+ All Categories
Home > Documents > Unit 19 Acid Base Equilibria: Titrations

Unit 19 Acid Base Equilibria: Titrations

Date post: 15-Jan-2016
Category:
Upload: kayo
View: 62 times
Download: 0 times
Share this document with a friend
Description:
CHM 1046 : General Chemistry and Qualitative Analysis. Unit 19 Acid Base Equilibria: Titrations. Dr. Jorge L. Alonso Miami-Dade College – Kendall Campus Miami, FL. Textbook Reference : Chapter 19 (sec. 5-8) Module 9. Soln -Unknown Concentration ( M ): Acid. Titration. - PowerPoint PPT Presentation
Popular Tags:
67
Aqueous Equilibria Unit 19 Acid Base Equilibria: Titrations Dr. Jorge L. Alonso Miami-Dade College – Kendall Campus CHM 1046 : General Chemistry and Qualitative Analysis Textbook Reference : Chapter 19 (sec. 5-8 Module 9
Transcript
Page 1: Unit 19 Acid Base Equilibria: Titrations

AqueousEquilibria

Unit 19Acid Base Equilibria:

Titrations

Dr. Jorge L. Alonso

Miami-Dade College – Kendall Campus

Miami, FL

CHM 1046: General Chemistry and Qualitative Analysis

Textbook Reference:

•Chapter 19 (sec. 5-8)

•Module 9

Page 2: Unit 19 Acid Base Equilibria: Titrations

AqueousEquilibria

Titration A volumetric

technique in which one can determine the concentration of a solute in a solution of unknown concentration, by making it react with another solution of known concentration (standard).

•Standard-of known Conc.(M)

MolesB = M x V

MolesA = M x V

{*TitrationMovie}

•Soln-Unknown Concentration (M): Acid

If: MolesA = MolesB

Then: (M x V)A = (M x V)B

• Known Volume (V)

•Measure Vol to reach end pt.

L L

Page 3: Unit 19 Acid Base Equilibria: Titrations

AqueousEquilibria

Determining the Concentration of Solutions by Titration

Example:

HCl (aq) + NaOH (aq) NaCl (aq) + H2O (l)

Neutralization: equivalence point

# mol1(acid) = # mol2(base)

(Standard)

xa HA (aq) + xb MOH (aq) MA (aq) + H2O (l)

1 mol1(acid) = 1 mol2(base)

xa xb

H2SO4(aq) + 2NaOH(aq) Na2SO4(aq) + H2O(l)

A known concentration of base (or acid) is slowly added to a solution of acid (or base) until neutralization occurs.

NaOH1SOH? 42

NaOH2

SOH1 42

Page 4: Unit 19 Acid Base Equilibria: Titrations

AqueousEquilibria

Titration Calculations: Stoichiometry using Molarities

Neutralization: 1 moles(acid) = 1 moles(base)

Since moles = MV = moles x Liter Liter

BxAx

MA x VA MB x VB=

xA HN + xB MOH MN + HOH

B or Ax = coefficients from balanced equations Where

==ηA

AxAx

MWg#

xA xB

=ηB

Bx Bx

MWg#

=

* Equation Useful for determining Molarities and Volumes at the Equivalence Point of a Titration *

Page 5: Unit 19 Acid Base Equilibria: Titrations

AqueousEquilibria

Solution Stoichiometry Problems: Molarity

A

BBA V 2

V1M M

H2SO4 + 2 NaOH 2HOH + Na2SO4

BxAxMA x VA = MB x VB

1 2

Problem: A volume of 16.3 mL of a 0.30M NaOH solution was used to titrate 25.00 mL H2SO4. What is the concentration of H2SO4 in the solution of unknown concentration?

mL 25.00 2

mL 3.160.30M 1 = 0.098 M H2SO4

Titration of a Strong Acid with a Strong Base

Page 6: Unit 19 Acid Base Equilibria: Titrations

AqueousEquilibria

Titration Graph: pH vs. Volume

Excess acid

Excess base

Acid = Base

Methyl Red Indicator

Phenolphthalein Indicator

{Titration2}

SA

SB

pHmeter

mL of NaOH

pH

0 1.2

10 1.4

20 1.6

30 1.7

40 1.9

50 7.0

60 12.0

70 12.2

80 12.3

Titration Data:

Page 7: Unit 19 Acid Base Equilibria: Titrations

AqueousEquilibria

Titrations: The Strength of Acids & Bases

Strong Base with Weak Acid

Strong Base with Strong Acid

Weak Base with Weak Acid

Weak Base with Strong AcidSA

SB

SB

WA

SA

WB

WA

WB

Phenolphthalein 8-10

Page 8: Unit 19 Acid Base Equilibria: Titrations

AqueousEquilibria

With weaker acids, the initial pH is higher and pH changes near the equivalence point are more subtle.

(2) Titration of a WA with a SB

Page 9: Unit 19 Acid Base Equilibria: Titrations

AqueousEquilibria

Selecting Appropriate Indicators

• an indicator is chosen so that it will change color at a pH just beyond the equivalence point (mid point of the steep vertical portion of the graph). The first point at which the indicator permanently changes color marks the end of the titration and is called the indicator end-point. Dropping a perpendicular from the indicator end-point to the x-axis is a very close estimation of the equivalence point.

Phenolph

Phenolph

Meth Red Meth Red

?????

Select appropriate indicator for following:

Page 10: Unit 19 Acid Base Equilibria: Titrations

AqueousEquilibria

SA

SB SA

SB

(1) Titration of a SA with a SB (or SB with a SA)

Page 11: Unit 19 Acid Base Equilibria: Titrations

AqueousEquilibria

Acid-Base Neutralization Equations(1) Strong Acids and Bases are represented in completely dissociated state:

as H+ and OH-

(2) Weak Acids and Bases are represented in undissociated state: as HA and B (or MOH)

Page 12: Unit 19 Acid Base Equilibria: Titrations

AqueousEquilibria

(H2CO3 + K+)

(H2CO3 + Ca2+ + C2H3O2- )

(H2CO3 + Zn2+ + SO42-)

(H2C O3 + Zn2+)

Page 13: Unit 19 Acid Base Equilibria: Titrations

AqueousEquilibria

HA + OH- H2O + A-

]HA[

]A][H[

AK

(2) Acid Base Neutralization: when not at the end-point or using WA or WB

(3) WA or WB Equilibrium problems

HA ↔ H+ + A-

Use: Mole ICEnd Table Use: [ICE] Table

II 0.0038 η 0.0030 η 0 η

C - 0.0030 η - 0.0030 η + 0.0030 η

End 0.0008 η 0 η 0.0030 η

Mole HA + MOH → MA + H20(.15M)(.025L) (.10M)(.030L)

II 0.061 0 0

C -x +x +x

E 0.061 - x x x

HA ↔ H+ A-

][

][log

HA

ApKpH a

Equations and Tables used in solving A-B Titration Problems

(1) Acid Base Neutralization: when you reach the end-point using SA or SB

B

B

A

A MVMV

Page 14: Unit 19 Acid Base Equilibria: Titrations

AqueousEquilibria

Example: 25 mL of 0.15M HCl with 0.10M NaOH.

(1) Titration of a SA with a SB

B

B

A

A MVMV

mL5.37

B

B

A

A

BA

BAB M

MVV

M

LMVB 10.0 )1(

)1( 025.15.0

II 0.0038 η 0.0030 η 0

C - 0.0030 η - 0.0030 η + 0.0030 η

End 0.0008 η 0 0.0030 η

(1) What volume of NaOH is required to reach the equivalence point?

Mole HX + MOH → MX + H20

(2) What is the pH of the initial strong acid? (strong acid problem)

(3) What is the pH prior to the equivalence point? Let’s say after 30. mL of NaOH. (excess SA problem)

In strong acid [HA]=[H+], so pH=-log [H+]

(.15M)(.025L) (.10M)(.030L) )L030.L025(.

)0008.0(

L]H[]HX[

pH = -log (1.4 x 10-2) = 1.9Salt of SA & SB: will not Hydrolyze

= -log (0.15) = 0.82

M104.1]H[ 2

*what is used for neutralization Rx?*

Page 15: Unit 19 Acid Base Equilibria: Titrations

AqueousEquilibria

Example: 25 mL of 0.15M HCl with 0.1M NaOH.

(4) What is the pH at the equivalence point?

(5) What is the pH after the equivalence point? Lets say after 40. mL of NaOH. (excess SB problem)

II 0.0038 η 0.0040 η 0 η

C - 0.0038 η - 0.0038 η + 0.0038 η

End 0 η 0.0002 η 0.0038 η

mole HX + MOH → MX + H20

(.15M)(.025L) (.10M)(.040L)

Salt of SA & SB: will not Hydrolyze

Only salt + water present and salt will not hydrolyze water since it is derived from SA & SB. So pH = 7

MLL

OH 3101.3)040.025(.

0002.0][

pOH = -log(3.1x10-3) = 2.5

pH + pOH = pKw pH = pKw - pOH

pH = 14 – 2.5 = 11.5

(1) Titration of a SA with a SB

*what is used for neutralization Rx?*

Page 16: Unit 19 Acid Base Equilibria: Titrations

AqueousEquilibria

• The pH >7 at the equivalence point.

• Unlike in the previous case, the conjugate base of the acid affects the pH when it is formed.

(2) Titration of a WA with a SB

HA ↔ H+ + A-

SB (OH-)

HA + OH- H2O + A-

]HA[

]A][H[

AK

][

][log

HA

ApKpH a

*what is used for equilibrium Rx?*

*what is used for neutralization Rx?*

Page 17: Unit 19 Acid Base Equilibria: Titrations

AqueousEquilibria

Example: 25 mL of 0.15M HC2H3O2 (Ka= 1.8 X10-5) with 0.10M NaOH.

B

B

A

A MVMV

mL5.37

B

B

A

A

BA

BAB M

MVV

M

LMVB 10.0 )1(

)1( 025.015.0

(2) What is the initial pH of the acetic acid? (Before titration, WA Equilibrium problem)

II 0.15 0 0

C -x +x +x

E 0.15 - x x x

HA ↔ H+ A-

)15.0(

))((108.1 5

x

xx

][

]][[

HA

AHK a

(1) What volume of NaOH is required to reach the equivalence point?

0016.0][

107.2)15.0)(108.1( 652

Hx

x 8.2)0016.0log( pH

(2) Titration of a WA with a SB

Page 18: Unit 19 Acid Base Equilibria: Titrations

AqueousEquilibria

Example: 25 mL of 0.15M HC2H3O2 (Ka= 1.8 X10-5) with 0.10M NaOH.

(3) What is the pH prior to the equivalence point? Let’s say after 30. mL of NaOH. (WA Buffer problem)

II 0.0038 η 0.0030 η 0 η

C - 0.0030 η - 0.0030 η + 0.0030 η

End 0.0008 η 0 η 0.0030 η

mole HA + MOH → MA + H20

(.15M)(.025L) (.10M)(.030L)

Salt of WA & SB: WILL Hydrolyze H2O

][

][log

HA

ApKpH a

]log[]log[ HAApKa

2.5)8.1()3.1()7.4()015.0log()055.0log()108.1log( 5 pH

MLL

HA 015.0030.0025.0

)0008.0(][

M

LLA 055.0

030.0025.0

)0030.0(][

(2) Titration of a WA with a SB

Page 19: Unit 19 Acid Base Equilibria: Titrations

AqueousEquilibria

Example: 25 mL of 0.15M HC2H3O2 (Ka= 1.8 X10-5) with 0.1M NaOH.

(4) What is the pH at the equivalence point? This happens @ 37.5 mL (Hydrolysis of Salt derived from a WA & SB)

II 0.0038 η 0.0038 η 0 η

C - 0.0038 η - 0.0038 η + 0.0038 η

End 0 η 0 η 0.0038 η

mole HA + MOH → MA + H20

(.15M)(.025L) (.10M)(.038L)

Salt of WA & : will Hydrolyze water

Salt is NaC2H3O2

Na+ = derived from SB (NaOH), will not hydrolyze.C2H3O2

- = derived from WA (acetic acid) it WILL hydrolyze water.

(2) Titration of a WA with a SB

Page 20: Unit 19 Acid Base Equilibria: Titrations

AqueousEquilibria

Example: 25 mL of 0.15M HC2H3O2 (Ka= 1.8 X10-5) with 0.1M NaOH.

(4) What is the pH at the equivalence point? This happens @ 37.5 mL (Hydrolysis of Salt derived from a WA & SB)

II 0.061 0 0

C -x +x +x

E 0.061 - x x x

C2H3O2- + H2O ↔ HC2H3O2 + OH-

[C2H3O2-] =.

)038.025(.

0038.0

LL

M066.0

)061.0(

))((106.5 10

x

xx

][

]][[

A

OHHAK b

6

11102

101.6][

107.3)066.0)(106.5(

OHx

x

2.5)101.6log( 6 pOH

baw KKK

105

14

106.5108.1

100.1

a

wb K

KK

II 0.0038 η 0.0038 η 0 η

C - 0.0038 η - 0.0038 η + 0.0038 η

End 0 η 0 η 0.0038 η

mole HA + MOH → MA + H20

(.15M)(.025L) (.10M)(.038L)

pH + pOH = pKw pH = pKw - pOH

pH = 14 – 5.2 = 8.8

Salt is NaC2H3O2

(2) Titration of a WA with a SB

Page 21: Unit 19 Acid Base Equilibria: Titrations

AqueousEquilibria

2005B Q1

Page 22: Unit 19 Acid Base Equilibria: Titrations

AqueousEquilibria

Mole ICEnd Table:

Page 23: Unit 19 Acid Base Equilibria: Titrations

AqueousEquilibria

• The pH at the equivalence point in these titrations is < 7.

• Methyl red is the indicator of choice.

MOH ↔ M+ + OH-

SA (H3O+)

H3O+ + MOH 2H2O + M+

(3) Titration of a WB with a SA

Page 24: Unit 19 Acid Base Equilibria: Titrations

AqueousEquilibria

Calculation of pH

B + H+ H2O + A- ][

]][[KB B

OHBH

(1) Acid Base Neutralization (2) WB Equilibrium problem

B+ H2O ↔ BH+ + OH-

Use: Mole ICEnd Table Use: [ICE] Table

II 0.0038 η 0.0030 η 0 η

C - 0.0030 η - 0.0030 η + 0.0030 η

End 0.0008 η 0 η 0.0030 η

Mole B + H+ → A- + H20(.15M)(.025L) (.10M)(.030L)

II 0.061 0 0

C -x +x +x

E 0.061 - x x x

B + H2O ↔

BH+ OH-

][

][log

B

BHpKpOH B

(3) Titration of a WB with a SA:

Weak base and strong acid

Page 25: Unit 19 Acid Base Equilibria: Titrations

AqueousEquilibria

2007A Q1 Titration: weak acid with strong base

Page 26: Unit 19 Acid Base Equilibria: Titrations

AqueousEquilibria

Use: Mole ICEnd Table Mole HA + OH- → A- + H20

(.40 M)(.025L) (.40M)(.015L)

II 0.010 η 0.0060 η 0 η

C - 0.0060 η - 0.0060 η + 0.0060 η

End 0.0040 η 0 η 0.0060 η

lnso

solu

LM

L)025.0015.0(

)006.0(

= 0.15 M F-

lnso

solu

LM

(e) What’s pH?

L)025.0015.0(

)004.0(

= 0.10 M HF

For F-:

For HF:

Page 27: Unit 19 Acid Base Equilibria: Titrations

AqueousEquilibria

Use: [ICE] Table

HA H+ ↔ A-

II 0.10 0 0.15

C -x +x +x

E 0.10 - x x 0.15 + x

0.15 M F-

0.10 M HF

Page 28: Unit 19 Acid Base Equilibria: Titrations

AqueousEquilibria

Titrations of Polyprotic Acids

In these cases there is an equivalence point for each dissociation.

Ka1

Ka2

Ka3

Page 29: Unit 19 Acid Base Equilibria: Titrations

AqueousEquilibria

2005B Q1 Titration: weak acid strong base

Page 30: Unit 19 Acid Base Equilibria: Titrations

AqueousEquilibria

2005B Q1

Page 31: Unit 19 Acid Base Equilibria: Titrations

AqueousEquilibria

Page 32: Unit 19 Acid Base Equilibria: Titrations

AqueousEquilibria

Page 33: Unit 19 Acid Base Equilibria: Titrations

AqueousEquilibria

Page 34: Unit 19 Acid Base Equilibria: Titrations

AqueousEquilibria

2000 QA Titration: weak base strong acid

Page 35: Unit 19 Acid Base Equilibria: Titrations

AqueousEquilibria

Page 36: Unit 19 Acid Base Equilibria: Titrations

AqueousEquilibria

2001 Q3Titration: weak acid strong base

Page 37: Unit 19 Acid Base Equilibria: Titrations

AqueousEquilibria

Answers 2001 Q3

Page 38: Unit 19 Acid Base Equilibria: Titrations

AqueousEquilibria

2002A Q1 Titration: weak acid strong base

Page 39: Unit 19 Acid Base Equilibria: Titrations

AqueousEquilibria

Page 40: Unit 19 Acid Base Equilibria: Titrations

AqueousEquilibria

2003A Q1 Titration: weak base strong acid

Page 41: Unit 19 Acid Base Equilibria: Titrations

AqueousEquilibria

Page 42: Unit 19 Acid Base Equilibria: Titrations

AqueousEquilibria

Page 43: Unit 19 Acid Base Equilibria: Titrations

AqueousEquilibria

2006B Q1 Titration: weak acid strong base

Page 44: Unit 19 Acid Base Equilibria: Titrations

AqueousEquilibria

Page 45: Unit 19 Acid Base Equilibria: Titrations

AqueousEquilibria

Page 46: Unit 19 Acid Base Equilibria: Titrations

AqueousEquilibria

Expressing Concentrations of

Solutions: Molarity (& Normality*)

* For MDC students only!

Page 47: Unit 19 Acid Base Equilibria: Titrations

AqueousEquilibria

moles of soluteLiters of solution

=Molarity (M)

BxAx

B or Ax = coefficients for the acid (A) and the base (B) from the balanced neutralization equations

Where

MA x VA = MB x VB

Ax

(mol/L)A x LA (mol/LB) x LB

Bx

Ax Bx

mol molA B=

=

xA HN + xB MOH MN + HOH

Page 48: Unit 19 Acid Base Equilibria: Titrations

AqueousEquilibria

BxAxMA x VA MB x VB

Ax

(mol/L)A x LA (mol/LB) x LB

Bx

Ax Bx

mol molA B=

=

=

BxAxmolesA MB x VB=

Page 49: Unit 19 Acid Base Equilibria: Titrations

AqueousEquilibria

For titrations:

MM-g

solute g #

MM-g

mole 1 solute g # moles

AAA

MB x VBAx Bx =

Since

xA HN + xB MOH MN + HOH

Page 50: Unit 19 Acid Base Equilibria: Titrations

AqueousEquilibria

mol of soluteL of solution

M =

Molarity (M) vs. Normality (N)

n

MM-g EW-g

n

equiv of soluteL of solution

N =

MM-g

mole 1 Solute g # moles

EW-g

mole 1 Solute g # sequivalent

A/B = # H+ or #OH-

nRedox = #e- involved in balanced

redox equation.

Where:M = N

When n = 1

That is when using HCl, KHP NaOH

But not when using H2SO4, Ca(OH)2

Lesson for MDC students only:

Page 51: Unit 19 Acid Base Equilibria: Titrations

AqueousEquilibria

Acid g-MM (g/)

+ H20 to

HCl 36 g + 1L =

H2SO4 98 g + 1L =

H3PO4 98 g + 1L =

Molarity (M) vs. Normality (N)

Molarity (/L) Normality (eq/L)

1M

1M

1M

1N

2N

3N

=

=

=

g-EW

36/1

=36

98/2

=49

98/3

=32.7

Eq(g/gEW)

36/36

98/49

98/33

Page 52: Unit 19 Acid Base Equilibria: Titrations

AqueousEquilibria

2M H3PO4 3M Ca(OH)2 Using Molarity

1N H3PO4 1N Ca(OH)2 Using Normality

n

2H3PO4 + 3 Ca(OH)2 6 HOH + Na3PO4

N = M or M = N

NA x VA = NB x VB

n

Using Normality for titrations:

Page 53: Unit 19 Acid Base Equilibria: Titrations

AqueousEquilibria

Titration of a WA with a SB

• The pH at the equivalence point will be >7.

• Phenolphthalein is commonly used as an indicator in these titrations.

• Unlike in the previous case, the conjugate base of the acid affects the pH when it is formed.

Page 54: Unit 19 Acid Base Equilibria: Titrations

AqueousEquilibria

Titration: measuring the Equivalence Point (H+ = OH-)

A pH meter or indicators are used to determine when the solution has reached the equivalence point, at which the stoichiometric amount of acid equals that of base. The end-point of a titration is when indicator changes color.

Methyl red in base

(range R4-6Y)

Phenolphthalein in base

(range C 8-10 F)

Page 55: Unit 19 Acid Base Equilibria: Titrations

AqueousEquilibria

Titration of a SA with a SB

Excess acid

Excess base

H+ = OH-

xA HN + xB MOH MN(aq) + HOH 1. From the start of the titration

the pH goes up slowly. Just before the equivalence point, the pH increases rapidly.

2. At the equivalence point, moles H+ = moles OH-, and the solution contains only water and the salt from the cation of the base and the anion of the acid.

3. Just after the equivalence point, the pH increases rapidly. As more base is added, the increase in pH again levels off.

Page 56: Unit 19 Acid Base Equilibria: Titrations

AqueousEquilibria

TitrationSolution of unknown concentration (M1 x V1 = #mol1)

Neutralization: 1 mola = 1 molb

(equivalence point){*TitrationMovie}

Solution of known concentration (M2 x V2 = #mol2)

xa

xb

Page 57: Unit 19 Acid Base Equilibria: Titrations

AqueousEquilibria

Stoichiometric/Volumetric Calculations

A

MW

g #

ACID

BASE

BxAxMA x VA MB x VB=

xA

xB

ACID ACID

BASE BASE

xA HN + xB MOH MN + HOH

=Ax

B

MW

g #

Bx=

Page 58: Unit 19 Acid Base Equilibria: Titrations

AqueousEquilibria

2006 (B)

Page 59: Unit 19 Acid Base Equilibria: Titrations

AqueousEquilibria

Page 60: Unit 19 Acid Base Equilibria: Titrations

AqueousEquilibria

Page 61: Unit 19 Acid Base Equilibria: Titrations

AqueousEquilibria

2007 (A)

Page 62: Unit 19 Acid Base Equilibria: Titrations

AqueousEquilibria

Page 63: Unit 19 Acid Base Equilibria: Titrations

AqueousEquilibria

Page 64: Unit 19 Acid Base Equilibria: Titrations

AqueousEquilibria

Page 65: Unit 19 Acid Base Equilibria: Titrations

AqueousEquilibria

Page 66: Unit 19 Acid Base Equilibria: Titrations

AqueousEquilibria

Page 67: Unit 19 Acid Base Equilibria: Titrations

AqueousEquilibria


Recommended