3 0 0 23 1 151 1341 AD 2 0 38 15 0 0 1 0 0 44 3 0 0 15 8 155 1329 AD 7 0 34 8 0 0 3 0 0 23 1 0 1 12 1 159 1317 AD 0 0 23 4 0 0 3 1 0 55 1 0 0 9 1 163 1304 AD 2 0 34 16 0 0 2 0 0 86 3 0 0 11 3

Page 151: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

Appendix- Table V Benthic foraminiferal counts from gravity core 343310-5-1

142

Dep

th (

cm

)

AD

/BC

Isla

nd

iell

a n

orc

ross

i

Mel

on

is b

arl

eea

nu

s

No

nio

nell

ina

au

ricu

la

No

nio

nell

ina

lab

rado

rica

No

nio

nell

a t

urg

ida

f.

dig

itata

Pa

tell

ina

co

rru

ga

la

Pa

rafi

ssu

rin

a

tect

ulo

sa

Pa

rafi

ssu

rin

a s

p.

Pu

llen

ia o

sloen

sis

Pro

cero

lagen

a s

p.

Pyrg

o e

lon

gata

Pyrg

o w

illi

am

son

ii

Qu

inq

uel

ocu

lin

a

stalk

eri

Qu

inq

uel

ocu

lin

a s

p.

1 1815 AD 0 0 0 29 0 0 0 0 2 0 0 0 0 0 4 1806 AD 0 0 0 69 0 0 1 0 1 0 0 0 0 0 5 1802 AD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 1799 AD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 1796 AD 0 0 0 75 2 0 0 0 0 0 0 0 0 0 8 1793 AD 1 0 0 44 0 0 0 0 0 0 0 0 0 0 9 1790 AD 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10 1786 AD 0 0 0 1 0 0 0 0 0 0 0 0 0 0 11 1783 AD 0 0 0 18 0 0 0 0 0 0 0 0 0 0 15 1771 AD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 18 1761 AD 0 6 0 44 2 0 1 0 1 0 0 0 0 0 19 1758 AD 0 4 0 61 0 0 0 0 1 0 0 0 0 0 20 1755 AD 0 4 1 87 1 0 1 0 1 0 0 0 0 0 23 1745 AD 0 2 0 62 1 0 0 0 1 0 0 0 0 0 27 1732 AD 0 1 0 51 0 0 0 0 1 0 0 0 0 0 31 1720 AD 0 0 0 98 1 0 0 0 2 0 0 0 0 0 35 1707 AD 0 5 0 65 3 0 0 0 13 0 0 0 0 0 39 1694 AD 0 5 0 39 7 0 1 0 3 0 0 0 0 0 43 1682 AD 0 0 0 9 1 0 0 0 0 0 0 0 0 0 47 1669 AD 5 2 0 16 2 0 1 0 1 0 0 0 0 0 51 1656 AD 0 0 0 19 1 0 0 0 0 0 0 0 0 0 55 1644 AD 0 2 0 13 0 0 1 0 1 0 0 0 0 0 59 1631 AD 0 0 0 12 0 0 0 0 0 0 0 0 0 0 60 1628 AD 0 1 0 14 1 0 0 0 0 0 0 0 0 0 63 1618 AD 0 2 0 23 1 0 0 0 0 0 0 0 0 0 67 1606 AD 0 0 0 27 2 0 0 0 2 0 0 0 0 0 71 1593 AD 0 1 0 49 2 0 0 0 1 0 0 0 0 0 75 1580 AD 0 0 0 90 5 0 0 0 0 0 0 0 0 79 1567 AD 0 4 0 27 0 0 0 0 0 0 0 0 0 0 83 1555 AD 0 0 0 15 1 0 0 0 1 0 0 0 0 0 87 1542 AD 0 1 0 27 0 0 0 0 0 0 0 0 0 0 90 1533 AD 1 1 0 99 1 0 0 0 0 0 0 0 0 0 91 1530 AD 0 1 0 55 5 0 0 0 0 0 0 0 2 0 92 1526 AD 1 1 0 129 2 0 0 2 1 0 0 0 0 0 95 1517 AD 0 0 0 67 1 0 0 0 2 0 0 0 0 0 97 1511 AD 0 2 0 78 1 0 0 0 9 0 0 0 0 0 99 1504 AD 0 2 0 51 2 0 0 2 5 0 0 0 1 0

103 1492 AD 1 3 0 33 6 0 0 2 2 0 0 0 0 0 107 1479 AD 0 1 0 36 4 0 0 0 0 1 0 0 0 0 111 1466 AD 1 2 0 22 1 0 0 1 0 1 0 0 0 0 115 1454 AD 0 0 0 16 0 0 0 0 0 0 0 0 0 0 119 1441 AD 0 0 0 43 1 0 0 0 0 0 0 0 0 0 123 1429 AD 1 2 0 8 0 0 0 0 0 0 0 0 0 0 127 1416 AD 0 2 1 9 1 3 2 1 0 0 0 0 0 0 131 1404 AD 0 5 0 11 3 0 1 0 0 0 0 0 0 0 135 1391 AD 1 2 1 12 1 0 0 0 2 1 0 0 0 0 140 1376 AD 2 3 0 11 0 0 1 0 1 0 0 0 2 0 143 1366 AD 9 5 0 30 2 0 0 0 5 3 0 0 0 0 147 1354 AD 2 2 1 32 1 1 0 0 2 0 0 0 0 0 149 1348 AD 2 0 0 36 2 0 0 0 0 0 0 0 0 0 150 1344 AD 3 2 0 45 2 0 1 0 1 0 0 0 0 0 151 1341 AD 2 0 0 95 3 0 0 0 0 0 0 0 0 0 155 1329 AD 3 2 1 25 1 0 0 0 1 0 0 0 1 0 159 1317 AD 3 0 0 15 0 0 0 0 0 0 0 0 0 0 163 1304 AD 7 4 2 42 0 0 0 1 0 0 0 0 0 0

Page 152: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

Appendix- Table V Benthic foraminiferal counts from gravity core 343310-5-1

143

Dep

th (

cm

)

AD

/BC

Rob

ert

ina

arc

tica

Sta

info

rth

ia f

eyl

ing

i

Sta

info

rth

ia l

oeb

lich

i

Tri

locu

lin

a s

p.

Tri

fari

na f

luen

s

tota

l co

un

ts

No

. A

gglu

tin

ate

s

specim

en

s co

un

ted

No

. C

alc

areo

us

specim

en

s co

un

ted

No

. T

est

lin

ing

s

AW

to

tal

(%)

Atl

W t

ota

l (%

)

Ca

lca

reo

us

vs.

Ag

glu

tin

ate

s

specim

en

s

fora

min

ifera

l

co

nce

ntr

ati

on

(te

st

per m

l)

1 1815 AD 0 0 0 0 0 411 377 34 6,0 45,4 2,6 0,09 104,00 4 1806 AD 0 2 1 0 2 469 382 87 3,0 38,8 0,2 0,23 118,00 5 1802 AD 0 0 0 0 0 372 372 0 4,0 49,1 0,3 0,00 93,75 6 1799 AD 0 0 0 0 0 389 389 0 5,0 49,5 0,8 0,00 98,50 7 1796 AD 0 11 0 0 0 404 272 132 5,0 37,4 0,5 0,49 102,25 8 1793 AD 0 1 0 0 0 402 330 72 7,0 33,1 1,2 0,22 102,00 9 1790 AD 0 0 0 0 0 407 407 0 12,0 42,1 1,4 0,00 120,00

10 1786 AD 0 0 0 0 0 393 390 3 11,0 38,1 1,0 0,01 97,75 11 1783 AD 0 1 0 0 0 396 370 26 13,0 45,7 0,5 0,07 102,75 15 1771 AD 0 1 0 0 0 416 415 1 12,0 42,1 0,9 0,00 107,50 18 1761 AD 1 11 0 0 0 452 294 158 4,0 30,4 3,1 0,54 114,25 19 1758 AD 0 7 0 0 1 452 309 143 3,0 36,5 1,3 0,46 113,75 20 1755 AD 0 4 0 0 1 451 267 184 1,0 31,2 2,9 0,69 113,75 23 1745 AD 0 50 1 0 1 479 238 241 3,0 42,9 3,9 1,01 120,50 27 1732 AD 0 35 1 0 1 431 292 139 0,0 52,1 2,3 0,48 108,50 31 1720 AD 0 30 0 0 1 467 241 226 1,0 30,6 1,9 0,94 116,75 35 1707 AD 0 16 1 0 1 439 283 156 0,0 34,2 3,4 0,55 110,25 39 1694 AD 0 31 1 0 0 465 281 184 0,0 39,4 1,1 0,66 116,75 43 1682 AD 0 61 0 0 1 523 364 159 4,0 52,6 0,9 0,43 176,33 47 1669 AD 0 179 1 0 1 509 172 337 2,0 56,6 4,9 1,97 128,00 51 1656 AD 0 116 0 0 0 437 226 211 2,0 61,3 3,2 0,93 146,33 55 1644 AD 0 66 0 0 0 484 355 129 0,0 58,2 1,7 0,37 120,75 59 1631 AD 0 58 0 0 0 488 327 161 0,0 58,6 6,4 0,49 162,67 60 1628 AD 0 57 0 0 1 424 253 171 2,0 50,9 8,2 0,68 121,71 63 1618 AD 0 34 0 0 0 417 304 113 0,0 44,6 1,4 0,37 139,00 67 1606 AD 0 37 1 0 0 422 260 162 0,0 42,2 2,8 0,62 140,67 71 1593 AD 0 29 0 0 3 478 324 154 0,0 44,1 1,0 0,47 159,67 75 1580 AD 3 28 0 0 0 472 230 242 0,0 34,7 3,6 1,05 157,33 79 1567 AD 1 10 0 0 0 408 338 70 0,0 45,5 0,0 0,21 137,00 83 1555 AD 0 3 0 0 0 395 339 56 0,0 42,0 0,3 0,17 98,75 87 1542 AD 0 16 0 0 0 431 318 113 0,0 41,6 0,9 0,36 107,50 90 1533 AD 0 18 1 0 2 475 265 210 1,0 34,5 2,3 0,79 158,67 91 1530 AD 0 50 1 0 1 434 239 195 2,0 40,4 2,3 0,82 145,33 92 1526 AD 0 10 2 0 0 487 237 250 3,0 29,6 2,7 1,05 163,33 95 1517 AD 0 5 2 0 3 431 312 119 4,0 35,4 1,4 0,38 145,00 97 1511 AD 0 7 1 0 0 500 287 213 2,0 24,2 5,8 0,75 125,25 99 1504 AD 0 30 3 0 3 504 266 238 5,0 28,6 2,7 0,89 170,00

103 1492 AD 0 59 2 0 2 481 239 242 0,0 33,3 4,2 1,01 160,33 107 1479 AD 0 21 1 0 2 466 287 179 0,0 30,5 1,5 0,62 155,33 111 1466 AD 0 12 0 0 1 414 319 95 15,0 43,3 3,0 0,30 107,50 115 1454 AD 0 24 0 0 0 447 368 79 5,0 51,5 2,2 0,21 150,67 119 1441 AD 0 15 1 0 2 444 311 133 5,0 39,3 1,3 0,43 149,33 123 1429 AD 0 19 0 0 0 447 347 100 6,0 42,3 1,8 0,29 151,33 127 1416 AD 0 24 0 0 2 446 278 168 4,0 34,9 3,5 0,61 151,00 131 1404 AD 0 17 1 0 1 456 332 124 7,0 37,1 2,2 0,38 154,67 135 1391 AD 0 6 0 0 2 439 351 88 4,0 40,5 1,8 0,25 147,33 140 1376 AD 0 6 0 0 0 430 370 60 10,0 36,0 2,5 0,17 148,00 143 1366 AD 0 6 0 0 2 460 281 179 7,0 30,6 5,3 0,65 156,67 147 1354 AD 1 5 1 0 2 421 280 141 3,0 30,1 2,8 0,52 143,00 149 1348 AD 0 16 2 0 1 462 291 171 9,0 30,9 4,0 0,60 158,67 150 1344 AD 0 16 0 0 0 442 228 214 9,0 26,3 8,8 0,94 151,00 151 1341 AD 0 8 0 0 1 479 196 283 10,0 21,7 8,6 1,44 163,00 155 1329 AD 0 12 0 0 0 447 278 169 0,0 35,3 8,9 0,62 150,33 159 1317 AD 0 2 0 0 0 433 308 125 0,0 37,6 6,9 0,40 108,50 163 1304 AD 0 6 1 0 0 437 201 236 0,0 23,7 10,0 1,18 146,00

Page 153: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

Appendix- Table V Benthic foraminiferal counts from gravity core 343310-5-1

144

Dep

th (

cm

)

AD

/BC

Aderc

otr

ym

a

glo

mer

ata

Am

modis

cus

gu

llm

are

nsi

s

Am

mosc

ala

ria

pse

ud

osp

irali

s

Cri

bro

sto

moid

es

cra

ssim

ago

Cri

bro

sto

moid

es

jeff

reysi

Cri

bro

sto

moid

es

sp.

Cu

neata

arc

tica

Deu

tera

mm

ina

gri

sea

Deu

tera

mm

ina

och

race

a

Egg

ere

lla a

dve

na

Egg

ere

lla s

p.

Po

rtatr

och

am

min

a s

p.

167 1292 AD 3 0 6 6 2 0 50 0 64 35 0 2 171 1280 AD 9 2 3 12 1 2 74 0 42 31 2 1 175 1267 AD 7 0 2 7 0 1 57 0 61 39 2 1 179 1255 AD 11 2 1 20 0 0 93 0 93 38 6 0 183 1243 AD 16 0 0 7 0 0 47 0 39 27 2 1 187 1231 AD 10 1 3 6 1 0 83 0 35 38 9 0 191 1218 AD 12 0 2 27 1 0 66 0 72 42 4 0 193 1212 AD 8 0 0 7 0 2 39 0 75 31 0 0 195 1206 AD 5 0 2 4 0 2 75 1 90 37 2 1 199 1194 AD 4 0 6 12 2 0 90 0 79 40 4 0 203 1181 AD 6 0 0 10 0 0 46 0 47 19 1 0 206 1172 AD 2 0 5 1 0 1 91 0 31 16 1 0 207 1169 AD 7 0 1 2 1 0 99 0 39 30 4 0 208 1166 AD 7 0 6 0 0 1 99 0 72 26 0 1 211 1157 AD 5 0 7 12 0 0 74 0 115 35 5 0 215 1145 AD 6 0 3 1 0 0 30 0 89 40 1 0 219 1132 AD 12 0 7 3 0 0 23 0 47 18 2 0 223 1120 AD 4 0 5 17 0 0 45 0 45 29 4 1 227 1108 AD 9 0 10 6 0 0 25 0 49 17 1 1 231 1095 AD 7 0 5 4 0 0 27 0 80 19 0 0 235 1083 AD 8 0 1 11 0 0 70 0 129 45 3 1 239 1070 AD 6 0 5 3 0 0 49 0 111 39 1 1 243 1058 AD 3 0 4 1 1 0 51 0 57 29 0 0 247 1045 AD 4 0 5 2 0 0 45 0 44 30 1 0 251 1033 AD 14 0 4 10 0 0 41 0 69 35 3 1 255 1020 AD 9 0 3 4 0 0 35 0 41 25 1 0 259 1008 AD 6 0 7 9 0 0 28 0 43 18 1 0 265 995 AD 11 0 1 2 0 0 22 0 50 22 1 0 263 989 AD 8 0 4 6 0 0 23 0 25 16 0 0 267 982 AD 14 0 1 3 0 0 12 0 53 17 0 0 269 976 AD 11 0 0 1 1 0 43 0 38 16 2 0 270 973 AD 7 0 1 1 0 0 22 0 33 16 0 0 271 969 AD 8 0 3 7 1 0 31 0 51 13 0 0 275 957 AD 3 0 1 5 0 0 34 0 61 16 1 0 279 944 AD 11 0 2 4 0 0 32 0 34 18 0 0 280 940 AD 7 0 6 7 0 0 24 0 32 18 1 0 283 931 AD 9 0 8 3 0 0 23 0 41 23 3 0 287 918 AD 7 0 2 5 0 0 21 0 37 27 1 0 291 904 AD 9 0 8 5 0 0 38 0 54 20 2 0 295 898 AD 5 0 9 10 0 0 29 0 27 9 0 0 293 891 AD 12 0 3 6 1 0 35 0 65 35 0 0 299 878 AD 9 0 3 3 0 0 40 0 53 17 0 0 303 865 AD 2 1 3 8 0 0 28 0 63 21 2 1 307 851 AD 11 0 3 5 0 0 27 0 30 12 0 0 308 848 AD 10 0 2 4 0 1 30 0 41 20 3 0 311 838 AD 5 0 6 7 0 0 16 0 53 25 0 0 315 825 AD 7 0 8 3 0 0 11 0 30 18 0 0 319 811 AD 3 0 2 4 0 0 25 0 43 11 0 0 320 808 AD 5 0 3 5 0 0 40 0 50 29 0 0 323 797 AD 4 0 2 5 0 0 9 0 62 13 0 0 327 784 AD 2 0 2 8 0 0 7 0 21 11 1 0 331 770 AD 3 0 2 5 0 0 29 0 108 42 1 0 335 756 AD 18 0 4 10 0 0 19 0 78 29 0 0 338 746 AD 10 0 12 7 0 2 24 0 42 36 0 0 340 739 AD 12 0 5 3 0 0 12 0 50 23 0 0 341 736 AD 12 0 4 4 0 0 14 0 30 20 0 0 342 732 AD 14 0 7 4 0 0 34 0 36 39 1 0

Page 154: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

Appendix- Table V Benthic foraminiferal counts from gravity core 343310-5-1

145

Dep

th (

cm

)

AD

/BC

Recu

rvoid

es

turb

inatu

s

Reo

ph

ax

gra

cil

is

Reo

ph

ax

fu

sifo

rmis

Reo

ph

ax

pil

uli

fer

Reo

ph

ax

sp

.

Sa

cca

mm

ina

dif

lug

ifo

rmis

Sil

ico

sig

moil

ina

gro

en

lan

dic

a

Sp

iro

ple

cta

mm

ina

bif

orm

is

Textu

lari

a e

arl

an

di

Textu

lari

a t

orq

ua

ta

Tro

ch

am

min

a n

an

a

Ast

ron

on

ion

ga

llo

wa

yi

Boli

vin

a

pse

ud

op

un

ctata

Bu

cce

lla f

rig

ida

167 1292 AD 13 9 0 0 0 0 0 29 2 11 0 5 8 5 171 1280 AD 13 13 0 0 0 0 0 30 5 10 0 2 36 6 175 1267 AD 12 10 0 0 0 0 0 36 3 8 1 1 11 4 179 1255 AD 9 23 1 0 2 0 0 37 2 24 2 0 4 2 183 1243 AD 23 7 0 0 0 0 0 34 1 13 1 5 29 13 187 1231 AD 6 5 0 0 0 0 0 44 2 18 0 0 21 6 191 1218 AD 9 9 0 0 0 0 0 45 0 15 0 2 7 5 193 1212 AD 1 5 0 0 2 0 0 26 2 5 0 7 5 13 195 1206 AD 1 12 0 0 0 0 0 35 4 17 0 4 8 6 199 1194 AD 12 6 0 0 0 0 0 50 4 11 0 1 10 10 203 1181 AD 23 3 0 0 0 0 0 51 3 8 0 1 14 6 206 1172 AD 9 5 0 0 0 0 0 38 6 16 0 8 8 11 207 1169 AD 2 8 0 0 0 0 0 33 4 9 1 1 7 2 208 1166 AD 9 7 0 0 1 0 0 39 4 19 0 1 3 3 211 1157 AD 14 5 0 0 0 0 0 25 5 15 0 2 1 3 215 1145 AD 7 6 0 0 0 0 0 27 0 6 0 11 19 14 219 1132 AD 13 2 0 0 0 0 0 31 1 6 0 3 42 12 223 1120 AD 18 1 0 0 0 0 0 21 6 8 0 1 19 14 227 1108 AD 1 1 0 0 1 0 0 9 0 10 0 6 12 14 231 1095 AD 9 3 0 0 1 0 0 12 5 7 0 5 6 10 235 1083 AD 14 17 0 0 0 0 0 23 7 6 0 0 6 8 239 1070 AD 4 14 0 0 0 0 0 30 1 9 0 8 6 1 243 1058 AD 6 2 0 0 0 0 0 23 1 5 0 0 21 16 247 1045 AD 8 3 0 0 0 0 0 22 0 6 0 3 26 20 251 1033 AD 5 5 0 0 2 0 0 30 1 4 1 2 17 8 255 1020 AD 13 4 0 0 0 0 0 14 2 5 0 8 54 13 259 1008 AD 15 5 0 0 0 0 0 18 2 7 0 1 39 10 265 995 AD 1 2 0 0 0 0 0 10 0 5 0 13 20 14 263 989 AD 4 4 0 0 2 0 0 7 3 8 0 4 30 12 267 982 AD 2 2 0 0 1 0 0 15 0 3 0 7 9 13 269 976 AD 3 2 0 0 0 0 0 21 5 13 0 16 16 11 270 973 AD 3 5 0 0 0 0 0 32 0 6 1 11 22 12 271 969 AD 2 3 0 0 0 0 0 33 3 9 0 14 27 12 275 957 AD 8 0 0 0 0 0 0 20 0 4 0 9 29 7 279 944 AD 6 4 0 0 0 0 0 22 2 2 0 13 27 13 280 940 AD 5 1 0 0 0 0 0 27 0 5 0 15 13 16 283 931 AD 1 4 0 0 0 0 0 10 0 8 0 8 31 7 287 918 AD 2 2 0 0 0 0 0 20 0 7 0 8 28 5 291 904 AD 3 2 0 0 0 0 0 23 2 3 0 8 30 3 295 898 AD 0 3 0 0 1 0 0 12 1 2 0 14 17 7 293 891 AD 3 1 0 0 2 0 0 25 1 4 0 11 14 18 299 878 AD 7 5 0 0 0 0 0 20 0 3 0 9 34 9 303 865 AD 8 2 0 0 0 0 0 19 0 6 0 11 16 9 307 851 AD 6 2 0 0 0 0 0 29 0 8 1 3 40 10 308 848 AD 2 1 0 0 0 0 0 17 3 6 1 11 33 9 311 838 AD 1 2 0 0 2 0 0 25 2 5 0 3 5 2 315 825 AD 0 0 0 0 0 0 0 8 0 1 0 13 23 6 319 811 AD 1 0 0 0 0 0 0 12 2 4 0 20 16 17 320 808 AD 3 4 0 0 2 0 0 8 2 4 0 15 8 14 323 797 AD 1 1 0 0 0 0 0 9 1 2 3 19 31 7 327 784 AD 0 0 0 0 0 0 0 4 2 2 1 16 25 10 331 770 AD 0 7 0 0 0 0 0 14 0 2 2 13 35 5 335 756 AD 2 2 0 0 4 0 0 13 0 0 2 9 3 14 338 746 AD 0 1 0 0 0 0 0 10 0 2 0 19 6 21 340 739 AD 0 0 0 0 0 0 0 6 2 1 1 25 9 15 341 736 AD 1 4 0 0 2 0 0 15 1 6 0 23 14 12 342 732 AD 3 3 0 0 0 0 0 17 3 7 1 17 11 21

Page 155: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

Appendix- Table V Benthic foraminiferal counts from gravity core 343310-5-1

146

Dep

th (

cm

)

AD

/BC

Bu

cce

lla f

rig

ida c

ali

da

Ca

ssid

uli

na

neote

reti

s

Ca

ssid

uli

na

ren

ifo

rme

Cib

icid

es

loba

tulu

s

Den

tali

na

sp

.

Dis

corb

is s

p.

Elp

hid

ium

sp

.

Elp

hid

ium

alb

ium

bil

ica

tum

Elp

hid

ium

ba

rtle

tti

Elp

hid

ium

ex

cava

tum

f. c

lava

ta

Epis

tom

inell

a v

itre

a

Fis

suri

na

sp

.

Gla

du

lin

a s

p.

Glo

bob

uli

min

a

au

ricu

lata

arc

tica

Isla

nd

iell

a h

ele

nae

167 1292 AD 3 0 22 13 0 0 0 1 0 60 2 0 0 5 0 171 1280 AD 6 0 43 13 0 0 2 1 0 16 6 0 0 6 5 175 1267 AD 0 0 34 8 0 0 3 0 0 56 2 0 0 16 2 179 1255 AD 0 0 10 1 0 0 0 0 0 1 3 0 0 8 3 183 1243 AD 1 0 23 12 0 0 2 0 0 90 0 0 0 15 5 187 1231 AD 3 0 25 7 0 0 1 0 1 11 4 0 0 12 4 191 1218 AD 2 0 5 6 0 0 1 0 0 22 4 0 0 9 4 193 1212 AD 0 3 11 7 0 0 0 1 0 22 6 0 0 8 2 195 1206 AD 2 0 4 5 0 0 3 3 0 15 2 0 0 2 1 199 1194 AD 2 0 10 2 1 0 1 1 0 30 0 0 0 3 1 203 1181 AD 1 0 15 7 0 0 3 0 0 61 2 0 0 7 1 206 1172 AD 0 0 24 8 0 0 1 1 0 31 0 0 0 22 3 207 1169 AD 1 0 17 8 0 0 3 0 0 38 2 0 0 11 2 208 1166 AD 0 0 4 3 0 0 0

0 13 3 0 0 3 1

211 1157 AD 0 0 16 2 0 0 0 0 0 32 1 0 0 8 2 215 1145 AD 9 0 27 13 0 0 6 0 1 44 3 1 0 15 4 219 1132 AD 5 0 27 8 0 0 2 0 0 45 2 0 0 21 6 223 1120 AD 6 0 31 10 0 0 3 1 0 42 2 0 0 9 5 227 1108 AD 6 0 26 17 0 0 2 2 0 88 3 1 0 21 2 231 1095 AD 2 0 8 8 0 0 1 2 0 115 1 1 0 6 1 235 1083 AD 0 0 5 2 0 0 1 0 0 22 1 0 0 4 1 239 1070 AD 3 0 17 7 0 0 0 0 0 32 3 0 0 16 1 243 1058 AD 0 0 15 8 0 0 1 0 0 93 3 1 0 36 7 247 1045 AD 4 1 66 14 0 0 2 2 0 56 2 0 0 31 1 251 1033 AD 2 0 33 13 0 0 7 2 0 60 4 0 0 16 12 255 1020 AD 15 5 69 20 0 1 8 2 0 45 4 0 4 14 0 259 1008 AD 5 2 82 12 0 3 8 1 0 41 3 0 2 22 2 265 995 AD 7 2 41 14 0 0 1 2 0 51 9 0 0 14 0 263 989 AD 3 5 59 22 0 1 1 4 0 44 3 0 0 25 2 267 982 AD 4 6 30 13 1 0 8 7 0 42 3 0 1 40 4 269 976 AD 10 0 44 16 0 0 2 2 0 44 1 0 0 23 7 270 973 AD 7 0 49 15 0 0 5 1 0 52 3 0 0 24 9 271 969 AD 8 0 63 27 0 0 5 0 0 58 2 0 0 28 3 275 957 AD 9 5 88 14 0 1 10 4 0 36 7 0 0 24 1 279 944 AD 10 5 79 18 0 1 11 1 0 51 4 0 0 20 5 280 940 AD 9 0 75 16 0 2 2 4 0 41 5 0 0 15 1 283 931 AD 15 1 52 15 2 1 3 1 3 61 2 1 1 20 4 287 918 AD 14 1 48 16 0 1 7 1 1 93 7 0 0 19 1 291 904 AD 8 0 29 11 0 0 3 1 0 58 2 0 0 37 3 295 898 AD 9 2 56 10 0 2 8 4 0 45 3 0 1 30 2 293 891 AD 8 0 32 7 0 0 5 5 0 25 3 0 0 15 0 299 878 AD 5 1 42 12 0 0 2 5 0 29 2 0 0 14 2 303 865 AD 3 0 32 10 0 0 6 2 0 60 2 0 0 34 1 307 851 AD 6 0 70 11 0 0 2 1 0 113 5 0 0 13 0 308 848 AD 9 1 69 14 0 0 6 5 0 87 1 0 0 8 2 311 838 AD 0 0 16 6 4 0 1 0 0 83 8 0 0 18 4 315 825 AD 9 0 76 12 0 2 5 2 0 87 5 0 0 17 4 319 811 AD 9 0 88 19 0 0 6 2 0 68 4 0 0 31 4 320 808 AD 5 0 35 10 1 0 4 2 0 54 6 0 0 37 1 323 797 AD 9 0 57 14 0 1 2 3 0 52 5 0 2 40 1 327 784 AD 6 0 56 10 0 1 8 0 0 75 1 0 0 55 0 331 770 AD 1 0 36 15 0 0 4 2 0 21 6 0 0 23 1 335 756 AD 0 0 14 8 0 0 2 0 0 44 5 0 0 31 0 338 746 AD 6 0 48 12 0 0 6 5 0 35 5 0 0 37 2 340 739 AD 4 1 66 17 0 0 8 6 0 32 5 0 0 39 2 341 736 AD 3 2 70 14 1 0 6 3 0 41 5 0 0 22 1 342 732 AD 1 1 33 6 0 0 6 4 0 58 3 0 0 14 0

Page 156: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

Appendix- Table V Benthic foraminiferal counts from gravity core 343310-5-1

147

Dep

th (

cm

)

AD

/BC

Isla

nd

iell

a n

orc

ero

ssi

Mel

on

is b

arl

eea

nu

s

No

nio

nell

ina

au

ricu

la

No

nio

nell

ina

lab

rado

rica

No

nio

nell

a t

urg

ida

f.

dig

itata

Pa

tell

ina

co

rru

ga

la

Pa

rafi

ssu

rin

a

tect

ulo

sa

Pa

rafi

ssu

rin

a s

p.

Pu

llen

ia o

sloen

sis

Pro

cero

lagen

a s

p.

Pyrg

o e

lon

gata

Pyrg

o w

illi

am

son

ii

Qu

inq

uel

ocu

lin

a

stalk

eri

Qu

inq

uel

ocu

lin

a s

p.

167 1292 AD 5 2 0 61 1 1 0 0 0 0 0 0 0 0 171 1280 AD 0 4 2 35 5 0 0 0 1 0 0 0 2 0 175 1267 AD 5 2 1 51 1 0 0 0 0 0 0 0 0 0 179 1255 AD 4 1 1 16 0 0 0 0 0 0 0 0 0 0 183 1243 AD 17 1 0 37 1 0 0 0 0 0 0 0 0 0 187 1231 AD 7 3 0 22 1 0 2 0 0 0 0 0 0 0 191 1218 AD 7 2 0 57 0 0 0 0 1 1 0 0 0 0 193 1212 AD 8 1 0 47 0 0 0 0 0 0 0 0 0 0 195 1206 AD 7 0 0 26 0 0 0 0 0 1 0 0 0 0 199 1194 AD 5 2 0 22 0 0 0 0 0 0 0 0 0 0 203 1181 AD 5 3 1 51 1 0 0 0 1 0 0 0 0 0 206 1172 AD 1 0 0 45 0 0 0 0 1 0 0 0 0 0 207 1169 AD 0 0 0 29 1 0 0 0 0 0 0 0 0 0 208 1166 AD 1 0 0 10 0 0 0

0 0 0 0 0 0

211 1157 AD 0 1 0 25 0 0 0 0 0 1 0 0 0 0 215 1145 AD 9 4 3 45 1 1 0 0 3 0 0 0 0 0 219 1132 AD 6 1 4 75 1 0 1 0 0 0 0 0 0 0 223 1120 AD 13 2 2 48 0 0 2 0 0 0 0 0 0 0 227 1108 AD 21 2 4 44 0 0 3 0 2 0 0 0 0 0 231 1095 AD 13 0 0 45 0 0 0 0 0 0 0 0 0 0 235 1083 AD 9 1 0 18 0 0 0 0 0 0 0 0 0 0 239 1070 AD 7 1 0 28 0 0 0 0 2 0 0 0 0 0 243 1058 AD 5 0 0 38 0 0 0 0 2 0 0 0 0 0 247 1045 AD 8 6 2 20 0 1 2 0 2 0 0 0 0 0 251 1033 AD 11 6 1 23 0 0 0 0 1 0 0 0 0 0 255 1020 AD 8 3 3 16 5 1 2 0 2 0 0 0 1 0 259 1008 AD 18 7 2 48 3 2 2 0 0 1 0 0 0 0 265 995 AD 43 0 0 64 0 0 0 0 2 0 0 0 0

263 989 AD 59 9 0 78 2 0 0 0 1 0 0 0 0 0 267 982 AD 43 7 0 81 2 0 2 0 13 1 0 0 1 0 269 976 AD 19 1 0 57 3 0 4 0 11 0 0 0 0 0 270 973 AD 26 0 0 56 2 0 3 0 5 1 0 0 0 0 271 969 AD 11 3 0 34 0 0 2 0 1 0 0 0 0 0 275 957 AD 21 2 2 28 4 0 1 0 1 0 0 0 0 0 279 944 AD 16 1 2 26 1 2 3 0 4 0 0 0 0 0 280 940 AD 31 0 1 18 2 0 0 0 2 0 0 0 0 0 283 931 AD 30 2 0 36 13 1 0 0 11 0 0 0 0 0 287 918 AD 31 2 1 48 2 0 1 2 5 0 0 1 0 0 291 904 AD 34 1 2 22 0 1 1 0 6 0 0 0 0 0 295 898 AD 49 2 7 53 1 0 4 1 17 0 0 0 0 0 293 891 AD 57 1 0 35 0 0 0 1 6 0 0 0 0 0 299 878 AD 21 2 1 19 3 0 1 1 3 0 0 0 0 1 303 865 AD 39 1 1 43 0 0 0 1 0 1 0 0 0 0 307 851 AD 10 0 1 61 3 0 1 0 0 0 0 0 0 0 308 848 AD 12 0 0 35 1 0 0 0 2 1 0 0 0 0 311 838 AD 54 1 2 77 0 0 0 1 4 1 0 0 0 0 315 825 AD 20 1 2 48 2 0 2 0 6 1 0 0 0 0 319 811 AD 23 2 0 31 0 0 0 0 0 0 0 0 0 0 320 808 AD 25 2 0 25 0 0 0 0 1 0 0 0 0 0 323 797 AD 22 1 2 66 1 1 3 1 2 0 0 0 0 0 327 784 AD 25 1 6 84 1 0 1 1 4 1 1 0 0 0 331 770 AD 27 2 7 20 1 0 0 0 3 0 0 0 0 0 335 756 AD 73 1 3 29 0 0 0 0 2 2 0 0 0 0 338 746 AD 31 1 4 25 0 0 0 0 9 0 0 0 0 0 340 739 AD 32 0 4 27 0 0 0 1 11 1 0 0 0 0 341 736 AD 27 0 12 27 1 1 0 0 7 1 0 0 0 0 342 732 AD 44 2 3 28 0 0 0 0 8 1 0 0 0 0

Page 157: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

Appendix- Table V Benthic foraminiferal counts from gravity core 343310-5-1

148

Dep

th (

cm

)

AD

/BC

Rob

ert

ina

arc

tica

Sta

info

rth

ia f

eyl

ing

i

Sta

info

rth

ia l

oeb

lich

i

Tri

ocu

lin

a s

p.

Tri

fari

na f

luen

s

tota

l co

un

ts

No

. A

gglu

tin

ate

s

specim

en

s co

un

ted

No

. C

alc

areo

us

specim

en

s co

un

ted

No

. T

est

lin

ing

s

AW

to

tal

(%)

Atl

W t

ota

l (%

)

Ca

lca

reo

us

vs.

Ag

glu

tin

ate

s

specim

en

s

fora

min

ifera

l

co

nce

ntr

ati

on

(te

st

per m

l)

167 1292 AD 0 2 1 0 0 427 230 197 0,0 21,7 7,6 0,87 144,33 171 1280 AD 1 21 2 0 1 465 249 216 3,0 30,6 10,1 0,87 133,43 175 1267 AD 0 5 0 0 0 448 246 202 6,0 24,5 9,0 0,83 152,33 179 1255 AD 0 1 1 0 0 420 364 56 11,0 33,3 4,2 0,15 143,00 183 1243 AD 0 11 1 0 0 480 217 263 3,0 24,8 8,3 1,21 161,33 187 1231 AD 0 34 1 0 0 425 262 163 1,0 39,7 8,1 0,63 143,67 191 1218 AD 0 2 0 0 1 442 304 138 18,0 27,3 3,2 0,46 154,00 193 1212 AD 0 2 1 0 0 347 203 144 3,0 20,0 6,9 0,71 70,00 195 1206 AD 0 1 1 0 0 378 287 91 15,0 28,7 3,3 0,32 98,50 199 1194 AD 0 0 0 0 1 422 320 102 12,0 35,3 4,8 0,32 144,67 203 1181 AD 0 5 1 0 0 403 217 186 2,0 31,1 5,2 0,86 101,25 206 1172 AD 0 14 0 0 1 401 222 179 3,0 38,4 7,7 0,81 115,43 207 1169 AD 0 18 2 0 0 382 240 142 1,0 40,2 4,7 0,59 127,67 208 1166 AD 0 12 0 0 1 348 290 58 9,0 44,7 3,4 0,20 71,60 211 1157 AD 0 0 1 0 0 412 317 95 9,0 27,0 5,4 0,32 106,50 215 1145 AD 0 2 1 0 1 454 217 237 3,0 15,2 9,1 1,11 153,33 219 1132 AD 1 2 1 0 3 432 165 267 3,0 17,1 9,1 1,64 146,00 223 1120 AD 0 5 1 0 2 419 203 216 3,0 22,1 11,5 1,07 142,00 227 1108 AD 0 1 0 0 0 413 139 274 3,0 9,0 14,3 1,98 140,00 231 1095 AD 0 1 3 0 0 407 179 228 7,0 12,1 6,5 1,27 138,00 235 1083 AD 0 1 0 0 0 413 334 79 29,0 24,6 3,4 0,24 147,67 239 1070 AD 0 3 1 0 1 409 272 137 14,0 20,4 7,3 0,51 106,50 243 1058 AD 0 0 1 0 0 430 183 247 4,0 20,0 6,0 1,35 144,67 247 1045 AD 0 4 2 0 2 445 170 275 2,0 17,8 18,2 1,64 150,00 251 1033 AD 0 1 0 0 5 448 224 224 2,0 19,7 11,3 1,00 129,14 255 1020 AD 0 8 0 2 0 467 156 311 4,0 14,8 18,4 2,01 189,60 259 1008 AD 0 6 2 0 2 483 159 324 2,0 14,1 22,2 2,07 163,33 265 995 AD 0 2 3 0 2 431 127 304 3,0 8,1 20,5 2,39 108,50 263 989 AD 0 9 3 0 2 488 110 378 1,0 9,2 26,6 3,44 163,00 267 982 AD 0 1 2 0 3 465 123 342 6,0 7,1 19,6 2,85 160,00 269 976 AD 0 1 4 0 1 445 156 289 1,0 16,7 16,4 1,88 150,00 270 973 AD 0 13 3 0 0 443 127 316 2,0 17,6 18,0 2,52 149,67 271 969 AD 0 13 1 0 0 474 164 310 0,0 17,1 16,3 1,93 160,00 275 957 AD 0 2 4 0 1 462 153 309 3,0 13,7 24,5 2,07 157,67 279 944 AD 0 6 0 0 0 453 137 316 2,0 15,3 22,9 2,36 154,33 280 940 AD 0 6 3 1 0 411 133 278 1,0 15,3 27,7 2,09 103,00 283 931 AD 0 4 1 0 1 460 133 327 3,0 8,9 21,7 2,52 157,00 287 918 AD 0 3 3 0 1 480 131 349 3,0 9,6 17,7 2,73 163,67 291 904 AD 0 8 1 0 1 438 169 269 10,0 16,7 17,1 1,60 150,00 295 898 AD 0 6 3 0 1 458 108 350 2,0 10,5 28,8 3,30 155,33 293 891 AD 0 4 1 0 1 442 193 249 2,0 15,1 22,5 1,29 111,00 299 878 AD 0 15 2 0 2 396 160 236 1,0 21,0 17,5 1,49 100,00 303 865 AD 0 9 2 0 1 447 163 284 6,0 14,2 16,2 1,77 130,57 307 851 AD 1 10 3 0 1 498 134 364 3,0 14,3 16,4 2,75 168,33 308 848 AD 0 5 1 0 0 453 141 312 1,0 12,3 18,8 2,23 152,33 311 838 AD 0 0 4 0 0 443 149 294 1,0 10,3 18,3 1,99 111,75 315 825 AD 0 4 2 0 2 435 86 349 1,0 6,1 24,9 4,13 126,29 319 811 AD 0 1 1 0 0 449 107 342 2,0 9,5 24,9 3,22 129,71 320 808 AD 0 3 2 0 1 406 155 251 2,0 13,5 16,2 1,62 136,00 323 797 AD 1 4 3 0 1 460 112 348 1,0 5,2 17,8 3,14 155,00 327 784 AD 0 3 1 0 2 454 61 393 2,0 3,1 19,0 6,48 152,67 331 770 AD 0 1 3 0 1 442 215 227 5,0 10,0 15,1 1,07 150,00 335 756 AD 0 2 2 0 5 430 181 249 5,0 8,3 22,2 1,38 145,33 338 746 AD 0 0 3 0 1 422 146 276 5,0 8,4 23,3 1,90 122,57 340 739 AD 0 2 4 0 3 429 115 314 4,0 5,0 26,3 2,77 145,67 341 736 AD 0 2 5 0 1 414 113 301 4,0 7,9 26,7 2,67 139,67 342 732 AD 0 1 5 0 4 441 170 271 4,0 12,3 20,8 1,61 149,33

Page 158: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

Appendix- Table V Benthic foraminiferal counts from gravity core 343310-5-1

149

Dep

th (

cm

)

AD

/BC

Aderc

otr

ym

a

glo

mer

ata

Am

modis

cus

gu

llm

are

nsi

s

Am

mosc

ala

ria

pse

ud

osp

irali

s

Cri

bro

sto

moid

es

cra

ssim

ago

Cri

bro

sto

moid

es

jeff

reysi

i

Cri

bro

sto

moid

es

sp.

Cu

neata

arc

tica

Deu

tera

mm

ina

gri

sea

Deu

tera

mm

ina

och

race

a

Egg

ere

lla a

dve

na

Egg

ere

lla s

p.

Po

rtatr

och

am

min

a s

p.

343 729 AD 10 0 5 3 0 0 15 0 74 53 0 0 347 715 AD 18 0 11 12 0 0 11 0 40 16 0 0 351 701 AD 10 0 1 1 0 0 13 0 64 27 2 0 355 687 AD 7 0 4 2 0 0 8 0 34 14 0 0 359 673 AD 5 0 2 2 0 0 23 0 59 16 1 0 363 658 AD 9 0 8 4 0 0 18 0 51 31 0 0 371 630 AD 11 0 0 1 0 0 13 0 91 18 1 0 375 616 AD 6 0 2 3 0 0 24 0 71 23 0 0 379 601 AD 2 0 0 1 0 0 15 0 50 12 0 0 383 587 AD 3 0 3 1 0 0 5 0 45 16 0 0 387 573 AD 3 0 0 2 0 0 6 0 27 7 1 0 391 558 AD 6 0 2 8 0 0 14 0 51 24 0 0 395 544 AD 6 0 0 1 0 0 8 0 39 16 0 0 397 536 AD 3 0 0 1 0 0 11 0 33 28 1 0 400 525 AD 3 0 3 4 1 0 9 0 36 16 0 0 401 522 AD 5 0 2 5 0 0 8 0 45 21 0 0 403 514 AD 2 0 1 2 0 0 11 0 43 22 0 0 407 500 AD 3 0 0 4 0 0 10 0 35 14 0 0 411 485 AD 1 0 0 4 0 0 10 0 65 12 0 0 413 478 AD 5 0 0 4 0 0 15 0 42 23 1 0 415 470 AD 5 0 2 2 0 0 17 0 32 25 1 0 419 456 AD 10 0 2 0 0 0 16 0 56 13 10 0 423 441 AD 22 0 3 2 0 0 14 0 26 21 0 0 427 426 AD 16 0 4 4 0 0 15 0 50 22 1 0 431 411 AD 6 0 1 1 0 0 16 0 56 19 0 0 435 396 AD 6 0 0 1 0 1 4 0 52 17 0 0 443 366 AD 11 0 0 3 0 0 5 0 61 17 0 0 447 351 AD 10 0 1 0 0 0 12 0 41 28 0 0 451 336 AD 6 0 1 2 0 1 12 0 45 26 0 0 455 321 AD 9 0 1 4 0 0 4 0 19 15 0 0 459 305 AD 5 0 2 0 0 0 13 0 50 15 0 0 463 290 AD 5 0 1 5 0 1 11 0 42 15 1 0 467 274 AD 10 0 0 2 0 0 15 0 105 23 2 0 471 259 AD 2 0 0 0 0 0 8 0 41 11 0 0 475 243 AD 4 0 0 1 0 0 9 0 39 15 0 0 479 228 AD 10 0 0 4 0 0 3 0 45 15 0 0 483 212 AD 8 0 0 1 1 0 3 0 29 21 0 0 487 196 AD 6 0 0 0 0 0 9 0 46 21 0 0 491 180 AD 6 0 0 3 0 0 1 0 15 12 0 0 495 164 AD 2 0 0 1 0 0 7 0 26 14 0 0 499 148 AD 0 0 1 6 0 0 6 0 23 7 2 0 503 132 AD 8 0 0 3 0 0 8 0 49 12 0 0 507 116 AD 6 0 0 2 0 0 7 0 41 31 1 0 511 100 AD 8 0 0 2 0 0 22 0 102 24 1 0 515 83 AD 12 0 0 0 0 0 10 0 23 16 0 0 519 67 AD 4 0 0 6 0 0 19 0 44 11 4 0 520 63 AD 3 0 0 3 0 0 20 0 51 18 0 0 521 59 AD 2 0 0 9 0 0 15 0 54 14 0 0 523 50 AD 8 0 0 2 0 0 6 0 37 23 0 0 527 34 AD 4 0 0 2 0 0 19 0 92 16 0 0 531 17 AD 11 0 0 1 0 0 14 0 57 17 0 0 535 0 AD 7 0 0 6 0 0 26 0 79 37 0 0 539 16 BC 3 0 0 9 0 0 8 0 15 11 0 0 543 33 BC 6 0 0 1 0 0 39 0 43 50 1 0 547 50 BC 6 0 0 13 0 0 50 0 41 22 0 0 551 67 BC 9 0 0 0 0 0 20 0 38 25 0 0 555 84 BC 6 0 0 4 0 0 11 0 81 36 0 2 559 101 BC 6 0 1 0 0 1 17 0 40 28 0 0 563 119 BC 4 0 0 3 0 0 8 0 42 20 1 0

Page 159: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

Appendix- Table V Benthic foraminiferal counts from gravity core 343310-5-1

150

D

ep

th (

cm

)

AD

/BC

Recu

rvoid

es

turb

inatu

s

Reo

ph

ax

gra

cil

is

Reo

ph

ax

fu

sifo

rmis

Reo

ph

ax

pil

uli

fer

Reo

ph

ax

sp

.

Sa

cca

mm

ina

dif

lug

ifo

rmis

Sil

ico

sig

moil

ina

gro

en

lan

dic

a

Sp

iro

ple

cta

mm

ina

bif

orm

is

Textu

lari

a e

arl

an

di

Textu

lari

a t

orq

ua

ta

Tro

ch

am

min

a n

an

a

Ast

ron

on

ion

ga

llo

wa

yi

Boli

vin

a

pse

ud

op

un

ctata

Bu

cce

lla f

rig

ida

343 729 AD 0 0 0 0 0 0 0 8 0 4 4 12 2 11 347 715 AD 0 0 0 0 0 0 0 10 0 4 0 1 3 15 351 701 AD 1 3 0 0 1 0 0 8 0 7 0 11 37 6 355 687 AD 0 1 0 0 0 0 0 7 0 0 1 9 40 6 359 673 AD 0 11 0 0 1 0 0 5 0 0 0 6 35 5 363 658 AD 2 4 0 0 0 0 0 15 0 2 0 16 26 15 371 630 AD 0 2 0 0 0 0 0 5 0 3 0 9 43 11 375 616 AD 4 1 0 0 1 0 0 16 1 6 1 11 52 13 379 601 AD 1 2 0 0 0 0 0 9 1 1 0 15 24 9 383 587 AD 1 1 0 0 0 0 0 6 1 1 0 11 19 8 387 573 AD 2 2 0 0 0 0 0 8 0 0 0 10 62 10 391 558 AD 2 1 0 0 0 0 0 11 0 2 0 12 26 6 395 544 AD 0 0 0 0 1 0 0 4 0 0 0 8 29 4 397 536 AD 4 0 0 0 0 0 0 9 3 3 0 13 35 12 400 525 AD 8 2 0 0 0 0 0 9 1 6 0 8 31 9 401 522 AD 2 3 0 0 0 0 0 8 0 6 0 6 27 7 403 514 AD 1 2 0 0 0 0 0 5 0 0 0 15 27 15 407 500 AD 3 0 0 0 0 0 0 6 1 2 0 13 29 4 411 485 AD 0 3 0 0 0 0 0 2 1 2 0 18 34 3 413 478 AD 0 2 0 0 0 0 0 3 0 3 0 17 15 6 415 470 AD 1 4 0 0 0 0 0 5 0 3 0 16 24 13 419 456 AD 0 0 0 0 0 0 0 4 2 3 0 7 18 9 423 441 AD 2 2 0 0 0 0 0 6 0 1 0 20 23 18 427 426 AD 3 2 0 0 1 0 0 12 0 2 0 7 22 12 431 411 AD 0 1 0 0 1 0 0 7 1 2 2 15 16 9 435 396 AD 0 1 0 0 0 0 0 9 0 0 0 11 7 10 443 366 AD 7 0 0 0 0 0 1 20 1 1 0 10 34 10 447 351 AD 4 1 0 0 0 0 0 19 0 0 0 15 26 6 451 336 AD 3 0 0 0 0 0 0 16 0 0 0 23 27 14 455 321 AD 0 1 0 0 0 0 0 4 0 1 0 11 15 5 459 305 AD 3 0 0 0 0 0 0 23 0 0 0 12 44 7 463 290 AD 8 0 0 0 1 0 0 12 0 0 0 14 8 14 467 274 AD 0 0 0 0 0 0 0 6 0 0 1 10 13 12 471 259 AD 0 1 0 0 1 0 0 2 0 0 0 15 20 7 475 243 AD 0 1 0 0 0 0 0 2 1 0 0 8 21 7 479 228 AD 0 0 0 0 6 0 0 1 0 0 0 15 12 3 483 212 AD 0 0 0 0 0 0 0 5 0 0 0 20 27 1 487 196 AD 0 0 0 0 0 0 0 3 1 0 0 9 8 6 491 180 AD 0 0 0 0 1 0 0 1 0 0 0 4 18 5 495 164 AD 0 0 0 0 0 0 0 0 0 0 0 24 16 6 499 148 AD 1 0 0 0 0 0 0 0 0 0 0 7 17 9 503 132 AD 2 1 0 0 0 0 0 0 0 1 0 7 35 3 507 116 AD 0 0 0 0 0 0 0 7 0 3 0 18 22 10 511 100 AD 0 1 0 0 0 0 0 5 1 4 0 12 8 11 515 83 AD 0 0 0 0 0 0 0 4 0 1 0 20 17 4 519 67 AD 2 4 0 0 0 0 0 7 0 1 0 12 49 5 520 63 AD 0 2 0 0 0 0 0 10 0 2 0 5 50 7 521 59 AD 0 1 0 0 0 0 0 4 0 3 0 3 18 7 523 50 AD 0 0 0 0 0 0 0 2 0 1 0 14 14 12 527 34 AD 0 0 0 0 6 0 0 7 0 0 0 9 14 4 531 17 AD 1 3 0 0 0 0 0 16 0 0 0 12 23 10 535 0 AD 6 0 0 0 0 0 0 26 0 1 0 14 34 9 539 16 BC 12 1 0 0 0 0 0 12 1 0 0 6 34 2 543 33 BC 5 4 0 0 0 0 0 33 5 3 0 7 18 9 547 50 BC 27 3 0 0 0 0 0 27 2 4 0 5 38 8 551 67 BC 2 0 0 0 0 0 0 5 0 0 0 3 28 7 555 84 BC 1 1 0 0 0 0 0 2 3 0 0 6 4 10 559 101 BC 2 0 0 0 0 0 0 7 0 1 0 13 32 8 563 119 BC 0 1 0 0 0 0 0 0 0 0 0 11 11 9

Page 160: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

Appendix- Table V Benthic foraminiferal counts from gravity core 343310-5-1

151

Dep

th (

cm

)

AD

/BC

Bu

cce

lla f

rig

ida c

ali

da

Ca

ssid

uli

na

neote

reti

s

Ca

ssid

uli

na

ren

ifo

rme

Cib

icid

es

loba

tulu

s

Den

tali

na

sp

.

Dis

corb

is s

p.

Elp

hid

ium

sp

.

Elp

hid

ium

alb

ium

bil

ica

tum

Elp

hid

ium

ba

rtle

tti

Elp

hid

ium

ex

cava

tum

f. c

lava

ta

Epis

tom

inell

a v

itre

a

Fis

suri

na

sp

.

Gla

du

lin

a s

p.

Glo

bob

uli

min

a

au

ricu

lata

arc

tica

Isla

nd

iell

a h

ele

nae

343 729 AD 1 0 29 7 0 0 4 0 0 68 11 0 2 27 0 347 715 AD 1 0 20 9 0 0 3 0 0 98 1 0 0 21 2 351 701 AD 4 1 49 16 1 1 5 2 0 51 3 0 1 29 0 355 687 AD 19 1 95 14 0 0 2 3 0 99 6 0 0 16 1 359 673 AD 4 0 102 17 0 0 3 0 0 40 5 0 0 23 0 363 658 AD 2 1 62 16 0 1 9 2 0 66 5 0 0 7 0 371 630 AD 9 0 75 17 0 0 6 3 0 31 3 0 0 19 1 375 616 AD 5 0 67 13 0 2 8 3 0 14 3 0 1 16 0 379 601 AD 6 0 56 11 0 1 2 0 0 38 6 0 0 18 0 383 587 AD 16 2 78 17 0 0 11 8 0 73 3 0 0 35 0 387 573 AD 13 0 78 22 0 3 4 3 0 59 7 0 0 36 8 391 558 AD 2 0 58 14 0 0 3 3 0 61 3 0 0 28 0 395 544 AD 4 0 58 15 0 0 6 2 0 62 2 0 0 53 3 397 536 AD 9 2 78 15 0 0 11 9 0 57 1 0 0 25 1 400 525 AD 5 0 61 12 0 0 8 0 0 32 0 0 0 17 0 401 522 AD 6 0 89 11 0 0 12 10 0 34 0 0 0 23 1 403 514 AD 20 1 93 12 1 2 2 10 0 82 4 0 0 20 3 407 500 AD 16 4 88 26 2 3 13 7 1 35 5 0 0 17 0 411 485 AD 19 2 72 11 1 1 9 3 0 33 2 0 0 30 0 413 478 AD 12 1 113 12 0 0 10 7 0 37 3 0 0 26 1 415 470 AD 9 3 102 10 1 0 10 7 0 44 4 0 0 29 3 419 456 AD 6 0 51 6 1 0 3 2 0 44 5 0 0 38 1 423 441 AD 10 1 72 17 0 2 9 4 0 21 6 0 0 42 0 427 426 AD 5 1 72 13 0 0 9 1 0 32 5 0 0 42 0 431 411 AD 5 4 63 8 1 2 4 2 0 49 6 0 0 32 0 435 396 AD 6 1 88 11 1 1 11 5 0 38 1 0 0 31 0 443 366 AD 10 1 91 11 1 2 11 2 0 75 3 0 0 10 0 447 351 AD 17 1 82 12 1 0 17 10 0 35 1 0 0 23 0 451 336 AD 15 2 96 15 1 0 9 5 0 24 8 1 0 42 0 455 321 AD 10 2 101 18 0 0 9 4 0 23 2 0 0 15 1 459 305 AD 6 0 94 9 0 0 10 6 1 14 2 0 0 52 1 463 290 AD 6 0 72 10 0 1 10 6 0 17 4 0 0 18 0 467 274 AD 5 1 51 9 1 0 4 5 0 10 1 0 0 12 0 471 259 AD 11 6 77 11 0 0 11 6 0 17 1 2 0 25 1 475 243 AD 2 3 70 12 0 0 5 1 0 22 1 0 0 19 0 479 228 AD 0 0 30 8 1 0 1 2 0 6 1 0 0 8 0 483 212 AD 8 2 88 17 0 1 8 7 0 17 5 0 0 6 1 487 196 AD 5 2 90 5 0 0 1 3 0 14 2 0 6 0 491 180 AD 5 2 127 13 0 1 4 2 0 14 3 0 0 45 0 495 164 AD 10 5 148 11 3 0 14 11 0 37 2 0 0 22 0 499 148 AD 7 0 103 16 1 0 2 5 0 12 6 1 0 102 3 503 132 AD 14 0 107 12 0 0 13 4 0 15 8 1 0 49 2 507 116 AD 4 7 106 12 0 0 9 6 0 8 3 0 0 24 1 511 100 AD 12 0 98 11 0 0 8 0 0 9 1 1 0 12 0 515 83 AD 19 17 101 22 0 0 19 9 0 20 3 0 0 10 2 519 67 AD 17 6 114 14 1 0 3 3 0 16 7 0 0 7 6 520 63 AD 10 1 111 25 0 0 4 4 0 10 6 0 0 6 2 521 59 AD 19 0 110 22 0 0 12 3 0 18 2 0 0 5 3 523 50 AD 12 10 99 25 0 1 10 9 0 22 5 0 0 15 3 527 34 AD 3 1 32 16 0 1 5 2 0 20 1 1 0 20 0 531 17 AD 11 4 95 13 0 0 6 4 0 15 2 0 0 26 1 535 0 AD 7 5 89 12 0 0 3 3 0 15 8 0 0 26 3 539 16 BC 6 0 115 7 1 1 1 4 0 44 4 0 0 39 1 543 33 BC 2 2 59 3 1 0 5 5 0 68 1 0 0 8 1 547 50 BC 3 0 76 4 0 0 8 6 0 27 4 0 0 13 4 551 67 BC 2 1 52 4 0 0 1 1 0 47 4 0 0 34 0 555 84 BC 5 1 32 14 0 0 2 3 0 39 3 0 0 9 1 559 101 BC 16 3 100 13 0 1 14 10 0 23 3 0 0 25 0 563 119 BC 8 1 100 17 0 2 4 4 0 60 8 0 0 20 0

Page 161: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

Appendix- Table V Benthic foraminiferal counts from gravity core 343310-5-1

152

Dep

th (

cm

)

AD

/BC

Isla

nd

iell

a n

orc

ero

ssi

Mel

on

is b

arl

eea

nu

s

No

nio

nell

ina

au

ricu

la

No

nio

nell

ina

lab

rado

rica

No

nio

nell

a t

urg

ida

f.

dig

itata

Pa

tell

ina

co

rru

ga

la

Pa

rafi

ssu

rin

a

tect

ulo

sa

Pa

rafi

ssu

rin

a s

p.

Pu

llen

ia o

sloen

sis

Pro

cero

lagen

a s

p.

Pyrg

o e

lon

gata

Pyrg

o w

illi

am

son

ii

Qu

inq

uel

ocu

lin

a

stalk

eri

Qu

inq

uel

ocu

lin

a s

p.

343 729 AD 44 3 2 24 0 0 0 0 7 0 0 0 0 0 347 715 AD 82 3 3 26 0 0 0 0 1 0 0 0 0 0 351 701 AD 32 4 8 23 0 0 3 1 5 0 0 0 0 0 355 687 AD 27 1 7 40 3 0 2 1 4 0 0 0 0 0 359 673 AD 15 0 1 42 1 1 0 0 0 0 0 0 0 0 363 658 AD 38 6 4 29 2 0 0 3 5 0 0 0 0 0 371 630 AD 28 3 1 50 0 0 2 2 3 0 0 0 0 0 375 616 AD 29 5 6 24 2 0 1 0 0 0 0 0 0 0 379 601 AD 56 3 4 44 2 1 0 0 8 0 0 0 0 0 383 587 AD 29 2 3 33 2 0 0 0 0 1 0 0 0 0 387 573 AD 17 4 0 38 2 0 1 2 1 0 0 0 0 0 391 558 AD 21 2 1 33 0 0 1 0 0 0 0 0 0 0 395 544 AD 16 3 8 98 3 0 0 0 1 0 0 0 0 0 397 536 AD 19 2 3 48 1 0 0 0 1 0 0 0 0 0 400 525 AD 6 0 4 44 8 0 0 0 1 0 0 1 0 0 401 522 AD 5 0 3 42 2 0 1 0 0 0 0 0 0 0 403 514 AD 15 0 1 57 3 0 0 3 7 0 0 0 0 0 407 500 AD 21 4 5 49 6 1 6 1 4 0 0 1 0 3 411 485 AD 18 3 3 53 1 0 6 0 3 0 0 0 0 1 413 478 AD 21 0 0 37 2 0 0 1 4 0 0 0 0 0 415 470 AD 18 3 1 25 1 0 0 1 3 0 0 0 0 0 419 456 AD 50 2 5 40 1 0 1 0 3 0 0 0 0 0 423 441 AD 41 1 9 40 1 0 2 0 17 0 0 0 0 0 427 426 AD 40 2 3 38 0 0 1 0 2 0 0 0 0 0 431 411 AD 28 1 0 43 0 0 2 0 23 0 0 0 0 0 435 396 AD 32 1 4 57 0 1 0 0 4 1 0 0 0 0 443 366 AD 16 0 3 49 3 0 2 0 5 5 0 0 0 0 447 351 AD 24 1 4 62 1 0 1 0 13 0 0 0 0 0 451 336 AD 23 0 0 54 7 1 1 0 8 1 0 0 0 0 455 321 AD 21 0 5 88 1 0 6 0 4 1 0 0 0 0 459 305 AD 36 0 2 61 1 1 1 0 1 0 0 0 0 0 463 290 AD 32 0 0 97 1 0 1 0 2 0 0 0 0 0 467 274 AD 52 0 0 30 0 3 0 0 6 1 0 0 0 0 471 259 AD 53 1 3 60 0 0 0 0 4 0 0 0 0 0 475 243 AD 63 0 2 99 0 0 0 0 7 0 0 0 0 0 479 228 AD 131 2 0 75 1 0 1 0 30 0 0 0 0 0 483 212 AD 81 4 1 57 3 0 1 0 18 0 0 0 0 0 487 196 AD 89 1 1 84 0 0 0 0 1 0 0 0 0 0 491 180 AD 98 2 0 61 1 0 0 0 3 0 0 0 0 0 495 164 AD 33 0 0 32 2 0 2 0 6 0 0 0 0 0 499 148 AD 21 4 3 59 1 0 0 2 2 0 0 0 0 0 503 132 AD 38 6 4 45 0 0 1 1 4 0 0 0 0 0 507 116 AD 30 0 0 40 2 0 0 3 1 1 0 0 0 0 511 100 AD 33 2 0 46 0 1 1 0 3 0 0 0 0 0 515 83 AD 36 2 1 61 2 1 0 1 5 0 0 0 0 0 519 67 AD 25 7 3 24 8 0 0 1 3 1 0 0 0 0 520 63 AD 30 4 2 27 3 0 0 1 9 0 0 0 0 0 521 59 AD 24 8 2 38 3 2 4 1 3 0 0 0 0 0 523 50 AD 44 2 3 26 3 1 1 0 3 0 0 0 0 1 527 34 AD 71 2 4 39 1 0 0 0 15 0 0 0 0 0 531 17 AD 38 1 1 49 0 0 1 0 4 0 0 0 0 0 535 0 AD 16 0 1 21 1 0 0 0 0 0 0 0 0 0 539 16 BC 8 2 0 71 5 0 1 0 1 2 0 0 0 0 543 33 BC 14 0 3 45 0 0 1 0 0 0 0 0 0 0 547 50 BC 13 0 2 39 0 0 0 0 2 0 0 0 0 0 551 67 BC 23 2 3 122 1 0 0 0 1 0 0 0 0 0 555 84 BC 50 1 1 61 0 0 2 0 1 0 0 0 0 0 559 101 BC 31 1 6 34 3 0 0 3 2 0 0 0 0 1 563 119 BC 38 2 5 37 0 0 0 0 9 0 0 0 0 0

Page 162: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

Appendix- Table V Benthic foraminiferal counts from gravity core 343310-5-1

153

Dep

th (

cm

)

AD

/BC

Rob

ert

ina

arc

tica

Sta

info

rth

ia f

eyl

ing

i

Sta

info

rth

ia l

oeb

lich

i

Tri

ocu

lin

a s

p.

Tri

fari

na f

luen

s

tota

l co

un

ts

No

. A

gglu

tin

ate

s

specim

en

s co

un

ted

No

. C

alc

areo

us

specim

en

s co

un

ted

No

. T

est

lin

ing

s

AW

to

tal

(%)

Atl

W t

ota

l (%

)

Ca

lca

reo

us

vs.

Ag

glu

tin

ate

s

specim

en

s

fora

min

ifera

l

co

nce

ntr

ati

on

(te

st

per m

l)

343 729 AD 0 2 2 0 1 435 176 259 2,0 5,7 19,4 1,48 146,33 347 715 AD 0 1 2 0 1 415 122 293 3,0 5,7 27,1 2,43 140,33 351 701 AD 0 10 2 0 0 440 138 302 7,0 7,1 19,6 2,23 151,00 355 687 AD 0 5 2 0 2 481 78 403 0,0 4,3 26,8 5,27 163,00 359 673 AD 0 27 3 0 2 457 125 332 2,0 12,0 26,1 2,66 153,33 363 658 AD 0 2 2 0 3 466 144 322 4,0 7,8 24,1 2,26 157,67 371 630 AD 0 4 4 0 0 467 145 322 6,0 4,8 22,1 2,27 160,00 375 616 AD 0 13 6 2 2 456 159 297 0,0 12,4 21,6 1,88 114,50 379 601 AD 0 2 2 0 2 404 94 310 0,0 6,6 29,5 3,33 101,75 383 587 AD 0 4 1 0 2 441 83 358 0,0 3,6 25,3 4,33 126,29 387 573 AD 0 11 2 3 2 455 58 397 3,0 7,6 20,9 6,88 153,33 391 558 AD 0 0 2 0 0 396 121 275 0,0 6,8 20,4 2,28 99,25 395 544 AD 0 4 2 0 0 456 75 381 0,0 4,1 16,6 5,12 153,00 397 536 AD 1 15 1 0 1 456 96 360 0,0 8,7 21,8 3,78 131,14 400 525 AD 0 61 1 1 0 409 99 310 4,0 21,1 17,2 3,13 137,67 401 522 AD 0 41 1 1 1 427 105 322 3,0 13,9 22,2 3,09 144,00 403 514 AD 0 4 1 0 0 487 89 398 0,0 4,9 24,0 4,47 162,33 407 500 AD 4 10 4 1 0 455 78 377 0,0 6,2 24,9 5,03 156,67 411 485 AD 1 10 2 0 4 437 100 337 1,0 4,9 21,3 3,45 148,67 413 478 AD 0 14 0 0 2 439 98 341 2,0 7,4 31,4 3,50 147,67 415 470 AD 0 10 2 0 1 437 97 340 3,0 8,1 28,8 3,56 148,33 419 456 AD 0 0 3 0 2 413 116 297 2,0 5,0 25,3 2,59 139,67 423 441 AD 0 3 2 0 2 460 99 361 2,0 5,4 28,7 3,65 116,75 427 426 AD 0 9 1 0 2 450 132 318 1,0 8,6 26,5 2,42 150,67 431 411 AD 0 6 7 0 2 439 113 326 0,0 6,5 27,1 2,92 147,67 435 396 AD 0 5 4 0 1 423 91 332 2,0 4,2 29,4 3,65 121,43 443 366 AD 0 5 8 0 5 497 127 370 1,0 7,4 22,5 2,95 167,67 447 351 AD 0 4 4 0 3 478 116 362 1,0 8,1 25,1 3,15 160,67 451 336 AD 0 4 3 0 0 495 112 383 1,0 7,0 25,9 3,47 200,80 455 321 AD 0 1 3 0 3 401 58 343 1,0 2,4 31,4 6,07 137,00 459 305 AD 0 2 2 0 0 475 111 364 1,0 8,8 27,7 3,32 160,00 463 290 AD 0 2 2 0 0 418 102 316 2,0 7,8 25,6 3,12 140,67 467 274 AD 0 3 5 0 2 400 164 236 6,0 5,9 27,0 1,45 101,75 471 259 AD 0 0 4 0 4 405 66 339 1,0 2,7 34,6 5,15 101,75 475 243 AD 0 2 2 0 2 420 72 348 2,0 3,1 33,8 4,85 141,00 479 228 AD 0 1 4 0 0 415 84 331 1,0 1,2 47,2 3,95 139,00 483 212 AD 0 1 4 0 2 447 68 379 0,0 2,2 42,1 5,60 149,67 487 196 AD 0 1 4 0 1 419 86 333 3,0 3,1 43,0 3,88 105,75 491 180 AD 1 1 4 1 0 454 39 415 2,0 0,7 50,5 10,67 182,80 495 164 AD 0 3 3 0 1 439 50 389 0,0 2,3 43,5 7,82 110,25 499 148 AD 0 0 5 1 3 438 46 392 0,0 2,3 29,0 8,52 146,00 503 132 AD 0 0 5 0 1 458 84 374 0,0 2,6 32,5 4,46 153,00 507 116 AD 0 2 1 0 0 408 98 310 0,0 4,2 35,3 3,16 116,57 511 100 AD 0 1 2 0 1 442 170 272 7,0 6,2 29,6 1,62 100,44 515 83 AD 0 4 6 0 3 451 66 385 0,0 4,4 35,1 5,86 129,43 519 67 AD 0 41 2 1 0 478 102 376 0,0 15,7 30,9 3,70 159,67 520 63 AD 0 31 1 0 0 458 109 349 0,0 13,8 33,0 3,20 114,50 521 59 AD 0 18 4 0 0 427 102 325 4,0 9,2 31,4 3,25 109,25 523 50 AD 0 1 1 0 0 415 79 336 0,0 2,9 37,3 4,29 119,43 527 34 AD 0 5 1 0 1 414 146 268 4,0 7,4 29,8 1,82 93,11 531 17 AD 0 3 3 0 1 442 120 322 3,0 7,8 31,3 2,73 128,57 535 0 AD 0 4 2 0 1 462 188 274 3,0 14,0 23,7 1,46 132,86 539 16 BC 0 4 2 0 1 433 72 361 2,0 8,5 28,4 5,04 145,67 543 33 BC 0 0 0 0 0 441 190 251 3,0 17,5 16,9 1,33 127,14 547 50 BC 0 5 0 0 0 452 195 257 0,0 25,0 20,1 1,32 129,14 551 67 BC 0 5 0 0 0 440 99 341 1,0 7,3 17,5 3,44 147,00 555 84 BC 0 0 5 0 1 394 145 249 3,0 3,7 20,8 1,72 100,75 559 101 BC 0 10 1 0 1 457 103 354 1,0 7,9 29,9 3,44 152,67 563 119 BC 0 2 6 0 1 434 79 355 3,0 2,3 33,9 4,49 109,25

Page 163: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

Appendix- Table V Benthic foraminiferal counts from gravity core 343310-5-1

154

Dep

th (

cm

)

AD

/BC

Aderc

otr

ym

a

glo

mer

ata

Am

modis

cus

gu

llm

are

nsi

s

Am

mosc

ala

ria

pse

ud

osp

irali

s

Cri

bro

sto

moid

es

cra

ssim

ago

Cri

bro

sto

moid

es

jeff

reysi

Cri

bro

sto

moid

es

sp.

Cu

neata

arc

tica

Deu

tera

mm

ina

gri

sea

Deu

tera

mm

ina

och

race

a

Egg

ere

lla a

dve

na

Egg

ere

lla s

p.

Po

rtatr

och

am

min

a s

p.

567 136 BC 3 0 0 1 0 0 7 0 41 14 0 0

571 153 BC 4 0 2 0 0 0 11 0 45 30 0 0

575 170 BC 9 0 2 4 0 0 12 0 47 20 3 0 579 188 BC 7 0 2 1 0 0 16 0 66 39 0 0

583 205 BC 13 0 1 1 0 0 12 0 88 49 2 0

587 222 BC 7 0 0 1 0 0 19 0 130 36 2 0 595 257 BC 1 0 0 4 0 0 24 0 86 17 1 0

599 275 BC 2 0 0 0 0 0 27 0 48 24 0 0

603 292 BC 8 0 0 2 0 0 15 0 46 36 1 0 607 310 BC 3 0 1 7 0 0 5 0 34 17 0 0

611 327 BC 8 0 0 3 0 0 18 0 24 25 1 0

615 344 BC 5 0 1 1 1 0 49 0 27 20 3 0 619 362 BC 10 0 3 4 0 0 33 0 36 46 0 1

623 379 BC 5 0 1 3 0 0 12 0 55 48 0 0

627 397 BC 11 0 0 4 0 0 17 0 76 38 1 0 631 419 BC 4 0 0 4 0 6 54 0 50 50 1 0

635 432 BC 17 0 0 10 0 0 35 0 41 35 2 0

639 449 BC 11 0 0 9 0 0 33 0 49 31 0 0 643 466 BC 12 0 0 4 1 0 34 0 129 58 0 0

647 484 BC 6 0 0 3 0 0 30 0 118 56 0 0

651 501 BC 7 0 0 1 0 0 25 0 122 40 0 0 655 519 BC 9 0 0 1 0 0 23 0 53 44 0 0

659 536 BC 6 0 1 1 0 0 15 0 29 32 0 0

663 553 BC 2 0 2 1 0 0 9 0 63 13 0 0 667 571 BC 2 0 0 1 0 1 25 0 81 57 0 0

671 588 BC 5 0 0 1 0 0 16 0 53 46 1 0

675 605 BC 6 0 0 1 0 0 8 0 58 38 0 0 679 623 BC 6 0 0 0 0 0 18 0 72 33 0 0

683 640 BC 2 0 0 2 0 0 9 0 60 43 0 0

687 657 BC 2 0 0 2 0 0 5 0 72 36 0 0 691 675 BC 0 0 0 3 0 0 7 0 51 12 0 0

695 692 BC 0 0 0 2 0 0 2 0 43 18 0 0

699 709 BC 2 0 0 1 0 0 11 0 54 27 0 0 703 727 BC 1 0 0 1 0 0 11 0 34 19 0 0

707 744 BC 0 0 0 2 0 0 8 0 31 8 0 0

711 761 BC 2 0 0 3 0 0 21 0 32 24 0 0 715 778 BC 3 0 0 1 0 0 9 0 21 21 0 0

719 795 BC 1 0 0 2 0 0 8 0 42 19 1 0

723 813 BC 3 0 0 1 0 0 19 0 57 31 0 0 727 830 BC 2 0 0 0 0 0 19 0 57 31 1 0

731 847 BC 0 0 0 1 0 0 6 0 44 14 0 0

735 864 BC 4 0 0 2 0 0 7 0 36 42 0 0 740 885 BC 1 0 0 1 0 0 4 0 22 34 0 0

741 889 BC 2 0 1 1 0 0 11 0 51 34 0 0

742 894 BC 3 0 0 1 0 0 11 0 39 32 0 0 743 898 BC 1 0 1 1 0 0 9 0 26 23 0 0

747 915 BC 3 0 2 2 0 0 3 0 24 23 0 0

751 932 BC 3 0 0 4 0 0 0 0 24 11 0 0 755 948 BC 3 0 1 1 0 2 9 0 47 38 0 0

759 965 BC 1 0 0 4 0 0 7 0 25 31 0 0

763 982 BC 0 0 0 2 0 0 0 0 26 15 0 0

Page 164: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

Appendix- Table V Benthic foraminiferal counts from gravity core 343310-5-1

155

Dep

th (

cm

)

AD

/BC

Recu

rvoid

es

turb

inatu

s

Reo

ph

ax

gra

cil

is

Reo

ph

ax

fu

sifo

rmis

Reo

ph

ax

pil

uli

fer

Reo

ph

ax

sp

.

Sa

cca

mm

ina

dif

lug

ifo

rmis

Sil

ico

sig

moil

ina

gro

en

lan

dic

a

Sp

iro

ple

cta

mm

ina

bif

orm

is

Textu

lari

a e

arl

an

di

Textu

lari

a t

orq

ua

ta

Tro

ch

am

min

a n

an

a

Ast

ron

on

ion

ga

llo

wa

yi

Boli

vin

a

pse

ud

op

un

ctata

Bu

cce

lla f

rig

ida

567 136 BC 1 0 0 0 0 0 0 4 2 0 1 13 31 7

571 153 BC 1 3 0 0 0 0 0 2 1 0 0 9 10 13

575 170 BC 4 3 0 0 4 0 0 5 1 2 0 4 14 7

579 188 BC 0 1 0 0 1 0 0 16 0 2 0 13 25 8

583 205 BC 1 2 0 0 0 0 0 0 6 0 1 8 18 8

587 222 BC 3 10 0 0 0 0 0 18 2 0 0 2 15 3

595 257 BC 8 16 0 0 0 0 0 13 1 2 0 11 38 5

599 275 BC 12 2 0 0 0 0 0 9 0 1 0 2 16 8

603 292 BC 7 0 0 0 0 0 0 6 1 0 0 4 26 14

607 310 BC 22 0 0 0 0 0 0 4 0 1 0 7 30 6

611 327 BC 12 2 0 0 0 0 0 11 2 0 0 13 44 9

615 344 BC 7 3 0 0 0 0 0 6 0 1 0 5 37 5

619 362 BC 27 2 0 0 0 0 0 15 3 3 0 8 13 5

623 379 BC 12 1 0 0 0 0 0 3 0 2 0 11 3 7

627 397 BC 10 0 0 0 0 0 0 10 1 0 0 5 30 3

631 419 BC 18 3 0 0 0 0 1 13 2 4 0 6 17 6

635 432 BC 37 0 0 0 0 0 0 14 0 4 0 5 13 9

639 449 BC 12 0 0 0 0 0 0 11 0 3 0 13 28 6

643 466 BC 1 0 0 0 1 0 0 17 0 6 0 9 7 6

647 484 BC 3 1 0 0 0 0 0 5 0 0 0 8 6 13

651 501 BC 1 1 0 0 0 0 0 4 0 0 0 7 3 5

655 519 BC 2 0 0 0 0 0 0 5 0 1 0 4 7 12

659 536 BC 4 0 0 0 0 0 0 6 0 1 0 1 15 3

663 553 BC 5 0 0 0 0 0 0 4 0 0 0 12 7 15

667 571 BC 10 0 0 0 1 0 0 9 2 1 0 5 4 6

671 588 BC 1 1 0 0 0 0 0 7 0 0 0 18 6 12

675 605 BC 0 0 0 0 1 0 0 2 0 0 0 15 12 5

679 623 BC 2 1 0 0 1 0 0 3 0 0 0 21 11 7

683 640 BC 2 0 0 0 0 0 0 1 0 0 0 16 8 6

687 657 BC 1 0 0 0 0 0 0 1 0 0 0 16 13 4

691 675 BC 1 3 0 0 0 0 0 4 0 0 0 5 30 4

695 692 BC 4 1 0 0 0 0 0 0 0 0 0 6 31 4

699 709 BC 1 1 0 0 0 0 0 10 0 0 0 17 11 15

703 727 BC 3 1 0 0 0 0 0 4 0 0 0 13 23 7

707 744 BC 1 0 0 0 0 0 0 0 0 1 0 6 24 8

711 761 BC 5 6 0 0 0 0 0 5 0 0 0 11 14 13

715 778 BC 0 0 0 0 0 0 0 3 1 0 0 12 24 7

719 795 BC 0 0 0 0 0 0 0 3 0 0 0 14 26 2

723 813 BC 3 5 0 0 0 0 0 6 1 0 0 11 20 5

727 830 BC 1 2 0 0 0 0 0 5 1 2 0 19 22 6

731 847 BC 0 0 0 0 0 0 0 1 0 0 0 13 24 4

735 864 BC 7 1 0 0 0 0 0 6 0 0 0 12 13 21

740 885 BC 0 1 0 0 0 0 0 1 0 2 0 4 12 12

741 889 BC 1 1 0 0 0 0 0 3 0 0 0 7 19 9

742 894 BC 0 0 0 0 0 0 0 5 0 0 0 1 19 7

743 898 BC 4 0 0 0 0 0 0 5 1 0 0 10 14 8

747 915 BC 4 0 0 0 0 0 0 0 0 0 0 7 20 12

751 932 BC 1 0 0 0 0 0 0 1 1 0 0 6 14 7

755 948 BC 0 0 0 0 0 0 0 3 0 0 0 18 17 5

759 965 BC 2 0 0 0 0 0 0 3 0 0 0 8 13 8

763 982 BC 1 0 0 0 0 0 0 0 0 0 0 7 10 7

Page 165: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

Appendix- Table V Benthic foraminiferal counts from gravity core 343310-5-1

156

Dep

th (

cm

)

AD

/BC

Bu

cce

lla f

rig

ida c

ali

da

Ca

ssid

uli

na

neote

reti

s

Ca

ssid

uli

na

ren

ifo

rme

Cib

icid

es

loba

tulu

s

Den

tali

na

sp

.

Dis

corb

is s

p.

Elp

hid

ium

sp

.

Elp

hid

ium

alb

ium

bil

ica

tum

Elp

hid

ium

ba

rtle

tti

Elp

hid

ium

ex

cava

tum

f. c

lava

ta

Epis

tom

inell

a v

itre

a

Fis

suri

na

sp

.

Gla

du

lin

a s

p.

Glo

bob

uli

min

a

au

ricu

lata

arc

tica

Isla

nd

iell

a h

ele

nae

567 136 BC 21 5 115 23 0 1 4 5 0 26 5 0 0 22 1

571 153 BC 9 1 65 4 0 0 6 5 0 38 5 0 0 34 3

575 170 BC 5 0 47 7 0 0 2 0 0 42 4 0 1 39 1

579 188 BC 5 0 84 10 0 1 9 5 0 12 3 0 0 35 3

583 205 BC 4 1 65 12 1 0 4 2 0 18 4 0 0 22 1

587 222 BC 0 0 31 8 0 0 1 1 0 36 2 0 0 13 4

595 257 BC 5 0 63 9 0 0 12 10 1 30 1 0 0 11 1

599 275 BC 1 0 65 3 0 0 9 0 0 97 0 0 0 29 2

603 292 BC 6 3 125 11 0 1 4 4 0 62 5 0 0 22 4

607 310 BC 2 0 112 13 0 0 9 1 0 26 0 0 0 44 2

611 327 BC 8 6 110 6 1 1 5 3 0 26 2 0 0 18 0

615 344 BC 4 0 111 3 0 0 3 0 0 14 2 1 0 22 1

619 362 BC 5 0 60 7 1 0 3 3 0 13 5 0 0 22 1

623 379 BC 3 1 58 7 0 1 2 2 0 22 3 0 0 39 2

627 397 BC 8 3 93 6 0 0 2 1 0 17 6 0 0 10 1

631 419 BC 5 0 92 5 0 0 2 9 0 7 3 0 0 34 2

635 432 BC 8 0 50 7 0 0 3 3 0 12 4 0 0 39 3

639 449 BC 5 1 79 10 0 0 5 2 0 31 3 0 0 17 2

643 466 BC 3 0 23 7 0 0 7 4 0 14 3 0 0 1 1

647 484 BC 5 0 21 7 0 0 6 5 0 14 4 0 0 19 1

651 501 BC 0 0 24 6 0 0 2 0 0 33 0 0 0 19 2

655 519 BC 0 0 37 8 0 0 2 0 0 61 7 0 0 24 5

659 536 BC 0 1 121 4 0 0 8 7 0 108 4 0 0 13 4

663 553 BC 3 1 99 15 1 0 2 3 0 97 5 0 0 9 1

667 571 BC 0 0 84 9 0 0 0 4 0 25 3 0 0 17 2

671 588 BC 6 1 79 9 0 0 5 3 0 30 4 0 0 8 1

675 605 BC 6 2 123 11 0 0 7 3 0 31 2 0 0 10 1

679 623 BC 4 0 69 12 0 0 7 3 0 18 3 0 0 33 9

683 640 BC 4 3 90 14 0 0 9 7 0 19 5 0 0 31 5

687 657 BC 11 1 119 24 0 1 3 0 0 15 2 0 0 29 1

691 675 BC 7 0 96 27 0 1 11 8 1 23 3 0 1 95 0

695 692 BC 8 0 132 14 0 0 7 3 0 30 6 0 0 48 2

699 709 BC 9 1 93 15 0 2 16 10 0 26 2 0 0 31 1

703 727 BC 11 0 100 21 0 0 11 4 3 32 2 0 0 45 0

707 744 BC 5 4 111 6 0 0 3 1 0 65 0 1 0 24 3

711 761 BC 5 1 151 18 0 0 11 8 0 37 2 0 0 17 5

715 778 BC 16 0 194 16 0 2 1 8 0 24 4 0 0 48 2

719 795 BC 9 1 149 21 0 1 11 4 0 29 2 2 0 15 0

723 813 BC 4 3 78 12 0 0 8 7 0 30 1 0 0 68 2

727 830 BC 15 1 64 18 0 0 3 4 0 40 4 0 0 43 2

731 847 BC 14 3 117 24 0 1 8 2 0 86 2 0 0 12 2

735 864 BC 8 3 117 15 1 0 12 7 1 36 2 0 0 57 3

740 885 BC 9 0 117 16 1 0 10 4 2 68 3 0 0 23 7

741 889 BC 7 0 130 26 1 0 6 2 2 60 2 0 0 29 20

742 894 BC 5 0 140 28 0 0 5 1 1 66 3 0 0 34 11

743 898 BC 14 7 119 24 0 0 17 8 4 42 2 0 0 48 6

747 915 BC 2 1 95 14 1 1 10 1 0 50 1 0 0 37 7

751 932 BC 9 0 103 15 0 4 6 4 0 31 6 0 0 55 1

755 948 BC 9 0 120 22 0 3 12 7 1 67 2 0 0 40 2

759 965 BC 7 0 117 15 3 0 10 7 2 49 1 0 0 46 1

763 982 BC 7 1 122 18 0 1 9 3 0 49 3 0 0 74 0

Page 166: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

Appendix- Table V Benthic foraminiferal counts from gravity core 343310-5-1

157

Dep

th (

cm

)

AD

/BC

Isla

nd

iell

a n

orc

ero

ssi

Mel

on

is b

arl

eea

nu

s

No

nio

nell

ina

au

ricu

la

No

nio

nell

ina

lab

rado

rica

No

nio

nell

a t

urg

ida

f.

dig

itata

Pa

tell

ina

co

rru

ga

la

Pa

rafi

ssu

rin

a

tect

ulo

sa

Pa

rafi

ssu

rin

a s

p.

Pu

llen

ia o

sloen

sis

Pro

cero

lagen

a s

p.

Pyrg

o e

lon

gata

Pyrg

o w

illi

am

son

ii

Qu

inq

uel

ocu

lin

a

stalk

eri

Qu

inq

uel

ocu

lin

a s

p.

567 136 BC 23 1 5 41 3 0 1 0 11 2 0 0 0 0

571 153 BC 19 1 1 81 0 0 1 0 1 2 0 0 0 0

575 170 BC 21 2 5 106 0 0 2 0 0 1 0 0 0 0

579 188 BC 25 0 2 20 1 0 0 0 0 2 0 0 0 0

583 205 BC 19 3 0 5 0 0 0 0 0 0 0 0 0 0

587 222 BC 11 1 0 4 0 0 0 0 0 0 0 0 0 0

595 257 BC 3 0 1 11 0 1 0 1 1 0 0 0 0 0

599 275 BC 8 1 5 22 0 1 0 0 0 0 0 0 0 0

603 292 BC 5 0 0 10 0 0 0 1 0 0 0 0 0 0

607 310 BC 14 0 3 51 1 0 1 0 0 0 0 0 0 0

611 327 BC 7 0 4 39 0 0 0 0 1 1 0 0 0 0

615 344 BC 4 1 1 13 6 0 0 0 0 0 0 0 0 0

619 362 BC 15 0 3 35 0 0 0 0 1 0 0 0 0 0

623 379 BC 17 0 4 89 0 0 0 0 0 0 0 0 0 0

627 397 BC 10 2 0 17 2 1 2 0 0 0 0 0 0 0

631 419 BC 11 0 0 17 2 2 0 1 0 0 0 0 0 0

635 432 BC 19 0 2 23 0 0 0 1 0 0 0 0 0 0

639 449 BC 24 0 4 71 11 0 1 1 2 1 0 0 0 0

643 466 BC 11 0 0 14 0 0 0 0 0 0 0 0 0 0

647 484 BC 17 1 1 24 0 0 0 0 5 0 0 0 0 0

651 501 BC 23 1 0 6 0 0 0 0 0 1 0 0 0 0

655 519 BC 55 0 1 28 0 0 0 0 0 1 0 0 0 0

659 536 BC 16 0 0 28 0 0 0 0 2 1 0 0 0 0

663 553 BC 19 1 0 27 1 0 0 0 0 0 0 0 0 0

667 571 BC 22 0 2 35 0 0 0 0 0 0 0 0 0 0

671 588 BC 31 0 0 47 0 0 0 0 1 0 0 0 0 0

675 605 BC 17 1 0 38 0 0 1 0 0 0 0 0 0 0

679 623 BC 26 1 0 39 0 0 0 0 7 0 0 0 0 0

683 640 BC 15 1 0 44 0 0 0 0 2 0 0 0 0 0

687 657 BC 11 0 0 32 0 0 0 1 0 1 0 0 0 0

691 675 BC 14 4 6 29 3 1 3 0 1 0 0 0 0 1

695 692 BC 11 6 0 21 4 1 4 0 2 0 0 0 0 1

699 709 BC 13 0 5 29 5 0 0 0 1 0 0 0 0 0

703 727 BC 8 0 4 65 2 0 0 1 0 0 0 0 0 0

707 744 BC 7 0 3 75 1 0 1 0 1 0 0 0 0 0

711 761 BC 4 0 3 32 1 2 1 0 0 0 0 0 0 0

715 778 BC 4 0 1 16 0 0 1 0 0 0 0 0 0 1

719 795 BC 16 2 2 25 1 0 3 0 0 0 0 0 0 0

723 813 BC 9 4 1 5 1 1 0 0 0 0 0 0 0

727 830 BC 12 1 0 17 0 0 0 0 0 1 0 0 0 0

731 847 BC 8 3 0 57 0 0 0 0 0 1 0 0 0 0

735 864 BC 14 0 4 10 2 0 0 2 0 0 0 0 0 0

740 885 BC 15 9 4 46 2 1 3 0 1 0 0 0 0 0

741 889 BC 23 11 5 40 2 0 4 0 1 1 0 0 0 0

742 894 BC 17 5 3 55 3 0 1 0 0 0 0 0 0 0

743 898 BC 17 0 2 47 6 0 1 0 0 1 0 0 0 0

747 915 BC 21 0 2 71 5 0 1 0 0 0 0 0 0 0

751 932 BC 29 1 3 63 2 0 0 0 0 0 0 0 0 0

755 948 BC 26 0 3 56 2 0 1 0 0 0 0 0 0 0

759 965 BC 12 0 5 24 5 0 2 0 0 1 0 0 0 0

763 982 BC 14 2 2 51 1 0 2 0 0 0 0 0 0 0

Page 167: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

Appendix- Table V Benthic foraminiferal counts from gravity core 343310-5-1

158

Dep

th (

cm

)

AD

/BC

Rob

ert

ina

arc

tica

Sta

info

rth

ia f

eyl

ing

i

Sta

info

rth

ia l

oeb

lich

i

Tri

ocu

lin

a s

p.

Tri

fari

na f

luen

s

tota

l co

un

ts

No

. A

gglu

tin

ate

s

specim

en

s co

un

ted

No

. C

alc

areo

us

specim

en

s co

un

ted

No

. T

est

lin

ing

s

AW

to

tal

(%)

Atl

W t

ota

l (%

)

Ca

lca

reo

us

vs.

Ag

glu

tin

ate

s

specim

en

s

fora

min

ifera

l

co

nce

ntr

ati

on

(te

st

per m

l)

567 136 BC 0 3 6 0 0 448 74 374 1,0 3,5 34,1 5,08 112,75

571 153 BC 0 0 6 0 0 412 99 313 0,0 4,1 21,3 3,17 118,00

575 170 BC 0 1 2 0 0 427 116 311 3,0 5,3 17,1 2,72 108,50

579 188 BC 0 1 2 0 0 417 151 266 2,0 8,6 26,7 1,76 119,71

583 205 BC 0 4 2 0 3 380 176 204 6,0 4,7 22,2 1,16 86,00

587 222 BC 0 2 0 0 0 362 228 134 0,0 12,7 11,6 0,59 80,44

595 257 BC 0 17 0 0 1 406 173 233 3,0 15,3 16,3 1,36 117,43

599 275 BC 0 1 1 0 0 396 125 271 5,0 12,7 18,1 2,18 134,33

603 292 BC 0 4 2 0 1 436 122 314 1,0 8,2 30,4 2,57 145,67

607 310 BC 0 3 1 0 1 420 94 326 0,0 8,6 30,2 3,48 140,33

611 327 BC 0 6 3 0 2 421 106 315 1,0 11,1 29,2 3,00 141,67

615 344 BC 0 55 0 0 1 413 124 289 0,0 28,4 28,0 2,35 138,33

619 362 BC 0 7 0 0 2 391 182 209 1,0 21,1 20,1 1,14 112,29

623 379 BC 0 1 3 0 1 418 142 276 1,0 7,2 18,4 1,94 119,71

627 397 BC 0 6 1 0 2 394 168 226 0,0 11,1 26,8 1,36 99,00

631 419 BC 0 18 0 1 1 451 210 241 2,0 23,2 22,7 1,15 113,25

635 432 BC 0 1 4 0 1 402 195 207 2,0 22,3 17,1 1,06 101,00

639 449 BC 0 34 0 2 1 512 159 353 4,0 17,8 20,5 2,23 172,33

643 466 BC 0 2 8 0 0 383 263 120 2,0 14,2 9,0 0,46 77,40

647 484 BC 0 2 3 0 2 386 222 164 2,0 10,5 11,0 0,75 78,00

651 501 BC 0 0 0 0 4 337 201 136 0,0 9,4 13,8 0,69 68,00

655 519 BC 0 1 1 0 2 394 138 256 1,0 9,1 23,3 1,86 112,86

659 536 BC 0 0 1 0 0 432 95 337 0,0 6,7 32,6 3,55 123,43

663 553 BC 0 1 6 0 0 424 99 325 0,0 4,7 28,5 3,29 141,67

667 571 BC 0 0 6 0 1 415 190 225 2,0 11,0 25,6 1,19 119,43

671 588 BC 0 1 3 0 3 399 131 268 1,0 6,5 28,0 2,05 114,29

675 605 BC 0 0 3 0 2 403 114 289 0,0 2,7 35,0 2,59 102,25

679 623 BC 0 0 1 0 0 407 136 271 0,0 7,8 25,2 2,00 116,57

683 640 BC 0 0 3 0 1 402 119 283 0,0 4,2 27,2 2,39 115,43

687 657 BC 0 1 2 0 1 407 119 288 0,0 2,2 32,1 2,43 116,57

691 675 BC 0 9 0 0 0 461 81 380 5,0 4,5 23,6 4,75 157,00

695 692 BC 0 4 0 0 0 411 70 341 3,0 2,9 34,4 4,97 140,33

699 709 BC 0 6 1 0 2 418 107 311 1,0 6,9 25,8 2,91 139,67

703 727 BC 0 6 1 0 0 433 74 359 0,0 5,5 24,9 4,86 144,67

707 744 BC 0 2 3 0 1 405 51 354 3,0 3,4 30,1 6,96 136,33

711 761 BC 0 8 0 0 0 441 98 343 0,0 10,0 35,3 3,51 126,29

715 778 BC 0 11 0 0 1 451 59 392 0,0 5,5 43,7 6,68 129,43

719 795 BC 0 11 0 0 1 420 76 344 0,0 5,1 38,5 4,67 143,67

723 813 BC 0 4 0 0 0 400 126 274 3,0 8,4 22,3 2,17 89,56

727 830 BC 0 9 1 0 2 405 121 284 0,0 8,8 18,9 2,36 116,29

731 847 BC 0 3 2 0 1 453 66 387 0,0 2,6 28,0 5,92 152,33

735 864 BC 0 3 2 0 1 451 105 346 0,0 5,8 29,7 3,30 112,75

740 885 BC 0 5 2 0 2 441 66 375 3,0 3,8 29,6 5,77 150,00

741 889 BC 0 5 1 0 3 517 105 412 0,0 7,6 29,5 4,01 175,33

742 894 BC 0 1 3 0 1 500 91 409 1,0 5,6 31,2 4,53 168,00

743 898 BC 0 3 2 0 0 472 71 401 0,0 5,7 30,4 5,66 157,67

747 915 BC 0 3 2 0 3 427 61 366 0,0 4,0 27,8 6,02 142,67

751 932 BC 0 3 1 0 2 410 45 365 0,0 1,5 32,1 8,13 137,00

755 948 BC 0 1 1 0 1 519 104 415 0,0 2,9 28,2 4,01 148,86

759 965 BC 0 1 1 0 1 410 73 337 1,0 3,4 31,2 4,64 118,00

763 982 BC 0 0 2 0 0 427 44 383 1,0 0,2 31,7 8,80 123,43

Page 168: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

Appendix- Table V Benthic foraminiferal counts from gravity core 343310-5-1

159

Dep

th (

cm

)

AD

/BC

Aderc

otr

ym

a

glo

mer

ata

Am

modis

cus

gu

llm

are

nsi

s

Am

mosc

ala

ria

pse

ud

osp

irali

s

Cri

bro

sto

moid

es

cra

ssim

ago

Cri

bro

sto

moid

es

jeff

reysi

Cri

bro

sto

moid

es

sp.

Cu

neata

arc

tica

Deu

tera

mm

ina

gri

sea

Deu

tera

mm

ina

och

race

a

Egg

ere

lla a

dve

na

Egg

ere

lla s

p.

Po

rtatr

och

am

min

a s

p.

767 998 BC 0 0 0 2 0 0 5 0 53 42 0 0

771 1015 BC 2 0 0 1 1 0 7 0 51 28 3 0

775 1032 BC 0 0 0 1 0 0 2 0 47 26 0 0

779 1048 BC 1 0 0 0 0 0 4 0 28 22 0 0

783 1064 BC 0 0 0 0 1 0 12 0 6 0 0 0

787 1081 BC 1 0 0 0 0 0 9 0 33 17 0 0

791 1097 BC 1 0 0 0 0 0 7 0 34 33 0 0

795 1113 BC 0 0 0 0 0 0 1 0 20 19 0 0

799 1129 BC 0 0 0 1 0 1 10 0 29 26 0 0

803 1145 BC 0 0 0 1 0 0 4 0 41 19 0 0

807 1161 BC 0 0 0 2 0 0 19 0 69 33 0 0

811 1177 BC 0 0 0 2 0 0 6 0 53 18 0 0

815 1193 BC 0 0 0 4 0 0 4 0 37 40 0 0

819 1209 BC 1 0 0 1 0 0 2 0 11 8 0 0

827 1225 BC 2 0 0 2 0 0 0 0 34 14 0 0

831 1240 BC 1 0 0 3 0 0 14 0 20 14 0 0

835 1256 BC 1 0 0 0 0 0 19 0 68 36 0 0

839 1272 BC 2 0 1 0 0 0 7 0 70 21 0 0

843 1288 BC 0 0 0 0 0 0 3 0 40 27 0 0

847 1303 BC 0 0 0 0 0 0 0 0 6 14 0 0

851 1319 BC 0 0 0 0 0 0 0 0 22 22 0 0

855 1335 BC 0 0 0 0 0 0 9 0 39 53 0 0

856 1350 BC 0 0 0 0 0 0 6 0 38 22 0 0

857 1354 BC 0 0 0 1 0 0 7 0 70 25 0 0

859 1358 BC 1 0 0 0 0 0 7 0 58 42 0 0

863 1366 BC 0 0 0 0 0 0 7 0 25 14 0 0

867 1382 BC 10 0 1 0 0 0 7 0 30 27 0 0

871 1397 BC 2 0 0 1 0 0 3 0 28 17 0 0

875 1413 BC 0 0 0 3 0 1 13 0 39 33 0 0

877 1425 BC 1 0 0 1 0 0 20 0 35 27 0 0

879 1436 BC 3 0 0 0 0 0 8 0 28 12 0 0

883 1444 BC 1 0 0 1 0 0 1 0 17 15 0 0

887 1460 BC 2 0 0 1 0 0 9 0 29 29 0 0

891 1476 BC 5 0 0 4 0 0 3 0 23 11 0 0

895 1491 BC 11 0 0 0 0 0 4 0 48 23 0 0

899 1507 BC 4 0 0 1 0 0 17 0 63 32 2 0

903 1522 BC 6 0 1 2 0 0 2 0 29 14 0 0

907 1538 BC 6 0 0 3 0 0 2 0 23 9 0 0

911 1554 BC 5 0 4 5 0 0 16 0 23 32 0 0

915 1569 BC 0 0 0 0 0 0 0 0 14 10 0 0

919 1585 BC 2 0 0 0 0 0 2 0 9 5 0 0

923 1601 BC 0 0 0 0 0 0 1 0 24 17 0 0

927 1616 BC 0 0 1 0 0 0 5 0 30 10 0 0

931 1632 BC 0 0 0 0 0 0 1 0 32 12 0 0

935 1648 BC 0 0 0 0 0 0 0 0 48 8 0 0

939 1663 BC 1 0 0 0 0 3 5 0 60 34 0 0

Page 169: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

Appendix- Table V Benthic foraminiferal counts from gravity core 343310-5-1

160

Dep

th (

cm

)

AD

/BC

Recu

rvoid

es

turb

inatu

s

Reo

ph

ax

gra

cil

is

Reo

ph

ax

fu

sifo

rmis

Reo

ph

ax

pil

uli

fer

Reo

ph

ax

sp

.

Sa

cca

mm

ina

dif

lug

ifo

rmis

Sil

ico

sig

moil

ina

gro

en

lan

dic

a

Sp

iro

ple

cta

mm

ina

bif

orm

is

Textu

lari

a e

arl

an

di

Textu

lari

a t

orq

ua

ta

Tro

ch

am

min

a n

an

a

Ast

ron

on

ion

ga

llo

wa

yi

Boli

vin

a

pse

ud

op

un

ctata

Bu

cce

lla f

rig

ida

767 998 BC 1 0 0 0 0 0 0 3 0 2 0 7 20 3

771 1015 BC 1 1 0 0 0 0 0 2 0 0 0 6 22 5

775 1032 BC 0 0 0 0 0 0 0 2 0 0 1 11 12 14

779 1048 BC 0 0 0 0 0 0 0 1 0 0 0 16 14 6

783 1064 BC 0 0 0 0 0 0 0 1 0 0 0 5 4 9

787 1081 BC 0 0 0 0 0 0 0 2 0 1 0 9 17 3

791 1097 BC 1 0 0 0 0 0 0 8 0 0 0 13 9 6

795 1113 BC 1 0 0 0 0 0 0 1 0 0 0 4 20 6

799 1129 BC 0 1 0 0 0 0 0 1 0 0 0 10 23 8

803 1145 BC 0 0 0 0 0 0 0 0 0 0 0 7 12 9

807 1161 BC 6 2 0 0 0 0 0 6 0 2 0 3 19 10

811 1177 BC 1 1 0 0 0 0 0 1 1 0 0 4 11 8

815 1193 BC 2 1 0 0 0 0 0 1 0 1 0 10 18 15

819 1209 BC 2 0 0 0 0 0 0 0 0 0 0 10 16 7

827 1225 BC 0 0 0 0 0 0 0 0 0 0 0 7 18 8

831 1240 BC 0 4 0 0 0 0 0 1 0 0 0 9 43 10

835 1256 BC 5 3 0 0 0 0 0 7 1 0 0 7 7 8

839 1272 BC 1 1 0 0 0 0 0 1 1 0 0 3 10 6

843 1288 BC 0 0 0 0 0 0 0 1 0 0 0 18 10 10

847 1303 BC 0 0 0 0 0 0 0 0 0 0 0 15 9 7

851 1319 BC 0 0 0 0 0 0 1 0 0 0 0 7 6 10

855 1335 BC 0 1 0 0 0 0 0 2 0 2 0 0 8 0

856 1350 BC 0 2 0 0 0 0 0 1 1 0 0 2 9 1

857 1354 BC 0 0 0 0 0 0 0 1 0 0 0 4 12 2

859 1358 BC 1 0 0 0 0 0 0 3 0 0 0 13 5 12

863 1366 BC 0 1 0 0 0 0 0 0 0 0 0 6 14 11

867 1382 BC 3 0 0 0 0 0 0 2 0 0 0 7 10 11

871 1397 BC 1 0 0 0 0 0 0 2 0 0 0 10 15 18

875 1413 BC 1 2 0 0 0 0 0 1 1 0 0 8 32 5

877 1425 BC 0 3 0 0 0 0 0 3 0 0 0 15 26 4

879 1436 BC 2 2 0 0 0 0 0 5 0 0 0 10 36 8

883 1444 BC 0 0 0 0 1 0 0 1 0 0 0 23 6 8

887 1460 BC 1 0 0 0 1 0 0 4 0 0 0 12 33 8

891 1476 BC 0 0 0 0 1 0 0 1 1 0 0 7 6 10

895 1491 BC 1 0 0 0 1 0 0 1 0 1 0 24 5 9

899 1507 BC 2 8 0 0 0 0 0 11 0 5 0 5 23 12

903 1522 BC 2 0 0 0 0 0 0 0 0 1 0 7 23 4

907 1538 BC 0 0 0 0 2 0 0 0 0 0 0 12 15 8

911 1554 BC 1 0 0 0 1 0 1 6 0 1 1 9 5 16

915 1569 BC 0 0 0 0 0 0 0 0 0 0 0 10 7 11

919 1585 BC 0 0 0 0 0 0 0 1 0 0 0 10 14 14

923 1601 BC 0 0 0 0 0 0 0 1 0 0 0 7 11 20

927 1616 BC 0 0 0 0 0 0 0 1 0 0 0 4 0 15

931 1632 BC 0 0 0 0 0 0 0 2 0 0 0 1 3 15

935 1648 BC 2 0 0 0 0 0 0 1 0 0 0 1 2 5

939 1663 BC 1 0 0 0 0 0 0 4 0 1 0 3 1 10

Page 170: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

Appendix- Table V Benthic foraminiferal counts from gravity core 343310-5-1

161

Dep

th (

cm

)

AD

/BC

Bu

cce

lla f

rig

ida c

ali

da

Ca

ssid

uli

na

neote

reti

s

Ca

ssid

uli

na

ren

ifo

rme

Cib

icid

es

loba

tulu

s

Den

tali

na

sp

.

Dis

corb

is s

p.

Elp

hid

ium

sp

.

Elp

hid

ium

alb

ium

bil

ica

tum

Elp

hid

ium

ba

rtle

tti

Elp

hid

ium

ex

cava

tum

f. c

lava

ta

Epis

tom

inell

a v

itre

a

Fis

suri

na

sp

.

Gla

du

lin

a s

p.

Glo

bob

uli

min

a

au

ricu

lata

arc

tica

Isla

nd

iell

a h

ele

nae

767 998 BC 3 2 102 8 0 0 7 4 0 22 3 0 0 37 1

771 1015 BC 13 4 106 18 0 1 10 1 0 17 5 0 0 45 0

775 1032 BC 12 7 135 25 0 1 6 5 0 18 4 0 0 19 1

779 1048 BC 10 15 117 17 2 0 13 8 3 32 2 0 0 57 5

783 1064 BC 10 6 132 20 0 3 4 3 0 43 4 0 0 46 1

787 1081 BC 6 4 129 25 2 0 11 10 0 16 0 0 0 58 2

791 1097 BC 3 0 169 11 0 0 10 8 0 29 2 0 0 41 0

795 1113 BC 10 2 144 24 1 0 7 2 0 53 5 0 0 46 2

799 1129 BC 11 3 158 19 0 0 14 12 2 38 5 0 0 29 3

803 1145 BC 11 5 165 23 0 1 12 1 0 19 5 0 0 19 0

807 1161 BC 4 2 146 15 0 0 9 9 0 17 6 0 0 46 5

811 1177 BC 3 0 138 16 0 0 2 4 0 49 7 0 0 41 1

815 1193 BC 6 0 143 22 0 1 11 5 3 108 3 0 0 31 3

819 1209 BC 4 0 162 16 0 1 10 0 0 59 2 0 0 37 1

827 1225 BC 12 0 142 24 0 0 4 2 0 70 8 0 0 25 0

831 1240 BC 4 0 130 11 0 1 4 4 0 65 4 0 0 33 2

835 1256 BC 0 0 96 11 2 0 3 3 0 97 2 0 0 29 3

839 1272 BC 6 0 87 18 0 1 8 1 0 29 2 0 0 35 1

843 1288 BC 5 3 119 21 0 1 1 9 0 35 3 0 0 45 3

847 1303 BC 5 5 98 17 0 0 2 3 0 81 1 0 0 39 3

851 1319 BC 1 1 140 18 0 0 0 1 0 63 2 0 0 40 5

855 1335 BC 1 0 123 12 2 0 2 0 0 121 5 0 0 26 1

856 1350 BC 4 0 131 18 0 0 4 0 1 98 3 0 0 25 0

857 1354 BC 6 0 106 16 0 0 5 2 0 50 8 1 0 40 3

859 1358 BC 3 0 87 8 0 0 2 2 0 63 10 0 0 29 7

863 1366 BC 9 1 91 13 1 0 0 0 0 71 4 0 0 33 1

867 1382 BC 4 2 92 19 0 2 2 0 0 52 4 0 0 22 3

871 1397 BC 5 4 145 23 0 0 3 7 0 64 15 0 0 36 4

875 1413 BC 6 1 159 19 0 2 5 5 1 36 3 0 0 39 6

877 1425 BC 8 0 167 14 0 2 10 10 1 29 3 0 0 28 2

879 1436 BC 6 0 101 16 0 0 1 2 0 22 2 0 0 39 1

883 1444 BC 15 3 107 35 0 0 4 6 0 24 4 0 0 21 1

887 1460 BC 12 1 150 36 0 0 3 10 0 15 1 0 0 11 2

891 1476 BC 3 6 90 18 0 2 3 0 0 36 7 0 0 44 0

895 1491 BC 4 4 54 25 0 1 9 9 0 16 9 0 0 29 3

899 1507 BC 3 0 97 20 0 0 5 3 0 28 6 0 2 21 1

903 1522 BC 3 4 62 10 0 0 4 0 0 120 1 0 0 14 4

907 1538 BC 3 11 69 16 1 2 4 2 0 62 5 0 1 12 3

911 1554 BC 0 0 89 10 0 1 4 3 0 58 5 0 0 14 1

915 1569 BC 2 2 56 18 0 0 5 0 0 59 7 0 0 29 1

919 1585 BC 4 0 115 25 0 0 7 2 0 173 4 1 0 21 0

923 1601 BC 1 0 51 5 0 2 1 0 0 117 4 0 0 31 0

927 1616 BC 0 0 23 10 0 0 0 0 0 124 6 1 0 19 0

931 1632 BC 0 0 21 10 0 0 2 2 0 150 4 0 0 14 1

935 1648 BC 0 0 18 7 0 0 0 1 0 75 7 0 1 18 0

939 1663 BC 0 0 11 1 1 0 3 3 3 78 7 0 0 6 1

Page 171: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

Appendix- Table V Benthic foraminiferal counts from gravity core 343310-5-1

162

Dep

th (

cm

)

AD

/BC

Isla

nd

iell

a n

orc

ero

ssi

Mel

on

is b

arl

eea

nu

s

No

nio

nell

ina

au

ricu

la

No

nio

nell

ina

lab

rado

rica

No

nio

nell

a t

urg

ida

f.

dig

itata

Pa

tell

ina

co

rru

ga

la

Pa

rafi

ssu

rin

a t

ectu

losa

Pa

rafi

ssu

rin

a s

p.

Pu

llen

ia o

sloen

sis

Pro

cero

lagen

a s

p.

Pyrg

o e

lon

gata

Pyrg

o w

illi

am

son

ii

Qu

inq

uel

ocu

lin

a

stalk

eri

Qu

inq

uel

ocu

lin

a s

p.

767 998 BC 11 1 2 75 2 0 2 0 2 1 0 0 0 0

771 1015 BC 18 4 1 63 1 0 0 1 0 0 0 0 0 0

775 1032 BC 25 4 2 19 0 1 3 0 4 2 0 0 0 0

779 1048 BC 13 1 0 73 4 0 5 0 10 1 0 0 0 0

783 1064 BC 40 2 1 70 3 0 1 0 3 0 0 0 0 0

787 1081 BC 13 0 7 90 3 0 2 0 1 1 0 0 0 0

791 1097 BC 8 1 2 31 2 0 0 0 0 0 0 0 0 0

795 1113 BC 19 4 2 37 9 0 2 0 1 0 0 0 0 0

799 1129 BC 17 0 1 26 3 0 1 0 1 1 0 0 0 0

803 1145 BC 12 2 1 7 2 0 2 0 0 0 0 0 0 0

807 1161 BC 4 0 3 6 1 0 1 0 1 1 0 0 0 0

811 1177 BC 13 4 1 22 0 0 1 0 1 0 0 0 0 0

815 1193 BC 25 0 5 33 6 1 1 0 0 1 0 0 0 0

819 1209 BC 12 0 4 20 3 0 0 0 0 0 0 0 0 0

827 1225 BC 19 1 6 21 0 0 2 0 0 3 0 0 0 0

831 1240 BC 15 0 3 14 4 0 1 0 0 0 0 0 0 0

835 1256 BC 25 0 3 14 0 0 1 0 0 0 0 0 0 0

839 1272 BC 17 1 0 54 4 0 3 0 0 0 0 0 0 0

843 1288 BC 20 2 3 45 0 0 0 0 1 1 0 0 0 0

847 1303 BC 31 1 1 70 0 0 4 0 0 0 0 0 0 0

851 1319 BC 17 1 0 42 1 0 4 0 1 0 0 0 0 0

855 1335 BC 29 3 2 21 0 0 1 0 0 0 0 0 0 0

856 1350 BC 23 7 3 16 4 0 1 0 2 1 0 0 0 0

857 1354 BC 19 9 1 24 1 0 0 2 3 2 0 0 0 0

859 1358 BC 13 1 3 23 0 0 0 0 0 2 0 0 0 0

863 1366 BC 17 0 1 78 0 0 0 0 0 1 0 0 0 0

867 1382 BC 21 1 4 84 0 0 0 0 1 0 0 0 0 0

871 1397 BC 13 2 4 16 4 0 3 0 1 0 0 0 0 0

875 1413 BC 6 0 4 20 5 0 2 0 0 0 0 0 0 0

877 1425 BC 6 1 5 33 2 1 0 0 0 0 0 0 0 0

879 1436 BC 15 1 16 50 0 0 1 0 0 0 0 0 0 0

883 1444 BC 30 3 11 50 2 0 1 0 2 0 0 0 0 0

887 1460 BC 10 3 2 5 5 3 4 0 2 0 0 0 0 0

891 1476 BC 77 0 3 33 0 0 5 0 0 0 0 0 0 0

895 1491 BC 102 1 8 24 0 0 2 0 3 0 0 0 0 0

899 1507 BC 17 4 5 24 0 0 2 0 0 0 0 0 0 0

903 1522 BC 18 3 10 83 4 1 0 0 5 1 0 0 0 0

907 1538 BC 37 3 11 81 0 0 5 1 25 0 0 0 0 2

911 1554 BC 31 1 8 66 0 0 0 0 0 1 0 0 0 0

915 1569 BC 59 1 13 114 0 0 0 0 5 0 0 0 0 0

919 1585 BC 23 0 4 68 3 0 3 0 2 1 0 0 0 0

923 1601 BC 40 1 8 71 0 0 0 0 2 0 0 0 0 0

927 1616 BC 59 0 12 84 0 0 0 0 1 0 0 0 0 0

931 1632 BC 36 0 6 73 0 0 1 0 0 0 0 0 0 0

935 1648 BC 34 2 7 74 0 0 0 0 1 0 0 0 0 0

939 1663 BC 41 0 6 88 0 0 0 0 0 0 0 0 0 0

Page 172: Uni Greifswald · i Table of Content Abstract ....................................................................................................................................

Appendix- Table V Benthic foraminiferal counts from gravity core 343310-5-1

163

Dep

th (

cm

)

AD

/BC

Rob

ert

ina

arc

tica

Sta

info

rth

ia f

eyl

ing

i

Sta

info

rth

ia l

oeb

lich

i

Tri

ocu

lin

a s

p.

Tri

fari

na f

luen

s

tota

l co

un

ts

No

. A

gglu

tin

ate

s

specim

en

s co

un

ted

No

. C

alc

areo

us

specim

en

s co

un

ted

No

. T

est

lin

ing

s

AW

to

tal

(%)

Atl

W t

ota

l (%

)

Ca

lca

reo

us

vs.

Ag

glu

tin

ate

s

specim

en

s

fora

min

ifera

l

co

nce

ntr

ati

on

(te

st

per m

l)

767 998 BC 0 3 4 1 1 430 108 322 0,0 3,0 27,0 3,02 124,00

771 1015 BC 0 2 3 0 0 443 97 346 1,0 2,7 28,7 3,59 148,67

775 1032 BC 0 1 0 0 1 408 79 329 1,0 1,4 41,0 4,27 104,25

779 1048 BC 0 0 4 1 1 481 56 425 2,0 2,0 31,8 7,68 162,67

783 1064 BC 0 1 3 0 0 433 20 413 1,0 3,4 41,4 6,36 174,8

787 1081 BC 0 0 2 0 2 474 63 411 2,0 2,7 30,7 6,57 159,67

791 1097 BC 0 2 1 0 2 434 84 350 0,0 4,1 40,6 4,19 145,33

795 1113 BC 0 1 1 2 3 447 42 405 0,0 1,3 36,7 9,76 150,67

799 1129 BC 0 3 3 0 2 461 69 392 0,0 3,7 38,7 5,71 154,33

803 1145 BC 0 2 1 0 1 382 65 317 4,0 1,5 46,7 4,93 97,5

807 1161 BC 0 4 1 0 1 452 139 313 1,0 8,8 33,5 2,28 152,33

811 1177 BC 0 0 2 0 2 412 83 329 1,0 2,2 36,6 3,98 138,33

815 1193 BC 0 3 0 0 1 544 90 454 0,0 2,4 30,8 5,06 182

819 1209 BC 0 3 1 0 1 394 25 369 1,0 2,0 43,8 5,98 113,43

827 1225 BC 0 1 1 0 1 425 52 373 1,0 0,2 37,4 7,25 143,33

831 1240 BC 0 7 0 0 0 420 57 363 0,0 5,7 34,4 6,38 140,33

835 1256 BC 0 0 0 0 1 451 140 311 2,0 7,5 26,6 2,23 113,75

839 1272 BC 0 2 2 0 1 393 105 288 1,0 3,0 26,3 2,79 99,75

843 1288 BC 0 1 1 0 0 428 71 357 2,0 1,8 32,9 5,08 124

847 1303 BC 0 0 0 0 1 409 20 389 1,0 0,7 32,3 5,87 118,57

851 1319 BC 0 0 3 0 1 405 45 360 1,0 1,2 38,6 8,13 103

855 1335 BC 0 0 1 0 1 464 106 358 3,0 2,6 32,5 3,38 156

856 1350 BC 0 1 3 0 3 429 70 359 2,0 1,8 35,7 5,21 145,67

857 1354 BC 0 0 2 0 2 424 104 320 3,0 2,6 30,0 3,07 142,33

859 1358 BC 0 0 1 0 0 396 112 284 1,0 4,5 25,2 2,53 79,4

863 1366 BC 0 0 1 0 0 400 47 353 0,0 2,0 27,2 7,53 133,67

867 1382 BC 0 2 4 0 2 429 80 349 1,0 3,9 27,1 4,38 108

871 1397 BC 0 3 2 0 0 448 54 394 3,0 2,9 35,7 7,38 152

875 1413 BC 0 4 1 0 0 461 94 367 0,0 5,4 35,5 3,96 155,67

877 1425 BC 0 4 0 0 2 463 90 373 0,0 6,3 37,4 4,14 132,29

879 1436 BC 0 7 0 0 0 393 60 333 2,0 5,8 29,1 5,6 113,71

883 1444 BC 0 1 3 0 1 397 37 360 2,0 1,0 35,6 9,81 100,5

887 1460 BC 0 7 0 0 0 407 76 331 0,0 5,6 39,6 4,44 103,5

891 1476 BC 0 0 2 0 2 398 49 349 1,0 1,0 42,8 7,28 101,75

895 1491 BC 0 0 4 0 3 436 90 346 2,0 2,0 37,3 3,86 146,67

899 1507 BC 0 1 3 0 3 428 145 283 6,0 7,2 25,7 2,01 147,67

903 1522 BC 0 3 1 0 1 443 57 386 0,0 2,5 20,3 6,78 148

907 1538 BC 0 2 2 0 1 436 45 391 0,0 1,6 32,6 8,82 147,33

911 1554 BC 0 0 0 0 4 422 96 326 1,0 5,7 29,5 3,40 121,14

915 1569 BC 0 0 3 0 3 429 24 405 0,0 0,2 28,4 4,57 143,33

919 1585 BC 0 2 2 0 2 516 19 497 1,0 1,0 26,9 5,24 208

923 1601 BC 0 0 3 0 2 420 43 377 0,0 0,5 22,1 8,76 140

927 1616 BC 0 0 1 0 0 406 47 359 2,0 1,5 20,6 7,63 102

931 1632 BC 0 2 1 0 1 389 47 342 2,0 1,5 14,5 7,31 131

935 1648 BC 0 0 2 0 1 315 59 256 2,0 0,9 16,7 4,33 79,25

939 1663 BC 0 0 1 0 3 376 109 267 1,0 2,9 13,8 2,45 75,4


Recommended