+ All Categories
Home > Documents > Up-Down Stand Design

Up-Down Stand Design

Date post: 04-Jun-2018
Category:
Upload: rajivkannan
View: 223 times
Download: 0 times
Share this document with a friend

of 23

Transcript
  • 8/13/2019 Up-Down Stand Design

    1/23

    S.NO. Page

    No

    1 Introduction

    2 Estimation of Seismic Coefficent

    3 Summary of Bearing Reactions

    4 Design of End Diapghragm for Longitudinal

    Seismic Forces

    5 Design of Shear Key For Longitudinal

    Seismic Forces

    6 Design of Shear Key For Transverse

    Seismic Forces

    Appendix -A Analysisis of Precast Girder

    Appendix -B Grillage Analysisis of Deck

    For SIDL

    Appendix -C Grillage Analysisis of Deck

    For Live Load

    Design of Diaphragms and Seismic Restrainer for bridge at ch. 55.460

    Contents

    ITEM

    (Span Arrangement 27.59 m c/c Bearing)

  • 8/13/2019 Up-Down Stand Design

    2/23

    1.0 Introduction

    This note presents the detailed design of diaphrams and Seismc restrainer for

    bridge at ch 55.460 on proposed Rajkot-Jamnagar-Vadinar in Gujrat. The

    bridge is 3 lane with a deck width of 12.0m and carriageway width of 8.75 m

    with safe kerb and footpath.The supersrtuctrue comprises of Precast Post

    Tensioned Beams with cast in situ deck slab on Elastomeric Bearings. The

    Elastomeric bearings are primarily designed to cater for reactions and rotations

    due to vertical loads and translations due to temeprature, shrinkage, creep and

    elastic shortening.The seismic and braking forces are to be transferred through

    concrete shear keyi.e. an upsatnad from pier cap. Under lonfgitudinal seismic

    condition, the upstand transfers the loangitunal forces by abuting against End

    Diapghragms of superstructure.

  • 8/13/2019 Up-Down Stand Design

    3/23

    2.0 Estimation of Seismic coefficient

    Horizontal Seismic Coefficient ( cl 222.5 of IRC:6-2000)

    h =

    For Zone IV, Z = 0.24 ( Table 5 of IRC:6-2000)

    Sa/g = 2.5 ( Fig 12 5 of IRC:6-2000)

    R = 2.5

    I = 1.5 (For Important Bridge)

    Substituting for above values , we get

    h = 0.18

    Vertical Seismic Coeffic ient ( cl 222.3 of IRC:6-2000)

    v = 0 5 h= 0.09

    Considering the bridge location and the Seismic Zoning map of India as per Fig

    11 of IRC:6-2200, the bridge is likely to fall in the boundary of zone

    demarcation line between Zone III and Zane IV and therefore the higher zone

    i.e. Zone IV has been considered for design and detailing.

    (Z/2). ( Sa/g)

    (R/I)

  • 8/13/2019 Up-Down Stand Design

    4/23

    3.0 Estimation of Bearing reactions

    The summary of Bearings reactions are presnted in the subsequent sheets

    The Dead Laod reactios i.e. weight of Precast girder and , deck slab are

    obtained by analysis of Precast Girder ( Appendix A) and whereas those due to

    SIDL and live laod are obtained by Grillage Analysis (Refer appendix B and

    Appendix C)

  • 8/13/2019 Up-Down Stand Design

    5/23

    3.1 Synopsis of Bearing Reaction due to Dead Load & SIDL

    27 m c/c EJ

    26 m

    3.00 m

    1.5 m

    C/L of Bridge

    1.5 m

    3.00 m

    Fig. 6.1 Bearing Node Numbering

    (Not to Scale)

    Load Load Support Node Force-Y Total Total Support Node

    Case List No. (t) V (t) MT (tm) No.

    A 102 31.43 4.500 141.44 A 102

    302 31.43 1.500 47.15 302

    Distance

    from C/L of

    Bridge (m)

    Associ ated

    MT (tm)

    cast

    102

    302

    A

    502

    702

    112

    312

    B

    512

    712

    502 31.43 -1.500 -47.15 502

    702 31.43 -4.500 -141.44 125.72 0.00 702

    B 112 31.43 4.500 141.44 B 112

    312 31.43 1.500 47.15 312

    512 31.43 -1.500 -47.15 512

    712 31.43 -4.500 -141.44 125.72 0.00 712

    A 102 24.10 4.500 108.45 A 102

    302 24.10 1.500 36.15 302

    502 24.10 -1.500 -36.15 502

    702 24.10 -4.500 -108.45 96.40 0.00 702

    B 112 24.10 4.500 108.45 B 112312 24.10 1.500 36.15 312

    512 24.10 -1.500 -36.15 512

    712 24.10 -4.500 -108.45 96.40 0.00 712

    A 102 55.53 4.500 249.89 A 102

    302 55.53 1.500 83.30 302

    502 55.53 -1.500 -83.30 502

    702 55.53 -4.500 -249.89 222.12 0.00 702

    B 112 55.53 4.500 249.89 B 112

    312 55.53 1.500 83.30 312

    512 55.53 -1.500 -83.30 512

    712 55.53 -4.500 -249.89 222.12 0.00 712

    A 102 18.92 4.500 85.14 A 102

    302 6.70 1.500 10.05 302

    502 6.70 -1.500 -10.05 502

    702 18.92 -4.500 -85.14 51.24 0.00 702

    B 112 18.92 4.500 85.14 B 112

    312 6.70 1.500 10.05 312

    512 6.70 -1.500 -10.05 512

    712 18.92 -4.500 -85.14 51.24 0.00 712A 102 74.45 4.500 335.03 A 102

    302 62.23 1.500 93.35 302

    502 62.23 -1.500 -93.35 502

    702 74.45 -4.500 -335.03 273.36 0.00 702

    B 112 74.45 4.500 335.03 B 112

    312 62.23 1.500 93.35 312

    512 62.23 -1.500 -93.35 512

    712 74.45 -4.500 -335.03 273.36 0.00 712

    DeadLoad(Pre

    Girder)

    TOTALDEADLOAD

    TOTALDEADLOAD+

    SIDL

    1SIDL

    DeadLoad(Deck

    S

    lab)

  • 8/13/2019 Up-Down Stand Design

    6/23

    3.2 Synopsis of Bearing Reaction due to Live Load (with Impact)

    27.59 m c/c EJ

    26 m

    3.00 m

    1.5 m

    C/L of Bridge

    1.5 m

    3.00 m

    Fig. 6.1 Bearing Node Numbering

    (Not to Scale)

    NODE Load LOAD Support Node Force-Y Total Total

    List CASE No. (t) V (t) MT (tm)

    A 102 44.27 4.500 199.22s . 2 D

    Distance

    from C/L of

    Brid e m

    Ass ociated

    MT (tm)

    102

    302

    A

    502

    702

    112

    312

    B

    512

    712

    302 48.53 1.500 72.80

    502 3.57 -1.500 -5.36

    702 -1.83 -4.500 8.24 94.54 274.89

    B 112 10.81 4.500 48.65

    312 5.85 1.500 8.78

    512 4.04 -1.500 -6.06

    712 -1.15 -4.500 5.18 19.55 56.54

    Load Load LOAD Support Node Force-Y Total Total

    Case List CASE No. (t) V (t) MT (tm)A 102 16.96 4.500 76.32

    302 59.84 1.500 89.76

    502 18.54 -1.500 -27.81

    702 -0.81 -4.500 3.65 94.53 141.92

    B 112 7.70 4.500 34.65

    312 5.43 1.500 8.15

    512 5.10 -1.500 -7.65

    712 1.32 -4.500 -5.94 19.55 29.21

    Load Load LOAD Support Node Force-Y Total Total

    Case List CASE No. (t) V (t) MT (tm)

    A 102 41.63 4.500 187.34

    302 37.69 1.500 56.54

    502 15.16 -1.500 -22.74

    702 -1.50 -4.500 6.75 92.98 227.88B 112 10.48 4.500 47.16

    312 6.60 1.500 9.90

    512 4.23 -1.500 -6.35

    712 -0.21 -4.500 0.95 21.10 51.66

    LiveLoadReaction

    coexistentwithMa

    ReactionatNode3

    atSupportA

    34

    Distance

    from C/L of

    Ass ociated

    MT (tm)

    70RWHEELPLACE

    MOST

    ECCENTRICALLY

    LiveLoadR

    eactions

    coexistentw

    ithMax.

    ReactionatNode302

    atSupportA

    230

    CLASSA2LANE

    PLACEDMOST

    ECCENTRICALLY

    LiveLoadReactions

    coexistentwithMax.

    ReactionatNode302at

    SupportA

    133

    Distance

    from C/L of

    Ass ociated

    MT (tm)

    70RWHEELPLACED

    CENTRALLYIN

    CARRIAGEWAY

  • 8/13/2019 Up-Down Stand Design

    7/23

    3.2 Synopsis of Bearing Reaction due to Live Load (with Impact)

    27.59 m c/c EJ

    26 m

    3.00 m

    1.5 m

    C/L of Bridge

    1.5 m

    3.00 m

    Fig. 6.1 Bearing Node Numbering

    (Not to Scale)

    102

    302

    A

    502

    702

    112

    312

    B

    512

    712

    Load Load LOAD Support Node Force-Y Total Total

    Case List CASE No. (t) V (t) MT (tm)

    A 102 26.29 4.500 118.31

    302 40.98 1.500 61.47ctions

    Max.

    de302

    A ANE

    ALLY

    WAY

    Distance

    from C/L of

    Ass ociated

    MT (tm)

    . - . - .

    702 0.54 -4.500 -2.43 92.99 139.58

    B 112 8.10 4.500 36.45

    312 6.42 1.500 9.63

    512 5.02 -1.500 -7.53

    712 1.56 -4.500 -7.02 21.10 31.53

    Load Load LOAD Support Node Force-Y Total Total

    Case List CASE No. (t) V (t) MT (tm)

    A 102 41.01 4.500 184.55

    302 38.69 1.500 58.04

    502 41.32 -1.500 -61.98

    702 18.45 -4.500 -83.03 139.47 97.58

    B 112 9.92 4.500 44.64

    312 8.84 1.500 13.26

    512 7.43 -1.500 -11.15

    712 5.46 -4.500 -24.57 31.65 22.19

    Load Load LOAD Support Node Force-Y Total Total

    Case List CASE No. (t) V (t) MT (tm)

    A 102 28.96 4.500 130.32

    302 40.78 1.500 61.17

    502 40.78 -1.500 -61.17

    702 28.96 -4.500 -130.32 139.48 0.00

    B 112 7.66 4.500 34.47

    312 8.16 1.500 12.24

    512 8.16 -1.500 -12.24712 7.66 -4.500 -34.47 31.64 0.00

    Distance

    from C/L of

    Ass ociated

    MT (tm)

    Live

    LoadReactions

    coexistentwithMax.

    ReactionatNode302

    atSupportA

    527

    CL

    ASSA3LANE

    PLACEDCENTRALLY

    INCARRIAGEWAY

    LiveLoadRea

    coexistentwit

    ReactionatNo

    atSupport

    329

    CLASSA2L

    PLACEDCENT

    INCARRIAGE

    Distance

    from C/L of

    Ass ociated

    MT (tm)

    LiveLoadReactions

    coexistentwithMa

    x.

    ReactionatNode5

    02

    atSupportA

    428

    CLASSA3LANE

    PLACEDMOST

    ECCENTRICALLY

  • 8/13/2019 Up-Down Stand Design

    8/23

  • 8/13/2019 Up-Down Stand Design

    9/23

    3.2 Synopsis of Bearing Reaction due to Live Load (with Impact)

    27.59 m c/c EJ

    26 m

    3.00 m

    1.5 m

    C/L of Bridge

    1.5 m

    3.00 m

    Fig. 6.1 Bearing Node Numbering

    (Not to Scale)

    102

    302

    A

    502

    702

    112

    312

    B

    512

    712

    Load Load LOAD Support Node Force-Y Total Total

    Case List CASE No. (t) V (t) MT (tm)

    A 102 37.35 4.500 168.08

    302 9.14 1.500 13.71ctions

    Max.

    de702

    B ANE

    ST

    LLY

    LLY

    Distance

    from C/L of

    Ass ociated

    MT (tm)

    . - . - .

    702 37.35 -4.500 -168.08 92.98 0.00

    B 112 5.97 4.500 26.87

    312 4.58 1.500 6.87

    512 4.58 -1.500 -6.87

    712 5.97 -4.500 -26.87 21.10 0.00LiveLoadRea

    coexistentwit

    ReactionatNo

    atSupport

    923

    CLASSA2L

    PLACEDM

    ECCENTRIC

    BUT

    SYMMETRIC

  • 8/13/2019 Up-Down Stand Design

    10/23

    4 Sumamry of Bm & Shear Force

    The Diaphrgam, down stand and support at top of shear key is modeled in STAAD.

    The summary of BM 7 Shear forces are given as hereunder:-

    4.1 Sumamry of Design BM & Shear Forces for Horizontal Bending

    Beam L/C Node Fx Mton Fy Mton Fz Mton Mx MTon- My MTon- Mz MTon-

    Max Fx 6007 1 7 0 0 11.773 0.791 19.52 0

    Min Fx 6007 1 7 0 0 11.773 0.791 19.52 0

    Max Fy 6007 1 7 0 0 11.773 0.791 19.52 0

    Min Fy 6007 1 7 0 0 11.773 0.791 19.52 0

    Max Fz 6007 1 7 0 0 11.773 0.791 19.52 0

    Min Fz 6035 1 83 0 0 6.618 0.365 14.52 0

    Max Mx 6007 1 7 0 0 11.773 0.791 26.80 0

    Min Mx 6070 1 178 0 0 8.93 0.24 12.46 0

    Max My 6007 1 8 0 0 11.773 0.791 26.80 0

    Min My 6070 1 178 0 0 8.93 0.24 12.46 0

    Max Mz 6007 1 7 0 0 11.773 0.791 19.52 0Min Mz 6007 1 7 0 0 11.773 0.791 19.52 0

    Max 11.773 26.8

    Spacing between horizontal members = 0.19 m

    Design BM for Plan bending = 26.8

    0.19

    Design BM for Plan bending = 141 tm per m

    Design BM for Plan Shear = 11.773

    0.19

    Design SF for Plan bending = 62 t per m

    4.2 Sumamry of Design BM & Shear Forces for Vertical Bending

    Beam L/C Node Fx Mton Fy Mton Fz Mton x MTon- y MTon- Mz MTon-m

    Max Fx 181 1 111 0 0 22 -0.043 15.19 0

    Min Fx 181 1 111 0 0 18.39 -0.043 15.19 0

    Max Fy 181 1 111 0 0 18.39 -0.043 15.19 0

    Min Fy 181 1 111 0 0 18.39 -0.043 15.19 0

    Max 22 15.19

    Spacing between Vertical members = 0.1175 m

    Design BM for Vertical Bending = 15.19

    0.1175

    Design BM for Vertical bending = 129 tm per m

    Design BM for Vertical Shear = 22

    0.1175

    Design SF for Vertocal bending = 187 t per m

  • 8/13/2019 Up-Down Stand Design

    11/23

    4.0 Design of End Diaphragm for Longitudinal Seismic Forces

    The Longitudinal Seismic Forces are considered due to Dead load and SID only and seismic forces due to live shall not be considered as

    er clause 222.7 of IRC:6-2000

    Total Dead Load = 2 x 222.12 = 444.25 t

    (Sum of DL Reactions for Four Bearings)

    Total SIDL = 2 x 51.24 = 102.48 t

    (Sum of SIDL Reactions for Four Bearings)

    Longitudinal Seismic Force due to DL = 0.18 x 444.25 = 79.96 t

    = =

    .

    . .

    Total Longitudinal Seismic Force = 79.96 + 18.45 = 98.41 t

    Say 99.00 t

    As per cl 222.11 of IRC:6-2000, the reaction blocks should be designed for twice the seismic forces.

    Design Seismic Force = 2 x 99.00 = 198.00 t

    No of Longitudinal girder = = 4

    Shear Force = = 99.00 t

    Design of Diaphragm at Section 'B" :

    owever as t e se sm c restra ners are es gne to prevent s o gement o superstructure

    The in plane stiffness of deck slab is very high and the distribution of longitudinal seismic forces may be uniform among precast girders.

    The BM cause plan bending of diaphragm.

    Thickness of Diaphragm D = = 0.60 m

    Effective cover = = 0.07 m

    Effective depth d = = 0.53 m

    Depth of Diaphragm b = = 1.74 m

  • 8/13/2019 Up-Down Stand Design

    12/23

  • 8/13/2019 Up-Down Stand Design

    13/23

    For M 45 Grade Concrete End Diaphragm at

    fck = 45 MPa

    fy = 400 MPa

    As per IS:456-2000,

    Moment of Resistance w.r.t. concrete

    MuR = 0.36.fck.b.xu(d-0.416xu)

    Where xumax/d = 0.48

    =umax .

    MuR = 270 tm

    > 222.75 tm OK

    Proposed tensile Reinforcement on vertical Face of Diaphragm

    As = 11 Nos Tor 32 + 11 Nos Tor 25

    As = 14246 mm pt = 1.74 %

    Actual xu = 0.87 fy As

    . . c . .

    = 4957725.38

    25168.05= 197 mm

    < xumax

    Therefore section is Under reinforced, and Moment of Resistance is given by

    MuR = 0.87fy.As(d-0.42.xu)

    = 222 tm

    > 222.75 tm OK

    Check for Shear

    Max. Shear Force = 99 x 1.00E+04

    V = 9.90E+05 N

    Shear stress = 9.90E+051545 x 530

    = 1.21 MPa

    < 3.9 MPa O.K

    For pt= 1.5 % ( Taken on lower side)

    Tc < 0.792 MPa

    Vs = 9.90E+05 -0.792 x 1545 x 530

    = 3.41E+05 N

    Shear Reinforcement

    Adopting spacing s = 200 mm

    Asv = 3.41E+05 x 200

    0.87 x 400 x 530

    = 370 mm

    Min Asv = 0.4 x 1545 x 200

    0.87 x 400

    = 355 mm (Governing)

    Provide 4-Legged stirrups of 12 mm dia @ 200 mm c/c

    Asv = 452 mm > 355 mm

  • 8/13/2019 Up-Down Stand Design

    14/23

    5.2 Design of Diaphragm for Vertical Bending & Shear

    For M 45 Grade Concrete End Diaphragm at

    The BM cause plan bending of diaphragm.

    Thickness of Diaphragm D = 0.60 m

    Assuming 70 mm rff cover d = 0.53 mLength of Diaphragm, b = 1 m

    fck = 45 MPa

    As per IS:456-2000,

    Moment of Resistance w.r.t. concrete

    MuR = 0.36.fck.b.xu(d-0.416xu)

    Where x d = 270 0848umax .

    xumax = 143.1449 m

    MuR = 175 tm per m

    > 129 tm per m OK

    Proposed tensile Reinforcement on vertical Face of Diaphragm

    As = 10 Nos Tor 32 + 0 Nos Tor 32

    As = 8042 mm2

    t = 1.52 %

    Actual xu = 0.87 fy As

    0.362.fck.b.

    = 3498478

    16290

    = 215 mm< xumax

    Therefore section is Under reinforced, and Moment of Resistance is given by

    MuR = 0.87fy.As(d-0.42.xu)

    = 154 tm

    > 129 tm OK

    5.1.1 Check for Shear

    V = 1.9E+06 N

    Shear stress =

    1000 x 530

    = 3.53 MPa

    < 3.9 MPa O.K

    1.87E+06

    For pt= 1.5 % ( Taken on lower side)

    Tc < 0.792 MPa

    Vs = 1.9E+06 -0.792 x 1000 x 530

    = 1.5E+06 N

  • 8/13/2019 Up-Down Stand Design

    15/23

    Shear Reinforcement

    Adopting spacing s = 100 mm

    Asv = 1.5E+06 x 100

    0.87 x 415 x 530

    = 759 mm2

    Provide 6-Legged stirrups of 16 mm dia @ 100 mm c/c

    =2

    >

    759 mm2

    O.K

  • 8/13/2019 Up-Down Stand Design

    16/23

    5.0 Design of Longitudinal Sesmic Restrainer

    Shear key is designed as a corbel to cater for the longitudinal forces from End diaphragm.

    Reference: "Practical Design against Shear & Torsion and Design of of Short Cantilevers and Deep Beams" from

    "Concrete Bridge Practice-Analysis , Design and Economic" by Dr. V. K Raina

    Hus

    Longitudinal Seismic Restrainer

    Vu

    Longitudinal/Traffic Direction

    a

    Pier Cap Top Level

    d'

    h

    Vu = 198 t (After multiplying by 2)

    Hu = 0 t

    h = 500 mm

    s = 500 mm

    b = 2400 mm

    a = 225 mm

    fck = 45 MPa

    fsy = 500 MPa (For main reinforcement calculations) 80% OF PERMISSIBLE S

    fsy = 415 MPa (For shear reinforcement calculations)

    = 1.4 (For Concrete placed monol ithical ly across interface)

    p = 150 mm ( Pitch of Horizontal stuirrups)

    fc' = 0.8 x 45

    = 36 MPa

    Eff cover = 80 mm

    d' = 500 -80

    = 420 mm

    Step-1: Ensure s/d' > 0.5

    s/d' = 500 / 420 = 1.19

    > 0.50 OK

    Step-2: Ensure Vu/(bd) < 0.15 fc'

    d = 0.8 d' = 336 mm

    0.15 fc' = 0.15 x 360 = 54.0 kg/cm 2

    Shear Stress = Vu / bd

    = 198000 / 8064 = 24.55 kg/cm^2

    < 54.0 OK

    Step-3: Calculate Shear Friction Reinforcement : Avf

    Avf = Vu / 0.85.fsy.

    = 198000 / 5950 = 33.28 cm 2

  • 8/13/2019 Up-Down Stand Design

    17/23

    Step-4: Calculate Direct Tension Reinforcement : At

    Hu < 0.2 Vu = 39.6 t

    At = Hu / 0.85.fsy

    = 39600 / 4250 = 9.32 cm^2

    Step-5: Calculate Flexure Tension Reinforcement : Af

    Af = Vu.a+Hu.(h-d') / 0.85.fsy.d

    = 4771800 / 142800 = 33.42 cm 2

    Step-6: Compute Total Primary Reinforcement : As

    As 6.35 cm^2 OK

    Min. Development Length= 50 x 10

    = 500 mm

    in each of 6 165mm c/c

    Step 8 Provide Horizontal Stirrups, Av

    Av = / fsy.d

    Vc = 10.b.d. kg = 106464 kg

    Av = 0.05837 cm 2

    Provide 2 L-10mm Horizontal Planes spaced at

    for full height of shear key.

    in each of 5 296mm c/c

    0.50 ( Vu-Vc).p

    Ah Provided = 7.85 cm^2

    > 0.06 cm^2 OK

  • 8/13/2019 Up-Down Stand Design

    21/23

    6.0 Design of Pedastal for Transverse Sesmic Forces

    Downstand from diphragm is designed to as a corbel to cater for the Transverse forces from Superstructure

    Transverse Direction

    Hu

    s

    Bearing

    a

    Vu Downstand from Diaphragm acts

    as Tranvserse Stopeer against Pedestal

    Pier Cap Top Level d'

    d'

    C/c distance between girders = 3000 mm

    Dimension of Pedestal in transverse direction = 700 mmDimension of Pedestal in Longitudinal direction = 600 mm

    Depth of Pedestal at G3 (On conservative side) = 550 mm

    Thickness of Bearing = 80 mm

    Depth of bottom rectangular & traingular haunch = 360 mm

    Gra e o concrete o Diap ragm = 40 Mpa

    Grade of Steel = 500 Mpa

    Vertical Loads of One Span:

    Total DL = = 444.2 t

    Total SIDL = = 102.5 t

    Total Live Load = = 83.1 t

    ( 50% of (3 x 55.4) t for 3 Lanes of Class "A")

    Transverse Seismic Force due toDL = 0.18 x 444 = 79.96 t

    SIDL = 0.18 x 102 = 18.45 t

    50% Live Load = 0.18 x 83 = 14.96 t

    113.37 t

    The above forces is to be shared by two end end diaphragms of a span.

    Transverse seismic Force at each end of Diaphragm

    HT = 56.68452 t

    Vu = 113.36904 t (After multiplying by 2)

    Hu = 0 t

    h = 700 mm

    s = 700 mm

    b = 600 mm

    a = 275 mm (Acting at half the depth of pedestal from top of pier cap)

    Cover = 80 mm

    fck = 40 MPa

    fsy = 500 MPa

    = 1.4 (For Concrete placed monolithically across interface)

    p = 150 mm ( Pitch of Horizontal stuirrups)

  • 8/13/2019 Up-Down Stand Design

    22/23

    fc' = 0.8 x 40 = 32.00 MPa

    d' = 700 -80 = 620 mm

    Step-1: Ensure s/d' > 0.5

    s/d' = 700 / 620 = 1.13

    > 0.5 OK

    Step-2: Ensure Vu/(bd) < 0.15 fc'

    d = 0.8 d' = 496 mm.

    0.15 fc' = = 48.0 kg/cm 2

    Shear Stress = Vu / bd

    = 113369 / 3720 = 30.48 kg/cm 2

    < 48.0 OK

    Step-3: Calculate Shear Friction Reinforcement : Avf

    = . . .

    = 113369.04 / 5950 = 19.05 cm 2

    Step-4: Calculate Direct Tension Reinforcement: At

    Hu < 0.2 Vu

    = 22.673808 t

    At = Hu / 0.85.fsy

    = 22673.808 / 4250 = 5.34 cm^2

    Step-5: Calculate Flexure Tension Reinforcement: Af

    Af =

    = 3299039.1 / 210800 = 15.65 cm 2

    Step-6: Compute Total Primary Reinforcement: As

    As


Recommended