+ All Categories
Home > Documents > Unravelling species boundaries in the Aspergillus ... · Movile cave, sediment, 2014 MAT1-2-1 CCF...

Unravelling species boundaries in the Aspergillus ... · Movile cave, sediment, 2014 MAT1-2-1 CCF...

Date post: 12-Jul-2020
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
34
General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from orbit.dtu.dk on: Aug 19, 2020 Unravelling species boundaries in the Aspergillus viridinutans complex (section Fumigati) opportunistic human and animal pathogens capable of interspecific hybridization Hubka, V.; Barris, V.; Dudová, Z.; Sklená, F.; Kubátová, A.; Matsuzawa, T.; Yaguchi, T.; Horie, Y.; Nováková, A.; Frisvad, J.C. Total number of authors: 12 Published in: Persoonia Link to article, DOI: 10.3767/persoonia.2018.41.08 Publication date: 2018 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Hubka, V., Barris, V., Dudová, Z., Sklená, F., Kubátová, A., Matsuzawa, T., Yaguchi, T., Horie, Y., Nováková, A., Frisvad, J. C., Talbot, J. J., & Kolarik, M. (2018). Unravelling species boundaries in the Aspergillus viridinutans complex (section Fumigati) opportunistic human and animal pathogens capable of interspecific hybridization. Persoonia, 41, 142-174. https://doi.org/10.3767/persoonia.2018.41.08
Transcript
Page 1: Unravelling species boundaries in the Aspergillus ... · Movile cave, sediment, 2014 MAT1-2-1 CCF 4961 (S975) Romania, Movile cave, Lake cave a 2014 MAT1-1-1 Culture IFM 61334 T =

General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

You may not further distribute the material or use it for any profit-making activity or commercial gain

You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from orbit.dtu.dk on: Aug 19, 2020

Unravelling species boundaries in the Aspergillus viridinutans complex (sectionFumigati) opportunistic human and animal pathogens capable of interspecifichybridization

Hubka, V.; Barris, V.; Dudová, Z.; Sklená, F.; Kubátová, A.; Matsuzawa, T.; Yaguchi, T.; Horie, Y.;Nováková, A.; Frisvad, J.C.Total number of authors:12

Published in:Persoonia

Link to article, DOI:10.3767/persoonia.2018.41.08

Publication date:2018

Document VersionPublisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):Hubka, V., Barris, V., Dudová, Z., Sklená, F., Kubátová, A., Matsuzawa, T., Yaguchi, T., Horie, Y., Nováková, A.,Frisvad, J. C., Talbot, J. J., & Kolarik, M. (2018). Unravelling species boundaries in the Aspergillus viridinutanscomplex (section Fumigati) opportunistic human and animal pathogens capable of interspecific hybridization.Persoonia, 41, 142-174. https://doi.org/10.3767/persoonia.2018.41.08

Page 2: Unravelling species boundaries in the Aspergillus ... · Movile cave, sediment, 2014 MAT1-2-1 CCF 4961 (S975) Romania, Movile cave, Lake cave a 2014 MAT1-1-1 Culture IFM 61334 T =

© 2018 Naturalis Biodiversity Center & Westerdijk Fungal Biodiversity Institute

You are free to share - to copy, distribute and transmit the work, under the following conditions:Attribution: Youmustattributetheworkinthemannerspecifiedbytheauthororlicensor(butnotinanywaythatsuggeststhattheyendorseyouoryouruseofthework).Non-commercial: Youmaynotusethisworkforcommercialpurposes.Noderivativeworks: Youmaynotalter,transform,orbuilduponthiswork.Foranyreuseordistribution,youmustmakecleartoothersthelicensetermsofthiswork,whichcanbefoundathttp://creativecommons.org/licenses/by-nc-nd/3.0/legalcode.Anyoftheaboveconditionscanbewaivedifyougetpermissionfromthecopyrightholder.Nothinginthislicenseimpairsorrestrictstheauthor’smoralrights.

Persoonia 41, 2018: 142–174 ISSN(Online)1878-9080www.ingentaconnect.com/content/nhn/pimj https://doi.org/10.3767/persoonia.2018.41.08RESEARCH ARTICLE

INTRODUCTION

Aspergillus is a speciose genus with almost 400 species classi-fiedintosixsubgeneraandapproximately25sections(Samsonetal.2014,Jurjevićetal.2015,Hubkaetal.2016a,2017,Chenetal.2016a,b,2017,Kocsubéetal.2016,Sklenářetal.2017,Tanneyetal.2017).Thespeciesarewidelydistributedinnatureandhaveasignificanteconomicimpactinhumanandanimalhealth(causativeagentsofaspergillosis;allergiesandrespira-tory problems associated with presence of fungi in the indoor environment),thefoodindustry(sourceofenzymesandorganicacids for fermentation, food and feed spoilage, production of

hazardousmycotoxins), biotechnology and pharmacology(productionofbioactivesubstances,heterologousproteins)(Pitt&Hocking2009,Meyeretal.2011,Frisvad&Larsen2015b,Suguietal.2015,Gautieretal.2016).Aspergillussect.Fumigatiincludesapproximately60speciesoccurringpredominantlyinsoil(Hubkaetal.2017).Manyareof considerable medical importance as they cause human and animalinfections(Balajeeetal.2005b,2009,Katzetal.2005,Yaguchietal.2007,Hubkaetal.2012,Talbot&Barrs2018).As-pergillus fumigatus is usually reported as both the most common member of the section in soil worldwide and the most common causeofaspergillosis(Klich2002,Domschetal.2007,Mayr&Lass-Flörl2011).Aseriesofrecentstudieshighlightedthehighprevalence(11–19%)ofso-calledcrypticAspergillus species in clinicalsamples(Balajeeetal.2009,Alastruey-Izquierdoetal.2013,Negrietal.2014,Sabinoetal.2014).Theiridentificationis clinically relevant since many demonstrate drug resistance to commonly used antifungals, thus their recognition influences therapeuticmanagement.Reliableidentificationofclinicaliso-lates to the species level and susceptibility testing by reference methodsisthuswarranted(Lyskovaetal.2018).Manyoftheselesscommonpathogensbelongtosect.Fumigati and the high-est numbers of infections are attributed to A. lentulus, A. thermo- mutatus (syn.Neosartorya pseudofischeri )andspeciesfromA. viridinutansspeciescomplex(AVSC)(Balajeeetal.2005a,2006,Suguietal.2010,2014,Barrsetal.2013,Talbot&Barrs2018).

Unravelling species boundaries in the Aspergillus viridinutans complex (section Fumigati): opportunistic human and animal pathogens capable of interspecific hybridization V.Hubka1,2,3*,V.Barrs4#,Z.Dudová1,3#,F.Sklenář1,2#,A.Kubátová1,T.Matsuzawa5, T.Yaguchi6,Y.Horie6,A.Nováková2,J.C.Frisvad7,J.J.Talbot4,M.Kolařík2

Key words

Aspergillus felisAspergillus fumigatusinvasive aspergillosismating-type genesmultispecies coalescence modelNeosartorya udagawaescanning electron microscopysoil fungi

1 DepartmentofBotany,FacultyofScience,CharlesUniversity,Benátská2,12801Prague2,CzechRepublic.

2 LaboratoryofFungalGeneticsandMetabolism,InstituteofMicrobiologyoftheCAS,v.v.i,Vídeňská1083,14220Prague4,CzechRepublic.

3 FirstFacultyofMedicine,CharlesUniversity,Kateřinská32,12108Prague2,CzechRepublic.

4 SydneySchoolofVeterinaryScience,FacultyofScience,andMarieBashir InstituteofInfectiousDiseases&Biosecurity,UniversityofSydney,Camper-down,NSW,Australia.

5 UniversityofNagasaki,1-1-1Manabino,Nagayo-cho,Nishi-Sonogi-gun,Nagasaki851-2195,Japan.

6MedicalMycologyResearchCenter,ChibaUniversity, 1-8-1, Inohana,Chuo-ku,Chiba260-8673,Japan.

7 Department ofBiotechnology andBiomedicine,TechnicalUniversity ofDenmark,KongensLyngby,Denmark.

* correspondingauthore-mail:[email protected].# Theseco-authorscontributedequallytothiswork.

Abstract Although Aspergillus fumigatus is the major agent of invasive aspergillosis, an increasing number of infections are caused by its cryptic species, especially A. lentulus and the A. viridinutansspeciescomplex(AVSC).Theiridentificationisclinicallyrelevantbecauseofantifungaldrugresistanceandrefractoryinfections.SpeciesboundariesintheAVSCareunresolvedsincemostspecieshaveuniformmorphologyandproduceinterspecifichybrids in vitro.Clinicalandenvironmentalstrainsfromsixcontinents(n=110)werecharacterizedbyDNAse-quencingoffourtosixloci.Biologicalcompatibilitiesweretestedwithinandbetweenmajorphylogeneticclades,andascosporemorphologywascharacterised.Speciesdelimitationmethodsbasedonthemultispeciescoalescentmodel(MSC)supportedrecognitionoftenspeciesincludingonenewspecies.Fourspeciesareconfirmedopportunisticpathogens;A. udagawae followed by A. felis and A. pseudoviridinutans are known from opportunistic human infec-tions, while A. felis followed by A. udagawae and A. wyomingensis areagentsoffelinesino-orbitalaspergillosis.Recentlydescribedhuman-pathogenicspeciesA. parafelis and A. pseudofelisaresynonymizedwithA. felis and an epitype is designated for A. udagawae.Intraspecificmatingassayshowedthatonlyafewoftheheterothallicspeciescanreadilygeneratesexualmorphsin vitro.Interspecificmatingassaysrevealedthatfivedifferentspeciescombinations were biologically compatible.Hybridascosporeshadatypicalsurfaceornamentationandsignificantlydifferentdimensionscomparedtoparentalspecies.ThissuggeststhatspecieslimitsintheAVSCaremaintainedbybothpre-andpost-zygoticbarriersandthesespeciesdisplayagreatpotentialforrapidadaptationandmodulationofvirulence.Thisstudyhighlightsthatasufficientnumberofstrainsrepresentinggeneticdiversitywithinaspeciesisessentialformeaningfulspeciesboundariesdelimitationincrypticspeciescomplexes.MSC-baseddelimitationmethodsarerobustandsuitabletoolsforevaluationofboundariesbetweenthesespecies.

Article infoReceived:28September2017;Accepted:14March2018;Published:21June2018.

Page 3: Unravelling species boundaries in the Aspergillus ... · Movile cave, sediment, 2014 MAT1-2-1 CCF 4961 (S975) Romania, Movile cave, Lake cave a 2014 MAT1-1-1 Culture IFM 61334 T =

143V.Hubkaetal.:SpeciesdelimitationandhybridizationinsectionFumigati

Asp

ergi

llus

acre

nsis

IFM57291

T =CCF4670

T (01-BA-462-5)

Brazil,Acre,Xapuri,grasslandsoilincattlefarm,2001

MAT

1-1-1

IFM57290=CCF4666(01-BA-666-5)

Brazil,Amazonas,M

anaus,tropicalrainforestsoil,2001

MAT

1-2-1

CCF4959(S

973)

Rom

ania,M

ovilecave,abovetheLakeRoom,cavesediment,2014

MAT

1-2-1

CCF4960(S

974)

Rom

ania,M

ovilecave,cavesediment,2014

MAT

1-2-1

CCF4961(S

975)

Rom

ania,M

ovilecave,LakeRoom,cavesediment,2014

MAT

1-1-1

A. a

rcov

erde

nsis

IFM61334

T =JCM19878

T =CCF4900

T (6-2-32)

Brazil,Pernambuco,nearA

rcoverde,sem

i-desertsoilinacaatingaarea,2011

MAT

1-1-1

IFM61333=CCF4899(10-2-3)

Brazil,Pernambuco,nearA

rcoverde,sem

i-desertsoilinacaatingaarea,2011

MAT

1-1-1

IFM61337=JCM19879=CCF4901(1-1-34)

Brazil,Pernambuco,nearA

rcoverde,sem

i-desertsoilinacaatingaarea,2011

MAT

1-1-1

IFM61338=JCM19880=CCF4902(6-2-3)

Brazil,Pernambuco,nearA

rcoverde,sem

i-desertsoilinacaatingaarea,2011

MAT

1-2-1

IFM61339=CCF4903(2-1-11)

Brazil,Pernambuco,nearA

rcoverde,sem

i-desertsoilinacaatingaarea,2011

MAT

1-1-1

IFM61340=CCF4904(7-2-33)

Brazil,Pernambuco,nearA

rcoverde,sem

i-desertsoilinacaatingaarea,2011

MAT

1-1-1

IFM61345=

CCF5633

(3-2-2)

Brazil,Pernambuco,nearA

rcoverde,sem

i-desertsoilinacaatingaarea,2011

MAT

1-2-1

IFM61346=CCF4906(4-2-14)

Brazil,Pernambuco,nearA

rcoverde,sem

i-desertsoilinacaatingaarea,2011

MAT

1-2-1

IFM61349=CCF4907(4-2-9)

Brazil,Pernambuco,nearA

rcoverde,sem

i-desertsoilinacaatingaarea,2011

MAT

1-2-1

IFM61362=CCF4908(5-2-2)

Brazil,Pernambuco,nearA

rcoverde,sem

i-desertsoilinacaatingaarea,2011

MAT

1-2-1

IFM59922=CCF4560(08-SA-2-2)

China,soil,2008

MAT

1-1-1

IFM59923=CCF4569(08-SA-2-1)

China,soil,2008

MAT

1-1-1

FR

R1266=CBS121595=DTO

019-F2=CCF4574

Australia,N

ewSouthW

ales,W

arrumbungleNationalPark,sandysoil,1971

MAT

1-1-1

A. a

ureo

lus

IFM47021

T =IFM46935

T =IFM53589

T =CBS105.55T=NRRL2244

T =

Ghana,Tafo,soil,1950

homothallic

IMI06145

T =KACC41204

T =KACC41095

T =CCF4644

T =CCF4646

T =CCF4648

T

IFM46584=IFM46936=CBM-FA-0692=CCF4645=CCF4647

Brazil,SãoPauloState,B

otucatú,soil,1993

homothallic

IFM53615=CBM-FA-934=CCF4571(ex-typeofA

. ind

ohii)

Brazil,Acre,CruzeirodoSul,soilinagrasslandinatropicalrainforest,2001

homothallic

IHEM22515(R

V71215)

Peru,Lima,hum

ancornea,<1995

homothallic

A. f

elis

CBS130245T=DTO

131-F4T=CCF5620

Australia,S

ydney,retrobulbarmass,sino-orbitalaspergillosisina3.5-year-oldDSHcat,M

N,2008

MAT

1-2-1(KC797620)

NRRL62900=CM-3147=CCF4895(ex-typeofA

. par

afel

is)

Spain,hum

anoropharyngealexudate,2004

MAT

1-2-1(KJ858505)

NRRL62903=CM-6087=CCF4897(ex-typeofA

. pse

udof

elis)

Spain,hum

ansputum,2010

MAT

1-2-1(KJ858507)

NRRL62901=CM-5623=CCF4896=CCF4557(V

iridi-Pinh)

Portugal,bronchoalveolarlavage,chronicinvasiveaspergillosisina56-year-oldmale,2007

MAT

1-1-1(KJ858506)

IFM59564=

CCF5612

Japan,hum

an,sputum,2011

MAT

1-2-1

IFM60053=CCF4559

Japan,abscessnearthighbone,40-year-oldmanwithosteomyelitis,2012

MAT

1-1-1(HF937392)

IFM54303=CCF4570

Japan,hum

an,clinicalmaterial,<2007

MAT

1-1-1

FR

R5679=CCF5613

(MK246)

Australia,thoracicmassinacat,<2005

MAT

1-2-1

FR

R5680=CCF5615

(MK284)

Australia,retrobulbarmass,sino-orbitalaspergillosisinacat,<2005

MAT

1-2-1

CCF2937

CzechRepublic,nearK

ladno,soilofspoil-bank,1993

MAT

1-2-1(L

T796

767)

CCF4002(A

K196/07)

CzechRepublic,M

arkovičky,nearK

utnáHora,oldsilverminewastedum

p,2007

MAT

1-2-1

CCF4003(A

K27/07)

CzechRepublic,C

hvaletice,soilcrust,abandonedtailingpond,2007

MAT

1-2-1

CCF4171=CMFISB2162=IFM60852(F

39)

USA,W

yoming,Glenrock,soilfromcoalm

inedump,2010

MAT

1-2-1(L

T796

766)

CCF4172(F

47)

Spain,A

ndalusia,A

racena,G

rutadelaMaravillas,caveair,2010

ND

CCF4148=CMFISB1975=IFM60868(F

22)

USA,W

yoming,Glenrock,soilfromcoalm

inedump,2010

MAT

1-1-1(L

T796

760)

CCF4376(A

K102/11)

CzechRepublic,K

rušnéhory,nearA

bertamy,soilfromolddum

p,2011

MAT

1-1-1

CCF4497=CMFISB1936(F6)

USA,W

yoming,Glenrock,soilfromcoalm

inedump,2010

MAT

1-2-1

CCF4498=IFM60853(F

49)

USA,W

yoming,Glenrock,soilfromcoalm

inedump,2010

MAT

1-2-1

DTO

131-E4= CCF5609

(2384/07)

Australia,B

risbane,retrobulbarmass,sino-orbitalaspergillosis,7-year-oldDSHcat,FN,2007

MAT

1-2-1(KC797622)

DTO

131-E5= CCF5610

(4091/09)

Australia,B

risbane,retrobulbarmass,sino-orbitalaspergillosis,3-year-oldHimalayancat,FN,2009

MAT

1-1-1(KC797627)

DTO

131-G1= CCF5611

(834/07)

Australia,S

ydney,retrobulbarmass,sino-orbitalaspergillosis,2-year-oldHimalayancat,M

N,2007

MAT

1-2-1(KC797625)

CCF5614

(14/4138)

Australia,S

ydney,retrobulbarmass,sino-orbitalaspergillosis,5-year-oldcat,Ragoll,MN,2013

ND

CCF5616

(FelixH.D

) Australia,C

anberra,retrobulbarmass,sino-orbitalaspergillosis,8-year-olddomesticlonghaircat

ND

DTO

131-F1= CCF5617

(66/10)

Australia,B

risbane,retrobulbarmass,sino-orbitalaspergillosis,5-year-oldDSHcat,FN,2010

MAT

1-1-1(KC797629)

CCF5618

(LuigiC.)

Australia,S

ydney,retrobulbarmass,sino-orbitalaspergillosis,2-year-oldBSHcat,M

N,2012

MAT

1-2-1

CBS130248=DTO

131-G3=CCF5619(1767/10)

Australia,B

risbane,retrobulbarmass,sino-orbitalaspergillosis,4-year-oldDSHcat,FN,2010

MAT

1-2-1(KC797621)

CBS130249=DTO

155-G3=CCF5621

(1207/05)

Australia,S

ydney,vitreoushum

or,disseminatedinvasiveapsergillosis9-year-oldOldEnglishSheepdog,MN,2005

MAT

1-2-1

DTO

131-F2=CCF5622

(3532/09)

Australia,B

risbane,retrobulbarmass,sino-orbitalaspergillosis,4.5-year-oldRagdollcat,MN,2009

MAT

1-2-1

CBS130247=DTO

131-G2=CCF5623(1020/07)

Australia,S

ydney,retrobulbarmass,sino-orbitalaspergillosis,2-year-oldDSHcat,FN,2007

MAT

1-1-1(KC797632)

Tabl

e 1ListofA

sper

gillu

s strains,informationonisolationsourceandreproductivestrategy.

Species/Culturecollectionnos.

1,2

Locality,substrate,yearofisolation3

M

AT lo

cus4

,5

Page 4: Unravelling species boundaries in the Aspergillus ... · Movile cave, sediment, 2014 MAT1-2-1 CCF 4961 (S975) Romania, Movile cave, Lake cave a 2014 MAT1-1-1 Culture IFM 61334 T =

144 Persoonia–Volume41,2018

A. f

elis

(cont.)

DTO

131-E9=CCF5624

(1848/08)

Australia,B

risbane,retrobulbarmass,sino-orbitalaspergillosis,1.5-year-oldDSHcat,M

N,2008

MAT

1-1-1(KC797628)

DTO

131-E3=CCF5625

(3008/08D)

Australia,B

risbane,retrobulbarmass,sino-orbitalaspergillosis,8-year-oldPersiancat,FN,2008

MAT

1-1-1(KC797634)

DTO

131-F6=CCF5626

(8651/09)

Australia,B

risbane,retrobulbarmass,sino-orbitalaspergillosis,8-year-oldDSHcat,M

N,2009

MAT

1-2-1(KC797624)

CBS130244=DTO

131-E6=CCF5627(4067/09D)

Australia,S

ydney,retrobulbarmass,sino-orbitalaspergillosis,5-year-oldCornishRexcat,FN,2009

MAT

1-1-1(KC797630)

DTO

131-F3=CCF5628

(2188/08)

Australia,B

risbane,retrobulbarmass,sino-orbitalaspergillosis,7-year-oldDSHcat,FN,2008

MAT

1-2-1

CBS130246=DTO

131-F9=CCF5629(448/08)

Australia,S

ydney,nasalcavity,sino-nasalaspergillosis13-year-oldDLH

cat,M

N,2008

MAT

1-1-1(KC797631)

A. f

rank

ston

ensi

s

CBS142233T=IB

T34172T=DTO

341-E7T=CCF5799

T Australia,V

ictoria,Frankston,w

oodlandsoil,2015

MAT

1-2-1

CBS142234=IBT34204=DTO

341-F3=CCF5798

Australia,V

ictoria,Frankston,w

oodlandsoil,2015

MAT

1-2-1

A. p

seud

oviri

dinu

tans

NRRL62904T=

CCF5631

(NIHAV

1,1720)

USA,U

.S.N

ationalInstitutesofH

ealth,m

ediastinallymphnode,14-year-oldboywithchronicgranulomatousdisease,2004

MAT

1-1-1(KJ858509)

CBS458.75=KACC41203=IH

EM9862(ex-typeof

India,Lucknow

,Mohanlalganj,soil,<1971

MAT

1-2-1

A. f

umig

atus

var. s

cler

otio

rum)

IMI182127 =KACC41614=CCF5630

SríLanka,

Pin

us c

arib

ea,<1974

MAT

1-2-1

IFM55266=CCF5644

Japan,hum

an,lung,2004

MAT

1-1-1

IFM57289=CCF4665

Brazil,MatoGrosso,soil

MAT

1-2-1

IFM59502=CCF4561

Japan,cornea,keratom

ycosis,26-year-oldwom

an,2011

MAT

1-1-1

IFM59503=CCF4562

Japan,cornea,keratom

ycosis,26-year-oldwom

an,2011

MAT

1-1-1

CCF5632

(NIHAV

2,2594)

USA,lungbiopsy,8-year-oldboywithhyperimmunoglobulin-Esyndrom

e,2004

MAT

1-1-1(L

T796

761)

A. s

iam

ensi

s

IFM59793

T =KUFC

6349T=CCF4685

T Th

aila

nd, C

honb

uri P

rovi

nce,

Sam

aesa

rn Is

land

, coa

stal

fore

st s

oil,

2008

ho

mot

halli

c

IFM61157=KUFC

6397=CCF4686

Thailand,C

hiangMai,termitenestsoil,2009

homothallic

A. u

daga

wae

IFM46972

T = C

BS

114

217T =

DTO

157-D7T=CBM-FA0702

T =

Brazil,SãoPauloState,B

otucatú,LagoaSekaAvea,plantationsoil,1993

MAT

1-1-1

KACC41155

T = CCF4558

T

IFM46973

=CBS114218=DTO

157-D8=CBM-FA0703=

Brazil,SãoPauloState,B

otucatú,LagoaSekaAvea,plantationsoil,1993

MAT

1-2-1

KACC41156=CCF5672

IFM5058=CCF4662

Japan,hum

an,eye

MAT

1-1-1

IFM51744=CCF4671

Japan,hum

an,clinicalmaterial,2002

MAT

1-1-1

IFM53868=CCF4667

Japan,hum

an,clinicalmaterial,2004

MAT

1-2-1

IFM54131=CBM-FA-0697=CCF4663

China,S

haanxi,soil,1994

MAT

1-1-1

IFM54132=CBM-FA-0698=CCF4664

China,S

haanxi,soil,1994

MAT

1-2-1

IFM54745=CBM-FA-694=CCF4661

China,S

haanxi,soil,1994

MAT

1-1-1

IFM55207=NBRC31952=CCF4660

Russia,soil,1985

MAT

1-2-1

IFM62155=CCF4668

Brazil,soil,2008

MAT

1-1-1

CCF4475(F

2)

USA,W

yoming,Glenrock,prairiesoil,2010

MAT

1-2-1

CCF4476(F

32)

USA,W

yoming,Glenrock,soil,minewastedum

p,2010

MAT

1-1-1

CCF4478=CMFISB2193(F66)

USA,W

yoming,Gilette,soil,minewastedum

p,2011

MAT

1-2-1

CCF4479=CMFISB2189(F70)

USA,Illinois,soil,minewastedum

p,2011

MAT

1-2-1

CCF4481=CMFISB2191(F83)

USA,W

yoming,Gilette,soil,minewastedum

p,2011

MAT

1-2-1

CCF4491=CMFISB1971(F3)

USA,W

yoming,Glenrock,prairiesoil,2010

MAT

1-2-1

CCF4492(F

21)

USA,W

yoming,Glenrock,soil,minewastedum

p,2010

MAT

1-2-1(HF937389)

CCF4494(F

44)

USA,W

yoming,Glenrock,prairiesoil,2010

MAT

1-2-1

CMFISB1972=CCF4502(F

11)

USA,W

yoming,Glenrock,soil,minewastedum

p,2010

MAT

1-2-1

CMFISB2190= CCF5635

(F76)

USA,Indiana,soil,minewastedum

p,2011

MAT

1-1-1

CMFISB2509= CCF5636

(F20)

USA,W

yoming,Glenrock,soil,minewastedum

p,2010

MAT

1-2-1

CCF5637

(F37)

USA,W

yoming,Gilette,soil,minewastedum

p,2008

MAT

1-1-1

CCF5638

(3C8)

USA,P

hiladelphia,retrobulbarmass,sino-orbitalaspergillosis,4-year-oldPersiancat,M

N,2012

MAT

1-1-1

DTO

166-D6= CCF5639

(11.3356,M

ilo)

Australia,S

ydney,retrobulbarmass,sino-orbitalaspergillosis2-year-oldDSHcat,M

N,2011

ND

CCF5634

(B3)

CzechRepublic,H

ostěradice,earthwormcasts,2012

MAT

1-2-1

A. v

iridi

nuta

ns

IFM47045

T =IFM47046

T = IM

I367415T=IM

I062875T=NRRL4365

T =

Australia,V

ictoria,Frankston,rabbitdung,1954

MAT

1-1-1(HF937390)

NRRL576T=CBS127.56T=KACC41142

T = CCF4382

T =CCF4568

T

A. w

yom

inge

nsis

C

CF

4417

T =CMFISB2494T=CBS135456T(F

30)

USA,W

yoming,Glenrock,soil,minewastedum

p,2010

MAT

1-1-1(HF937391)

CCF4169=CMFISB2486(F24)

USA,W

yoming,Glenrock,soil,2010

MAT

1-1-1

Tabl

e 1(cont.)

Species/Culturecollectionnos.

1,2

Locality,substrate,yearofisolation3

M

AT lo

cus4

,5

Page 5: Unravelling species boundaries in the Aspergillus ... · Movile cave, sediment, 2014 MAT1-2-1 CCF 4961 (S975) Romania, Movile cave, Lake cave a 2014 MAT1-1-1 Culture IFM 61334 T =

145V.Hubkaetal.:SpeciesdelimitationandhybridizationinsectionFumigati

Homothallism is a predominant reproductivemode in sect.Fumigati andmanyspeciesreadilyproduceascomata(neosar-torya-morph)inculture,whileothersareheterothallicorhaveanunknownsexualmorph(Hubkaetal.2017).Homothallicspeciesareinfrequentlypathogenic,althoughA. thermomutatus isanotableexception.Themajorityofclinicallyrelevantspeciesbelong to the A. fumigatusclade(Balajeeetal.2005b,2009,Yaguchietal.2007,Alcazar-Fuolietal.2008)ortheAVSC(Su-guietal.2010,2014,Barrsetal.2013,Novákováetal.2014)andareheterothallic.Acrypticsexualcycleofseveraloftheseopportunistic pathogens, including A. fumigatus(O’Gormanetal.2009),A. lentulus(Swilaimanetal.2013)andA. felis(Barrsetal.2013),wasdiscoveredrecentlybycrossingoppositemat-ing type isolates in vitro.Molecularmethodsareroutinelyusedforidentificationofspe-ciesfromsect.Fumigati due to overlapping morphological fea- turesoftheirasexualmorph.Incontrast,themorphologyofthesexualmorph,especiallyofascospores,isamongstthemostinformativeofphenotypiccharacteristicsinsect.Fumigati.ThetaxonomyofAVSChasdevelopedrapidlysinceeightof thecurrently11recognizedspeciesweredescribedinthelastfouryears(Barrsetal.2013,Eamvijarnetal.2013,Novákováetal.2014,Suguietal.2014,Matsuzawaetal.2015,Talbotetal.2017).Thespeciesboundariesdelimitationwasusuallybasedon comparison of single-gene phylogenies and principles of genealogicalconcordance.Inaddition,somestudiessupportedthe species concept by results of in vitromatingexperimentsbetween oppositemating type strains.With the increasingnumberofspecies,availableisolatesandnewmatingexperi-mentdata,thespeciesboundariesinAVSCbecameunclearaspointedoutbyTalbotetal.(2017)whousedthedesignation‘A. felisclade’forA. felisandrelatedspecies.Importantly,Suguietal.(2014)andTalbotetal.(2017)identifiedthatinterpretationof in vitromatingassaysinsect.Fumigati may be problematic becausedifferentphylogeneticspeciesintheAVSCwereabletoproducefertileascomatawhencrossedbetweenthemselves.Some even mated successfully with A. fumigatus s.str.Herewepresentacriticalre-evaluationofspeciesboundariesintheAVSC.Weexaminedalargesetofclinicalandenvironmen-talstrainscollectedworldwide.Wedidnotuseclassicalphylo-genetic methods or genealogical concordance phylogenetic speciesrecognitionrules(GCPSR)forspeciesdelimitationduetotheirunsatisfactoryresultsinpreviousAVSCstudies.Suchmethods, based predominantly on analysis of concatenated DNAsequencedataorcomparisonofsingle-genephylogeniesarefrequentlypronetospeciesover-delimitationorareaffectedbysubjectivejudgementsofspeciesboundaries.Instead,we usedrecentlyintroduceddelimitationtechniquesbasedoncoales- centtheoryandthemultispeciescoalescentmodel(MSC)(Flot2015).WefollowedtheapproachrecommendedbyCarstensetal.(2013)thatcombinesspeciesdelimitation,speciestreeestimationandspeciesvalidationsteps.Althoughthesemeth-ods have already been applied to other groups of organisms suchasanimalsandplantstheiruseinfungiisscarce(Stewartetal.2014,Singhetal.2015,Liuetal.2016,Sklenářetal.2017,Hubkaetal.2018).Here,theresultsofMSCmethodswere taken as a basic hypothesis for species delimitation and thenfurtherverifiedbyanalysisofintra-andinterspecificbio-logical compatibilities, as well as ascospore dimensions and ornamentation.

MATERIAL AND METHODS

Fungal strainsAtotalof110isolateswereexaminedincludingnewisolatesandisolatesobtainedfrompreviouslypublishedstudies(KatzetA

. wyo

min

gens

is(cont.)

CCF4170=CMFISB2485(F12)

USA,W

yoming,Glenrock,soil,2010

MAT

1-2-1(L

T796

765)

CCF4411=CMFISB1977=IFM60854(F

5)

USA,W

yoming,Glenrock,soil,minewastedum

p,2010

MAT

1-2-1

CCF4412(F

9)

USA,W

yoming,Glenrock,soil,minewastedum

p,2010

MAT

1-1-1

CCF4413=CMFISB2317(F10)

USA,W

yoming,Glenrock,soil,minewastedum

p,2010

MAT

1-1-1

CCF4414=CMFISB1974=IFM60856(F

13)

USA,W

yoming,Glenrock,soil,minewastedum

p,2010

MAT

1-1-1(L

T796

762)

CCF4415=CMFISB2487(F28)

USA,W

yoming,Glenrock,soil,minewastedum

p,2010

MAT

1-1-1

CCF4416=CMFISB1976=CBS135455 (F29)

USA,W

yoming,Glenrock,soil,minewastedum

p,2010

MAT

1-2-1(HF937388)

CCF4418=CMFISB2162=IFM60855(F

31)

USA,W

yoming,Glenrock,soil,minewastedum

p,2010

MAT

1-2-1

CCF4419=CMFISB2495(F53)

USA,W

yoming,Glenrock,soil,minewastedum

p,2010

MAT

1-2-1

CCF4420=CMFISB2491(F60)

USA,W

yoming,Glenrock,soil,minewastedum

p,2010

MAT

1-1-1

IMI133982=CCF4383

Russia,Moscow,soil,<1968

MAT

1-1-1(L

T796

763)

IFM59681=CCF4563

China,U

rumqi,soil,2008

MAT

1-2-1(L

T796

764)

DTO

155-G2

= CCF5640

(YogurtR

.) Australia,M

elbourne,retrobulbarmassina1.5-year-oldBSHcat,M

N,2010

MAT

1-2-1

outg

roup

A

. len

tulu

sNRRL35552T=CBS117885T=IB

T27201T=KACC41940

T USA,hum

an,clinicalmaterial

MAT

1-2-1

1 Culturecollectionacronyms:CBM-FA=NaturalHistoryMuseum&Institute,C

hiba,Japan;C

BS=CBSculturecollectionhousedattheW

esterdijkInstitute,U

trecht,TheNetherlands;CCF=CultureCollectionofFungi,P

rague,CzechRepublic;C

M=Filamentousfunguscollection

oftheSpanishNationalC

enterforMicrobiology,Madrid,S

pain;C

MFISB=CollectionofMicroscopicFungi,InstituteofSoilBiology,AcademyofSciencesoftheCzechRepublic,Č

eskéBudějovice,CzechRepublic;D

TO=workingcollectionoftheAppliedandIndustrialM

ycology

departm

enthousedattheWesterdijkInstitute,U

trecht,TheNetherlands;FRR=FoodFungalCultureCollection,NorthRyde,Australia;IBT=culturecollectionoftheDTU

SystemsBiology,Lyngby,Denmark;IFM=CollectionattheMedicalMycologyResearchCentre,C

hibaUni

-versity,Japan;IHEM=BelgianCoordinatedCollectionsofM

icro-organisms(BCCM/IH

EM),Brussels,Belgium

;IMI=CABI’scollectionoffungiandbacteria,E

gham

,UK;JCM=JapanCollectionofMicroorganism

s,Tsukuba,Japan;K

ACC=KoreanAgriculturalC

ultureCollection,

Wanju,S

outhKorea;K

UFC

=KasetsartUniversityFungalC

ollection,Bangkok,Thailand;N

BRC(IFO

)=BiologicalR

esourceCenter,NationalInstituteofTechnologyandEvaluation,Chiba,Japan;N

RRL=AgriculturalR

esearchServiceCultureCollection,Peoria,Illinois,U

SA.

2 Originalnum

bersofstrainsandpersonalstraindesignationsaregiveninparentheses.

3 BSH=Britishshorthair;DLH

=dom

esticlonghair;DSH=dom

esticshorthair;FN

=femaleneutered(desexed);MN=maleneutered;N

D=notdetermined.

4 Whenavailable,sequencenumberinpublicdatabaseisgiveninparentheses;intheremainingcases,theMAT

idiomorphwasconfirmedonlyontheelectrophoretogram(specificPCRandlengthofamplicons).

5 Sequencesgeneratedinthisstudyareinb

old.

Tabl

e 1(cont.)

Species/Culturecollectionnos.

1,2

Locality,substrate,yearofisolation3

M

AT lo

cus4

,5

Page 6: Unravelling species boundaries in the Aspergillus ... · Movile cave, sediment, 2014 MAT1-2-1 CCF 4961 (S975) Romania, Movile cave, Lake cave a 2014 MAT1-1-1 Culture IFM 61334 T =

146 Persoonia–Volume41,2018

Asp

ergi

llus

acre

nsis

IFM57291

T =CCF4670

T –

LT79

5980

LT

7959

81

LT79

5982

LT

7959

83

– –

IFM57290=CCF4666

–LT

7959

76

LT79

5977

LT

7959

78

LT79

5979

CCF4959

LT79

5984

LT558741

LT79

5985

LT

7959

86

– –

CCF4960

LT79

5987

LT558742

LT79

5988

LT

7959

89

– –

CCF4961

LT79

5990

LT558743

LT79

5991

LT

7959

92

– –

A. a

rcov

erde

nsis

IFM61334

T =JCM19878

T =CCF4900

T –

AB818845

LT79

5958

LT

7959

59

AB818867

– –

IFM61333=CCF4899

–LT

7959

54

LT79

5955

LT

7959

56

LT79

5957

IFM61337=JCM19879=CCF4901

–AB818846

LT79

5960

LT

7959

61

AB818868

– –

IFM61338=JCM19880=CCF4902

–AB818847

LT79

5962

LT

7959

63

AB818869

– –

IFM61339=CCF4903

–AB818848

LT79

5964

LT

7959

65

AB

8188

70

– –

IFM61340=CCF4904

–AB818849

LT79

5966

LT

7959

67

AB

8188

71

– –

IFM61345=

CCF5633

AB818850

LT79

5968

LT

7959

69

AB

8188

72

– –

IFM61346=CCF4906

–AB818851

LT79

5970

LT

7959

71

AB818873

– –

IFM61349=CCF4907

–AB818852

LT79

5972

LT

7959

73

AB

8188

74

– –

IFM61362=CCF4908

–AB818853

LT79

5974

LT

7959

75

AB818875

– –

IFM59922=CCF4560

–LT

7959

44

LT79

5945

LT

7959

46

LT79

5947

IFM59923=CCF4569

–AB818844

LT79

5948

LT

7959

49

AB818866

– –

FR

R1266=CBS121595=DTO

019-F2=CCF4574

JX021672

LT79

5950

LT

7959

51

LT79

5952

LT

7959

53

– –

A. a

ureo

lus

IFM47021

T =IFM46935

T =IFM53589

T =CBS105.55T=NRRL2244

T =IM

I06145

T =KACC41204

T =

EF669950

EF669808

HG426051

EF669738

DQ094861

KJ914718

KJ914750

KACC41095

T =CCF4644

T =CCF4646

T =CCF4648

T

IFM46584=IFM46936=CBM-FA-0692=CCF4645=CCF4647

–LT

7960

01

HG426050

LT79

6002

LT

7960

03

– –

IFM53615=CBM-FA-934=CCF4571(ex-typeofA

. ind

ohii)

–AB488757

LT79

5998

LT

7959

99

LT79

6000

IHEM22515

LT79

6004

LT

7960

05

LT79

6006

LT

7960

07

LT79

6153

LT

7967

56A

. fel

is

CBS130245T=DTO

131-F4T=CCF5620

KF558318

KJ914694

KJ914706

KJ914735

LT79

5880

KJ914724

LT79

6745

NRRL62900=CM-3147=CCF4895(ex-typeofA

. par

afel

is)

KJ914692

KJ914702

LT79

5839

LT

7958

38

KJ914720

LT79

6734

NRRL62903 =CM-6087=CCF4897(ex-typeofA

. pse

udof

elis)

KJ914697

KJ914705

LT79

5891

LT

7958

92

KJ914723

LT79

6749

NRRL62901=CM-5623=CCF4896=CCF4557

–KJ914693

LT79

5813

LT

7958

14

LT79

5815

LT

7961

52

LT79

6727

IFM59564=

CCF5612

LT79

5801

LT

7958

02

LT79

5803

LT

7958

04

LT79

6126

LT

7967

24

IFM60053=CCF4559

–LT

7958

56

LT79

5857

LT

7958

58

LT79

5859

LT

7961

38

LT79

6739

IFM54303=CCF4570

AB250780

LT79

5860

LT

7958

61

LT79

5862

LT

7958

63

LT79

6139

LT

7967

40

FRR5679=CCF5613

LT79

5805

LT

7958

06

LT79

5807

LT

7958

08

LT79

6127

LT

7967

25

FRR5680=CCF5615

LT79

5844

LT

7958

45

LT79

5846

LT

7958

47

LT79

6135

LT

7967

36

CCF2937

– LT

7958

16

LT79

5817

LT

7958

18

LT79

5819

LT

7961

29

LT79

6728

C

CF

4002

FR733865

FR775350

LT79

5824

LT

7958

25

LT79

5826

LT

7961

31

LT79

6730

CCF4003

FR733866

FR775349

LT79

5827

LT

7958

28

LT79

5829

LT

7961

32

LT79

6731

C

CF

4171=CMFISB2162=IFM60852

–LT

7958

40

LT79

5841

LT

7958

42

LT79

5843

LT

7961

34

LT79

6735

C

CF

4172

LT79

5834

LT

7958

35

LT79

5836

LT

7958

37

LT79

6133

LT

7967

33

CC

F 41

48=CMFISB1975=IFM60868

HE578063

LT79

5868

LT

7958

69

LT79

5870

LT

7958

71

– LT

7967

41

CCF4376

LT79

5872

LT

7958

73

LT79

5874

LT

7958

75

LT79

6141

LT

7967

43

CCF4497=CMFISB1936

–LT

7958

20

LT79

5821

LT

7958

22

LT79

5823

LT

7961

30

LT79

6729

CCF4498=IFM60853

–LT

7958

30

LT79

5831

LT

7958

32

LT79

5833

LT79

6732

DTO

131-E4= CCF5609

JX021673

LT79

5789

LT

7957

90

LT79

5791

LT

7957

92

LT79

6123

LT

7967

21

DTO

131-E5= CCF5610

JX021674

LT79

5793

LT

7957

94

LT79

5795

LT

7957

96

LT79

6124

LT

7967

22

DTO

131-G1= CCF5611

JX021682

LT79

5797

LT

7957

98

LT79

5799

LT

7958

00

LT79

6125

LT

7967

23

CCF5614

LT79

5809

LT

7958

10

LT79

5811

LT

7958

12

LT79

6128

LT

7967

26

CCF5616

LT79

5848

LT

7958

49

LT79

5850

LT

7958

51

LT79

6136

LT

7967

37

DTO

131-F1= CCF5617

JX021677

LT79

5852

LT

7958

53

LT79

5854

LT

7958

55

LT79

6137

LT

7967

38

CCF5618

LT79

5864

LT

7958

65

LT79

5866

LT

7958

67

LT79

6140

LT

7967

42

CBS130248=DTO

131-G3=CCF5619

JX021684

LT79

5876

LT

7958

77

LT79

5878

LT

7958

79

LT79

6142

LT

7967

44

Tabl

e 2ListofA

sper

gillu

s strainsandsequencesusedinphylogeneticanalysis;accessionnum

bersinb

oldweregeneratedforthisstudy.

Species

Culturecollectionnos.

1 GenBank/ENA/DDBJaccessionnumbers

ITS

be

nA

CaM

R

PB

2 ac

t m

cm7

tsr1

Page 7: Unravelling species boundaries in the Aspergillus ... · Movile cave, sediment, 2014 MAT1-2-1 CCF 4961 (S975) Romania, Movile cave, Lake cave a 2014 MAT1-1-1 Culture IFM 61334 T =

147V.Hubkaetal.:SpeciesdelimitationandhybridizationinsectionFumigati

A. f

elis

(cont.)

CBS130249=DTO

155-G3=CCF5621

JX021686

JX021711

JX021713

LT79

5881

LT

7958

82

LT79

6143

LT

7967

46

DTO

131-F2=CCF5622

JX021678

LT79

5883

LT

7958

84

LT79

5885

LT

7958

86

LT79

6144

LT

7967

47

CBS130247=DTO

131-G2=CCF5623

JX021683

LT79

5887

LT

7958

88

LT79

5889

LT

7958

90

LT79

6145

LT

7967

48

DTO

131-E9=CCF5624

JX021676

LT79

5893

LT

7958

94

LT79

5895

LT

7958

96

LT79

6146

LT

7967

50

DTO

131-E3=CCF5625

JX021671

LT79

5897

LT

7958

98

LT79

5899

LT

7959

00

LT79

6147

LT

7967

51

DTO

131-F6=CCF5626

JX021680

LT79

5901

LT

7959

02

LT79

5903

LT

7959

04

LT79

6148

LT

7967

52

CBS130244=DTO

131-E6=CCF5627

JX021675

LT79

5905

LT

7959

06

LT79

5907

LT

7959

08

LT79

6149

LT

7967

53

DTO

131-F3=CCF5628

JX021679

LT79

5909

LT

7959

10

LT79

5911

LT

7959

12

LT79

6150

LT

7967

54

CBS130246=DTO

131-F9=CCF5629

JX021681

LT79

5913

LT

7959

14

LT79

5915

LT

7959

16

LT79

6151

LT

7967

55

A. f

rank

ston

ensi

sCBS142233T=IB

T34172T=DTO

341-E7T=CCF5799

T KY808756

KY808594

KY808724

KY808948

KY808549

KY808901

LT90

4842

CBS142234=IBT34204=DTO

341-F3=CCF5798

KY808761

KY808599

KY808729

KY808953

KY808554

KY808906

A. p

seud

oviri

dinu

tans

NRRL62904T=

CCF5631

KJ914690

KJ914708

LT79

5930

LT

7959

31

LT79

6119

LT

7967

17

CBS458.75=KACC41203=IH

EM9862(ex-typeofA

. fum

igat

us var. s

cler

otio

rum)

–LT

7959

25

HG426048

LT79

5926

DQ094853

LT79

6117

LT

7967

15

IMI182127 =KACC41614=CCF5630

LT79

5927

LT

7959

28

LT79

5929

DQ094850

LT79

6118

LT

7967

16

IFM55266=CCF5644

– LT

7959

17

LT79

5918

LT

7959

19

LT79

5920

LT

7961

15

LT79

6713

IFM57289=CCF4665

–LT

7959

21

LT79

5922

LT

7959

23

LT79

5924

LT

7961

16

LT79

6714

IFM59502=CCF4561

–LT

7959

36

LT79

5937

LT

7959

38

LT79

5939

LT

7961

21

LT79

6719

IFM59503=CCF4562

–LT

7959

40

LT79

5941

LT

7959

42

LT79

5943

LT

7961

22

LT79

6720

CCF5632

LT79

5932

LT

7959

33

LT79

5934

LT

7959

35

LT79

6120

LT

7967

18A

. sia

men

sis

IFM59793

T =KUFC

6349T=CCF4685

T –

AB646989

LT79

5993

LT

7959

94

AB776703

––

IFM61157=KUFC

6397=CCF4686

–AB776701

LT79

5995

LT

7959

96

LT79

5997

–A

. uda

gaw

ae

IFM46972

T = C

BS

114

217T =

DTO

157-D7T=CBM-FA0702

T =KACC41155

T = CCF4558

T AB185265

LT79

6063

LT

7960

64

LT79

6065

LT

7960

66

– –

IFM46973

=CBS114218=DTO

157-D8=CBM-FA0703=KACC41156=CCF5672

JN

943591

LT79

6067

LT

7960

68

LT79

6069

LT

7960

70

– –

IFM5058=CCF4662

AB250402

LT79

6075

LT

7960

76

LT79

6077

LT

7960

78

– –

IFM51744=CCF4671

AB250403

LT79

6079

LT

7960

80

LT79

6081

LT

7960

82

– –

IFM53868=CCF4667

AB250405

LT79

6111

LT

7961

12

LT79

6113

LT

7961

14

– –

IFM54131=CBM-FA-0697=CCF4663

–LT

7960

83

LT79

6084

LT

7960

85

LT79

6086

IFM54132=CBM-FA-0698=CCF4664

–LT

7960

87

LT79

6088

LT

7960

89

LT79

6090

IFM54745=CBM-FA-694=CCF4661

–LT

7960

91

LT79

6092

LT

7960

93

LT79

6094

IFM55207=NBRC31952=CCF4660

–LT

7960

95

LT79

6096

LT

7960

97

LT79

6098

IFM62155=CCF4668

–LT

7960

99

LT79

6100

LT

7961

01

LT79

6102

CCF4475

–HF933366

HF933407

LT79

6037

LT

7960

38

– –

CCF4476

–HF933371

HF933412

LT79

6043

LT

7960

44

– –

C

CF

4478=CMFISB2193

–HF933376

HF933416

LT79

6045

LT

7960

46

– –

CCF4479=CMFISB2189

–HF933377

HF933417

LT79

6047

LT

7960

48

– –

C

CF

4481=CMFISB2191

–HF933379

HF933419

LT79

6049

LT

7960

50

– –

CCF4491=CMFISB1971

–HF933370

HF933411

LT79

6051

LT

7960

52

– –

CCF4492

–HF933368

HF933409

LT79

6053

LT

7960

54

– –

CCF4494

–HF933373

HF933413

LT79

6055

LT

7960

56

– –

CMFISB1972=CCF4502

HE578061

HE578075

HF933405

LT79

6057

LT

7960

58

– –

CMFISB2190= CCF5635

HG426055

HG426049

LT79

6059

LT

7960

60

– –

CMFISB2509= CCF5636

HF933367

HF933408

LT79

6061

LT

7960

62

– –

CCF5637

LT79

6071

LT

7960

72

LT79

6073

LT

7960

74

– –

CCF5638

LT79

6103

LT

7961

04

LT79

6105

LT

7961

06

LT79

6156

LT

7967

58

DTO

166-D6= CCF5639

LT79

6107

LT

7961

08

LT79

6109

LT

7961

10

LT79

6155

LT

7967

59

CCF5634

LT79

6039

LT

7960

40

LT79

6041

LT

7960

42

– –

A. v

iridi

nuta

ns

IFM47045

T =IFM47046

T = IM

I367415T=IM

I062875T=NRRL4365

T =NRRL576T=CBS127.56T=

EF669978

EF669834

EF669904

EF669765

DQ094862

KJ914717

KJ914751

KACC41142

T = CCF4382

T =CCF4568

T

Tabl

e 2(cont.)

Species

Culturecollectionnos.

1 GenBank/ENA/DDBJaccessionnumbers

ITS

be

nA

CaM

R

PB

2 ac

t m

cm7

tsr1

Page 8: Unravelling species boundaries in the Aspergillus ... · Movile cave, sediment, 2014 MAT1-2-1 CCF 4961 (S975) Romania, Movile cave, Lake cave a 2014 MAT1-1-1 Culture IFM 61334 T =

148 Persoonia–Volume41,2018

al.2005,Vinhetal.2009,Coelhoetal.2011,Shigeyasuetal.2012,Barrsetal.2013,2014,Eamvijarnetal.2013,Novákováetal.2014,Suguietal.2014,Matsuzawaetal.2015,Talbotetal.2017)andculturecollections.Thesetcomprised38clinicalstrainsand72environmentalisolates,including67fromsoil,fourfromcaveenvironmentsandonefromplantmaterial.Theprovenanceof isolatesisdetailedinTable1.Newlyisolatedstrains were deposited into the Culture Collection of Fungi at theDepartmentofBotany,CharlesUniversity,Prague,CzechRepublic(CCF).Driedherbariumspecimensweredepositedinto theherbariaof theMedicalMycologyResearchCenter,ChibaUniversity,Japan(IFM)andMycologicalDepartmentoftheNationalMuseum,Prague,CzechRepublic(PRM).

Phenotypic studiesThestrainsweregrownonmaltextractagar(MEA),CzapekYeastAutolysateAgar(CYA),Czapek-Doxagar(CZA),yeastextract sucrose agar (YES),CYA supplementedwith 20%sucrose (CY20S), and creatine sucrose agar (CREA), andincubatedat 25°C.Agarmedia compositionwasbasedonthatdescribedbySamsonetal.(2014).MaltextractandyeastextractwereobtainedfromOxoid(Basingstoke,UK)andFlukaChemieGmbH(Switzerland),respectively.Growthat42,45and47°CwastestedonMEAplatessealedwithParafilm.ColourdeterminationwasperformedaccordingtotheISCC-NBS(Inter-SocietyColorCouncil–NationalBureauofStandards)CentroidColourCharts(Kelly1964).MicromorphologywasobservedonMEA.Lacticacidwithcottonbluewasusedasamountingmedium.PhotographsweretakenonanOlympusBX-51microscope(OlympusDP72camera)usingNomarskicontrast.MacromorphologyofthecolonieswasdocumentedusingastereomicroscopeOlympusSZ61(withOlympusCamediaC-5050Zoomcamera)orCanonEOS500D.Scanningelectronmicroscopy(SEM)wasperformedusingaJEOL-6380LVscanningelectronmicroscope(JEOLLtd.Tokyo,Japan)asdescribedbyHubkaetal.(2013b).Briefly,piecesofcolonyormatureascomatawerefixedinosmiumtetroxidevapoursforonewkat5–10°CandgoldcoatedusingaBal-TecSCD050sputtercoater.Thespecimenswereobservedusing40μmspotsizeand15–25kVacceleratingvoltage.

Molecular studies ArchivePureDNAyeastandGram2+kit(5PRIMEInc.,Gaithers- burg,MD)wasused forDNA isolation from7-d-oldculturesaccording to themanufacturer’s instructions as updated byHubkaetal.(2015b).ThepurityandconcentrationofextractedDNAwasevaluatedbyNanoDrop1000Spectrophotometer.ITSrDNAregionwasamplifiedusingforwardprimersITS1orITS5(Whiteetal.1990)andreverseprimersITS4S(Kretzeretal.1996)orNL4 (O’Donnell1993);partialβ-tubulingene(benA)usingforwardprimersBt2a(Glass&Donaldson1995)orBen2f(Hubka&Kolařík2012)andreverseprimerBt2b(Glass&Donaldson1995);partialcalmodulingene(CaM)usingfor-wardprimersCF1MorCF1LandreverseprimerCF4(Peterson2008);partialactingene (act )usingprimersACT-512FandACT-783R(Carbone&Kohn1999);partialRNApolymeraseIIsecondlargestsubunit(RPB2)usingforwardprimersfRPB2-5F(Liuetal.1999)orRPB2-F50-CanAre(Jurjevićetal.2015)andreverseprimerfRPB2-7cR(Liuetal.1999);partialmcm7 gene encoding minichromosome maintenance factor 7 with primers Mcm7-709forandMcm7-1348rev (Schmittetal.2009);andpartial tsr1 gene encoding ribosome biogenesis protein with primersTsr1-1453forandTsr1-2308rev(Schmittetal.2009).Terminalprimerswereusedforsequencing.ThePCRreactionvolumeof20µLcontained1µL(50ng)ofDNA,0.3µLofbothprimers(25pM/mL),0.2µLofMyTaqTMDNAA

. wyo

min

gens

is

CC

F 44

17T =

CMFISB2494T=CBS135456T

HG324081

HF933359

HF933397

HF937378

HF937382

––

CCF4169=CMFISB2486

–HF933354

HF933394

LT79

6009

LT

7960

08

– –

C

CF

4170=CMFISB2485

–HF933356

HF933392

LT79

6011

LT

7960

10

– –

CCF4411=CMFISB1977=IFM60854

HE578062

HE578077

HF933389

LT79

6016

LT

7960

15

– –

C

CF

4412

–HF933352

HF933390

LT79

6018

LT

7960

17

– –

CCF4413=CMFISB2317

–HF933360

HF933391

LT79

6019

LT

7960

20

– –

C

CF

4414=CMFISB1974=IFM60856

–HF933353

HF933393

LT79

6021

LT

7960

22

– –

CCF4415=CMFISB2487

–HF933357

HF933395

LT79

6023

LT

7960

24

– –

CCF4416=CMFISB1976=CBS135455

–HF933358

HF933396

HF937377

HF937381

––

C

CF

4418=CMFISB2162=IFM60855

–HF933355

HF933398

LT79

6025

LT

7960

26

– –

CCF4419=CMFISB2495

–HF933361

HF933399

LT79

6027

LT

7960

28

– –

C

CF

4420=CMFISB2491

–HF933362

HF933400

LT79

6029

LT

7960

30

– –

IMI133982=CCF4383

–LT

7960

12

LT79

6013

LT

7960

14

DQ094860

––

IFM59681=CCF4563

–HG426056

HG426053

LT79

6031

LT

7960

32

– –

DTO

155-G2

= CCF5640

LT79

6033

LT

7960

34

LT79

6035

LT

7960

36

LT79

6154

LT

7967

57ou

tgro

up

A. l

entu

lus

NRRL35552T=CBS117885T=IB

T27201T=KACC41940

T EF669969

EF669825

EF669895

EF669756

DQ094873

KJ914712

KJ914746

1 Culturecollectionacronyms:CBM-FA=NaturalHistoryMuseum&Institute,C

hiba,Japan;C

BS=CBSculturecollectionhousedattheW

esterdijkInstitute,U

trecht,TheNetherlands;CCF=CultureCollectionofFungi,P

rague,CzechRepublic;C

M=Filamentousfunguscollection

oftheSpanishNationalC

enterforMicrobiology,Madrid,S

pain;C

MFISB=CollectionofMicroscopicFungi,InstituteofSoilBiology,AcademyofSciencesoftheCzechRepublic,Č

eskéBudějovice,CzechRepublic;D

TO=workingcollectionoftheAppliedandIndustrialM

ycology

departm

enthousedattheWesterdijkInstitute,U

trecht,TheNetherlands;FRR=FoodFungalCultureCollection,NorthRide,Australia;IBT=culturecollectionoftheDTU

SystemsBiology,Lyngby,Denmark;IF

M=CollectionattheMedicalMycologyResearchCentre,C

hibaUni

-versity,Japan;IHEM=BelgianCoordinatedCollectionsofM

icro-organisms(BCCM/IH

EM),Brussels,Belgium

;IMI=CABI’scollectionoffungiandbacteria,E

gham

,UK;JCM=JapanCollectionofMicroorganism

s,Tsukuba,Japan;K

ACC=KoreanAgriculturalC

ultureCollection,

Wanju,S

outhKorea;K

UFC

=KasetsartUniversityFungalC

ollection,Bangkok,Thailand;N

BRC(IFO

)=BiologicalR

esourceCenter,NationalInstituteofTechnologyandEvaluation,Chiba,Japan;N

RRL=AgriculturalR

esearchServiceCultureCollection,Peoria,Illinois,U

SA.

Tabl

e 2(cont.)

Species

Culturecollectionnos.

1 GenBank/ENA/DDBJaccessionnumbers

ITS

be

nA

CaM

R

PB

2 ac

t m

cm7

tsr1

Page 9: Unravelling species boundaries in the Aspergillus ... · Movile cave, sediment, 2014 MAT1-2-1 CCF 4961 (S975) Romania, Movile cave, Lake cave a 2014 MAT1-1-1 Culture IFM 61334 T =

149V.Hubkaetal.:SpeciesdelimitationandhybridizationinsectionFumigati

Polymerase(Bioline,GmbH,Germany)and4μLof5×MyTaqPCRbuffer.The ITSrDNA,benA and CaM fragments were amplifiedusingthefollowingthermalcycleprofile:93°C/2min; 30cyclesof93°C/30s;55°C/30s;72°C/60s;72°C/10min.Theannealingtemperatureforamplificationofact gene was 60°C (30cycles);and that for tsr1gene50°C (37cycles).Partial RPB2genefragmentswereamplifiedusingtheabove-mentionedcycleortouchdownthermal-cycling:93°C/2min; 5cyclesof93°C/30s,65–60°C/30s,72°C/60s;38cyclesof93°C/30s,55°C/30s,72°C/60s;72°C/10min.Thepartialmcm7genewasamplifiedusingmodifiedtouchdownthermal-cycling:93°C/2min;5cyclesof93°C/30s,65–60°C/30s,72°C/60s;38cyclesof93°C/30s,60°C/30s,72°C/60s;72°C/10min.PCRproductpurificationfollowedtheprotocolofRéblováetal.(2016).AutomatedsequencingwasperformedatMacrogenSequencingService(Amsterdam,TheNetherlands)usingbothterminalprimers.SequencesweredepositedintotheENA(EuropeanNucleotideArchive)databaseunder theaccessionnumberslistedinTable2.

Phylogenetic analysis SequenceswereinspectedandassembledusingBioeditv.7.2.5 (www.mbio.ncsu.edu/BioEdit /bioedit.html).AlignmentsofthebenA, CaM, act and RPB2 regions were performed using the G-INS-ioptionimplementedinMAFFTv.7(Katoh&Standley2013).Alignmentsweretrimmed,concatenatedandthenana-lysedusingMaximumlikelihood(ML)andBayesianinference(BI) analyses.Suitable partitioning schemeand substitutionmodels (Bayesian information criterion) for analyseswereselected using the greedy algorithm implemented in Parti-tionFinderv.1.1.1(Lanfearetal.2017)withsettingsallowingintrons,exonsandcodonpositionstobeindependentpartitions.Proposed partitioning schemes and substitution models for each datasetarelistedinTable3.ThealignmentcharacteristicsarelistedinTable4.

TheMLtreewasconstructedwithIQ-TREEv.1.4.4(Nguyenetal.2015)withnodalsupportdeterminedbynon-parametricbootstrapping (BS)with1000 replicates.Bayesianposteriorprobabilities(PP)werecalculatedusingMrBayesv.3.2.6(Ron-quistetal.2012).Theanalysesranfor107 generations, two parallel runs with four chains each were used, every 1 000th treewasretained,andthefirst25%oftreeswerediscardedasburn-in.ThetreeswererootedwithAspergillus clavatusNRRL1 and A. lentulus NRRL 35552, respectively.All alignmentsareavailable from theDryadDigitalRepository (https://doi.org/10.5061/dryad.38889).

Species delimitation and species tree inferenceSeveral species delimitation methods were applied to elucidate the species boundarieswithin theAVSC.We followed therecommendationofCarstensetal.(2013)andcomparedtheresultsofseveraldifferentmethods.Theanalysiswasdividedinto twoparts. Four genetic lociwere examined in the firstanalysiswhichcomprisedallspeciesfromtheAVSCwhilesixgeneticlociwereexaminedinthesecondanalysisfocusedonthe clade comprising Aspergillus felis, A. pseudofelis, A. para-felis and A. pseudoviridinutans(A. aureolus was used as an outgroup).ThealignmentcharacteristicsarelistedinTable4.Only unique nucleotide sequences, selectedwithDAMBEv.6.4.11 (Xia 2017)were used in the analyses.Nucleotidesubstitution models for particular loci were determined using jModeltestv.2.1.7(Posada2008)basedonBayesianinforma-tioncriterion(BIC)andwereasfollows:1stanalysis-K80+G(benA), K80+I (CaM), K80+G (act), K80+G (RPB2); 2ndanalysis-K80+I(benA),K80+G(CaM),K80(act),K80(RPB2),HKY+I+G(tsr1),K80(mcm7).Inthefirstanalysis,onlyuniquesequencesoffourlociwereused,i.e.,benA, CaM, act and RPB2.ThenumberofisolatesofA. felis and A. pseudoviridinutans was reduced to two, because thiscladewasexaminedindetailinthesecondanalysisbased

Dataset Phylogeneticmethod Partitioningscheme(substitutionmodel)

Section Fumigati(Fig.1) Maximumlikelihood benA+CaM + actintrons(TrNef+G);3rdcodonpositionsofbenA(GTR+G);1stcodonpositionsofbenA+CaM + act+RPB2+2ndcodonpositionsofact+3rdcodonpositionsofact(TIM+I);2ndcodon positions of benA+CaM +RPB2(HKY);3rdcodonpositionsofCaM + RPB2(HKY+G)

Bayesian inference benA+CaM + actintrons(K80+G);3rdcodonpositionsofbenA(GTR+G);1stcodonpositionsofbenA+CaM + act+RPB2+2ndcodonpositionsofact+3rdcodonpositionsofact(GTR+I);2ndcodon positions of benA+CaM +RPB2(HKY);3rdcodonpositionsofCaM + RPB2(HKY+G)

A. viridinutans clade(Fig.5) Maximumlikelihood benA+CaM + actintrons(K80+G);3rdcodonpositionsofbenA + CaM +RPB2(TrN+G);1stcodonpositions of benA+CaM + act+RPB2+3rdcodonpositionsofact(TrN);2ndcodonpositionsofbenA+CaM +act+RPB2(F81)

Bayesian inference benA+CaM + actintrons(K80+G);3rdcodonpositionsofbenA + CaM +RPB2(HKY+G);1stcodonpositions of benA+CaM + act+RPB2+3rdcodonpositionsofact(HKY);2ndcodonpositionsofbenA+CaM +act+RPB2(F81)

Table 3Partition-mergingresultsandbestsubstitutionmodelforeachpartitionaccordingtoBayesianinformationcriterion(BIC)asproposedbyPartitionFinderv.1.1.0.forcombineddatasetofbenA, CaM, act and RPB2genes.

Alignment characteristic benA CaM act RPB2 mcm7 tsr1 Combined dataset

Section Fumigati(Fig.1) Length(bp) 534 697 431 999 – – 2661 Variableposition 268 322 234 280 – – 1104 Parsimonyinformativesites 184 226 148 186 – – 744

A. viridinutanscomplex(Fig.5) Length(bp) 475 697 344 967 – – 2483 Variableposition 115 168 102 135 – – 520 Parsimonyinformativesites 84 114 70 81 – – 349

A. felisclade(Fig.3) Length(bp) 474 681 329 967 623 761 3835 Variableposition 72 73 35 59 38 103 380 Parsimonyinformativesites 50 49 18 32 24 58 231

Table 4Overviewofalignmentscharacteristicsusedforphylogeneticanalyses.

Page 10: Unravelling species boundaries in the Aspergillus ... · Movile cave, sediment, 2014 MAT1-2-1 CCF 4961 (S975) Romania, Movile cave, Lake cave a 2014 MAT1-1-1 Culture IFM 61334 T =

150 Persoonia–Volume41,2018

onsixloci.Threesingle-locusspeciesdelimitationmethods,i.e.,bGMYC(Reid&Carstens2012),GMYC(Fujisawa&Barra-clough2013)andPTP(Zhangetal.2013),andonemultilocusspeciesdelimitationmethodSTACEY(Jones2017)wereusedtofindputativespeciesboundaries.ThebGMYCandGMYCmethodsrequireultrametrictreesasaninput,whilePTPdoesnot.Therefore,singlelocusultrametrictreeswereconstructedusingaBayesianapproachinBEASTv.2.4.5(Bouckaertetal.2014)withbothYuleandcoalescenttreemodels.Wealsolookedatpossibledifferencesbetweenstrictandrelaxedclockmodels, but since these parameters had no effect on the number of delimited species, only the results with strict clock model are presentedhere.Chainlengthforeachtreewas1× 107 genera-tionswith25%burn-in.ThehighestcredibilitytreewasusedfortheGMYCmethodand100treesrandomlysampledthroughouttheanalysiswereusedforthebGMYCmethod.BothmethodswereperformedinRv.3.3.4(RCoreTeam2015)usingbgmyc (Reid&Carstens2012)andsplits(SPecies’LImitsbyThresholdStatistics)(Fujisawa&Barraclough2013)packages.Thenon-ultrametric trees for the PTP method were constructed using theMLapproachinRAxMLv.7.7.1(Stamatakisetal.2008)andIQ-TREEv.1.5.3(Nguyenetal.2015)with1000bootstrapreplicates.ThePTPmethodwasperformedonthewebserverhttp://mptp.h-its.org/(Kaplietal.2017)withp-valuesetto0.001.ThemultilocusspeciesdelimitationwasperformedinBEASTv.2.4.5withadd-onSTACEYv.1.2.2(Jones2017).Thechainlengthwassetto5× 108 generations, priors were set as fol-lows: the species tree prior was set to the Yule model, growth ratepriorwassettolognormaldistribution(M=5,S=2),clockratepriorsforalllociweresettolognormaldistribution(M=0,S=1),PopPriorScalepriorwassettolognormaldistribution(M=-7,S=2) and relativeDeathRate priorwas set to betadistribution(α=1,β=1000).TheoutputwasprocessedwithSpeciesDelimitationAnalyzer(Jones2017).Thespeciestreewasinferredusing*BEAST(Heled&Drummond 2010)implementedinBEASTv.2.4.5.Theisolateswereas-signed to a putative species according to the results of the above-mentionedspeciesdelimitationmethods.TheMCMCanalysis ran for 1 × 108generations,25%oftreeswerediscard-edasaburn-in.Thestrictmolecularclockwaschosenforalllociandpopulationfunctionwassetasconstant.ConvergencewasassessedbyexaminingthelikelihoodplotsinTracerv.1.6(http://tree.bio.ed.ac.uk/software/tracer).Wealsoconstructedthe phylogenetic tree based on concatenated alignment of all fourlociinIQ-TREEv.1.5.3with1000bootstrapreplicatesandthe optimal partitioning scheme determined by PartitionFinder v.2.1.1(Lanfearetal.2017).The validation of the species hypotheses was performed in BP&Pv.3.3 (Bayesianphylogenetics andphylogeography)(Yang&Rannala2010).The isolateswereassigned to thespecies based on the results of species delimitation methods andthespeciestreeinferredwith*BEASTwasusedasaguidetree.Threedifferentcombinationsofthepriordistributionsoftheparametersθ(ancestralpopulationsize)andτ0(rootage)weretestedasproposedbyLeaché&Fujita(2010),i.e.,largeancestralpopulationsizesanddeepdivergence:θ~G(1,10)andτ0~G(1,10);smallancestralpopulationsizesandshal-lowdivergencesamongspecies:θ~G(2,2000)andτ0~G(2, 2000); largeancestral populations sizesandshallowdi-vergencesamongspecies:θ~G(1,10)andτ0~G(2,2000).Thesecondanalysiswithsixprotein-coding loci, i.e.,benA, CaM, act, RPB2, mcm7 and tsr1, consisted of the same steps asdescribedabove.InsteadofPTP,weusedtheprogrammemPTP(Kaplietal.2017)withIQ-TREEandRAxMLtreesasaninput.WithinthemPTPprogrammeweusedthefollowingsettings:Maximum likelihood species delimitation inference(optionML)andadifferentcoalescentrateforeachdelimited

species(optionmulti).Rpackageggtree(Yuetal.2017)andthe programmedensitree (Bouckaert 2010)were used forvisualizationofthephylogenetictrees.

Mating experimentsTheMAT idiomorphwasdeterminedusing theprimer pairsalpha1 and alpha2 located inMAT1-1-1 locus (alpha boxdomain),andHMG1andHMG2primerslocatedinMAT1-2-1locus(high-mobility-groupdomain)asdescribedbySuguietal.(2010).TheMATidiomorphsweredifferentiatedbasedonthedifferentlengthsofPCRproductsvisualizedbygelelectro-phoresis;absenceofoppositeMATidiomorphwasalsoverifiedinall isolates.The identityofPCRproductswasprovedbyDNAsequencing in several isolates (accessionnumbers inTable1);productpurificationandsequencingwereperformedatMacrogenEurope (Amsterdam,TheNetherlands) usingterminalprimers.SelectedoppositematingtypestrainswerepairedwithinandbetweenmajorphylogeneticcladesonMEAandoatmealagar(OA;Difco,LaPontedeClaix,France)platesand incubatedat 25, 30 and37°C in the dark.TheplatesweresealedwithParafilmandexaminedweeklyfromthethirdwk of cultivation for two months under a stereomicroscope fortheproductionofascomata.Thepresenceofascosporeswasdeterminedusing lightmicroscopy.Widthandheightofascosporeswererecordedatleast35timesforeachsuccess-fulmatingpair.

Statistical analysisStatistical differences in the width and height of the asco- spores of particular species and interspecific hybridsweretestedwithone-wayANOVAfollowedbyTukey’sHSD(honestsignificantdifference)posthoctestinRv.3.3.4(RCoreTeam2015).Rpackagemultcomp (Hothornetal.2008)wasusedfor the calculation and package ggplot2(Wickham2009)forvisualizationoftheresults.

Exometabolite analysisTheextractswere prepared according toHoubraken et al.(2012).High-performanceliquidchromatographywithdiode-array detection was performed according to Frisvad & Thrane (1987,1993)asupdatedbyNielsenetal.(Nielsenetal.2011).Fungiwereincubatedfor1wkat25°CindarknessonCYAandyeastextractsucrose(YES)agarsforexometaboliteanalysis.

RESULTS

Phylogenetic definition of AVSCInthephylogeneticanalysis,76combinedbenA, CaM, act and RPB2sequenceswereassessedformembersofsect.Fumigati.TheanalysiswasbasedonthemodifiedalignmentpreviouslyusedbyHubkaetal.(2017)andenrichedbytaxafromAVSC.IntheBayesiantreeshowninFig.1,membersofsect.Fumi-gati areresolvedinseveralmonophyleticclades.TheanalysisshowedthatAVSCisaphylogeneticallywell-definedgroupandthecladegainedfullsupport.Similarly,someothercladesarewell-supportedbybothBIandMLanalysesincludingA. spino-sus clade, A. brevipes clade, A. tatenoi clade, A. thermomutatus clade and A. fennelliaeclade;A. spathulatus forms a single-specieslineagedistantlyrelatedtootherclades.Othercladeshave moderate or low support and the species represented therein may differ based on genetic loci used for phylogenetic reconstructionandtaxaincludedintheanalysis.Heterothallicspeciesaredispersedacrosssect.Fumigati (Fig.1) but the majorityofthemclusterinAVSCandA. fumigatusclades.Thesetwo clades also encompass the highest number of human and animalpathogensinsect.Fumigati not only in terms of their numberbutalsotheirclinicalrelevance.

Page 11: Unravelling species boundaries in the Aspergillus ... · Movile cave, sediment, 2014 MAT1-2-1 CCF 4961 (S975) Romania, Movile cave, Lake cave a 2014 MAT1-1-1 Culture IFM 61334 T =

151V.Hubkaetal.:SpeciesdelimitationandhybridizationinsectionFumigati

benA + CaM + act + RPB2

Reproductive strategy● homothallicheterothallic/anamorphic:

● sexual state known■ sexual state unknown

*/99

*/98

*/95

0.95/-

-/71*/*

*/99

0.95/72

0.98/71

*/85

*/97

*/83

0.98/-

*/99

0.99/70

*/99

-/-

*/84

0.95/-

*/75

*/*

*/96

*/*

*/*

*/98

*/*

*/*

*/*

*/*

*/*

0.96/-

*/97

*/*

*/*

-/-

*/99

0.97/89

A. clavatus NRRL 1T

● A. spathulatus NRRL 20549T

● A. similanensis KUFA 0012T

● A. auratus NRRL 4378T

● A. stramenius NRRL 4652T

● A. fennelliae NRRL 5535T

● A. thermomutatus NRRL 20748T

● Aspergillus sp. NRRL 1283

● A. hiratsukae CBS 294.93T

● A. huiyaniae IFM 57848T

● A. galapagensis IBT 16756T

● A. neoglaber NRRL 2163T

● A. shendaweii IFM 57611T

● A. denticulatus CBS 652.73T

● A. sublevisporus IFM 53598T

■ A. brevipes NRRL 2439T

● A. delicatus CBS 101754T

■ A. tasmanicus CBS 283.66T

● A. pernambucoensis IFM 61342T

● A. spinosus NRRL 5034T

■ A. duricaulis NRRL 4021T

● A. tatenoi CBS 407.93T

● A. tatenoi NRRL 4584

● A. caatingaensis IFM 61335T

● A. multiplicatus IFM 53594T

● A. tsunodae IFM 57609T

● A. assulatus IBT 27911T

■ A. arcoverdensis CBS 121595

■ A. viridinutans NRRL 4365T

■ A. fumigatiaffinis IBT 12703T

■ A. novofumigatus IBT 16806T

● A. coreanus KACC 41659T

● A. quadricinctus NRRL 2154T

● A. tsurutae CBM-FA-0933T

■ A. unilateralis NRRL 577T

● A. nishimurae IFM 54133T

● A. waksmanii NRRL 179T

● A. solicola NRRL 35723T

● A. australensis NRRL 2392T

● A. papuensis CBS 841.96T

■ A. pseudoviridinutans CBS 458.75■ A. arcoverdensis IFM 61334T

■ A. arcoverdensis IFM 59922

■ A. frankstonensis CBS 142233T

■ A. frankstonensis CBS 142234

● A. fischeri NRRL 181T

■ A. fumisynnematus IFM 42277T

● A. lentulus NRRL 35552T

● A. laciniosus KACC 41657T

■ A. marvanovae CCM 8003T

● A. turcosus IBT 27921T

■ A. brevistipitatus CCF 4149T

■ A. conversis CCF 4190T

● A. wyomingensis IMI 133982● A. siamensis IFM 59793T

● A. siamensis IFM 61157● A. felis CBS 130245T

● „A. pseudofelis“ NRRL 62903T

● „A. parafelis“ NRRL 62900T

● A. felis FRR 5679■ A. pseudoviridinutans NRRL 62904T

■ A. pseudoviridinutans IMI 182127

● A. fumigatus NRRL 163T

■ A. oerlinghausensis CBS 139183T

● A. paulistensis CBM-FA-0690T

● A. takakii CBM-FA-884T

● A. aureolus NRRL 2244T

● „A. indohii“ IFM 53615T

■ A. acrensis IFM 57291T

■ A. acrensis CCF 4959● A. udagawae IFM 46972T

● A. udagawae IFM 54131● A. udagawae CCF 4475 ● A. udagawae CCF 4478

● A. wyomingensis CCF 4417T

● A. wyomingensis CCF 5640

0.02

-/-

*/*

*/*

*/*

*/*

*/*

*/*

*/**/99

*/98

0.99/71

*/99*/98 */*

*/*

*/*

*/99

*/*

-/-

-/-

-/-

-/-

*/*-/-

-/-

*/99

-/-

-/-

-/-

-/-

-/-

-/-

-/-

*/*

A. neoglaber clade

A. fumigatus clade

A. spinosus clade

A. brevipes clade

A. tatenoi clade

A. thermomutatus / A. spathulatus clades

A. unilateralis clade

A. auratus clade

A. fennelliae clade

A. viridinutans clade

-/-

Fig. 1Phylogenetic relationshipsof thesect.Fumigati members inferred from Bayesian analysis of the combined, 4-gene dataset of β-tubulin (benA),calmodulin(CaM ),actin(act )andRNApolymeraseIIsecondlargestsubunit(RPB2)genes.Bayesianposteriorprobabilities(PP)andMaximumlikelihoodbootstrapsupports(BS)areappendedtonodes;onlyPP≥95%andBS≥70%areshown;lowersupportsareindicatedwithahyphen,whereasasterisksindicatefullsupport(1.00PPor100%BS);ex-typestrainsaredesignatedbyasuperscriptT;speciesnamesinquotesareconsideredsynonyms;thebarindicatesthenumberofsubstitutionspersite.ThetreeisrootedwithAspergillus clavatusNRRL1T.Thereproductivemodeofeachspeciesisdesignatedbyiconsbeforethespeciesname(seelegend).

Page 12: Unravelling species boundaries in the Aspergillus ... · Movile cave, sediment, 2014 MAT1-2-1 CCF 4961 (S975) Romania, Movile cave, Lake cave a 2014 MAT1-1-1 Culture IFM 61334 T =

152 Persoonia–Volume41,2018

83 90

74

100

88

99

100

100

100

100

100

100

100

100 94

100

100

100 100

100

100

100

100

100

1.00 1.00 1.00

1.00 1.00 1.00

1.00 1.00 1.00

1.00 1.00 1.00

0.84 0.88 1.00

0.98 0.99 1.00

1.00 1.00 1.00

RPB

2

GMYC yule GMYC coalesent

bGMYC yule bGMYC coalescent

PTP IQ-tree PTP RAxML

CaM

GMYC yule GMYC coalesent

bGMYC yule bGMYC coalescent

PTP IQ-tree PTP RAxML

benA

GMYC yule GMYC coalesent

bGMYC yule bGMYC coalescent

PTP IQ-tree PTP RAxML

act

GMYC yule GMYC coalesent

bGMYC yule bGMYC coalescent

PTP IQ-tree PTP RAxML

A. udagawae clade 1 A. udagawae clade 2 A. udagawae clade 3 A. acrensis A. aureolus A. wyomingensis A. siamensis A. pseudoviridinutans A. felis

A. frankstonensis

A. viridinutans A. arcoverdensis

Fig. 2 Schematic representation of results of species delimitation methods in Aspergillus viridinutansspeciescomplexbasedonfourgeneticloci.Theresultsofmultilocusmethod(STACEY)arecomparedtoresultsofsingle-locusmethods(PTP,bGMYC,GMYC).TheresultsofSTACEYareshownastreebrancheswithdifferentcolours,whiletheresultsofsingle-locusmethodsaredepictedwithcolouredbarshighlightingcongruenceacrossmethods.ThedisplayedtreeisderivedfromIQ-TREEanalysisbasedonaconcatenateddatasetandisusedsolelyforthecomprehensivepresentationoftheresultsfromdifferentmethods.Thespeciesvalidationanalysisresults(BP&P)areappendedtonodesandshowningreyborderedboxes;thevaluesrepresentposteriorprobabilitiescalcu-latedinthreescenarioshavingdifferentpriordistributionsofparametersθ(ancestralpopulationsize)andτ0(rootage).Thetopvaluerepresentstheresultsofanalysiswithlargeancestralpopulationsizesanddeepdivergence:θ~G(1,10)andτ0~G(1,10);themiddlevaluerepresentstheresultsofanalysiswithlargeancestralpopulationssizesandshallowdivergencesamongspecies:θ~G(1,10)andτ0~G(2,2000);andthebottomvaluesmallancestralpopulationsizesandshallowdivergencesamongspecies:θ~G(2,2000)andτ0~G(2,2000).

Page 13: Unravelling species boundaries in the Aspergillus ... · Movile cave, sediment, 2014 MAT1-2-1 CCF 4961 (S975) Romania, Movile cave, Lake cave a 2014 MAT1-1-1 Culture IFM 61334 T =

153V.Hubkaetal.:SpeciesdelimitationandhybridizationinsectionFumigati

75

94

94

73

100 97 85

82 83

100

82

93

89

100

100 82

100

100

100

1.00 1.00 1.00

1.00 1.00 1.00 1.00

1.00 0.51

1.00 1.00 0.51

0.99 0.99

0

0.19 0.24

0

A. a

ureo

lus

(out

grou

p)

A. p

seud

oviri

dinu

tans

A. f

elis

clade 2 clade 1

clade 3

IMI 1

8212

7

NR

RL

6290

4

CC

F 56

32

IFM

552

66

IFM

572

89

CB

S 45

8.75

IH

EM 2

2515

IFM

470

21

FRR

568

0 IF

M 5

9564

FRR

567

9

IFM

543

03

IFM

600

53

NR

RL

6290

1 N

RR

L 62

900

CC

F 56

25

CC

F 56

09

CC

F 56

22

CC

F 56

26

CB

S 13

0249

C

CF

5617

CC

F 56

23

CC

F 56

16

CB

S 13

0245

C

CF

5618

C

CF

5628

NR

RL

6290

3 C

CF

4148

CC

F 56

14

CC

F 40

02

CC

F 44

97

CC

F 56

24

CC

F 56

10

* **

*** ▲

▲▲

tsr1

GMYC yule GMYC coalesent

bGMYC yule bGMYC coalescent

mPTP IQ-tree mPTP RAxML

RPB

2

GMYC yule GMYC coalesent

bGMYC yule bGMYC coalescent

mPTP IQ-tree mPTP RAxML

mcm

7

GMYC yule GMYC coalesent

bGMYC yule bGMYC coalescent

mPTP IQ-tree mPTP RAxML

CaM

GMYC yule GMYC coalesent

bGMYC yule bGMYC coalescent

mPTP IQ-tree mPTP RAxML

benA

GMYC yule GMYC coalesent

bGMYC yule bGMYC coalescent

mPTP IQ-tree mPTP RAxML

act

GMYC yule GMYC coalesent

bGMYC yule bGMYC coalescent

mPTP IQ-tree mPTP RAxML

* ex-type of A. felis ** ex-type of A. parafelis

*** ex-type of A. pseudofelis ▲ ▲▲

ex-type of A. pseudoviridinutans ex-type of A. fumigatus var. sclerotiorum

Fig. 3 Schematic representation of results of species delimitation methods in Aspergillus felis cladebasedonsixgenetic loci.Theresultsofmultilocusmethod(STACEY)arecomparedtoresultsofsingle-locusmethods(mPTP,bGMYC,GMYC).TheresultsofSTACEYareshownastreebrancheswithdifferent colours,whiletheresultsofsingle-locusmethodsaredepictedwithcolouredbarshighlightingcongruenceacrossmethods.ThedisplayedtreeisderivedfromIQ-TREEanalysisbasedonaconcatenateddatasetandisusedsolelyforthecomprehensivepresentationoftheresultsfromdifferentmethods.Thespeciesvalidationanalysisresults(BP&P)areappendedtonodesandshowningreyborderedboxes;thevaluesrepresentposteriorprobabilitiescalculatedinthreescenarioshavingdifferentpriordistributionsofparametersθ(ancestralpopulationsize)andτ0(rootage).Thetopvaluerepresentstheresultsofanalysiswithlargeancestralpopulationsizesanddeepdivergence:θ~G(1,10)andτ0~G(1,10);themiddlevaluerepresentstheresultsofanalysiswithlargeancestralpopulationssizesandshallowdivergencesamongspecies:θ~G(1,10)andτ0~G(2,2000);andthebottomvaluesmallancestralpopulationsizesandshallowdivergencesamongspecies:θ~G(2,2000)andτ0~G(2,2000).

Page 14: Unravelling species boundaries in the Aspergillus ... · Movile cave, sediment, 2014 MAT1-2-1 CCF 4961 (S975) Romania, Movile cave, Lake cave a 2014 MAT1-1-1 Culture IFM 61334 T =

154 Persoonia–Volume41,2018

Species delimitation and validation in AVSCIn thefirstanalysis, fourgenetic lociwereexaminedacrossspecies ofAVSC, isolates ofA. felis and its close relatives were reduced to two individuals, because a separate analysis basedonsixlociwasperformedforthisclade.Elevententativespeciesweredelimited inAVSCusingSTACEY.TheresultsaresummarisedinFig.2,thedifferencesinthecolourofthetreebranchesreflectspeciesdelimitedby theanalysis.Theanalysis supported recognition of three putative species in A. udagawae lineage, delimitation of A. acrensis (describedbelow)fromA. aureoluswasnotsupported,otherAVSCspe-ciesweresupportedbySTACEYwithoutdifferencesfromtheircurrentconcept.The results derived fromSTACEYwere compared to thosefromthreesingle-locusspeciesdelimitationmethods.Thecon-sensual results from single-locus species delimitation methods aregenerallyinagreementwiththeresultsofSTACEYforthemajority of species but vary greatly for A. udagawae, A. aureolus and A. acrensislineages(Fig.2).Recognitionofthreeputativespecies in A. udagawae lineage was supported only based on the CaM locus, while based on benA locus, none of these three sublineagesgainedsupport.Variousdelimitationschemeswereproposed by different single-locus species delimitation methods in the A. udagawae lineage based on the RPB2gene(resultseven varied between the analyses based on different input trees forthePTPandGMYCmethods),whilefiveputativespecieswere identically delimited based on the actlocus.Themethodsrelatively consistently supported delimitation of the A. acrensis lineage based on the RPB2locusandsimilarly,bGMYCandGMYCmethodssupportedthisspeciesbasedontheactlocus.In contrast, lineages of A. acrensis and A. aureolus were not splitbyanymethodwhenanalyzingbenA and CaM loci.The species validation analysis results are appended to nodes ofthetreeinFig.2.Areasonablesupportisdefinedbyposteriorprobabilities≥0.95underallthreescenariossimulatedbydif-ferentpriordistributionsofparametersθ(ancestralpopulationsize)andτ0(rootage).Delimitationofallputativespecies(thosedelimitedbySTACEY,A. acrensis and A. aureolus)weresup-portedbytheposteriorprobability0.98orhigherbasedontheanalysisinBP&Pv.3.1(Yang&Rannala2010)underallthreescenarios.TheonlyexceptionwaslowersupportforsplittingofA. acrensis and A. aureolus;thisscenariowassupportedbytheposteriorprobabilities0.84,0.88,1.00,respectively.

Species delimitation and validation in A. felis clade and its relativesInthesecondanalysis,sixgeneticlociwereexaminedacrossisolates of A. felis, A. parafelis, A. pseudofelis and A. pseudo-viridinutans.Onlytwotentativespecies,A. felis and A. pseudo-viridinutans,weredelimitedinthiscladeusingSTACEY.Theresults are shown as branches designated by different colours in Fig.3.TheanalysisdidnotsupportseparationofA. pseudofelis and A. parafelis from A. felis;A. fumigatusvar.sclerotiorum is included in the lineage of A. pseudoviridinutans.The results of three single-locus species delimitation methods werecomparedto thosefromSTACEY,andtheconsensualresultsshowedageneralagreement(Fig.3).DelimitationofA. pseudofelis from A. felis was not supported by any of the usedmethods.Onlyanegligiblenumberofanalysessupporteddelimitation of basal clades in A. felisastentativespecies(des-ignatedasclade2and3inFig.3).Butevenintheseminorityscenarios, there were no clear consensual delimitation patterns that would support delimitation of A. parafelis. Interestingly,mPTP analysis based on act, benA, CaM (withRAxMLtreesasaninputonly),mcm7 and tsr1locitogetherwithGMYCanalysisbased on benA(onlyinputtreebasedoncoalescenttreemodel)

and act(onlyinputtreebasedonYuletreemodel)locididnotsupport delimitation of A. pseudoviridinutans from a robust clade of A. felis.AnincompletelineagesortingwasobservedbetweenA. felis and A. pseudoviridinutans(Fig.3)evidencingthattherewasprobablyanancestralgeneflowbetweentheselineages.Two isolates from A. felislineage(IFM59564andCCF5610)have benA sequencesthatclusterwithA. pseudoviridinutans whilesequencesof the remaining5 lociplaced them in theA. felislineage(single-genetreesnotshown).The species validation analysis results are appended to nodes of the tree inFig.3.DelimitationofA. felis and A. pseudo-viridinutansgainedabsolutesupportinBP&Panalysis(Yang&Rannala2010)underall threescenariossimulatedbydif-ferentpriordistributionsofparametersθ(ancestralpopulationsize)andτ0(rootage).Delimitationofthreeputativespecieswithin A. felislineagegainednosupport(posteriorprobability0.51)underthescenariowithsmallancestralpopulationsizesandshallowdivergencesamongspecies:θ~G(2,2000)andτ0~G(2,2000).

Species treeThespeciestreetopologywasinferredwith*BEAST(Heled&Drummond2010)andisshowninFig.4.Itwasusedasaguidetree during species validation using BP&P but it also represents the most probable evolutionary relationships between species intheAVSC.Theanalysisconfirmedrecombinationbetweenthree subclades of A. felis(Fig.4)whichincludealsorecentlyproposed species A. parafelis and A. pseudofelis thus repre-senting the synonyms of A. felis.Similarly,therecombinationbetween three subclades of A. udagawae rejected the hypoth-esisthattheycouldbeconsideredseparatespecies(Fig.4).

A. lentulus (outgroup)

A. viridinutans

A. frankstonensis

A. pseudoviridinutans

A. arcoverdensis

A. siamensis

A. wyomingensis

A. acrensis

A. aureolus

A. udagawae

clade 2

clade 3

clade 1

clade 2

clade 3

clade 1

A. felis

clade 1

clade 2

clade 3

clade 1

clade 2

clade 3

Fig. 4Speciestreeinferredwith*BEASTvisualizedbyusingDensiTree(Bouckaert 2010).All trees created in theanalysis (except 25%burn-inphase)aredisplayedontheleftside.Treeswiththemostcommontopologyare highlighted by blue, trees with the second most common topology by red, trees with the third most common topology by pale green and all other treesbydarkgreen.Ontherightside,theconsensustreesofthethreemostcommontopologiesaredisplayed.

Page 15: Unravelling species boundaries in the Aspergillus ... · Movile cave, sediment, 2014 MAT1-2-1 CCF 4961 (S975) Romania, Movile cave, Lake cave a 2014 MAT1-1-1 Culture IFM 61334 T =

155V.Hubkaetal.:SpeciesdelimitationandhybridizationinsectionFumigati

Fig. 5 Phylogenetic relationships of the Aspergillus viridinutans speciescomplex members inferred from Bayesian analysis of the combined, 4-gene dataset of β-tubulin(benA),calmodulin(CaM),actin(act)andRNApolymeraseIIsecondlargestsubunit(RPB2)genes.Bayesianposteriorprobabilities(PP)andMaximumlikelihoodbootstrapsupports(BS)areappendedtonodes;onlyPP≥90%andBS≥70%areshown;lowersupportsareindicatedwithahyphen,whereasasterisksindicatefullsupport(1.00PPor100%BS);ex-typestrainsaredesignatedbyasuperscriptT;speciesnamesinquotesareconsideredsynonyms;thebarindicatesthenumberofsubstitutionspersite.ThetreeisrootedwithAspergillus lentulusNRRL35552T.ThegeographicoriginandreproductivemodewithMATidiomorph(ifknown)isdesignatedbyiconsbeforetheisolatenumberwhilesubstrateoforiginisdesignatedbyiconsafterisolatenumber(seelegend).

-/88

*/92

*/*

*/*

*/*

*/*

*/*

*/76

*/*

*/*

*/*

*/*

*/*

*/71

*/90

*/79

*/93

*/79

*/*

*/*

0.98/89

*/96

*/70

*/99

*/91

0.98/-

*/98

*/92

*/79

-/-

-/-

-/-

-/-

*/*

*/98

0.99/78

*/90

*/-

*/99

*/99

*/-

0.98/80

*/76

*/85

*/89

*/98

*/85

-/-0.97/78

*/88

-/-

*/68

*/95

*/99

*/-

-/-

A. lentulus NRRL 35552T

*/*

-/-

-/--/-

-/-

-/--/-

0.99/-

-/-

*/-

-/--/--/-

-/-

-/-

-/-

*/*

-/-*/*

*/*

-/-

*/*

A. udagawae

A. acrensis

A. aureolus

A. wyomingensis

A. siamensis

A. felis

A. pseudoviridinutans

A. arcoverdensis

A. frankstonensisA. viridinutans

❷ M2 IFM 54132

❹ M2 CCF 4479

❷ M1 IFM 54131 ❷ M1 IFM 54745

❹ M1 CMF ISB 2190

❺ M1 IFM 62155

❶/❷ M2 IFM 55207

❶ M2 CCF 5634 ❹ M1 CCF 5638

❺ M1 IFM 46972T

❺ M2 IFM 46973

❷ M1 IFM 5058

❷ M1 IFM 51744 ❷ M2 IFM 53868

❹ M2 CCF 4475❹ M2 CCF 4494

❹ M2 CCF 5636 ❹ M1 CCF 5637

❹ M1 CCF 4476 ❹ M2 CCF 4491 ❹ M2 CMF ISB 1972❹ M2 CCF 4492

❸ M CCF 5639❹ M2 CCF 4478 ❹ M2 CCF 4481

clade 1

clade 2

clade 3

❺ M1 IFM 57291T

❻ H IFM 47021T

❺ M2 IFM 57290

❺ H IHEM 22515

❶ M2 CCF 4959

❺ H IFM 46584 ❺ H IFM 53615 „A. indohii“

❶ M2 CCF 4960❶ M1 CCF 4961

❶ M1 IMI 133982 ❸ M2 CCF 5640

❷ M2 IFM 59681 ❹ M1 CCF 4169 ❹ M2 CMF ISB 1977 ❹ M2 CCF 4418 ❹ M2 CCF 4170

❹ M2 CCF 4416 ❹ M2 CCF 4419

❹ M1 CCF 4420

❹ M1 CCF 4417T

❹ M1 CCF 4413 ❹ M1 CCF 4415

❹ M1 CCF 4414 ❹ M1 CCF 4412

❷ H IFM 59793T

❷ H IFM 61157

❸ M CCF 5616

❷ M1 IFM 54303

❷ M1 IFM 60053

❸ M2 CCF 5609 ❸ M1 CCF 5624

❸ M2 CCF 5618

❹ M1 CCF 4148 ❸ M2 CCF 5619 ❸ M2 CBS 130245T

❸ M2 CBS 130249❸ M2 CCF 5622 ❶ M1 CCF 4376 ❶ M2 NRRL 62903 „A. pseudofelis“

❸ M2 CCF 5626

❸ M1 CCF 5623 ❸ M1 CCF 5625

❸ M1 CCF 5627 ❸ M2 CCF 5628

❸ M1 CCF 5629

❸ M1 CCF 5617

clade 1

clade 2

clade 3

❸ M2 FRR 5680 ❸ M CCF 5614

❶ M2 CCF 4003

❶ M2 CCF 2937

❶ M2 CCF 4002

❶ M CCF 4172

❹ M2 CCF 4498

❹ M2 CCF 4497 ❹ M2 CCF 4171

❶ M2 NRRL 62900 „A. parafelis“ ❶ M1 NRRL 62901

❸ M2 FRR 5679 ❸ M2 CCF 5611

❸ M1 CCF 5610 ❷ M2 IFM 59564

❹ M1 CCF 5632

❷ M1 IFM 55266

❷ M2 IMI 182127

❺ M2 IFM 57289 ❷ M2 CBS 458.75 „A. fumigatus var. sclerotiorum“

❹ M1 NRRL 62904T

❷ M1 IFM 59502 ❷ M1 IFM 59503

❸ M1 IFM 47045T

❸ M2 CBS 142233T

❸ M2 CBS 142234

❸ M1 CBS 121595

❷ M1 IFM 59922 ❷ M1 IFM 59923

❺ M2 IFM 61338 ❺ M1 IFM 61334T

❺ M2 IFM 61345 ❺ M1 IFM 61337 ❺ M1 IFM 61333

❺ M1 IFM 61340

❺ M2 IFM 61346 ❺ M2 IFM 61349

❺ M1 IFM 61339 ❺ M2 IFM 61362

Continent of origin❶ Europe❷ Asia❸ Australia❹ North America❺ South America❻ Africa

Source of isolationanimalhumansoil/cave sedimentother

Reproductive modeH homothallicM1 heterothallic, MAT1-1-1M2 heterothallic, MAT1-2-1M heterothallic, MAT not

determined

0.01

benA + CaM + act + RPB2

Page 16: Unravelling species boundaries in the Aspergillus ... · Movile cave, sediment, 2014 MAT1-2-1 CCF 4961 (S975) Romania, Movile cave, Lake cave a 2014 MAT1-1-1 Culture IFM 61334 T =

156 Persoonia–Volume41,2018

As

co

sp

ore

bo

dy

he

igh

t(μ

m)

6

A. wyomingensis

A. felis

A. udagawae

width

height

a b c

3

2

4

5

a b c

3

4

5

6

As

co

sp

ore

bo

dy

wid

th(μ

m)

NRRL 62901

A. udagawae

A. acrensis

NO MATING

NO MATING

NO MATING

CBS 121595

IFM 55266

IMI 133982

IFM 59922

IFM 59923

CCF 5632

IFM 57291T

CCF 4961

CCF 4169

IFM 61334

IFM 61337

IFM 61333

NRRL 62904T

IFM 59502

IFM 51744

IFM 54131

CCF 4414

IFM 61339

IFM 61340

CMF ISB 2190

IFM 46972T

CCF 4476

CCF 5637

CCF 4417T

CCF 4413

CCF 5610*

IFM 60053

IFM 54303

CCF 5629

CCF 5617*

CCF 4148

CCF 4376

CCF 5625*

CCF 5627MAT1-1-1

IMI 182127

IFM 59681

CCF 5611

FRR 5679

IFM 57289

CBS 458.75

CMF ISB 1977

CCF 5609

FRR 5680

IFM 46973

IFM 55207

CCF 4479

IFM 57290

CCF 4416

NRRL 62900T

IFM 54132

CCF 4959

CCF 4960

CCF 4419

CCF 4170

CCF 5622

NRRL 62903T

CCF 4171

CCF 4498

CCF 4478

CCF 4492

CCF 5628

CCF 5626

CCF 5619CBS 130245T

CCF 5618

IFM 61362

IFM 61338

IFM 61345

IFM 61346

IFM 61349

MAT1-2-1

A. pseudoviridinutans

A. wyomingensis

A. arcoverdensis

A. felis= A. parafelis= A. pseudofelis

Fig. 6 Schematic depiction ofresultsofintraspecificmatingexperimentsbetweenoppositematingtypeisolatesofheterothallicmembersoftheAspergil-lus viridinutansspeciescomplex.Onlysuccessfulmatingexperimentsaredisplayedbyconnectinglinesbetweenoppositematingtypeisolates;remainingmatingexperimentswerenegative.Isolatesmarkedbyasteriskwereonlycrossedwithex-typestrainsofA. felis(CBS130245T),A. parafelis(NRRL62900T)and A. pseudofelis(NRRL62903T).BoxplotandviolingraphswerecreatedinR3.3.4(RCoreTeam2015)withpackageggplot2(Wickham2009)andshowthe differences between the width and height of ascospores of A. udagawae, A. wyomingensis and A. felis.Differentlettersabovetheplotindicatesignificantdifference(P<0.05)inthesizeoftheascosporesbetweendifferentspeciesbasedonTukey’sHSDtest.Boxplotsshowmedian,interquartilerange,valueswithin±1.5ofinterquartilerange(whiskers)andoutliers.

Page 17: Unravelling species boundaries in the Aspergillus ... · Movile cave, sediment, 2014 MAT1-2-1 CCF 4961 (S975) Romania, Movile cave, Lake cave a 2014 MAT1-1-1 Culture IFM 61334 T =

157V.Hubkaetal.:SpeciesdelimitationandhybridizationinsectionFumigati

The remaining species delimited in previous steps (Fig. 4),including A. pseudoviridinutans and A. acrensis(introducedinthisstudy),weresupportedby*BEASTanalysis.ThespeciestreehadidenticaltopologywiththetreesinferredbyMLandBIanalysesoftheconcatenatedandpartitioneddataset(Fig.5),andallspeciessupportedby*BEASThad100%MLboot-strapsupport(MLBS)and1.00BIposteriorprobabilities(BIPP).SeveraldeepnodesinthespeciestreehadonlylimitedsupportsimilarlytoMLandBIanalyses.Thusclearpositionsof A. wyomingensis and A. siamensis within the clade also containing A. udagawae, A. acrensis and A. aureolus remains unresolved, while A. acrensis with A. aureolus form a sister clade to A. udagawae(thistopologygainedabsolutesupportinallfurtheranalyses–seebelow).Anotherrobustcladecon-tained sister species A. felis and A. pseudoviridinutans.Theremainingspecies,i.e.,A. viridinutans, A. frankstonensis and A. arcoverdensis,formedabasalcladeintheAVSCandtheirpositionswithinthecladearefullyresolved(Fig.4).

Clustering of isolates by origin and mating-type idiomorphIn the phylogenetic analysis, 111 combined benA, CaM, act and RPB2sequenceswereassessed formembersofAVSC.Allspecies delimited by methods based on the coalescent model werefullysupportedbyBIandMLanalyses(Fig.5).The A. udagawaelineageincluded25isolatesthatclusteredinthreemainclades.MatingtypegeneidiomorphMAT1-1-1wasdetectedin10isolateswhile14strainshadMAT1-2-1idio-morph(MATidiomorphwasnotdeterminedinonestrain).ThemajorityofNorthAmericanisolates(10/14)clusteredinclade1togetherwithonestrainfromAustralia;clade2comprisedonlythreestrainsoriginatingfromAsia;isolatesfromfourdifferentcontinentswerepresent inclade3.Therewasnoapparentclustering based on clinical or environmental origin of strains, ortheirMATidiomorph.AllthreeclinicalisolatesfromAsiahadan identical haplotype based on four studied protein-coding loci(Fig.5)butonestrainhadMAT1-2-1idiomorphincontrasttoMAT1-1-1idiomorphdetectedintheremainingtwostrains.The A. acrensislineageincludedfivestrainsisolatedfromsoil(Brazil)orcavesediment(Romania),twoofwhichhadMAT1-1-1 idiomorphandthreehadMAT1-2-1idiomorph.Thislineageisvery closely related to a homothallic species A. aureolus rep-resentedbyfourstrainsinouranalysis.Theonlyknownclini-cal isolate of A. aureolus(IHEM22515)wasisolatedfromthecorneaofapatientinPeru.Wewereunabletosourcefurtherinformation about this case and thus the clinical relevance of thisisolatecannotbeconfirmed.The mutual phylogenetic position of homothallic A. siamensis and heterothallic A. wyomingensisremainsunresolved.Asper-gillus siamensis was represented in our analysis by only two isolates from soil in Thailand, which were included in the original description(Eamvijarnetal.2013).TheA. wyomingensis line-ageincluded15isolates;12ofthemcamefromWyoming(USA)and were closely related to each other and to one isolate from China,whiletwoisolatesfromAustraliaandEuropedisplayedahighernumberofuniquepositions.TheratioofMAT1-1-1isolates toMAT1-2-1 isolateswas8:7, and themajorityofMAT1-1-1isolatesfromtheUSA(6/7)clusteredinaseparatesubcladethatwasonlysupportedintheBIanalysis.The A. felislineagecomprised35isolatesthatclusteredinthreemainclades.MatingtypegeneidiomorphMAT1-1-1wasde-tectedin12isolates,while20strainshadMAT1-2-1idiomorph(MATidiomorphwasnotdeterminedinthreestrains).Therewasno clustering based on geographic origin as all three clades includedisolatesfromtwotofourcontinents.Clade3containedonlyclinicalisolates(n=4).Clinicalstrainswerepredominantinclade1(18:2)whereasenvironmentalstrainsdominated

inclade2(7:4).TheratioofMAT1-1-1isolatestoMAT1-2-1isolatesinclade1wasbalanced(10:9)butwasbiasedtowardMAT1-2-1idiomorphinclades2(1:7)and3(1:3).Eightiso-lates of A. pseudoviridinutans, a sister species of A. felis, were examinedinthisstudy;MAT1-1-1idiomorphwasdeterminedinfiveofthemandMAT1-2-1idiomorphinthreeofthem.Therewas no apparent clustering based on clinical or environmental originofstrains,ortheirMATidiomorph(Fig.5).Abasal cladeofAVSCcomprises three soil-borne species.Whilst A. viridinutans and A. frankstonensis are known only from onelocalityinAustralia,13A. arcoverdensis strains included intheanalysiswereisolatedonthreecontinents, i.e.,SouthAmerica,AsiaandAustralia.Both,A. viridinutans and A. frank-stonensis were represented only by one and two isolates, re-spectively,includedintheoriginaldescriptions(McLennanetal.1954,Talbotetal.2017),andonlyisolatesofonematingtypeareknownforeachofthesespecies.Isolatesofbothmatingtypes were present in A. arcoverdensis(MAT1-1-1:MAT1-2-1 ratio,8:5).AgeographicalclusteringwasapparentinA. arco- verdensisstrains;twostrainsfromChinaandonestrainfromAustralia formed sublineages separate from theBrazilianstrains(Fig.5).

Mating experiments and morphology of sporesTheMAT1-1-1andMAT1-2-1idiomorphsweredeterminedfor100of104isolatesrepresentingheterothallicspeciesinAVSC(Table1).SystematicmatingexperimentswerefirstperformedwithinmajorphylogeneticcladesoftheAVSC.Oppositematingtype strains representing genetic and geographic diversity for eachheterothallic specieswere selected formatingexperi-ments and crossed in all possible combinations if not otherwise indicated(Fig.6).Successfulmatingwasobservedinlineagesof A. felis, A. udagawae and A. wyomingensis.Atleastsomeindividuals representing all three phylogenetic subclades of A. felis(Fig.3,5)andA. udagawae(Fig.2,5)crossedsuc-cessfullywithindividualsfromtheothersubclades.Thematingcapacityofindividualisolateswasunequal.Whilstsomeisolatesof a particular species were able to mate with a broad spectrum of opposite mating type strains of the same species, others produced fertile ascomata with only a limited set of strains ordidnotmateatall.Themorphologyofascosporesamongdifferentcrossesinthesethreespecieswasconsistent(Fig.7).Theexceptionwasgreatvariabilityintheconvexsurfaceornamentation of A. wyomingensis ascospores among and as well as within pairings of different isolates ranging from almost smooth,tuberculatetoechinulate(Fig.7).Althoughboththewidth and height of ascospores of A. felis, A. udagawae and A. wyomingensis overlapped significantly, their dimensionswere statistically significantly different (Tukey’sHSD test,pvalue<0.05)(Fig.6).Nofertilecleistotheciawereproducedby crossing opposite mating type isolates of A. pseudoviridi-nutans, A. acrensis and A. arcoverdensis.Matingexperimentswere not performed in A. viridinutans and A. frankstonensis due totheabsenceofoppositematingtypestrains.Oppositematingtypeisolatesofeachheterothallicspecieswerealsoselectedforinterspecificmatingassaysandcrossedinallpossiblecombinations.MorphologicalcharacteristicsofAVSCascosporesandinducedhybridsaresummarisedinTable5.Onlythreeof12selectedA. udagawae isolates produced fertile ascomata with some isolates of A. felis, A. wyomingensis or A. acrensis (Fig.8).Thehighestmatingcapacitywasobservedintheex-typestrainofA. udagawaeIFM46972thatproducedfertile ascomata when crossed with A. felis(CCF5609,CCF4171andCCF5611),A. wyomingensis(CCF4416andCCF4411)andA. acrensis(IFM57290).Thewidthandheightofascospores of interspecific hybrids betweenA. udagawae and A. acrensisweresignificantlydifferent(Tukey’sHSDtest,

Page 18: Unravelling species boundaries in the Aspergillus ... · Movile cave, sediment, 2014 MAT1-2-1 CCF 4961 (S975) Romania, Movile cave, Lake cave a 2014 MAT1-1-1 Culture IFM 61334 T =

158 Persoonia–Volume41,2018

Fig. 7ComparisonofmorphologyofsexualmorphsofA. felis, A. udagawae and A. wyomingensis.a.FertilecleistotheciaofA. felis as a result of crossing ofisolatesIFM60053×FRR5680;b.ascosporesinlightmicroscopy;c–d.ascosporesinscanningelectronmicroscopy:CBS130245T ×CCF5627(c),CBS130245T ×IFM60053(d);e.fertilecleistotheciaofA. udagawaeasaresultofcrossingofisolatesIFM46972T ×IFM46973;f.ascosporesinlightmicroscopy;g–h.ascosporesinscanningelectronmicroscopy;i.fertilecleistotheciaofA. wyomingensisasaresultofcrossingofisolatesCCF4416× CCF 4417T;j.ascosporesinlightmicroscopy(CCF4416×CCF4169);k–n.ascosporesinscanningelectronmicroscopy:CCF4416× CCF 4417T(k–l),CCF4417T × CCF 4419(m–n).—Scalebars:b,f,j=5μm;c–d,g–h,k–n=2μm.

Page 19: Unravelling species boundaries in the Aspergillus ... · Movile cave, sediment, 2014 MAT1-2-1 CCF 4961 (S975) Romania, Movile cave, Lake cave a 2014 MAT1-1-1 Culture IFM 61334 T =

159V.Hubkaetal.:SpeciesdelimitationandhybridizationinsectionFumigati

pvalue <0.05) fromA. udagawae (Fig. 8).Approximately50%ofhybridascosporesfrommatingCMFISB2190withIFM57290lackedvisibleequatorialcrestsandifpresent,theywere frequently interruptedorstellate (Fig.9) incontrast toA. udagawae(visiblecrestspresentin>90%ofascospores,crests continuous).The ascomata frommating IFM46972with IFM57290containedonly lownumbersof ascosporesthatweregloboseorsubgloboseandglabrous(withoutcrestsandornamentationonconvexsurface).Thisobservationsup-ported the hypothesis that A. acrensis is a separate species despite its close phylogenetic relationships to A. udagawae.The ascospore dimensions of hybrids between A. udagawae and A. wyomingensis were similar to those of A. udagawae andbothwidthandheightweresignificantlydifferent(Tukey’sHSDtest,pvalue<0.05)fromA. wyomingensis (Fig.8).Thesehybridascosporeshadwell-definedequatorialcreststhatweremostcommonly0.5–1µmbroadandsimilartothoseofA. uda-gawae (Fig.9).ThehybridsofA. udagawae and A. felis had ascosporeswithsimilarequatorialcrestlengthandbodywidthto A. udagawaebutweresignificantlydifferent fromA. felis, and theirheightwassignificantlydifferent frombothA. felis and A. udagawae (Fig.8).TheascomataofhybridsbetweenA. udagawae with A. wyomingensis and A. felis, respectively, usuallycontainedonlylownumbersofascospores.Nomatingor production of infertile ascomata only was observed between crosses of A. udagawaeandtheremainingheterothallicAVSCmembers(Fig.8).Interestingly,themajorityofinterspecifichy-bridsproducedapproximately1–10%ofgloboseorsubgloboseasco-sporeswithabnormallylargedimensions,approximately6.5–10.5 µmdiam (their dimensionswere not included forcalculationsof statisticalmeasures inFig.8and10,and in Table5).Thesecellshadthickwallssimilartonormalasco-spores,butlackedequatorialcrestsandhadaglabrousorechi-nulatesurface.Theirdimensionswereintermediatebetweennormal ascospores and asci but their walls were dissimilar to thoseofthin-walledasci.Thesecellswerenotobservedamongprogenyoftheintraspecificcrosses(intraspecificmatingassay)and their presence probably indicates a defect in meiosis and ascosporedevelopment.

TwoMAT1-1-1isolatesofA. pseudoviridinutans selected for interspecificmatingassays,namelytheex-typestrainNRRL62904andstrainIFM59502,wereabletomatewitharelativelyhighnumber ofMAT1-2-1 isolatesofA. felis (Fig. 10).The ascosporesofthesehybridswerestatisticallysignificantlydif-ferent in their width and height from A. felis.Equatorialcrestswereabsentinapproximately5–20%hybridascosporesand,if present, they were shorter than those of A. felis(Table5).These observations suggest that A. pseudoviridinutans should be treated as a separate species as proposed by species delimi-tation methods despite the close phylogenetic relationships of both species and incomplete lineage sorting detected between thesetwospecies(Fig.3).Onlyoneinterspecifichybridwasinduced in our assay between A. wyomingensis CCF4169andA. felisNRRL62900.Theascosporebodywidthandheightofthishybridwassignificantlydifferentfrombothparentalspecies(Fig.10).IncontrasttoA. wyomingensis,equatorialcrestswerepresent in the majority of hybrids and they were occasionally interruptedandstellate(Fig.11).Infertileascomatawereob-served in some crosses between A. felis and following species: A. acrensis, A. wyomingensis and A. viridinutans.Aspergillus aureolus and A. siamensis are the only two homo-thallicspeciesintheAVSCandreadilyproduceascomataonabroad spectrum of media and growth temperatures and are eas-ilydistinguishablefromtheeightheterothallicAVSCmembers.MostA. aureolus isolates produce distinctive yellow colonies in contrast to the whitish colonies of A. siamensis (Fig.12).Theascosporesofbothspecieshavesimilardimensions,convexsurfaceornamentationandequatorial crest length (Table5,Fig.12)andmostcloselyresemblethoseofA. felis from among heterothallicspecies.Themacromorphologyofcolonies,micromorphologyofasexualmorphs and physiology have only limited discriminatory power inAVSCmembers,asrecognizedinpreviousstudies(Nováková etal. 2014,Matsuzawaetal. 2015).Wecomparedsurfaceornamentationofconidia inall currently recognizedspeciesusingSEM.Theornamentationshowedamicro-tuberculatepatternandwasbroadlyidenticalacrossallspecies(Fig.13).

Species/interspecifichybrid (×) Ascospore body

Ornamentationofascospores (mean±standarddeviation;µm)

width height lengthofcrests(µm)1 surface ornamentation2

Aspergillus aureolus 4.8±0.5 4.4±0.4 (0.5–)1–1.5 crestspresent3;CStuberculatetoechinulate(SEM)

A. felis 4.4±0.5 3.9±0.6 0.5–1.5(–2) crestspresent3;CStuberculatetoechinulate(SEM)

A. siamensis 4.5±0.5 3.7±0.4 (0.5–)1–1.5 crestspresent3;CStuberculate,echinulatetoreticulate(SEM)

A. udagawae 4.8±0.4 4.2±0.4 (0–)0.5(–1) visiblecrestsabsentin<10%ofascospores(LM); CStuberculatetoreticulate(SEM)

A. wyomingensis 4.2±0.4 3.4±0.4 0–0.5 visiblecrestsabsentin>50%ofascospores(LM); CSalmostsmooth,tuberculate,echinulate(SEM)

A. felis × A. pseudoviridinutans 4.9±0.4 4.2±0.5 (0–)0.5–1 visiblecrestsabsentin5–20%ofascospores(LM)depending onparentalisolates;CStuberculatetoechinulate(SEM)

A. felis × A. wyomingensis 4.8±0.5 4.3±0.3 (0–)0.5–1 visiblecrestsabsentin~10%ofascospores(LM); CStuberculate(SEM)

A. felis × A. udagawae 5.1±0.5 4.5±0.5 0–0.5(–1) visiblecrestsabsentin~20%ofascospores(LM); CSechinulate,tuberculatetoreticulate(SEM)

A. udagawae × A. wyomingensis 5.0±0.4 4.6±0.3 0–1 visiblecrestsabsentin~15%ofascospores(LM); CStuberculate(SEM)

A. udagawae × A. acrensis 5.2±0.5 4.4±0.5 0–0.5 visiblecrestsabsentin~50%ofascospores(LM)inCMF ISB2190×IFM57290andin100%ofascosporesin IFM46972×IFM57290;CStuberculatetoechinulateinCMF ISB2190×IFM57290(SEM)andglabrousinIFM46972× IFM57290(LM)1Valuesinparenthesesarelesscommon(lessthan10%ofmeasurements).2LM=lightmicroscopy;SEM=scanningelectronmicroscopy;CS=convexsurface.3Crestsmayabsentin<1%ofascosporesinsomeisolates/crosses.

Table 5 Ascospores characteristics of Aspergillus viridinutanscomplexspeciesandinterspecifichybrids.

Page 20: Unravelling species boundaries in the Aspergillus ... · Movile cave, sediment, 2014 MAT1-2-1 CCF 4961 (S975) Romania, Movile cave, Lake cave a 2014 MAT1-1-1 Culture IFM 61334 T =

160 Persoonia–Volume41,2018

A. felis

A. udagawae

A. wyomingensis

As

co

sp

ore

bo

dy w

idth

(μm

)A

sco

sp

ore

bo

dy h

eig

ht

(μm

)

3

4

5

6

A. udagawae ×A. acrensis

A. udagawae ×A. wyomingensis

A. udagawae ×A. felis

a b c d ab e

3

4

5

2

CCF 4479

IFM 54131

IFM 54132

CCF 4476

CCF 4478

IFM 62155

CCF 5634

CMF ISB 2190

IFM 51744

IFM 55207

IFM 46972T

IFM 46973

CBS 121595

IFM 47045T

CCF 4411

IFM 57291T

IFM 59922

CBS 142233T

CBS 142234

CCF 5610CCF 5611

CCF 5632 IFM 57289 CBS 458.75

CCF 4169

IFM 57290

IFM 61345

CCF 4171

IMI 182127

CCF 4417T

CCF 4959

IFM 61338

CCF 5609IFM 60053 NRRL 62900 NRRL 62901

NRRL 62904T

IFM 59502

CCF 4416 CCF 4419

CCF 4960 CCF 4961

IFM 61334T

IFM 61362

CCF 5619CBS 130245T

CCF 5622CCF 4148 NRRL 62903

CCF 5617CCF 5626 CCF 5628

CCF 5625 CCF 5627

MAT1-1-1MAT1-2-1

A. udagawae

A. felis

A. pseudoviridinutans

A. acrensis

A. wyomingensis

A. arcoverdensis

A. frankstonensis

A. viridinutans

a b ab c b d

Fig. 8 Schematic depiction ofresultsof interspecificmatingexperimentsbetweenoppositemating type isolatesofA. udagawae and other heterothallic members of Aspergillus viridinutansspeciescomplex.Onlysuccessfulmatingexperimentsaredisplayedbycolouredconnecting linesbetweenoppositematingtypeisolates(differentcolourscorrespondtohybridsbetweendifferentspecies);greydashedlinesindicateproductionofinfertileascomata;remain-ingmatingexperimentswerenegative.BoxplotandviolingraphswerecreatedinR3.3.4(RCoreTeam2015)withpackageggplot2 (Wickham2009)andshow the differences between the width and height of ascospores of particular species andtheirhybrids.Differentlettersabovetheplotindicatesignificantdifference(P<0.05)inthesizeoftheascosporesbasedonTukey’sHSDtest.Boxplotsshowmedian,interquartilerange,valueswithin±1.5ofinterquartilerange(whiskers)andoutliers.

Page 21: Unravelling species boundaries in the Aspergillus ... · Movile cave, sediment, 2014 MAT1-2-1 CCF 4961 (S975) Romania, Movile cave, Lake cave a 2014 MAT1-1-1 Culture IFM 61334 T =

161V.Hubkaetal.:SpeciesdelimitationandhybridizationinsectionFumigati

Fig. 9AscosporemorphologyofinterspecifichybridsbetweenA. udagawaeandotherspecies.a–g.HybridofA. udagawaeCMFISB2190× A. acrensis IFM57290;a–b.ascosporesinlightmicroscopy;c–g.ascosporesinscanningelectronmicroscopy;h–r.hybridofA. udagawaeCCF4479× A. felis NRRL62901;h–k.ascosporesinlightmicroscopy;l–r.ascosporesinscanningelectronmicroscopy;s–v.hybridofA. udagawaeIFM46972T × A. wyomingensis CCF4411;s–t.ascosporesinlightmicroscopy;u–v.ascosporesinscanningelectronmicroscopy.—Scalebars:a–b,h–k,s–t=5μm;c–g,l–r,u–v=2μm.

Page 22: Unravelling species boundaries in the Aspergillus ... · Movile cave, sediment, 2014 MAT1-2-1 CCF 4961 (S975) Romania, Movile cave, Lake cave a 2014 MAT1-1-1 Culture IFM 61334 T =

162 Persoonia–Volume41,2018

A. felisA. wyomingensis

A. felis × A. pseudoviridinutansA. wyomingensis × A. felis

Asco

sp

ore

bo

dy w

idth

(μm

)

Asco

sp

ore

bo

dy h

eig

ht

(μm

)

3

4

5

6

2

5

4

3

a b c ba b c b

IFM 47045T

CBS 121595

CCF 5632

CCF 4169

CCF 4417T

IFM 57291T

CCF 4961

IFM 61334T

IFM 59922

NRRL 62904T

IFM 59502

CCF 5610

NRRL 62901

CCF 5625

IFM 60053

CCF 4148

CCF 5617

CCF 5627

IFM 61362

CBS 142233T

CBS 142234

IMI 182127

IMI 133982

IFM 57290

IFM 61345

IFM 61338

IFM 57289

CBS 458.75

CCF 4416

CCF 4419

CCF 4959

CCF 4960

CCF 5609

NRRL 62900

CCF 4171

NRRL 62903

CCF 5622

CCF 5619

CBS 130245T

CCF 4497

CCF 4498

FRR 5680

A. felis

A. pseudoviridinutans

A. acrensis

A. wyomingensis

A. arcoverdensis

A. frankstonensis

A. viridinutans

MAT1-2-1MAT1-1-1

Fig. 10 Schematic depiction ofresultsofinterspecificmatingexperimentsbetweenoppositematingtypeisolatesofheterothallicmembersofAspergillus viridinutansspeciescomplexexceptofA. udagawae.Onlysuccessfulmatingexperimentsaredisplayedbycolouredconnectinglinesbetweenoppositemat-ingtypeisolates(differentcolourscorrespondtohybridsbetweendifferentspecies);greydashedlinesindicateproductionofinfertileascomata;remainingmatingexperimentswerenegative.BoxplotandviolingraphswerecreatedinR3.3.4(RCoreTeam2015)withpackageggplot2(Wickham2009)andshowthe differences between the width and height of ascospores of particular species andtheirhybrids.Differentlettersabovetheplotindicatesignificantdiffer-ence(P<0.05)inthesizeoftheascosporesbasedonTukey’sHSDtest.Boxplotsshowmedian,interquartilerange,valueswithin±1.5ofinterquartilerange(whiskers)andoutliers.

Page 23: Unravelling species boundaries in the Aspergillus ... · Movile cave, sediment, 2014 MAT1-2-1 CCF 4961 (S975) Romania, Movile cave, Lake cave a 2014 MAT1-1-1 Culture IFM 61334 T =

163V.Hubkaetal.:SpeciesdelimitationandhybridizationinsectionFumigati

Fig. 11AscosporemorphologyofinterspecifichybridsbetweenA. felis, A. pseudoviridinutans and A. wyomingensis.a–e.HybridofA. felis × A. pseudovir-idinutans;a–c.ascosporesofhybridCCF4497×IFM59502inlightmicroscopy;d–e.ascosporesinscanningelectronmicroscopy:CCF4497×IFM59502(d),CCF4171×IFM59502(e);f– l.hybridofA. felisNRRL62900× A. wyomingensisCCF4169;f–g.ascosporesinlightmicroscopy;h–l.ascosporesinscanningelectronmicroscopy.—Scalebars:a–c,f–g=5μm;d–e,h–l=2μm.

TAXONOMY

Aspergillus acrensis Hubka,A.Nováková,Yaguchi,Matsuz.&Y.Horie,sp. nov.—MycoBankMB822542;Fig.14

Etymology.Namedaftertheregionoforiginoftheex-typestrain–stateAcrelocatedinthenorthernBrazil.

Myceliumcomposedofhyaline,branched,septate,smooth-walledhyphae.Conidialheadsgreyishgreen,looselycolumnar,upto140μmlong,15–25μmdiam.Conidiophoresuniseriate,arising from aerial hyphae or the basal mycelium, hyaline to paleyellowishbrown,frequentlynodding,smooth,150–600μmlong;stipes3–5.5(–8)μmwideinthemiddle;vesicleshyalinetogreyishgreen,pyriform,subclavatetoclavate,(6–)9–16(–20)μmdiam;phialidesampulliform,hyalinetogreyishgreen,4.5–6(–7.5)×1.5–2.5(–3)μm,coveringapproximatelytheapicalhalfofthevesicle.Conidiahyalinetogreyishgreen,globose,subglobose to broadly ellipsoidal, smooth-walled to delicately roughened,microtuberculateinSEM,2.5–3×2–2.5μm(mean±standarddeviation,2.8±0.2×2.4±0.2;length/widthratio1.1–1.3,1.2±0.1).Heterothallic,sexualmorphunknown.

Culturecharacteristics(7dat25°C,unlessotherwisestated)—ColoniesonMEAattained51–62mmdiam,sparselylanose,slightly raised, flat, yellowishwhite (ISCC–NBSNo. 92) topalegreen(No.149),noexudate,solublepigmentlightgrey-ishyellow(No.101),reverselightgreenishyellow(No.101)tobrilliantgreenishyellow(No.98).ColoniesonCYAattained33–48mmdiam,floccose,slightlyraised,flattoslightlyradi-allyfurrowed,yellowishwhite(No.92)togreenishwhite(No.153),sporulationinthecolonycentrepalegreen(No.149)togreyish green (No. 150), no exudate, soluble pigment darkgreyishyellow (No.91), reversedeepyellow (No.85), lightolivebrown (No.94) tomoderateolivebrown (No.95)withlightyellow(No.86)margin.ColoniesonCYAat37°Cgrowmorerapidlycomparedto25°Candattained60–70mmdiam,lanose, slightly raised, flat to radially furrowed, white mycelium inmargins,sporulationlightolivegrey(No.112)toolivegrey(No.113),noexudate,nosolublepigment,reversecolourless,moderateyellow(No.87)togreyishyellow(No.90).ColoniesonCZAattained36–48mmdiam,lanose,slightlyraised,flat,yellowishwhite(No.92),noexudate,noorlightgreyishyel-low(No.101)solublepigment,reverselightyellow(No.86),

Page 24: Unravelling species boundaries in the Aspergillus ... · Movile cave, sediment, 2014 MAT1-2-1 CCF 4961 (S975) Romania, Movile cave, Lake cave a 2014 MAT1-1-1 Culture IFM 61334 T =

164 Persoonia–Volume41,2018

Fig. 12SexualmorphmorphologyofhomothallicspeciesfromAspergillus viridinutans complex.a–d.Aspergillus aureolus isolatesIFM47021T(a–b,d)andIFM46584(c);a.Macromorphologyofascomataafter3wkofincubationonMEAat37°C;b.ascosporesinlightmicroscopy;c–d.ascosporesinscanningelectronmicroscopy;e–h.Aspergillus siamensis isolateIFM59793T;e.macromorphologyofascomataafter3wkofincubationonMEAat37°C;f.ascosporesinlightmicroscopy;g–h.ascosporesinscanningelectronmicroscopy.—Scalebars:b,f=5μm;c–d,g–h=2μm.

lightgreenishyellow(101)tobrilliantgreenishyellow(No.98).ColoniesonYESlanose,yellowishwhite(No.92),irregularlyfurrowed,noexudate,solublepigmentbrilliantyellow(No.83),reversebrilliantyellow(No.83).ColoniesonCY20Sattained58–65mmdiam,lanose,slightlyraised,flat,yellowishwhite(No.92),noexudate,nosolublepigment,reversemoderatebrown(No.58)tomoderatereddishbrown(No.43).ColoniesonCREAattained32–35mmdiam,sparsely lanose,plane,mycelium yellowish white, no visible sporulation, reverse strong brown(No.55),noacidproduction.GrowthonMEAat45°C,nogrowthonMEAat47°C. Exometabolites— IsolateIFM57291producedanaszona-pyrone,afumigatin,tryptoquivalines,tryptoquivalones;isolateIFM57290anaszonapyrone, fumagillin, fumigatins,helvolicacid,pseurotinA,tryptoquivalines,andatrytoquivalone;iso-lateCCF4959pseurotinA, viriditoxin and several potentialnaphtho-gamma-pyrones;CCF4960antafumicins,fumagillin,afumigatin,helvolicacid,pseurotinA,andatryptoquivalone;and CCF 4961 an aszonapyrone, fumagillin, fumigatins,pseurotinA,tryptoquivalinesandtryptoquivalones.Ingeneral,similar metabolites are also produced by the two most closely relatedspecies,i.e.,A. aureolus and A. udagawae.Aspergillus aureolus produces fumagillin, helvolic acid, pseurotin A, trypto-

quivalines,tryptoquivalonesandviriditoxinaswellasseveraluniqueyellowsecondarymetabolites.Aspergillus udagawae produces fumagillin, fumigatins, tryptoquivalinesand trypto-quivalones(Frisvad&Larsen2015a).

Specimens examined. Brazil, StateofAcre,Xapuri, grasslandsoil inacattlefarm,6Nov.2001,Y. Horie (holotypeIFM57291H,isotypesPRM935088andPRM935089,cultureex-typeIFM57291T=CCF4670T);StateofAmazonas,Manaus,forestsoilintropicalrainforest,11Nov.2001,Y. Horie, cultureIFM57290(=CCF4666).–romania,Movilecave,abovetheLakeRoom,cavesediment,8June2014,A. Nováková,cultureCCF4959;Movilecave,cavecorridor,cavesediment,8June2014,A. Nováková, culture CCF 4960;Movilecave,LakeRoom,cavesediment,8June2014,A. Nováková, cultureCCF4961.

Notes— The morphology of A. acrensis strongly resembles that of several other A. viridinutans complexmembers.ThecloselyrelatedtaxaA. aureolus and A. siamensis are readily distinguished from A. acrensis by the production of ascomata understandardcultivationconditions(botharehomothallic).Aspergillus viridinutans and A. frankstonensis grow more slowly at25°Candhavesmallervesicles.Themacromorphologyofcoloniesandmicromorphologyoftheasexualmorphdoesnotdistinguish A. acrensis reliably from A. arcoverdensis, A. felis, A. pseudoviridinutans, A. udagawae and A. wyomingensis.

Page 25: Unravelling species boundaries in the Aspergillus ... · Movile cave, sediment, 2014 MAT1-2-1 CCF 4961 (S975) Romania, Movile cave, Lake cave a 2014 MAT1-1-1 Culture IFM 61334 T =

165V.Hubkaetal.:SpeciesdelimitationandhybridizationinsectionFumigati

Fig. 13Conidiawithmicro-tuberculate surfaceornamentationpattern observedby scanningelectronmicroscopy. a.Aspergillus acrensis IFM57290; b.A. arcoverdensisIFM61334T;c.A. aureolusIFM46584;d.A. felisCBS130245T;e.A. felisNRRL62900(ex-typeofA. parafelis);f.A. felisNRRL62903(ex-typeofA. pseudofelis);g.A. frankstonensisCBS142234;h.A. pseudoviridinutansCBS458.75;i.A. siamensisIFM59793T;j.A. udagawaeIFM46972T;k.A. viridinutansIFM47045T;l.A. wyomingensisCCF4414.—Scalebars=2μm.

Page 26: Unravelling species boundaries in the Aspergillus ... · Movile cave, sediment, 2014 MAT1-2-1 CCF 4961 (S975) Romania, Movile cave, Lake cave a 2014 MAT1-1-1 Culture IFM 61334 T =

166 Persoonia–Volume41,2018

Fig. 14MicromorphologyandmacromorphologyofAspergillus acrensis.a–e.ColoniesofIFM57291Tincubated7dat25°ConMEA,CYA,CZA,YES,andonCYAat37°C(fromlefttoright);f– j.reverseofcoloniesofIFM57291Tincubated7dat25°ConMEA,CYA,CZA,YES,andonCYAat37°C(fromlefttoright);k–n.conidiophores;o.conidia.—Scalebars=10μm.

Page 27: Unravelling species boundaries in the Aspergillus ... · Movile cave, sediment, 2014 MAT1-2-1 CCF 4961 (S975) Romania, Movile cave, Lake cave a 2014 MAT1-1-1 Culture IFM 61334 T =

167V.Hubkaetal.:SpeciesdelimitationandhybridizationinsectionFumigati

Some of these species can be differentiated each from the otherbytheircharacteristicsexualmorph,buttheproductionof ascomata was not induced in A. acrensis despite our at-tempts, similarly to A. arcoverdensis and A. pseudoviridinutans.Although isolate IFM57290was successfully crossedwithisolates of A. udagawaeIFM46972andCMFISB2190in vitro, both the width and height of ascospores were statistically dif-ferent from A. udagawae.Also,abnormalitiesintheshapeandsuperficialornamentation(Fig.9)werepresentinasignificantnumberofspores(equatorialcrestswereabsentin~50%ofascospores).ReliableidentificationofA. acrensis can currently onlybeachievedbymolecularmethods.

Aspergillus udagawae Horieetal.,Mycoscience36:199. 1995.

Epitypification. Brazil,SãoPauloState,Botucatú,LagoaSekaAvea,soilinaplantation,23Aug.1993,M. Takada(holotypeCBM-FA-0711,designatedbyHorieetal.(1995),epitypedesignatedherePRM945579,isoepitypesPRM945580and945581,MycoBankMBT378451,cultureex-epitypeIFM46972=CBS114217=DTO157-D7=CBM-FA0702=KACC41155=CCF4558).

Notes— Horieetal.(1995)designatedthespecimenCBM- FA-0711 as a holotype of A. udagawae, a dried culture with ascomata created by crossing the isolatesCBM-FA-0702(MAT1-1-1)×CBM-FA-0703(MAT1-2-1).Althoughthisspeci-mendemonstratesthesexualandasexualmorphof the lifecycle,itisnotsuitableforthepurposesoftherecenttaxonomyforseveralreasons.Firstofall,itisnotclearwhichofthetwocultures contained within the type should be considered the ex-holotypeculture.Additionally, interspecifichybridscanbeinduced by crossing opposite mating type strains of unrelated species in vitro as shown in this study and some previous studies(seeDiscussion),anddepositionofaresultant‘hybrid’typecouldleadtoambiguities.Althoughthissecondargumentdoes not apply to A. udagawae as both isolates included in the holotype are closely related phylogenetically, we believe that amoreclearlydefinedtypeofthisspecieswillfacilitatefuturetaxonomicwork.Becauseitisnotpossibletorecognizewhichpart of the holotype belongs to particular isolate, lectotype designation(inthiscasepartofholotypespecimen)isdifficult.ForthisreasonwedecidedtoselectanepitypePRM945579derivedfromtheIFM46972(=CBM-FA0702)culture.

DISCUSSION

Changing species concepts in the AVSCTheAVSCmembersshowconsiderablephenotypicvariabilitybutusuallyshareproductionofnoddingheads(somevesiclesborneatanangletothestipe)andrelativelypoorsporulationwithabundantaerialmycelium.Allspecieshaveamaximumgrowthtemperatureof42or45°Candthemacromorphology

anddiameteroftheircoloniesaresimilar,exceptforA. viridi-nutans and A. frankstonensis, which grow more slowly than remainingspecies.Inaddition,themorphologyofconidiophoresand conidia is relatively uniform across species, including the superficialornamentationofconidiaasshownhere(Fig.13).ForthesereasonsheterothallicAVSCmembershaveresistedtaxonomicclassificationandwereonlyidentifiedtoaspeciescomplexlevel,untilrecently.Duetotheabsenceoftaxonomicallyinformativecharacters,mostrecentlydescribedspeciesintheAVSCweredelimitedusingtheGCPSRrules.Usingthisapproach,thespeciesarerecognizedbasedonconcordancebetweensingle-genephy-logeniesandtheabsenceoftreeincongruities.TheGCPSRhasfoundwideapplicationinthetaxonomyoffungi(Dettmanetal.2006,Hubkaetal.2013a,Petersonetal.2015,Visagieetal. 2017).Hugeprogresshasbeenmade recently in thedevelopment of statistical methods for multilocus species deli-mitation, driven by advances in the multispecies coalescent model (Bouckaert et al. 2014, Flot 2015, Fontaneto et al.2015,Schwarzfeld&Sperling2015, Jones2017).AlthoughtheideologyofMSCdelimitationmethodsisrelativelysimilartoGCPSR,thesemethodsaremorerobustbecausethespeciesaredelimited in threesteps, i.e.,speciesdiscovery,speciestreeconstructionandspeciesvalidation(Carstensetal.2013).The determination of species boundaries is more objective in contrasttoGCPSRrulesthatarebasedonrelativelysubjectiveevaluationandcomparisonofsingle-genetrees.Inaddition,MSCmethodsareabletodealbetterwithphenomenasuchas incomplete lineage sorting, recombination or non-reciprocal monophyly that lead to incongruences between single-gene trees.Comparedtothephylogeneticanalysisofconcatenatedgenedatasets(includingpartitioneddatasets)andinpartalsoGCPSR,theMSCmethodsarelesspronetoover-delimitationofspecies (Degnan&Rosenberg2006,Kubatko&Degnan2007,Heled&Drummond2010,Rosenberg2013),especiallywhen the results of multiple delimitation methods are compared inoneanalysis.TheGCPSRrulestogetherwithevaluationoflimitedphenotypicdata were recently used for description of A. felis, A. arcover-densis and A. frankstonensisintheAVSC(Barrsetal.2013, Matsuzawaetal.2015,Talbotetal.2017).Genealogicalanaly-sisusingfivegenetic lociwascarriedout fordelimitationof A. parafelis, A. pseudofelis and A. pseudoviridinutans, three close relatives of A. felis (Sugui et al. 2014).Although theauthors found no conflict between single-gene phylogenies, only two isolates of each of these four species were used in analysis,andsequencesofA. felis, A. parafelis and A. pseudo-felis strains includedwerealmost invariable.These isolatesdidnotcoversufficientlythegeneticdiversityofthesespeciesasshownhere.Speciesdelimitation resultsbasedonMSCin this study showed that A. parafelis and A. pseudofelis are included in the genetically diverse lineage of A. felis (Fig.3).

Species(no.ofisolates) Highestgeneticdistancesbetweentwoisolatesaccordingtodifferentgeneticloci

benA CaM RPB2 act mcm7 tsr1

A. acrensis (5) 0.2 0.9 0.2 0 ND NDA. arcoverdensis (13) 0 0.9 0.5 1.4 ND NDA. aureolus (4) 0.4 0 0.1 0 ND NDA. felis (35) 4.2 2.4 0.6 2.5 1.3 3.3A. frankstonensis (2) 0 0.2 0 0 0 NDA. pseudoviridinutans(8) 2.6 2.2 1.9 2.1 0.7 1.4A. siamensis (2) 0 0.1 0.1 0 ND NDA. udagawae (25) 1.1 2.8 1.2 4.9 ND NDA. wyomingensis (15) 0.4 0.9 0.4 0.9 ND ND

ND,notdetermined.

Table 6HighestintraspecificpairwisegeneticdistancesinmembersofAspergillus viridinutanscomplex(%).

Page 28: Unravelling species boundaries in the Aspergillus ... · Movile cave, sediment, 2014 MAT1-2-1 CCF 4961 (S975) Romania, Movile cave, Lake cave a 2014 MAT1-1-1 Culture IFM 61334 T =

168 Persoonia–Volume41,2018

TheintraspecificpairwisegeneticdistancesinA. felis(Table6)rangefrom0.6%(RPB2)to4.2%(benA).Similarly,pairwisegenetic distances in A. udagawae(Table6)are1.1%(benA)to4.9%(act).Suchhighintraspecificdiversityinthesegeneticloci is unusual in Aspergillus and it reflects the intense recom-bination.Thus,whenonlylimitednumberofstrainsfromsuchspecies are selected for phylogenetic analysis, the results of speciesdelimitationtechniquesmaybebiasedandpronetooverestimatethenumberofspecies.Aswehaveshownhere,thiswasclearlythecaseinthestudyofSuguietal.(2014).Thisproblemisprobablywidespreadincurrentfungaltaxonomyand limits possibilities of correct species boundaries delimita-tion.Alsointhisstudy,thenumberofstrainsofsomecloselyrelated and phenotypically similar species is underrepresented, e.g.,A. viridinutans and A. frankstonensis.Inthesecases,thespeciesboundariescannotbe reliablydefinedusingneitherGCPSRrulesnorMSC-basedmethodsusedinthisstudy.

Clinically relevant species and their identification in clini-cal settingAlthoughsect.Fumigati harbours many important pathogenic species,membersoftheAVSChavebeenoverlookedbybothcliniciansandmycologistsuntilrecently.Thepresenceofthesesoil-bornespeciesinclinicalmaterialwasfirstreportedbyKatzetal.(2005)whoexaminedphylogeneticpositionsofseveral‘atypical’(poorlysporulating)clinicalisolatesofA. fumigatus.The majority of these strains grouped with, but were not identi-cal to, A. viridinutans and A. aureolusfromtheAVSC.Sincethen many similar epidemiological and clinical studies have reportedthepathogenicroleofAVSCmembersinhumansandanimals,asreviewedbyTalbot&Barrs(2018).Inhumansthemost common manifestation of disease is chronic invasive pul-monaryaspergillosisinimmunocompromisedpatients.AVSCspeciesarealsofrequentlyreportedasacauseofsino-orbitalaspergillosis(SOA)incatsthatischronic,butfrequentlyfatal.In contrast to humans and dogs, the disease usually affects ostensiblyimmunocompetentcats.ThisincreasinglyrecognisedclinicalentityismostfrequentlycausedbytheAVSCspeciesandlessfrequentlybyothercrypticspeciesinsect.Fumigati (Barrsetal.2012,2013,2014).Basedonthespeciesboundariesredefinedinthisstudy,theAVSCencompasses fourspecies thatareconfirmedoppor-tunisticpathogens.Accordingtoanumberofreportedcases,in humans A. udagawae is the most important opportunistic pathogenicfromtheAVSCfollowedbyA. felis and A. pseudo-viridinutans.Incontrast,SOAincatsismostcommonlycausedby A. felis andmuch less frequently byA. udagawae and A. wyomingensis (Barrsetal.2013,2014).MedicallyimportantspeciesfromtheAVSCdemonstrateele-vatedminimuminhibitoryconcentrations(MICs)ofitraconazoleandvoriconazolein vitro, and a variable susceptibility to ampho-tericinB,whileposaconazoleandechinocandinshavepotentin vitroactivities(Lyskovaetal.2018).SincetheintraspecificvariationinMICsofparticularantifungalsisusuallyhigh,theuseofreliablemethodsforMICdeterminationstakesprecedenceovercorrectidentificationtoaspecieslevel.Thelattermaybechallengingorevenimpossibleintheclinicalsetting.However,identificationtothelevelofspeciescomplexanddifferentia-tion from A. fumigatus is important due to strikingly different antifungalsusceptibilitypatterns.In contrast to A. fumigatus, theAVSCspecies donot growat 47and50°C,usually sporulate lessandaproportionoftheirvesiclesareborneatanangletothestipe.Inaddition,someisolatesproduceacidiccompoundsdetectableonCREA(Barrsetal.2013,Novákováetal.2014,Talbot&Barrs2018).DespitethefactthatITSrDNAregionsequencesarenotavail-able forallAVSCmembers, thisuniversalmarker for fungal

speciesidentificationandbarcodingcanbeusedtoachieveidentificationtoaspeciescomplexlevel.Thesequencesfromallsixprotein-codinggenesincludedinthisstudy(Table2)havesufficientdiscriminatorypowerforspecieslevelidentificationofallclinicallyrelevantspecies.Amongthesegenes,sequencesofβ-tubulinandcalmodulinbelongtothemostcommonlyusedintheclinicalpracticewhencorrectidentificationisrequired(epi-demiological studies, outbreak investigations or when dealing withinfectionsrefractorytoantifungaltherapy).However,thediscrimination between A. felis and A. pseudoviridinutans can belimitedwhenusingtheβ-tubulingeneduetotheincompletelineagesortingphenomenondetectedinthisstudy(Fig.3).Additionally,theincreasinglyusedmethodofmatrix-assistedlaser desorption/ionization time-of-flightmass spectrometry(MALDI-TOFMS)givespromisingresultsforrapidandaccuratediscrimination between A. fumigatus and other clinically relevant aspergillifromsect.Fumigati(Alanioetal.2011,Nakamuraetal.2017).Thedevelopmentofmorerobust,curatedandac-cessibleMALDI-TOFspectrumdatabasesshouldenabletheimplementationofMALDI-TOFMSforroutineidentificationoflesscommonaspergilliinfuture.SeveralPCRassaystargetingprotein-coding or microsatellite loci have also been developed andshowgoodefficiencyindiscriminationoflesscommonpath-ogenicspeciesinsect.Fumigati (Araujoetal.2012,Fernandez- Molinaetal.2014,Chongetal.2017).

Mating behaviour in the AVSC – heterothallic speciesTheincreasingavailabilityofPCR-basedtoolsforidentificationoffungalgenesresponsibleforsexualandsomaticincompati-bilityhasfacilitatedtheabilitytoinducethesexualmorphinfungi(Dyer&O’Gorman2011).Thecharacterisationofmatingtype(MAT)genesbecameroutinewheninducingthesexualmorph of heterothallic species in vitro.Using thisapproach,thesexualmorphhasbeen inducedrecently inat leastfivemembersofsect.Fumigati (O’Gormanetal.2009,Barrsetal.2013,Swilaimanetal.2013,Novákováetal.2014,Hubkaet al. 2017).Thediscoveryof a sexual cycle in pathogenicandmycotoxigenicfungihasmanyimportantconsequences,becausefungiwithafunctionalsexualcyclehavegreaterpo-tential to increase their virulence and to develop resistance to antifungals,fungicides,etc.(Kwon-Chung&Sugui2009,Leeetal.2010,Swilaimanetal.2013).Here,weinducedthesexualmorphwitharelativelyhighrateofsuccess in A. felis, A. udagawae and A. wyomingensis(Fig.6).We demonstrated that ascospores of these three species have relativelystablemorphology(Fig.7)andthatthesizeoftheirascosporesissignificantlydifferentfromoneanother(Fig.6)andcanbedifferentiatedbyequatorialcrestlength(Table5).However,notalloppositematingtypestrainsofthesamespe-cies are able to produce ascomata in vitro as demonstrated in allthreementionedspecies(Fig.6).Asimilardeclineinmatingcapacity was also demonstrated in previous studies on the AVSC(Suguietal.2010,Novákováetal.2014),butalsoinA. lentulus(Swilaimanetal.2013)andA. fumigatus(O’Gormanetal.2009).Thesespeciesrequirerelativelyrigidconditionstocompletetheirsexualcycleandsomecrossesproducelownumbersoforinfertileascomataordonotmateatall(Balajeeetal.2006,Yaguchietal.2007,Kwon-Chung&Sugui2009,Suguietal.2010,Novákováetal.2014).Forinstance,fertilitybetween two opposite mating-type isolates may be influenced by the vegetative incompatibility genes (Olarteet al. 2015),regulators of cleistothecium development and hyphal fusion (Szewczyk&Krappmann2010).Wewerenotabletoinducethesexualmorphinthreeheterothal-licmembersoftheAVSC,i.e.,A. acrensis, A. arcoverdensis and A. pseudoviridinutans, despite the relatively high number of opposite mating-type strains that was available for the mating

Page 29: Unravelling species boundaries in the Aspergillus ... · Movile cave, sediment, 2014 MAT1-2-1 CCF 4961 (S975) Romania, Movile cave, Lake cave a 2014 MAT1-1-1 Culture IFM 61334 T =

169V.Hubkaetal.:SpeciesdelimitationandhybridizationinsectionFumigati

assays (Fig.6).Itisnotclearifthesespeciesrequiredifferentconditionsforsuccessfulmating,ifthereareotherunidentifiedpre-zygoticmating barriers between oppositemating typestrains,oriftheyhavelosttheabilitytocompletetheirsexualcycle.TheevidencethattwoofthesespecieswereabletomatewithdifferentspeciesfromAVSCmakesthelastpossibilityim-probable(Fig.8,10).ThesehybridscanbedifferentiatedfromA. udagawae and A. felis,respectively,bytheirdimensions(Fig.8,10)andsurfaceornamentation(Fig.9,11;Table5).Itdemon-strates that both A. acrensis and A. pseudoviridinutans should be treatedasseparate taxonomicentities from their relatedspecies.Similardeviationsinsizeandsurfaceornamentationofascosporesweredemonstratedinotherinterspecifichybrids(Fig.8–11)whentheywerecomparedtoparentalspecies.

Mating behaviour in the AVSC – homothallic speciesAlthoughhomothallicspeciesprevailoverheterothallicinsect.Fumigati (Fig. 1), only twohomothallic species are presentin theAVSC. It is supposed that heterothallism is ancestraltohomothallisminfungi(Nauta&Hoekstra1992), includingAspergillus (Rydholmetal.2007,Leeetal.2010).Itisobviousfrom phylogenetic studies across different subgenera of Asper-gillus, that reproductive strategy is evolutionary conservative andhomothallicaswellasheterothallic(orasexual)speciesaretypicallyclusteredincladeswithauniformreproductivestrategy.For instance insubg.Aspergillus, the31currentlyacceptedspeciesof sect.Aspergillus areall homothallic (Chenet al.2016a)whilesistersect.Restricti encompasses20asexualandonly one distantly related homothallic species, A. halophilicus (Sklenářetal.2017).Similarly,subg.Polypaecilum harbours onlyasexualspecies(Martinellietal.2017,Tanneyetal.2017).Asexualspeciesalsopredominateinsubg.Circumdati(Jurjevićetal.2015)althoughmost,ifnotall,probablyhaveacrypticsexualcycleashighlightedbysexualmorph induction inA. flavus, A. nomius, A. parasiticus, A. terreus and A. tubingen-sis (Hornetal.2009a,b,2011,2013,Arabatzis&Velegraki2013).Astrikinglydifferentsituationispresent insubgeneraNidulantes(Chenetal.2016a,Hubkaetal.2016a),Fumigati (Fig.1)andCremei (Hubkaetal.2016b) where heterothallic and homothallic species interchange like a mosaic along the phylogenetictree.Common genetic distances between closely related sister spe-ciesacrossaspergilliusuallyrangebetween2–4%inbenA and CaMlociand1–2%inRPB2locus;thesituationinAVSCisverysimilar(Table7).Interestingly,thereareonlyfewexamplesofcloselyrelatedhomothallicandheterothallic/asexualspeciesin Aspergillusdespite their commonorigin.Geneticsimilari-ties between related couples of homothallic and heterothallic/asexualexceeding95%arerare,withonlytwoexamplesinsubg.Circumdati andoneinsubg.Cremei(Table8).SectionFumigatiisexceptionalbecauseitcontainsatleastfivepairsofhighlyrelatedhomothallicandheterothallicspecies(Table8;Fig.1).Aspergillus acrensis, described here, and A. aureolus represent the most closely related pair across genus Aspergil-lus(Table8)andthuscouldbeanidealmodelforstudyingtheevolutionofreproductivemodes.Ifweacceptthehypothesisabout the derived origin of homothallic species, it is probable that A. aureolus evolved in the lineage of A. acrensis rela-tivelyrecently,duetotheextremelylowgeneticdistancesofbothspecies.Thisisalsolikelythereasonwhythemultilocus speciesdelimitationmethodSTACEYandalsosomesingle-locus methods failed to segregate A. acrensis from A. aureolus (Fig.2)inthisstudy.

Interspecific hybridization in fungi and its consequencesInterspecifichybridizationisanimportantprocessaffectingspe-ciation and adaptation of micro- and macroorganisms, however, S

pecies

Geneticsimilaritiesbetweenspecies:b

enA

/ CaM

/ R

PB

2 (%

)

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

1.

A

. acr

ensi

s –

2.

A

. arc

over

dens

is

94.5/95.2/98.0

3.

A

. aur

eolu

s99.6/98.8/99.0

94.5/95.6/98.1

4.

A

. fel

is

92.0/95.6/97.7

93.4/96.8/97.6

92.4/95.9/97.8

5.

A

. fra

nkst

onen

sis

95.3/94.7/98.0

95.6/97.1/98.3

95.3/94.9/98.2

92.6/96.2/97.7

6.

A

. pse

udov

iridi

nuta

ns

94.7/95.2/97.6

95.7/96.0/97.4

94.9/95.5/97.8

95.5/97.6/98.1

96.0/95.3/97.5

7.

A

. sia

men

sis

96.6/95.8/98.9

95.5/95.6/98.5

96.7/96.0/98.9

93.0/95.7/98.2

95.6/94.7/98.0

95.5/95.4/97.9

8.

A

. uda

gaw

ae

97.4/96.8/99.0

94.7/95.6/98.2

97.4/97.1/99.1

92.0/95.9/97.9

95.3/95.1/98.1

94.5/95.6/97.7

96.2/96.3/99.1

9.

A

. viri

dinu

tans

95.3/94.8/98.6

96.5/97.3/99.1

95.5/95.1/98.6

93.8/95.4/98.2

97.5/97.8/98.8

96.5/94.7/97.9

96.3/95.3/98.8

95.6/95.3/98.8

10.

A

. wyo

min

gens

is

95.8/96.5/98.6

94.5/96.0/97.8

96.0/96.5/98.3

92.1/96.3/97.5

95.4/95.8/97.6

94.9/95.9/97.3

96.9/96.5/98.9

95.8/96.9/98.6

95.6/95.7/98.3

–1 nucleotideBLA

STwithdefaultsetting(http://blast.ncbi.nlm.nih.gov/Blast.cgi).

Tabl

e 7G

eneticsimilaritiesbetweentheex-typeisolatesofA

sper

gillu

s vi

ridin

utan

scomplexmem

bersbasedonidentitiesfromBLA

STsimilaritysearch

1 .

Page 30: Unravelling species boundaries in the Aspergillus ... · Movile cave, sediment, 2014 MAT1-2-1 CCF 4961 (S975) Romania, Movile cave, Lake cave a 2014 MAT1-1-1 Culture IFM 61334 T =

170 Persoonia–Volume41,2018

relativelylittleisstillknownaboutthefrequencyofhybridiza-tioninfungianditsroleinevolutionoffungalspecies.Fungalhybridsmayformeitherbyapartialorcompletesexualcycleorbyaparasexualprocess.Matingbetweentwospeciesmaybepreventedbypre-zygoticbarriers(e.g.,gameterecognition)and variouspost-zygotic barriers (developmental problems,hybridviabilityandabilitytoreproduce,etc.).Thedisagreementbetween phylogenetic/morphological species concepts and bio-logical species compatibilities has been repeatedly described infungi.Phylogeneticdivergenceinsomefungalgroupsmighthave preceded development of reproductive barriers as shown byinterspecifichybridsinduced in vitro between primary hu-man and animal pathogenic Trichophytonspecies(Kawasakietal.2009,2010,Anzawaetal.2010,Kawasaki2011),op-portunistic pathogenic Candida albicans and C. dubliniensis (Pujol et al. 2004),members ofAspergillus sect.Fumigati (Suguietal.2014,Talbotetal.2017),mycotoxigenicA. flavus and A. parasiticus(Olarteetal.2015),A. flavus and A. mini-sclerotigenes(Damann&DeRobertis2013),phytopathogenicspecies from the Fusarium graminearumcomplex(Bowden&Leslie1999)andspeciesofNeurospora(Dettmanetal.2003).Naturalinterspecifichybridsresultingfromrecombinationbe-tweenspeciesorparasexualreproductionaremostcommonlyreported andhavebeenextensively studied in saprophyticyeasts(Gonzálezetal.2008,Sipiczki2008,Nakaoetal.2009,Louisetal.2012), theplantendophyteEpichloë (Coxetal.2014,Charltonetal.2014,Shymanovichetal.2017)andinvarious plant pathogenic fungi including species of Fusarium graminearumcomplex(O’Donnelletal.2004,Starkeyetal.2007),Ophiostoma (Brasier et al. 1998,Solla et al. 2008),Microbotryum (Gladieuxetal.2010),Melampsora (Spiers&Hopcroft1994,Newcombeetal.2000),Botrytis (Staatsetal.2005),Verticillium(Inderbitzinetal.2011)andHeterobasidion (Gonthieretal.2007,Lockmanetal.2014).

Considering that in vitro induction of hybrids is relatively suc-cessful, it is surprising that reports on the isolation of naturally occurringhybridsareinfrequentinhumanandanimalpatho-genicfungi.Itsuggeststhatpost-zygoticmatingbarriersplayafundamentalroleinthemaintenanceofspeciesboundaries.Naturally occurring hybrids have been detected in yeasts and dimorphic fungi, including between Candidaspp.(Schröderetal.2016),Malassezia spp.(Wuetal.2015),Cryptococcus neo-formans and C. gattii (Boversetal.2006,2008,Kwon-Chung&Varma2006,Aminnejadetal.2012)andCoccidioides immitis and C. posadasii (Johnsonet al. 2015).However, to date,reportsonthesehybridsinfilamentousfungiarerestrictedtothe Neocosmospora solanicomplex(Shortetal.2013,2014).Speciesdefinitionhasbecomeacontroversialissueinsomeof thesespeciescomplexeswithnaturallyoccurringhybridsbecause of differing opinions on species concepts among taxonomists (Kwon-Chung&Varma2006,Kawasaki 2011,Kwon-Chungetal.2017).Evenincaseswhereinterspecifichybridswithhighfitnessandfertility can be demonstrated, the intensity of gene flow between naturalpopulationsmustbesufficienttoopposegeneticdriftinordertohaveasignificantimpactongeneticisolationofspecies.In fungi, these processes cannot be evaluated rigorously by in vitromatingassays,asthesecannotbeextrapolatedfullytoanaturalsetting(Starkeyetal.2007,Suguietal.2014,Hubkaetal.2015a).Indeed,naturalinterspecifichybridshaveneverbeenreported for the majority of species that readily produce hybrids in vitro, including Aspergillus, dermatophytes and Neurospora.TheMSCandGCPSRapproachesprovidepracticaltoolsfor evaluatingthesignificanceofgeneflowbetweennaturalpopu-lations and for assessing species limits.The interpretationof in vitro mating assays without a robust phylogeny is thus controversial, because a number of clearly phylogenetically, morphologically and ecologically distinct species lack effective

Homothallicspecies(section)–closestheterothallic/anamorphicspecies Geneticsimilarities(%): benA / CaM / RPB21

subg.Aspergillus A. halophilicus(Restricti)–anyspecies ≤89 A. montevidensis(Aspergillus)–anyspecies ≤88

subg.Circumdati A. alliaceus(Flavi)–A. lanosus 96.4/95.7/99.1 A. muricatus(Circumdati)–A. ochraceus ≤91 A. neoflavipes(Flavipedes)–A. micronesiensis 94.8/91.9/97.5 A. neoniveus(Terrei)–anyspecies ≤90

subg.Cremei A. chrysellus (Cremei)–A. wentii 97.1/97.2/97.7 A. cremeus (Cremei) – any species ≤91 A. stromatoides (Cremei) – any species ≤93

subg.Fumigati A. acanthosporus(Clavati)–A. clavatus ≤93 A. aureolus(Fumigati)–A. acrensis 99.6/98.8/99.0 A. cejpii(Clavati)–anyspecies ≤88 A. fischeri(Fumigati)–A. fumigatus 94.3/94.5/97.9 A. posadasensis(Clavati)–A. clavatus 95.1/92.6/93.5 A. quadricinctus (Fumigati)–A. duricaulis 92.6/95.0/99.1 A. siamensis(Fumigati)–A. wyomingensis 97.1/96.5/98.9 A. waksmanii (Fumigati)–A. nishimurae 97.8/98.4/96.6

subg.Nidulantes A. discophorus (Nidulantes, A. aeneus clade)–A. karnatakaensis ≤92 A. falconensis (Nidulantes, A. nidulans clade)–A. recurvatus ≤93 A. monodii (Usti)–anyspecies ≤90 A. nidulans (Nidulantes, A. nidulans clade)–anyspecies ≤92 A. pluriseminatus (Nidulantes, A. multicolor clade)–anyspecies ≤92 A. purpureus (Nidulantes, A. spelunceus clade)–anyspecies ≤90 A. undulatus (Nidulantes, A. stellatus clade)–anyspecies ≤891Ifnoneofthreegeneticsimilaritiesexceed95%,thevaluesarereplacedbyonlyonehighestvalue(usuallyRPB2locus).

Table 8Geneticsimilaritiesbetweenselectedhomothallicspeciesandtheirmostcloselyrelatedheterothallic/anamorphicrelativesacrossdiversityofthegenus Aspergillus.

Page 31: Unravelling species boundaries in the Aspergillus ... · Movile cave, sediment, 2014 MAT1-2-1 CCF 4961 (S975) Romania, Movile cave, Lake cave a 2014 MAT1-1-1 Culture IFM 61334 T =

171V.Hubkaetal.:SpeciesdelimitationandhybridizationinsectionFumigati

reproductivebarriers.Inaddition,theevaluationofbiologicalspecieslimitsusingmatingassaysrequiresdeterminationofthefitnessandfertilityofprogeny,whichisdemandinginbothtimeandcost.In general, mating success between different species under laboratoryconditionsismuchlowercomparedtointraspecificmating, suggesting strong reproductive isolation between speciesandadherencetothebiologicalspeciesconcept.Inagreementwiththis,onlyalimitednumberofstrainswithex-ceptionalmatingcapacityareusuallycapableofinterspecifichybridizationwithstrainsofdifferentspecies,e.g.,A. udagawae strainIFM46972(Fig.8)orA. pseudoviridinutansstrainIFM59502(Fig.10).Severalstudiesdemonstratedthatinterspecifichybridsexpressgeneticabnormalitiesorhavedecreasedfertilityandviability.GeneticanalysisoftheprogenyofacrossbetweenF. asiaticum × F. graminearum detected multiple abnormalities that were absent in intraspecific crossesofF. graminearum, i.e., pro-nounced segregation distortion, chromosomal inversions, and recombinationinseveralstudiedlinkagegroups(Jurgensonetal.2002,Galeetal.2005).MatingsbetweenC. neoformans × C. gattiiproducedonlyalowpercentageofviableprogeny.Ithas been suggested that C. neoformans and C. gattii produce onlystablediploidhybrids,butnottruerecombinants(Kwon‐Chung&Varma2006).AlthoughOlarteetal.(2015)obtainedhybrid progeny of A. flavus and A. parasiticus, fertile crosses were rare and involved only one parental strain of A. flavus.Viableascosporeswereextremelyrare,suggestingextensivegeneticincompatibilityandpost-zygoticincompatibilitymecha-nisms.Morphologically, the progeny differed fromparentalstrains in growth rate, sclerotium production, stipe length, co-nidialheadseriationandconidialfeatures(Olarteetal.2015).Decreasedviabilityofhybridascosporeswasalsodetectedamong Neurospora spp.(Dettmanetal.2003)andinAspergil-lussect.Fumigati, in addition to abnormalities in their surface ornamentationvisualisedbySEM(Suguietal.2014),whichisinagreementwiththepresentstudy(Fig.9,11).Apartfromas-cosporeornamentation,wealsofoundsignificantdifferencesinhybridascosporedimensionsfromparentalspecies(Fig.8,10).Therelativelyrecentglobalizationoftradeinhorticulturalandagricultural plants, and introduction of non-native plant species has resulted in the inadvertent introduction of alien plant patho-gens into non-endemic areas, contributing to the emergence of somedevastatingplantdiseases(Brasier2001,Mehrabietal.2011,Dickieetal.2017).Anthropogenicactivitiesorchangesinthedistributionoffungi(e.g.,inresponsetoclimatechanges)may bring together related, previously allopatric pathogenic species.Subsequentinterspecifichybridizationcouldgiveriseto pathogens with new features, including adaptation to new niches and host species, and varying degrees of virulence, as evidenced in Verticillium longisporum, Zymoseptoria pseudo-tritici, Blumeria graminis f.sp. triticale, and hybrids between Ophiostoma novo-ulmi and O. ulmi(Brasier2001,Schardl&Craven2003,Depotteretal.2016).As far as we know, the occurrence of Aspergillusinterspecifichybrids in nature has not been proven despite successful hybri-dizationofsomespeciesin vitro.However,thereisnoreasontoassumethatthisphenomenondoesnotoccuroccasionally.Geneticrecombinationsimilartothatfoundinintraspecificmat-ing occurred in half of the progeny produced by mating A. fumi-gatus with A. felis, while the other half were probably diploids or aneuploids(Suguietal.2014).Progenyresultingfrommatingbetween A. flavus and A. minisclerotigenes was fertile when crossedwithparentalstrainsandthefrequencyofsuccessfulmatings was similar to that within pairs of A. flavus and A. mini- sclerotigenes strains, respectively (Damann&DeRobertis

2013).Ultimately,theviablehybridmustpresentsomecharac-teristicsthatpromotesitssurvival(Turneretal.2010,Mixão&Gabaldón2018).ForinstanceOlarteatal.(2015)showedthatsome F1 progeny of A. flavus × A. parasiticus produced higher aflatoxinconcentrationscomparedtomidpointparentaflatoxinlevels,andsomehybridssynthesizedGaflatoxinsthatwerenotproducedbytheparents.Thissuggestedthathybridizationisanimportantdiversifyingforcegeneratingnoveltoxinprofiles(Olarteetal.2015).Althoughinterspecifichybridizationinas-pergilli is a relatively newly discovered phenomenon, it is likely tohaveplayedanimportantroleintheevolutionofthegenus.Therelationshipbetweenhybridizationandchangesinvirulencepotential is not well understood in human and animal fungal pathogens but its role in the emergence of novel plant fungal pathogensiswelldocumented,asdiscussed.Theevidenceofbiological compatibility between major pathogens in Aspergillus sect.Fumigatishedsnewlightonpossibleinterspecifictransferof virulence genes, genes responsible for antifungal resist-ance, and other genes influencing adaptation of these fungi to achangingenvironment.Furtherstudiesshouldelucidatetowhatextentinterspecifichybridizationshapedtheevolutionoftheseopportunisticpathogens.

CONCLUSIONS

Based on consensus results of species delimitation methods and after evaluation of mating assay results and phenotypic data, wenowrecognise10specieswithintheAVSC.Thisnumbercomprises nine previously recognised and one new species proposedhere.Aspergillus pseudofelis and A. parafelis are placed in synonymy with A. felis.AllfourgeneticlociusedforphylogeneticanalysisacrosstheAVSChavesufficientvariabilityforreliablespeciesidentificationandcanbeusedasDNAbar-codes.Thoughmorelaborious,theMSCareasuitabletoolfordelimitation of genetically diverse cryptic species in cases where classical phylogenetic, morphological and mating compatibility datadonotyieldsatisfactoryresults.

Acknowledgements This research was supported by the project of the CharlesUniversityGrantAgency(GAUK1434217),CzechScienceFoun-dation (No. 17-20286S), CharlesUniversityResearchCentre programNo.20406,theprojectBIOCEV(CZ.1.05/1.1.00/02.0109)providedbytheMinistryofEducation,YouthandSportsofCRandERDF,andbyaThomp-sonResearchFellowshipfromtheUniversityofSydney.WethankMiladaChudíčkováandAlenaGabrielová for their invaluable assistance in thelaboratory,CCFcollectionstaff(IvanaKelnarováandAdélaKovaříčková)forlyophilizationofthecultures,MiroslavHylišforassistancewithscanningelectronmicroscopy,StephenW.Peterson,KyungJ.Kwon-Chung,AdrianM.Zelazny,MariaDoloresPinheiroandDirkStubbeforprovidingimportantculturesforthisstudy.VitHubkaisgratefulforsupportfromtheCzechoslovakMicroscopySociety(CSMSscholarship2016).

REFERENCES

AlanioA,BerettiJ‐L,DauphinB,etal.2011.Matrix‐assisted laser desorp-tion ionization time‐of‐flight mass spectrometry for fast and accurate identificationofclinicallyrelevantAspergillusspecies.ClinicalMicrobiologyandInfection17:750–755.

Alastruey-IzquierdoA,MelladoE,PeláezT,etal.2013.Population-basedsurveyoffilamentousfungiandantifungalresistance inSpain(FILPOPStudy).AntimicrobialAgentsandChemotherapy57:3380–3387.

Alcazar-FuoliL,MelladoE,Alastruey-IzquierdoA,etal.2008.AspergillussectionFumigati:Antifungalsusceptibilitypatternsandsequence-basedidentification.AntimicrobialAgentsandChemotherapy52:1244–1251.

AminnejadM,DiazM,ArabatzisM,etal.2012.IdentificationofnovelhybridsbetweenCryptococcusneoformansvar.grubiiVNIandCryptococcusgattiiVGII.Mycopathologia173:337–346.

AnzawaK,KawasakiM,MochizukiT,etal.2010.SuccessfulmatingofTricho-phytonrubrumwithArthrodermasimii.MedicalMycology48:629–634.

Page 32: Unravelling species boundaries in the Aspergillus ... · Movile cave, sediment, 2014 MAT1-2-1 CCF 4961 (S975) Romania, Movile cave, Lake cave a 2014 MAT1-1-1 Culture IFM 61334 T =

172 Persoonia–Volume41,2018

ArabatzisM,VelegrakiA.2013.Sexual reproduction in theopportunistichumanpathogenAspergillusterreus.Mycologia105:71–79.

AraujoR,AmorimA,GusmãoL.2012.Diversityandspecificityofmicro-satelliteswithinAspergillussectionFumigati.BMCMicrobiology12:154.

BalajeeSA,GribskovJ,BrandtM, et al. 2005a.Mistaken identity:Neo-sartoryapseudofischeriand itsanamorphmasqueradingasAspergillusfumigatus.JournalofClinicalMicrobiology43:5996–5999.

BalajeeSA,GribskovJL,HanleyE, et al. 2005b.Aspergillus lentulus sp.nov.,anewsiblingspeciesofA.fumigatus.EukaryoticCell4:625–632.

BalajeeSA,KanoR,Baddley JW,et al. 2009.Molecular identificationofAspergillus species collected for the transplant-associated infection surveil-lancenetwork.JournalofClinicalMicrobiology47:3138–3141.

BalajeeSA,NickleD,VargaJ,etal.2006.MolecularstudiesrevealfrequentmisidentificationofAspergillusfumigatusbymorphotyping.EukaryoticCell5:1705–1712.

BarrsV,BeattyJ,DhandNK,etal.2014.Computedtomographicfeaturesoffelinesino-nasalandsino-orbitalaspergillosis.TheVeterinaryJournal201:215–222.

BarrsVR,HallidayC,MartinP,etal.2012.Sinonasalandsino-orbitalas-pergillosisin23cats:Aetiology,clinicopathologicalfeaturesandtreatmentoutcomes.TheVeterinaryJournal191:58–64.

BarrsVR,VanDoornTM,HoubrakenJ,etal.2013.Aspergillusfelissp.nov.,anemergingagentof invasiveaspergillosis inhumans,catsanddogs.PLoSOne8:e64871.

BouckaertRR.2010.DensiTree:makingsenseofsetsofphylogenetictrees.Bioinformatics26:1372–1373.

BouckaertR[R],Heled J, KühnertD, et al. 2014.BEAST2: a softwareplatformforBayesianevolutionaryanalysis.PLoSComputationalBiology10:e1003537.

BoversM,HagenF,KuramaeEE,etal.2006.UniquehybridsbetweenthefungalpathogensCryptococcusneoformansandCryptococcusgattii.FEMSYeastResearch6:599–607.

BoversM,HagenF,KuramaeEE,etal.2008.AIDSpatient death causedby novel Cryptococcus neoformans ×C.gattiihybrid.EmergingInfectiousDiseases14:1105–1108.

BowdenRL, Leslie JF. 1999.Sexual recombination inGibberella zeae.Phytopathology89:182–188.

BrasierCM.2001.Rapidevolutionofintroducedplantpathogensviainter-specifichybridization.Bioscience51:123–133.

BrasierCM,KirkSA,PipeND,etal.1998.Rareinterspecifichybridsinnaturalpopulationsof theDutchelmdiseasepathogensOphiostomaulmiand O.novo-ulmi.MycologicalResearch102:45–57.

CarboneI,KohnLM.1999.Amethodfordesigningprimersetsforspeciationstudiesinfilamentousascomycetes.Mycologia91:553–556.

CarstensBC,PelletierTA,ReidNM, et al. 2013.How to fail at speciesdelimitation.MolecularEcology22:4369–4383.

CharltonND,CravenKD,AfkhamiME,etal.2014.InterspecifichybridizationandbioactivealkaloidvariationincreasesdiversityinendophyticEpichloëspeciesofBromuslaevipes.FEMSMicrobiologyEcology90:276–289.

ChenA,FrisvadJ,SunB,etal.2016a.AspergillussectionNidulantes(for-merlyEmericella):polyphasictaxonomy,chemistryandbiology.StudiesinMycology84:1–118.

ChenA,VargaJ,FrisvadJC,etal.2016b.PolyphasictaxonomyofAspergil-lussectionCervini.StudiesinMycology85:65–89.

ChenAJ,HubkaV,FrisvadJC,etal.2017.PolyphasictaxonomyofAspergil-lussectionAspergillus(formerlyEurotium),anditsoccurrenceinindoorenvironmentsandfood.StudiesinMycology88:37–135.

ChongGM,Vonk,AG,MeisJF,etal.2017.InterspeciesdiscriminationofA.fumigatusandsiblingsA.lentulusandA.felisoftheAspergillussectionFumigati using theAsperGenius®assay.DiagnosticMicrobiology andInfectiousDisease87:247–252.

CoelhoD,SilvaS,Vale-SilvaL,etal.2011.Aspergillusviridinutans:anagentofadultchronicinvasiveaspergillosis.MedicalMycology49:755–759.

CoxMP,DongT,ShenG,etal.2014.Aninterspecificfungalhybridrevealscross-kingdom rules for allopolyploid gene expression patterns.PLoSGenetics10:e1004180.

DamannK,DeRobertisC.2013.MatingofAspergillusflavus× Aspergillus minisclerotigenes hybrids: are they functionally mules? Phytopathology 103:S2.32–S2.33.

DegnanJH,RosenbergNA.2006.Discordanceofspeciestreeswiththeirmostlikelygenetrees.PLoSGenetics2:e68.

Depotter JR,SeidlMF,WoodTA, et al. 2016. Interspecific hybridizationimpactshost rangeandpathogenicityoffilamentousmicrobes.CurrentOpinioninMicrobiology32:7–13.

DettmanJR,JacobsonDJ,TaylorJW.2006.MultilocussequencedatarevealextensivephylogeneticspeciesdiversitywithintheNeurosporadiscretacomplex.Mycologia98:436–446.

DettmanJR,JacobsonDJ,TurnerE,etal.2003.Reproductiveisolationandphylogenetic divergence in Neurospora: Comparing methods of species recognitioninamodeleukaryote.Evolution57:2721–2741.

DickieIA,BuffordJL,CobbRC,etal.2017.Theemergingscienceoflinkedplant-fungalinvasions.NewPhytologist215:1314–1332.

DomschKH,GamsW,AndersonT-H.2007.Compendiumofsoilfungi,2ndtaxonomicallyrevisededition.IHW-Verlag,Eching.

DyerPS,O’GormanCM.2011.Afungalsexualrevolution:AspergillusandPenicilliumshowtheway.CurrentOpinioninMicrobiology14:649–654.

EamvijarnA,ManochL,ChamswarngC,etal.2013.Aspergillussiamensissp.nov.fromsoilinThailand.Mycoscience54:401–405.

Fernandez-MolinaJV,Abad-Diaz-de-CerioA,Sueiro-OlivaresM,etal.2014.RapidandspecificdetectionofsectionFumigatiandAspergillusfumigatusinhumansamplesusinganewmultiplexreal-timePCR.DiagnosticMicro-biologyandInfectiousDisease80:111–118.

Flot J-F.2015.Speciesdelimitation’s comingofage.SystematicBiology64:897–899.

FontanetoD,FlotJ-F,TangCQ.2015.GuidelinesforDNAtaxonomy,withafocusonthemeiofauna.MarineBiodiversity45:433–451.

FrisvadJC,LarsenTO.2015a.ExtrolitesofAspergillusfumigatusandotherpathogenicspeciesinAspergillussectionFumigati.FrontiersinMicrobio-logy6:1485.

FrisvadJC,LarsenTO.2015b.Chemodiversity in the genusAspergillus.AppliedMicrobiologyandBiotechnology99:7859–7877.

FrisvadJC,ThraneU.1987.Standardizedhigh-performanceliquidchroma-tographyof182mycotoxinsandotherfungalmetabolitesbasedonalkyl-phenone retention indicesandUV-VIS spectra (diodearraydetection).JournalofChromatographyA404:195–214.

FrisvadJC,ThraneU.1993.Liquidcolumnchromatographyofmycotoxins.In:BetinaV(eds),Chromatographyofmycotoxins:techniquesandapplica-tions.JournalofChromatographyLibrary54:253–372.

FujisawaT,BarracloughTG.2013.Delimitingspeciesusingsingle-locusdataandtheGeneralizedMixedYuleCoalescentapproach:arevisedmethodandevaluationonsimulateddatasets.SystematicBiology62:707–724.

GaleLR,BryantJ,CalvoS,etal.2005.Chromosomecomplementofthefungal plant pathogen Fusarium graminearum based on genetic and phy-sicalmappingandcytologicalobservations.Genetics171:985–1001.

GautierM,NormandA-C,RanqueS.2016.PreviouslyunknownspeciesofAspergillus.ClinicalMicrobiologyandInfection22:662–669.

GladieuxP,VerckenE,FontaineMC,etal.2010.Maintenanceof fungalpathogenspeciesthatarespecializedtodifferenthosts:allopatricdiver-genceand introgression through secondary contact.MolecularBiologyandEvolution28:459–471.

GlassNL,DonaldsonGC.1995.DevelopmentofprimersetsdesignedforusewiththePCRtoamplifyconservedgenesfromfilamentousascomycetes.AppliedandEnvironmentalMicrobiology61:1323–1330.

GonthierP,NicolottiG,LinzerR,etal.2007. InvasionofEuropeanpinestandsbyaNorthAmericanforestpathogenanditshybridizationwithanativeinterfertiletaxon.MolecularEcology16:1389–1400.

GonzálezSS,BarrioE,QuerolA.2008.MolecularcharacterizationofnewnaturalhybridsofSaccharomycescerevisiaeandS.kudriavzeviiinbrew-ing.AppliedandEnvironmentalMicrobiology74:2314–2320.

HeledJ,DrummondAJ.2010.Bayesian inferenceof species trees frommultilocusdata.MolecularBiologyandEvolution27:570–580.

HorieY,MiyajiM,NishimuraK,etal.1995.NewandinterestingspeciesofNeosartoryafromBraziliansoil.Mycoscience36:199–204.

HornBW,MooreGG,CarboneI.2009a.SexualreproductioninAspergillusflavus.Mycologia101:423–429.

HornBW,MooreGG,CarboneI.2011.Sexual reproduction in aflatoxin-producingAspergillusnomius.Mycologia103:174–183.

HornBW,OlarteRA,PetersonSW, et al. 2013.Sexual reproduction inAspergillustubingensisfromsectionNigri.Mycologia105:1153–1163.

HornBW,Ramirez-PradoJH,CarboneI.2009b.ThesexualstateofAspergil-lusparasiticus.Mycologia101:275–280.

HothornT,BretzF,WestfallP. 2008.Simultaneous inference in generalparametricmodels.BiometricalJournal50:346–363.

HoubrakenJ,SpierenburgH,FrisvadJC.2012.Rasamsonia,anewgenuscomprisingthermotolerantandthermophilicTalaromycesandGeosmithiaspecies.AntonievanLeeuwenhoek101:403–421.

HubkaV,DudováZ,KubátováA,etal.2017.TaxonomicnoveltiesinAsper-gillussectionFumigati:A.tasmanicussp.nov.,inductionofsexualstateinA. turcosusandoverviewof related species.PlantSystematicsandEvolution303:787–806.

HubkaV,KolaříkM.2012.β-tubulinparaloguetubCisfrequentlymisidentifiedasthebenAgeneinAspergillussectionNigritaxonomy:primerspecificitytestingandtaxonomicconsequences.Persoonia29:1–10.

HubkaV,KolaříkM,KubátováA, et al. 2013a.Taxonomical revision ofEurotiumandtransferofspeciestoAspergillus.Mycologia105:912–937.

Page 33: Unravelling species boundaries in the Aspergillus ... · Movile cave, sediment, 2014 MAT1-2-1 CCF 4961 (S975) Romania, Movile cave, Lake cave a 2014 MAT1-1-1 Culture IFM 61334 T =

173V.Hubkaetal.:SpeciesdelimitationandhybridizationinsectionFumigati

HubkaV,KubatovaA,MallatovaN,etal.2012.Rareandnewaetiologicalagentsrevealedamong178clinicalAspergillusstrainsobtainedfromCzechpatientsandcharacterisedbymolecularsequencing.MedicalMycology50:601–610.

HubkaV,NissenC,JensenR,etal.2015a.DiscoveryofasexualstageinTrichophyton onychocola, a presumed geophilic dermatophyte isolated fromtoenailsofpatientswithahistoryofT.rubrumonychomycosis.Medi-calMycology53:798–809.

HubkaV,NovákováA,JurjevićŽ,etal.2018.PolyphasicdatasupportthesplittingofAspergilluscandidusintotwospecies;proposalofA.dobrogensissp.nov.InternationalJournalofSystematicandEvolutionaryMicrobiology68:995–1011.doi:https://doi.org/10.1099/ijsem.0.002583.

HubkaV,NovákováA,KolaříkM,etal.2015b.RevisionofAspergillussec-tionFlavipedes:sevennewspeciesandproposalofsectionJanisect.nov.Mycologia107:169–208.

HubkaV,NovákováA,PetersonSW,etal.2016a.AreappraisalofAspergillussection Nidulantes with descriptions of two new sterigmatocystin producing species.PlantSystematicsandEvolution302:1267–1299.

HubkaV,NovákováA,SamsonR,etal.2016b.Aspergilluseuropaeussp.nov.,awidelydistributedsoil-bornespeciesrelatedtoA.wentii(sectionCremei).PlantSystematicsandEvolution302:641–650.

HubkaV,PetersonSW,FrisvadJC,etal.2013b.Aspergilluswaksmaniisp.nov.andAspergillusmarvanovaesp.nov.,twocloselyrelatedspeciesinsectionFumigati. International Journal ofSystematic andEvolutionaryMicrobiology63:783–789.

InderbitzinP,DavisRM,BostockRM,etal.2011.TheascomyceteVerticil-liumlongisporumisahybridandaplantpathogenwithanexpandedhostrange.PLoSOne6:e18260.

JohnsonSM,CarlsonEL,PappagianisD.2015.Coccidioidesspeciesdeter-mination:doessequenceanalysisagreewithrestrictionfragmentlengthpolymorphism?Mycopathologia179:373–379.

JonesG.2017.Algorithmicimprovementstospeciesdelimitationandphylo-genyestimationunderthemultispeciescoalescent.JournalofMathematicalBiology74:447–467.

JurgensonJ,BowdenR,ZellerK,etal.2002.AgeneticmapofGibberellazeae(Fusariumgraminearum).Genetics160:1451–1460.

JurjevićŽ,KubátováA,KolaříkM, et al. 2015.TaxonomyofAspergillussectionPetersoniisect.nov.encompassingindoorandsoil-bornespecieswith predominant tropical distribution.PlantSystematics andEvolution301:2441–2462.

KapliP,LutteroppS,ZhangJ,etal.2017.Multi-ratePoissontreeprocessesforsingle-locusspeciesdelimitationundermaximumlikelihoodandMarkovchainMonteCarlo.Bioinformatics33:1630–1638.

KatohK,StandleyDM.2013.MAFFTmultiplesequencealignmentsoftwareversion7:improvementsinperformanceandusability.MolecularBiologyandEvolution30:772–780.

KatzME,DougallAM,WeeksK,etal.2005.MultiplegeneticallydistinctgroupsrevealedamongclinicalisolatesidentifiedasatypicalAspergillusfumigatus.JournalofClinicalMicrobiology43:551–555.

KawasakiM.2011.Verificationofataxonomyofdermatophytesbasedonmatingresultsandphylogeneticanalyses.MedicalMycologyJournal52:291–295.

KawasakiM,AnzawaK,MochizukiT,etal.2009.Successfulmatingofahu-manisolateofArthrodermasimiiwithatesterstrainofA.vanbreuseghemii.MedicalMycologyJournal50:15–18.

KawasakiM,AnzawaK,WakasaA,etal.2010.Matingsamongthreeteleo-morphsofTrichophytonmentagrophytes. Japanese Journal ofMedicalMycology51:143–152.

KellyKL.1964.Inter-SocietyColorCouncil–NationalBureauofStandardscolornamechartsillustratedwithcentroidcolors.USGovernmentPrintingOffice,WashingtonDC.

KlichMA.2002.BiogeographyofAspergillusspeciesinsoilandlitter.Myco-logia94:21-27.

KocsubéS,PerroneG,MagistàD,etal.2016.Aspergillusismonophyletic:evidencefrommultiplegenephylogeniesandextrolitesprofiles.StudiesinMycology85:199–213.

KretzerA,LiY,SzaroT,BrunsTD.1996. Internal transcribedspacerse-quencesfrom38recognizedspeciesofSuillussensulato:phylogeneticandtaxonomicimplications.Mycologia88:776–785.

KubatkoLS,DegnanJH.2007.Inconsistencyofphylogeneticestimatesfromconcatenateddataundercoalescence.SystematicBiology56:17–24.

Kwon-ChungKJ,BennettJE,WickesBL,etal.2017.Thecaseforadoptingthe“speciescomplex”nomenclaturefortheetiologicagentsofcryptococ-cosis.mSphere2:e00357-16.

Kwon-ChungKJ,SuguiJA.2009.SexualreproductioninAspergillusspe-cies of medical or economical importance: why so fastidious? Trends in Microbiology17:481–487.

Kwon‐ChungKJ,VarmaA.2006.Domajorspeciesconceptssupportone,twoormorespecieswithinCryptococcusneoformans?FEMSYeastRe-search6:574–587.

LanfearR,FrandsenPB,WrightAM,et al. 2017.PartitionFinder 2: newmethods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses.MolecularBiology andEvolution34:772–773.

LeachéAD,FujitaMK.2010.BayesianspeciesdelimitationinWestAfricanforestgeckos(Hemidactylusfasciatus).ProceedingsoftheRoyalSocietyofLondonB:BiologicalSciences277:3071–3077.

LeeSC,NiM,LiW,etal.2010.Theevolutionofsex:aperspectivefromthefungalkingdom.MicrobiologyandMolecularBiologyReviews74:298–340.

LiuF,WangM,DammU,etal.2016.Speciesboundariesinplantpathogenicfungi:aColletotrichumcasestudy.BMCEvolutionaryBiology16:81.

LiuYJ,WhelenS,HallBD.1999.Phylogeneticrelationshipsamongasco-mycetes:evidencefromanRNApolymerseIIsubunit.MolecularBiologyandEvolution16:1799–1808.

LockmanB,Mascheretti S,SchechterS, et al. 2014.A first generationHeterobasidionhybriddiscoveredinLarixlyalliinMontana.PlantDisease98:1003.

LouisVL,DesponsL,FriedrichA,etal.2012.Pichiasorbitophila,aninter-species yeast hybrid, reveals early steps of genome resolution after poly-ploidization.G3:Genes,Genomes,Genetics2:299–311.

LyskovaP,HubkaV,SvobodovaL,etal.2018.AntifungalsusceptibilityoftheAspergillusviridinutanscomplex:comparisonoftwoinvitromethods.AntimicrobialAgentsandChemotherapy62:e01927-17.doi:https://doi.org/10.1128/AAC.01927-17.

MartinelliL,ZalarP,Gunde-CimermanN,etal.2017.AspergillusatacamensisandA.salisburgensis:twonewhalophilicspeciesfromhypersaline/aridhabitatswithaphialosimplex-likemorphology.Extremophiles21:755–773.

MatsuzawaT,TakakiGMC,YaguchiT,etal.2015.Aspergillusarcoverdensis,a new species of Aspergillus section Fumigati isolated from caatinga soil inStateofPernambuco,Brazil.Mycoscience56:123–131.

MayrA,Lass-FlörlC.2011.Epidemiologyandantifungalresistanceinin-vasiveaspergillosisaccordingtoprimarydisease-reviewoftheliterature.EuropeanJournalofMedicalResearch16:153.

McLennanEI,TuckerS,ThrowerL.1954.Newsoil fungi fromAustralianheathland:Aspergillus,Penicillium,Spegazzinia.Australian Journal ofBotany2:355–364.

MehrabiR,BahkaliAH,Abd-ElsalamKA,etal.2011.Horizontalgeneandchromosometransferinplantpathogenicfungiaffectinghostrange.FEMSMicrobiologyReviews35:542–554.

MeyerV,WuB,RamAF.2011.Aspergillusasamulti-purposecellfactory:currentstatusandperspectives.BiotechnologyLetters33:469–476.

MixãoV,GabaldónT.2018.Hybridizationandemergenceofvirulence inopportunistichumanyeastpathogens.Yeast35:5–20.

NakamuraS,SatoH,TanakaR,etal.2017.Ribosomalsubunitproteintyp-ingusingmatrix-assisted laserdesorption ionization time-of-flightmassspectrometry(MALDITOFMS)fortheidentificationanddiscriminationofAspergillusspecies.BMCMicrobiology17:100.

NakaoY,KanamoriT,ItohT,etal.2009.Genomesequenceofthelagerbrewingyeast,aninterspecieshybrid.DNAResearch16:115–129.

NautaM,HoekstraR.1992.Evolutionofreproductivesystemsinfilamentousascomycetes.I.Evolutionofmatingtypes.Heredity68:405–410.

NegriC,GonçalvesS,XafranskiH,etal.2014.CrypticandrareAspergillusspeciesinBrazil:prevalenceinclinicalsamplesandinvitrosusceptibilitytotriazoles.JournalofClinicalMicrobiology52:3633–3640.

NewcombeG,StirlingB,McDonaldS,etal.2000.Melampsora× colum-biana,anaturalhybridofM.medusaeandM.occidentalis.MycologicalResearch104:261–274.

NguyenL-T,SchmidtHA,VonHaeselerA,etal.2015.IQ-TREE:Afastandeffective stochastic algorithm for estimatingmaximum-likelihoodphylo-genies.MolecularBiologyandEvolution32:268–274.

NielsenKF,ManssonM,RankC,etal.2011.DereplicationofmicrobialnaturalproductsbyLC-DAD-TOFMS.JournalofNaturalProducts74:2338–2348.

NovákováA,HubkaV,DudováZ,etal.2014.NewspeciesinAspergillussectionFumigatifromreclamationsitesinWyoming(USA)andrevisionofA.viridinutanscomplex.FungalDiversity64:253–274.

O’DonnellK.1993.Fusariumanditsnearrelatives.In:ReynoldsDR,TaylorJW(eds),Thefungalholomorph:mitotic,meioticandpleomorphicspecia-tioninfungalsystematics:225–233.CABInternational,Wallingford.

O’DonnellK,WardTJ,GeiserDM,etal.2004.Genealogicalconcordancebetween the mating type locus and seven other nuclear genes supports formal recognition of nine phylogenetically distinct species within the Fusariumgraminearumclade.FungalGeneticsandBiology41:600–623.

O’GormanCM,FullerHT,DyerPS.2009.DiscoveryofasexualcycleintheopportunisticfungalpathogenAspergillusfumigatus.Nature457:471–474.

Page 34: Unravelling species boundaries in the Aspergillus ... · Movile cave, sediment, 2014 MAT1-2-1 CCF 4961 (S975) Romania, Movile cave, Lake cave a 2014 MAT1-1-1 Culture IFM 61334 T =

174 Persoonia–Volume41,2018

OlarteRA,WorthingtonCJ,HornBW,etal.2015.EnhanceddiversityandaflatoxigenicityininterspecifichybridsofAspergillusflavusandAspergillusparasiticus.MolecularEcology24:1889–1909.

PetersonSW.2008.PhylogeneticanalysisofAspergillusspeciesusingDNAsequencesfromfourloci.Mycologia100:205–226.

PetersonSW,Jurjević Ž, Frisvad JC. 2015.Expanding the species andchemical diversity ofPenicilliumsectionCinnamopurpurea.PLoSOne10:e0121987.

Pitt JI,HockingAD. 2009.Spoilageof stored, processedandpreservedfoods.In:PittJI&HockingAD(eds),Fungiandfoodspoilage.Springer,London:401–421.

PosadaD.2008.jModelTest:phylogeneticmodelaveraging.MolecularBio-logyandEvolution25:1253–1256.

PujolC,DanielsKJ,LockhartSR,etal.2004.ThecloselyrelatedspeciesCandidaalbicansandCandidadubliniensiscanmate.EukaryoticCell3:1015–1027.

RCoreTeam.2015.R:Alanguageandenvironmentforstatisticalcomputing.RFoundationforStatisticalComputing,Vienna.

RéblováM,HubkaV,ThurebornO,etal.2016.Fromthetunnelsintothetreetops:newlineagesofblackyeastsfrombiofilmintheStockholmmetrosystem and their relatives among ant-associated fungi in the Chaetothyri-ales.PLoSOne11:e0163396.

ReidNM,CarstensBC.2012.Phylogeneticestimationerrorcandecreasethe accuracy of species delimitation: a Bayesian implementation of the generalmixedYule-coalescentmodel.BMCEvolutionaryBiology12:196.

RonquistF,TeslenkoM,VanderMarkP,etal.2012.MrBayes3.2:efficientBayesian phylogenetic inference and model choice across a large model space.SystematicBiology61:539–542.

RosenbergNA.2013.Discordanceofspeciestreeswiththeirmostlikelygenetrees:aunifyingprinciple.MolecularBiologyandEvolution30:2709–2713.

RydholmC,DyerP,LutzoniF.2007.DNAsequencecharacterizationandmo-lecularevolutionofMAT1andMAT2mating-typelocioftheself-compatibleascomycetemoldNeosartoryafischeri.EukaryoticCell6:868–874.

SabinoR,VeríssimoC,ParadaH,etal.2014.Molecularscreeningof246Portuguese Aspergillus isolates among different clinical and environmental sources.MedicalMycology52:519–529.

SamsonRA,VisagieCM,HoubrakenJ,etal.2014.Phylogeny,identificationand nomenclature of the genusAspergillus. Studies inMycology 78:141–173.

SchardlC,CravenK.2003.Interspecifichybridizationinplant‐associated fungiandoomycetes:areview.MolecularEcology12:2861–2873.

SchmittI,CrespoA,DivakarPK,etal.2009.Newprimersforpromisingsingle-copygenesinfungalphylogeneticsandsystematics.Persoonia23:35–40.

SchröderMS,DeSanVicenteKM,PrandiniTH,etal.2016.MultipleoriginsofthepathogenicyeastCandidaorthopsilosisbyseparatehybridizationsbetweentwoparentalspecies.PLoSGenetics12:e1006404.

SchwarzfeldMD,SperlingFA.2015.Comparisonoffivemethodsfordelimi-tatingspeciesinOphionFabricius,adiversegenusofparasitoidwasps(Hymenoptera,Ichneumonidae).MolecularPhylogeneticsandEvolution93:234–248.

ShigeyasuC,YamadaM,NakamuraN,etal.2012.Keratomycosiscausedby Aspergillus viridinutans: an Aspergillus fumigatus-resembling mold presentingdistinctclinicalandantifungalsusceptibilitypatterns.MedicalMycology50:525–528.

ShortDP,O’DonnellK,GeiserDM. 2014.Clonality, recombination, andhybridizationintheplumbing-inhabitinghumanpathogenFusariumkerato-plasticum inferred frommultilocus sequence typing.BMCEvolutionaryBiology14:91.

ShortDP,O’DonnellK,ThraneU, et al. 2013.Phylogenetic relationshipsamongmembersoftheFusariumsolanispeciescomplexinhumaninfec-tionsandthedescriptionsofF.keratoplasticumsp.nov.andF.petroliphilumstat.nov.FungalGeneticsandBiology53:59–70.

ShymanovichT,CharltonND,MussoAM, et al. 2017. Interspecific andintraspecifichybridEpichloëspeciessymbioticwith theNorthAmericannativegrassPoaalsodes.Mycologia109:459–474.

SinghG,DalGrandeF,DivakarPK,etal.2015.Coalescent-basedspeciesdelimitation approach uncovers high cryptic diversity in the cosmopolitan lichen-forming fungal genusProtoparmelia (Lecanorales,Ascomycota).PLoSOne10:e0124625.

SipiczkiM.2008.InterspecieshybridizationandrecombinationinSaccharo-myceswineyeasts.FEMSYeastResearch8:996–1007.

SklenářF,JurjevićŽ,ZalarP,etal.2017.Phylogenyofxerophilicaspergilli(subgenusAspergillus)andtaxonomicrevisionofsectionRestricti.StudiesinMycology88:161–236.

SollaA,DacasaM,NasmithC,etal.2008.AnalysisofSpanishpopulationsofOphiostomaulmiandO.novo‐ulmi using phenotypic characteristics and RAPDmarkers.PlantPathology57:33–44.

SpiersA,HopcroftD.1994.ComparativestudiesofthepoplarrustsMelamp-soramedusae,M.larici-populinaandtheirinterspecifichybridM.medusae-populina.MycologicalResearch98:889–903.

StaatsM,VanBaarlenP,VanKanJA.2005.MolecularphylogenyoftheplantpathogenicgenusBotrytisandtheevolutionofhostspecificity.MolecularBiologyandEvolution22:333–346.

StamatakisA,HooverP,RougemontJ.2008.ArapidbootstrapalgorithmfortheRAxMLwebservers.SystematicBiology57:758–771.

StarkeyDE,WardTJ,AokiT,etal.2007.Globalmolecularsurveillancere-vealsnovelFusariumheadblightspeciesandtrichothecenetoxindiversity.FungalGeneticsandBiology44:1191–1204.

StewartJE,TimmerLW,LawrenceCB,etal.2014.Discordbetweenmorpho-logical and phylogenetic species boundaries: incomplete lineage sorting andrecombinationresultsinfuzzyspeciesboundariesinanasexualfungalpathogen.BMCEvolutionaryBiology14:38.

SuguiJA,Kwon-ChungKJ,JuvvadiPR,etal.2015.Aspergillusfumigatusand related species.ColdSpringHarborPerspectives inMedicine 5:a019786.

SuguiJA,PetersonSW,FigatA,etal.2014.Genetic relatednessversusbiologicalcompatibilitybetweenAspergillusfumigatusandrelatedspecies.JournalofClinicalMicrobiology52:3707–3721.

SuguiJA,VinhDC,NardoneG,etal.2010.Neosartoryaudagawae(Asper-gillusudagawae),anemergingagentofaspergillosis:HowdifferentisitfromAspergillusfumigatus?JournalofClinicalMicrobiology48:220–228.

SwilaimanSS,O’GormanCM,BalajeeSA,etal.2013.DiscoveryofasexualcycleinAspergilluslentulus,acloserelativeofA.fumigatus.EukaryoticCell12:962–969.

SzewczykE,KrappmannS. 2010.Conserved regulators ofmating areessential forAspergillus fumigatuscleistothecium formation.EukaryoticCell9:774–783.

TalbotJJ,BarrsVR.2018.One-healthpathogensintheAspergillusviridinu-tanscomplex.MedicalMycology56:1–12.

TalbotJJ,HoubrakenJ,FrisvadJC,etal.2017.DiscoveryofAspergillusfrankstonensis sp. nov. during environmental sampling for animal andhumanfungalpathogens.PLoSOne12:e0181660.

TanneyJB,VisagieCM,YilmazN,etal.2017.AspergillussubgenusPoly-paecilumfromthebuiltenvironment.StudiesinMycology88:237–267.

TurnerE,JacobsonD,TaylorJW.2010.ReinforcedpostmatingreproductiveisolationbarriersinNeurospora,anAscomycetemicrofungus.JournalofEvolutionaryBiology23:1642–1656.

VinhDC,SheaYR,JonesPA,etal.2009.Chronic invasiveaspergillosiscaused byAspergillus viridinutans. Emerging InfectiousDiseases 15:1292–1294.

VisagieCM,YilmazN,RenaudJB,etal.2017.AsurveyofxerophilicAsper-gillus from indoor environment, including descriptions of two new section Aspergillusspeciesproducingeurotium-likesexualstates.MycoKeys19:1–30.

WhiteTJ,BrunsT,LeeS,etal.1990.AmplificationanddirectsequencingoffungalribosomalRNAgenesforphylogenetics.In:InnisMA,etal.(eds),PCRprotocols:aguidetomethodsandapplications:315–322.AcademicPress,SanDiego.

WickhamH.2009.ggplot2:ElegantGraphicsforDataAnalysis.Springer-Verlag,NewYork.

WuG,ZhaoH, LiC, et al. 2015.Genus-wide comparativegenomicsofMalasseziadelineatesitsphylogeny,physiology,andnicheadaptationonhumanskin.PLoSGenetics11:e1005614.

XiaX.2017.DAMBE6:newtoolsformicrobialgenomics,phylogenetics,andmolecularevolution.JournalofHeredity108:431–437.

YaguchiT,HorieY,TanakaR,etal.2007.Molecularphylogeneticsofmultiplegenes on Aspergillus section Fumigati isolated from clinical specimens in Japan.JapaneseJournalofMedicalMycology48:37–46.

YangZ,RannalaB.2010.Bayesianspeciesdelimitationusingmultilocussequencedata.ProceedingsoftheNationalAcademyofSciences107:9264–9269.

YuG,SmithDK,ZhuH,etal.2017.ggtree:anRpackageforvisualizationand annotation of phylogenetic trees with their covariates and other as-sociateddata.MethodsinEcologyandEvolution8:28–36.

Zhang J,Kapli P,PavlidisP, et al. 2013.A general species delimitationmethodwithapplicationstophylogeneticplacements.Bioinformatics29:2869–2876.


Recommended