+ All Categories
Home > Documents > Updates Required to Plant Systematics: A Phylogenetic ... · 1 Updates Required to Plant...

Updates Required to Plant Systematics: A Phylogenetic ... · 1 Updates Required to Plant...

Date post: 26-Jun-2020
Category:
Upload: others
View: 12 times
Download: 0 times
Share this document with a friend
46
1 Updates Required to Plant Systematics: A Phylogenetic Approach, Third Edition, as a Result of Recent Publications (Updated May 4, 2012) As necessitated by recent publications, updates to the Third Edition of our textbook will be provided in this document. It is hoped that this list will facilitate the efficient incorporation new systematic information into systematic courses in which our textbook is used. Plant systematics is a dynamic field, and new information on phylogenetic relationships is constantly being published. Thus, it is not surprising that even introductory texts require constant modification in order to stay current. The updates are organized by chapter and page number. Some require only minor changes, as indicated below, while others will require more extensive modifications of the wording in the text or figures, and in such cases we have presented here only a summary of the major points. The eventual fourth edition will, of course, contain many organizational changes not treated below. Page iv: Meriania hernandii Meriania hernandoi Chapter 1. Page 12, in Literature Cited, replace “Stuessy, T. F. 1990” with “Stuessy, T. F. 2009,” which is the second edition of this book. Stuessy, T. F. 2009. Plant taxonomy: The systematic evaluation of comparative data. 2 nd ed. Columbia University Press, New York. Chapter 2. Page 37, column 1, line 5: Stuessy 1983, 1990;… Stuessy 1983, 2009; … And in Literature Cited, replace “Stuessy 1990” with: Stuessy, T. F. 2009. Plant taxonomy: The systematic evaluation of comparative data. 2 nd ed. Columbia University Press, New York. Chapter 4. Page 58, column 1, line 5: and Dilcher 1974). …, Dilcher 1974, and Ellis et al. 2009). Page 58, column 1, line 10 under Leaf margin: /// Ep;gr 1975). …Wolfe 1975 and Ellis et al. 2009). Page 65, Box 4A, third column, last line: Walters & Keil 1995.) Walters et al. 2006.) Page 74, column 2, line 9: …or inflorescences) …or inflorescences; Dickinson 1978) Page 91, column 1, line 21-25: …in the same species. Diploid (2n = 14) Tolmiea menziesii (Saxifragaceae), which grows in northern California and southern Oregon, and tetraploid (2n = 28) T. menziesii, which grows from central Oregon to southern Alaska, are morphologically very similar. In the spring beauty… in the same species. For example, Callirhoe papaver (Malvaceae) is composed of morphologically similar tetraploid (2n = 56) and octoploid (2n = 112) plants (Bates et al. 1998). In the spring beauty…to about 191. However, some autopolyploids likely represent cryptic species. Tolmiea diplomenziesii (Saxifragaceae) is diploid (2n = 14) and grows in northern California and southern Oregon, while the morphologically similar T. menziesii is tetraploid (2n = 28) and grows from central Oregon to southern Alaska (Judd et al. 2007; Soltis et al. 2007). Page 91, Table 4.4: add – Tolmiea menziesii, youth-on-age … Autotetraploid … 28 Page 95, column 2, next to last line under “Secondary Metabolites”: add Hegnauer (1962-1996), and Hegnauer and Hegnauer (2001). Delete from references (under “Morphology”): Walters & Keil (1995) and replace with the following: Walters, D. R., D. J. Keil, and Z. E. Murrell. 2006. Vascular plant taxonomy, 5 th ed. Kendall/Hunt, Dubuque, IA.
Transcript
Page 1: Updates Required to Plant Systematics: A Phylogenetic ... · 1 Updates Required to Plant Systematics: A Phylogenetic Approach, Third Edition, as a Result of Recent Publications (Updated

1

Updates Required to Plant Systematics: A Phylogenetic Approach, Third Edition, as a Result of Recent Publications (Updated May 4, 2012) As necessitated by recent publications, updates to the Third Edition of our textbook will be provided in this document. It is hoped that this list will facilitate the efficient incorporation new systematic information into systematic courses in which our textbook is used. Plant systematics is a dynamic field, and new information on phylogenetic relationships is constantly being published. Thus, it is not surprising that even introductory texts require constant modification in order to stay current. The updates are organized by chapter and page number. Some require only minor changes, as indicated below, while others will require more extensive modifications of the wording in the text or figures, and in such cases we have presented here only a summary of the major points. The eventual fourth edition will, of course, contain many organizational changes not treated below. Page iv: Meriania hernandii Meriania hernandoi Chapter 1. Page 12, in Literature Cited, replace “Stuessy, T. F. 1990” with “Stuessy, T. F. 2009,” which is the second edition of this book. Stuessy, T. F. 2009. Plant taxonomy: The systematic evaluation of comparative data. 2nd ed. Columbia University Press, New York. Chapter 2. Page 37, column 1, line 5: Stuessy 1983, 1990;… Stuessy 1983, 2009; … And in Literature Cited, replace “Stuessy 1990” with: Stuessy, T. F. 2009. Plant taxonomy: The systematic evaluation of comparative data. 2nd ed. Columbia University Press, New York. Chapter 4. Page 58, column 1, line 5: and Dilcher 1974). …, Dilcher 1974, and Ellis et al. 2009). Page 58, column 1, line 10 under Leaf margin: /// Ep;gr 1975). …Wolfe 1975 and Ellis et al. 2009). Page 65, Box 4A, third column, last line: Walters & Keil 1995.) Walters et al. 2006.) Page 74, column 2, line 9: …or inflorescences) …or inflorescences; Dickinson 1978) Page 91, column 1, line 21-25: …in the same species. Diploid (2n = 14) Tolmiea menziesii (Saxifragaceae), which grows in northern California and southern Oregon, and tetraploid (2n = 28) T. menziesii, which grows from central Oregon to southern Alaska, are morphologically very similar. In the spring beauty… in the same species. For example, Callirhoe papaver (Malvaceae) is composed of morphologically similar tetraploid (2n = 56) and octoploid (2n = 112) plants (Bates et al. 1998). In the spring beauty…to about 191. However, some autopolyploids likely represent cryptic species. Tolmiea diplomenziesii (Saxifragaceae) is diploid (2n = 14) and grows in northern California and southern Oregon, while the morphologically similar T. menziesii is tetraploid (2n = 28) and grows from central Oregon to southern Alaska (Judd et al. 2007; Soltis et al. 2007). Page 91, Table 4.4: add – Tolmiea menziesii, youth-on-age … Autotetraploid … 28 Page 95, column 2, next to last line under “Secondary Metabolites”: add Hegnauer (1962-1996), and Hegnauer and Hegnauer (2001). Delete from references (under “Morphology”): Walters & Keil (1995) and replace with the following: Walters, D. R., D. J. Keil, and Z. E. Murrell. 2006. Vascular plant taxonomy, 5th ed. Kendall/Hunt, Dubuque, IA.

Page 2: Updates Required to Plant Systematics: A Phylogenetic ... · 1 Updates Required to Plant Systematics: A Phylogenetic Approach, Third Edition, as a Result of Recent Publications (Updated

2

Update under references to morphology, embryology, anatomy, secondary metabolites, replacing “Stuessy 1990” with “Stuessy 2009” [see above]. Add to references at end of chapter (under “Morphology”) Ellis, B., D. C. Daly, L. J. Hickey, K. R. Johnson, J. D. Mitchell, P. Wilf, and S. L. Wing. 2009. Manual of leaf architecture. Comstock Publishing Assoc., Ithaca, New York. Add to references at end of chapter (under “Inflorescences, fruits, and seeds”)” Dickinson, T. A. 1978. Epiphylly in angiosperms. Bot. Rev. 44: 181-232. Schmidt, R. 1986. On Cornerian and other terminology of angiospermous and gymnospermous seed coats: historical perspective and terminological recommendations. Taxon 35: 476-491. Add to references at end of chapter (under “Chromosomes” section): Bates, D. M., L. J. Dorr, and O. J. Blanchard, Jr. 1989. Chromosome numbers in Callirhoe (Malvaceae). Brittonia 41:

143-151. Judd, W. S., D. E. Soltis, P. S. Soltis, and G. Ionta. 2007. Tolmiea diplomenziesii: A new species from the Pacific

Northwest and the diploid sister taxon of the autotetraploid T. menziesii (Saxifragaceae). Brittonia 59: 217-225.

Soltis, D. E., P. S. Soltis, D. W. Schemske, J. F. Hancock, J. N. Thompson, B. C. Husband, and W. S. Judd. 2007.

Autopolyploidy in angiosperms: have we grossly underestimated the number of species? Taxon 56: 13-30. Add to references at end of chapter (under “Secondary Metabolites” section): Hegnauer, R. 1962-1996. Chemotaxonomie der Pflanzen. Vols. 1-11b-1. Birkäuser, Basel. Hegnauer, R. and M. Hegnauer. 2001. Chemotaxonomie der Pflanzen. Vol. 11b-2. Birkhäuser, Basel. Chapter 6. Page 140, column 1, line 10 in paragraph following “Frequency of polyploidy in plants” add as reference to last

sentence in paragraph: (see Soltis et al. 2009). Soltis, D. E., V. A. Albert, J. Leebens-Mack, C. D. Bell, A. H. Peterson, C. Zhang, D. Sankoff, C. W. dePamphilis, P.

Kerr Wall, and P. S. Soltis. 2009. Polyploidy and angiosperm diversification. Amer. J. Bot. 96: 336-348. Page 141, add to Box 6E a statement that allopolyploid speciation in Tragopogon recently has been documented in

several Old World species, and cite the following: Macrodiev, E. V., P. S. Soltis, & D. E. Soltis. 2008. Putative parentage of six Old World polyploids in Tragopogon L.

(Asteraceae; Scorzonerinae) based on ITS, ETS, and plastid sequence data. Taxon 57: 1215-1232. Page 145, column 1, line 10 from bottom: add de Queiroz 2008 to list of references discussing species concepts. Add to references at end of chapter: de Queiroz, K. 2007. Species concepts and species delimitation. Syst. Biol. 56: 879-886. Chapter 8. Page 190, column 1, line 2 from bottom: recent DNA evidence recent DNA and morphological evidence Page 191, column 2: under references add: Schneider et al. 2009

Page 3: Updates Required to Plant Systematics: A Phylogenetic ... · 1 Updates Required to Plant Systematics: A Phylogenetic Approach, Third Edition, as a Result of Recent Publications (Updated

3

Schneider, H., A. R. Smith, and K. M. Pryer. 2009. Is morphology really at odds with molecules in estimating fern phylogeny. Syst. Bot. 34: 455-475. Page 191, Fig. 8.3: Add Rai & Graham (2010) to “Modified from”. Page 196, Plate 8.1: Osmunda cinnamomea Osmundastrum cinnamomeum Page 197, column 1, line 23: 2001, 2004; Schneider et al. 2004; 2001, 2004; Schuettpelz and Pryer 2997; Schneider et al. 2004; Schuettpelz, E. and K. M. Pryer. 2007. Fern phylogeny inferred from 400 leptosporangiate species and three plastid genes. Taxon 56: 1037-1050. Page 197, column 2, line 12: Genera/species: 3/18. Genera/species: 4/18. Page 197, column 2, line 13: and Todea (2). Todea (2), and Osmundastrum (1). Page 198, column 1, line 2: Osmunda cinnamomea Osmundastrum cinnamomeum Page 198, column 1, line 3: O. regalis Osmunda regalis Page 198, column 1, line 11: O. cinnamomea Osmundastrum cinnamomeum Page 198, column 1, line 14: in references, insert Metzgar et al. 2008 Page 199, column 2, line 34: Add Korall et al. 2007 to the list of references for Cyatheaceae. Korall, P., D. S. Conant, J. S. Metzgar, H. Schneider, and K. M. Pryer. 2007. A molecular phylogeny of scaly tree

ferns (Cyatheaceae). Amer. J. Bot. 94: 873-886. Page 207, column 1, line 10: Beetles (and…from another plant. Beetles (usually weevils [Curculionoidae], but sometimes sap beetles [Nitidulidae]) and to a lesser extent bees are the major pollen vectors. Metzgar, J. S., J. E. Skog, E. A. Zimmer, and K. M. Pryer. 2008. The paraphyly of Osmunda is confirmed by

phylogenetic analyses of seven plastid loci. Syst. Bot. 33: 31-36. Page 208, column 1, add the following to references (for Cycadaceae). Kono, M. and H. Tobe. 2007. Is Cycas revoluta (Cycadaceae) wind - or insect – pollinated? Amer. J. Bot. 94: 847-

855. Page 208, column 2, add the following reference to references (for Zamiaceae). Procheş, Ş. And S. D. Johnson. 2009. Beetle pollination of the fruit-scented cones of the South African cycad

Stangeria eriopus. Amer. J. Bot. 96: 1722-1730. Page 215, column 1, line 19: add Gernandt et al. 2008 to “References” under Pinaceae: Gernandt, D. S., S. Magallón, G. Geada López, O. Zerón Flores, A. Willyard, and A. Liston. 2008. Use of

simultaneous alalyses to guide fossil-based calibrations of Pinaceae phylogeny. Int. J. Plant Sci. 169: 1086-1099.

Page 217, column 2, References: Adams 1993 Adams 1993, 2011 Add the following reference: Adams, R. P. 2011. Junipers of the world: The genus Juniperus, 3rd ed. Trafford Publ., Bloomington, IN. Page 219, Figure 8.27: Taxus floridana Taxus globosa var. floridana Page 220, column 1, line 41: Add Spjut 2007 to the list of references for Taxaceae. Spjut, R. W. 2007. Taxonomy and nomenclature of Taxus (Taxaceae). J. Bot. Res. Inst. Texas 1: 203-289.

Page 4: Updates Required to Plant Systematics: A Phylogenetic ... · 1 Updates Required to Plant Systematics: A Phylogenetic Approach, Third Edition, as a Result of Recent Publications (Updated

4

** Rai, H.S. and S. W. Graham. 2010. Utility of a large, multigene plastid data set in inferring higher-order relationships

in ferns and relatives (monilophytes). Amer. J. Bot. 97: 1444-1459. Chapter 9. Page 225, line 5: Chaw et al. 1997; Chaw et al. 1997; Qiu et al. 2007; Page 225, line 22: both chloroplast and nuclear genes chloroplast, mitochondrial, and nuclear genes Page 225, lines 24, 25: Support for monophyly of monocots: add Soltis et al. 2011, Lee et al. 2011, Moore et al. 2011 Page 225, lines 24, 25: Qiu et al. 2005; Qiu et al. 2005, 2007; Page 225, last line: (Chase et al. 1993; (Burleigh et al. 2009; Chase et al. 1993; Page 226, column 1, line 1: add “Moore et al. 2007, 2010, 2011” and “Lee et al. 2011” and “Soltis et al. 2011” to list of references cited in support of Eudicot monophyly. Page 226, column 1, lines 1, 2: Qiu et al. 2005; Qiu et al. 2005, 2007; Page 226, column 1, lines 2, 3: Soltis et al. 1997, 2000, 2005; Soltis et al. 1997, 2000, 2005, 2007; Page 226, column 1, line 7: (Chase et al. 1993; (Burleigh et al. 2009; Chase et al. 1993; Also add the following references: Soltis et al. 2011, Lee et al. 2011, Moore et al. 2011 Page 226, column 1, line 3 from bottom: Qiu et al. 2000, 2005; Qiu et al. 2000, 2005, 2007; Page 226, column 1, lines 4 and 5 from bottom: …from two to several different genes (Graham and Olmstead 2000; Kim et al. 2004; …from two to numerous different genes (Graham and Olmstead 2000; Kim et al. 2004; Moore et al. 2007, 2010; Graham and Iles 2009; Page 226, column 2, line 4: ….(2004), Soltis and Soltis (2004)… …(2004), Moore et al. (2007, 2010), Soltis and Soltis (2004)… Also add Soltis et al. (2011) and Moore et al. 2011 and Lee et al. 2011 Page 226, column 2, line 15: After the sentence “Most analyses support the position of Amborellaceae, Nymphaeaceae, and Illiciaceae and their relatives in the ANITA grade, as the three lineages that first diverged from the remaining angiosperm groups.” Place the following: Recently Hydatellaceae, an aquatic group, have been supported as sister to Nymphaeaceae (Rudall et al. 2007; Saarela et al. 2007). Page 226, column 2, line 21: lineages may have… lineages have… Page 226, column 2, line 24: 2004; Friedman 2006). 2004; Friedman 2006; Friedman and Ryerson 2009). Page 226, Figure 9.1, legend. …based on Soltis and Soltis (2004), …based on Soltis and Soltis (2004), Moore et al. (2007, 2010), Graham and Iles 2009, Page 226, Figure 9.1: postgenetial fusion postgenital fusion Page 226, Figure 9.1: Change topology of cladogram to indicate that Ceratophyllaceae is sister to Eudicots, and change topology of tree as follows: (Magnoliids (Monocots (Ceratophyllaceae + Eudicots))). As a synapomorphy of the Monocot + Ceratophyllaceae + Eudicots clade indicate “perianth of 2 whorls” Page 227, column 2, line 8: …insect pollinated, generalist insect pollinated (see also Thien et al. 2009), Page 227, Figure 9.2, second branch of the cladogram: Nymphaeaceae Nymphaeales [This change is required because Nymphaeales now contain Hydatellaceae.] Add Ceratophyllaceae as the sister group of the Eudicots, and change topology to match the relationships: (Magnoliids (Monocots (Ceratophyllaceae + Eudicots))). [These changes based on the recent paper Moore et al. (2007).] Page 227, Figure 9.2, legend. Add “Moore et al. (2007)” and “Wang et al. 2009” to list of references cited. [And topology of the rosid clade in the cladogram in this figure needs to be changed as follows – Vitales are sister to the rest

Page 5: Updates Required to Plant Systematics: A Phylogenetic ... · 1 Updates Required to Plant Systematics: A Phylogenetic Approach, Third Edition, as a Result of Recent Publications (Updated

5

of the rosid clade, with the fabids comprising Zygophyllales, Celastrales, Oxalidales, Malpighiales, Fabales, Rosales, Cucurbitales, and Fagales, and the malvids comprising Geraniales, Myrtales, Brassicales, Malvales, and Sapindales.] Page 227, column 1, line 7: (Doyle and Endress 2000). (Doyle and Endress 2000; Endress and Doyle 2009). Page 227, column 1, line 9: Nymphaeaceae Nymphaeales Page 227, column 2, line 6 from bottom: Nymphaeaceae Nymphaeales Page 228, column 1, line 1: Nymphaeaceae Nymphaeales Page228, column 1, line 16 & line 21: Nymphaeaceae, and Illiciaceae Nymphaeales, and Austrobaileyales Page 228, column 1, line 18: Qiu et al. 2005; Qiu et al. 2005, 2007; Also add in support of position of ANITA grade the following: Soltis et al. 2011, Lee et al. 2011, Moore et al. 2011 Page 228, column 1, line 22: (see Figures 9.1 and 9.2). (see Figures 9.1 and 9.2; Endress and Doyle 2009 for other supportive morphological characters). Page 228, column 2, lines 7-12: reword as follows: …Soltis et al. 2002, 2011; Moore et al. 2007), sister to both together, or sister to the Chloranthaceae (Moore et al. 2011). The Chloranthaceae are another family of problematic placement, although they may be sister to magnoliids. Recent evidence based primarily on plastid sequence data suggests that monocots and eudicots may be sister taxa, with magnoliids basal to them (Moore et al. 2007; Soltis et al. 2011), although phylogenomic analyses based on nuclear sequences support a sister group relationship of eudicots and magnoliids, with monocots sister to them (Lee et al. 2011). Page 228, Fig. 9.3: add Wang et al. 2009 and Moore et al. 2010, 2011, and Soltis et al. 2011 to references. In Fig. 9.4 also add Soltis et al. 2011 and Wang et al. 2009. Page 229, column 1, line 2: and Soltis et al. (2005). and Soltis et al. (2005), as well as the recent study of Wang et al. (2009). Page 229, column 2, line 7: (Qiu et al. 2005; (Moore et al. 2007; Qiu et al. 2005; Page 229, column 2, line 8: The Chloranthaceae are another family of problematic placement. The Chloranthaceae are another family of problematic placement, although they may be sister to the magnoliids. Page 229, column 2, line 9: Recent evidence suggests that monocots and eudicots may be sister taxa with magnoliids, Ceratophyllaceae, and Chloranthaceae basal to them. Recent evidence suggests that monocots and eudicots may be sister taxa with magnoliids and Chloranthaceae diverging earlier (Moore et al. 2007). Page 229, column 1, line 10: Thorne (1992, 2001) recognized 490 Thorne (2007) recognized 472 Page 229, column 2, line 17 from bottom: (APG 1998, 2003) (APG 1998, 2003, 2009). Page 230, Table 9.1, left column, line 5: insert under Nymphaeaceae, the additional family of Nymphaeales: Hydatellaceae, and exclude Cabombaceae, which should be listed as a separate family (in bold). Include Illiciaceae as a synonym under Schisandraceae. Pentaphragmataceae Pentaphylacaceae. Include Parnassiaceae, Lepuropetalaceae, Pottigeriaceae in the Celastraceae. Passifloraceae should be expanded to include Turneraceae and Malesherbiaceae. Juglandaceae (should include Rhoipteleaceae). Melastomataceae (should include Memecylaceae). Brassicaceae sensu lato should be split into Brassicaceae sensu stricto, Capparaceae, and Cleomaceae. Chloranthaceae should be placed in the Chloranthales, and delete “placement uncertain”, and insert “(sister to magnoliid complex)”. Asparagaceae (should include Ruscaceae, Agavaceae, Hyacinthaceae, and Themidaceae). Amaryllidaceae (should include Alliaceae and Agapanthaceae). Xanthorrhoeaceae (should include Asphodelaceae, Hemerocallidaceae). The “Portulacaceae” sensu lato should be split – recognizing the following: Portulacaceae sensu stricto, Montiaceae, Talinaceae, and Anacampserotaceae. [Note: All these changes result from a shift from APG II to APG III as the classification followed in the next edition of this textbook. See also subfamily changes in Chase et al. 2009] Page 230, Table 9.1: For an alternative ordering of these families see Haston et al. (2009). Page 232, column 1, line 3: and 2-ranked and spiral

Page 6: Updates Required to Plant Systematics: A Phylogenetic ... · 1 Updates Required to Plant Systematics: A Phylogenetic Approach, Third Edition, as a Result of Recent Publications (Updated

6

Page 232, column 1, line 6: 5-11 5-8 Page 232, column 2, line 3: Ovule 1 Ovule 1 Page 233, column 1, line 17: (Barkman et al. 2000). (Barkman et al. 2000; Soltis et al. 2007). Page 233, column 1, line 21: red drupes. red drupes (with most of the pit developed from mesocarp). Page 233, column 1, Additional references: add – Jérémie et al. 2008; Page 233, column 1, line 1 – description of Nymphaeaceae. This section will be reworked because family will be split into Nymphaeaceae and Cabombaceae within ordinal treatment of Nymphaeales. Page 233, column 2, Genera/species: 8/70 6/70 Page 233, column 2, line 4 in “Discussion”: (Les et al 1999) (Les et al. 1999; Borsch et al. 2008) Page 233, column 2, line 11 from bottom: Nymphaeoideae. Nymphaeoideae (Borsch et al. 2007, 2008; Les et al. 1999; Löhne & Borsch 2007; Taylor 2008). Page 235, column 1, line 6: At end of first paragraph, insert the following new paragraph. Nymphaeaceae are most closely related to Hydatellaceae, an enigmatic group that is also aquatic (Rudall et al. 2007, 2009; Saarela et al. 2007; Sokoloff et al. 2008). The reproductive structures of Trithuria (incl. Hydatella) are very different from the flowers of Nymphaeaceae – they are reduced, imperfect, and apetalous, clustered at the apex of a scape, and associated with two to several bracts. The plants have a rosette of linear leaves. Page 235, column 1, add to references: Warner et al. 2008 Page 235, column 2: Illiciaceae Schisandraceae [family treatment will need to be appropriately revised] Page 235, column 2, line 12 from bottom: …by hardened mesotestal cells. …by quickly deciduous tepals (Endress 2008) and hardened mesotestal cells. Page 235, column 2, line 5 from bottom: At end of first paragraph of the “Discussion” section insert the following new paragraph. Molecular and morphological data (Morris et al. 2007) support the recognition of two sections within Illicium: the Old World species (sect. Illicium) have seeds without a rim around the hilum, while the New World species (sect. Cymbostemon) have seeds with a hilar rim (Morris et al. 2007). Page 236, column 1, last line: Support of monophyly of Magnoliales – add: Soltis et al. 2011 and Morton 2011 Page 237, column 2, line 8 in “Discussion”: …broadly. …broadly (Figlar and Nooteboom 2004). Page 240, column 1, line 3: Wood 1958. Wood 1958; Xu and Rudall 2006. Page 242, column 1, line 5 in description: alternate and spiral alternate and spiral Page 242, column 2, line 10: Carpel 1; Carpel 1; Page 242, column 2, line 3 from bottom: Soltis et al. 2000). Soltis et al., 2000, 2011; Morton 2011). Page 243, column 2, line 7 from bottom: Chanderbali 2001, Chanderbali et al. 2001, Page 244, column 1, line 10: …tribal distinctions …tribal distinctions (Rohwer & Rudolph 2005; Rohwer et al. 2009). Page 244, column 1, line 15: Chanderbali 2001 Chanderbali et al. 2001 Page 244, column 2, line 13 from bottom: Soltis et al. 2000 Soltis et al. 2000, 2011 [and Morton 2011]

Page 7: Updates Required to Plant Systematics: A Phylogenetic ... · 1 Updates Required to Plant Systematics: A Phylogenetic Approach, Third Edition, as a Result of Recent Publications (Updated

7

Page 245, column 1, line 7 under Piperales: Soltis et al. 2000 Soltis et al. 2000, 2011 [And also add Morton 2011] Page 245, column 2, line 25: Donoghue 2000; Donoghue 2000; Neinhuis et al. 2005; Page 247, column 1, line 1: 6/2020/ 5/2020. Page 247, column 1, lines 10-14: Within Piperaceae, Zippelia … genera are problematic. Within Piperaceae, Verhuellia (Verhuellioideae) is the sister group to the remaining species, followed by Zippelia + Manekia (Zippelioideae), which are sister to the Piper + Peperomia clade, i.e., Piperoideae (Wanke et al. 2007; Samain et al. 2008). Page 247, column 1, line 19: on nrDNA ITS sequences on ITS and chloroplast sequences Page 247, column 1, line 4 in “Discussion”: Soltis et al. 2000). (Soltis et al. 2000; Neinhuis et al. 2005). Page 247, column 1, line 7 from bottom of “Discussion”: …leaves. …leaves; and molecular data (Wanke et al. 2006) also support its monophyly. Page 247, column 2, line 7 of “Discussion”: and seed coat anatomy. and seed coat anatomy (see also Neinhuis et al. 2005). Page 247, column 2, line 6 from bottom: Thorne (1992) Thorne (1992, 2007) Page 248, column 1, line 2: (Kelly and González 2003). (Kelly and González 2003; Neinhuis et al. 2005). Page 248, column 2, Additional references: add – Ohi-Toma et al. 2006 Page 249, column 1, line 10 in “discussion”: …2006), or …2006; Burleigh et al. 2009), or Page 249, column 1, line 10 in “discussion”: Soltis et al. 2000 Soltis et al. 2000, 2011 Page 249, column 1, line 11 in “discussion”: add: or sister to Chloranthaceae (Moore et al. 2011). Page 249, column 2, line 18: …primordium. …primordium, but this is not the case in Acorus and at least some Alismatales, in which the blade also develops from the apical end (Doyle 2007). Page 249, column 2, line 28: 2000, 2005). 2000, 2005, 2007, 2011). Also add – Moore et al. 2011 and Lee et al. 2011 and Morton 2011 Page 249, column 2, line 4 under Alismatales: Soltis et al. 2000 Soltis et al. 2000, 2011 Page 252. column 1, line 13 in “Discussion”: (Tam et al. 2004), and morphology… (Tam et al. 2004), rbcL, trnK-matK, trnL-F sequences (Cabrera et al. 2008), five DNA regions (Cusimano et al. 2011), and morphology… Page 252, column 1, line 20 in “Discussion”: Stockey et al. 1997; Stockey et al. 1997, 2007; Page 252, column 1, line 23 in “Discussion”: Although rbcL DNA Page 252, column 1, line 25 in “Discussion”: (see below), it is not close (see below), and it is not close Page 252, column 2, line 22: add “Croat 1985” to “Additional references”. Page 254, column 2, lines 9-10 from bottom: delete “Zannichellia (Zannichelliaceae; see key) probably also belonges here (Less et al. 1997a).” Page 256, column 1, last line: (Les et al. 1997a). (Les et al. 1997a; Lindqvist et al. 2006). Page 256, column 2, add after line 3: In contrast, Zannichellia (Zannichelliaceae; see key) probably belongs here (Les et al. 1997a; Lindqvist et al. 2006) probably belongs here. Stuckenia and Potamogeton are sister genera, and the species of Potamogeton form two major clades, i.e., broad-leaved vs. narrow-leaved species (Lindqvist et al. 2006).

Page 8: Updates Required to Plant Systematics: A Phylogenetic ... · 1 Updates Required to Plant Systematics: A Phylogenetic Approach, Third Edition, as a Result of Recent Publications (Updated

8

Page 256, column 2, line 15: (Soltis et al. 2003a). (Pellicer et al. 2010; Soltis et al. 2003a). Page 259, column 1, lines 18, 19: Colchicum (90 spp.), Colchicum (130 spp.), Page 259, column 1, line 19: delete “Androcymbium (40)” Page 259, column 1, line 12 in “Discussion”: and Reeves 2003). and Reeves 2003; Vinnersten and Manning 2007). Page 259, column 1, line 14 in “Discussion”: Following the first paragraph of the Discussion, insert the following new paragraph. Three major clades are evident within core Colchicaceae (Vinnersten and Manning 2007); tribe Anguillarieae (Bacometra, Wurmbea) have terminal racemes or spikes of flowers that lack bracts; tribe Iphigenieae (Camptorrhiza, Iphigenia) have solitary, axillary flowers lacking nectaries; and tribe Colchiceae (remaining genera, e.g., Colchicum, Gloriosa) have their flowers solitary and axillary or in leafy racemes, and the flowers have either perigonal or staminal nectaries. Page 259, column 2, line 3 in “Discussion”: Cameron and Fu 2006). Cameron and Fu 2006; Chen et al. 2006). Page 262, column 2, line 6 under Asparagales: Soltis et al. 2000 Soltis et al. 2000, 2011 Page 265, column 1, line 6: add Stelle et al. 2012 to list of workers in Asparagales. Also, in Fig. 9.18, add Stelle et al. 2012 as an authority for the cladogram. Page 266, column 1: Expand circumscription of Asparagaceae to include Ruscaceae, Agavaceae, Hyacinthaceae, Themidaceae, and Laxmanniaceae. Family treatments will have to be extensively modified based on this broader APG III circumscription. Families currently recognized will be renamed as follows: Agavaceae Agavoideae; Hyacinthaceae Scilloideae; Themidaceae Brodiaeoideae; Laxmanniaceae Lomandroideae; Ruscaceae Nolinoideae. See Chase et al. (2009). Page 266, column 2, line 13 in “Discussion”: After first paragraph insert the following new paragraph. Within Asparagus, the perfect-flowered species form a paraphyletic complex, while the dioecious species constitute a clade, i.e., Asparagus subg. Asparagus (Fukuda et al. 2005). Page 268, column 1, line 7 in discussion: Add Kim et al. 2010 to analyses supporting monophyly of Ruscaceae s.l. Page 268, column 1, line 10 in discussion: Add Kim et al. 2010 as another paper supporting sister group relationship with Asparagaceae. Page 269, column 1, line 6 in “Discussion”: add Kim et al. 2010 in support of monophyly of Agavaceae. Also add in sentence: “Camasia, Hastingsia, … 1999”).: a phrase indicating “…and Chlorophytum and Anthericum (usually placed in Anthericaceae)…” are here include. Page 269, column 1, line 10 in “Discussion”: Chase et al. 1995a, 2000; Chase et al. 1995a, 2000; Good-Avila et al. 2006; Page 269, column 1, lines 22, 23: and the Agavoideae (e.g., Agave, Furcraea, Manfreda, Polianthes), with an… and the Agavoideae (e.g., Agave [incl. Manfreda, Polianthes], Furcraea), with an… Page 269, column 1, line 3 from bottom in “Discussion”: several many Page 269, column 1, line 6 from bottom: Hyacinthaceae Batsch Hyacinthaceae Batsch ex Borkhausen Page 270, column 1: Expand circumscription of Amaryllidaceae (formerly Alliaceae s.l.) to include Alliaceae and Agapanthaceae. [Description and family treatment will have to be updated to reflect this broader APG III circumscription.] Note that: Alliaceae Allioideae; Agapanthaceae Agapanthoideae. Page 270, column 1, line 1: only Ornithogalum) Ornithogalum, Dipcadi, Albuca) Page 270, column 1, lines 4, 5: Manning et al 2004; Manning et al. 2004, 2009;

Page 9: Updates Required to Plant Systematics: A Phylogenetic ... · 1 Updates Required to Plant Systematics: A Phylogenetic Approach, Third Edition, as a Result of Recent Publications (Updated

9

Page 271, column 2, line 8: (1995) (1995, 2010) Page 272, expand circumscription of Xanthorrhoeaceae to include Asphodelaceae and Hemerocallidace following APG III. Note that: Asphodelaceae Asphodeloideae; Hemerocallidaceae Hemerocallidoideae. Page 273, column 1, line 3: Iris (250) Iris (250, incl. Belamcanda) Page 273, column 1, line 12: delete Belamcanda from list of genera. Page 273, column 1, lines 14-16: … and relatives) and a clade comprising Irideae, Mariceae, and Tigrideae (tepals differentiated into a limb and claw, upper apices of the style branches with petaloid appendages; e.g., Iris, Belamcanda, Moraea, Nemastylis, Trimezia, and Trigridia). …and relatives), Irideae (transverse stigmatic lobes positioned below paired petaloid appendages; e.g., Iris, Dietes, Moraea), and Tigridieae (bulbous rootstock, base chromosome number 7; e.g., Nemastylis, Tigridia). Page 273, column 2, line 14 from bottom: 788/19,500 880/21,950 Page 273, column 2, line 11 from bottom: Maxillaria (420) Maxillaria (250) [And place Maxillaria in proper position in list based on number of species.] Page 275, column 1, lines 24, 25: form a clade based on rbcL sequence data (Dressler and Chase 1995). form a clade based on DNA sequence data. Page 276, column 2, line 5 undeer Commelinoid monocots: Support for monophyly, add: Soltis et al. 2011 and Givnish et al. 2010 Page 278, column 2, line 3: 200/2780 189/2780 Page 279, column 1, last line: Add Archontophoenix to list of Arecoideae. Page 276, column 2, line 10 from bottom: …palmate leaves and … …palmate leaves with adaxial subepidermal fibers (an anatomical synapomorphy; Horn et al. 2009) and … Page 279, column 2, line 5: insert the following as first sentence in this paragraph: Synapomorphies of Coryphoideae include the palmate leaves and loss of nonvascular fiber bundles free in the leaf mesophyll (Horn et al. 2009). Page 279, column 2, line 9: Sentence starting with “Corypheae include…” replace with the following: Corypheae was once broadly circumscribed, but is now restricted to Corypha, a massive palm that dies after producing its terminal inflorescence, and the other genera, some of problematic placement, are now dispersed into the newly recognized tribes Sabaleae (Sabal), Cryosophileae (e.g., Coccothrinax, Leucothrinax, Thrinax, Zombia), and Trachycarpeae (Acoelorrhaphe, Chamaerops, Copernicia, Licuala, Livistonia, Raphidophyllum, Raphis, Serenoa, Trachycarpus, Washingtonia). Sabal has costapalmate leaves and syncarpus flowers, and is sister to the Cryosophileae, which are have palmate leaves and apocarpus flowers, often with a reduction to a single carpel. Trachycarpeae are quite variable but are usually palmate-leaved (Dransfield et al. 2008; Rudall et al. 2011). Caryoteae … Page 280, Fig. 9.26: Roystonia Roystonea Page 281, column 2, line 4: with perianth differentiated into a calyx and corolla, with perianth differentiated into a calyx and corolla, Page 281, column 2, line 4 in “Discussion”: … 1995). …1995; Burns et al. 2011). Page 282, column 1, line 2: (Faden and Hunt 1991; Tucker 1989). (Bush et al. 2011; Faden and Hunt 1991; Tucker 1989). Page 282, column 2, next to last line: 2-ranked, equitant 2-ranked, equitant Page 283, column 1, line 18: 13/100 14/116

Page 10: Updates Required to Plant Systematics: A Phylogenetic ... · 1 Updates Required to Plant Systematics: A Phylogenetic Approach, Third Edition, as a Result of Recent Publications (Updated

10

Page 283, column 2, line 17 from bottom: 7/35 9/35 Page 285, Fig. 9.29: Add “Ovules thin-walled” as a synapomorphy at the same node as “Nectaries lacking”. Page 285, column 2, line 3: Add Givnish et al. 2010 to support for monophyly of Poales. Page 287, column 1, line 5 from bottom: 51/1520 57/1520 Page 287, column 2, line 2 in “Discussion”: rbcL sequence data DNA sequence data Page 287, column 2, line 3 in “Discussion”: …Ranker et al. 1990). …Ranker et al. 1990; Givnish et al. 2007, 2011). Page 287, column 2, line 7 in “Discussion”: Kellogg 1995). Kellogg 1995; Givnish et al. 2010). Page 287, column 2, line 21 in “Discussion”: …are a paraphyletic assemblage. are a paraphyletic assemblage, now divided into several subfamilies, with Brocchinia (Brocchinioideae) sister to the rest of the familial clade, followed by Lindmania and Connellia (Lindmanioideae), and Pitcairnia and relatives (Pitcairnioideae) sister to a clade containing Puya (Puyoideae) and Bromelioideae. Page 287, column 2, line 25 in “Discussion”: Add Givnish et al. 2007, 2011 to references supporting monophyly of Tillandsoideae, etc. Page 290, column 2: Add Kim and Choi 2011 to Additional references. Page 292, column 1, line 7: 9/1175 6/1175 Page 292, column 1, line 10: by Eriocaulon, Lachnocaulon, and Syngonanthus. …by Eriocaulon, Paepalanthus, and Syngonanthus. Page 292, column 1, line 8 in “Discussion”: (e.g., Paepalanthus, Leiothrix, Syngonanthus, and Lachnocaulon), (e.g., Comanthera, Paepalanthus, Leiothrix, and Syngonanthus), Page 292, column 1, line 9 in “Discussion”: The two subfamilies may be monophyletic (Unwin 2004). The monophyly of the two subfamilies is supported by molecular data (Andrade et al. 2010; Unwin 2004). Page 292, column 1, line 10 in “Discussion”: Paepalanthus represents a paraphyletic … 2000). Paepalanthus has represented a paraphyletic complex from which other “genera” have evolved, so recently it has been expanded by inclusion of Blastocaulon, Lachnocaulon, and Tonina (Andrade et al. 2010; Giulietti et al. 2000). Page 293, column 1, description of Poaceae: note that Preston et al. (2009) on the basis of gene expression data support the hypothesis that the lemma and palea are derived from outer perianth parts (of the immediate grass relatives) not a bract and prophyll as stated in description. (The lodicules would then be interpreted as inner perianth parts.) Page 294, column 1, line 5: Drábková et al. 2003; Drábková et al. 2003; Drábková and Vlček 2007; Page 294, column 2, line 20 from bottom: (Muasya et al. 1998). (Muasya et al. 1998; Simpson et al. 2007). Page 300, Figure 9.36: Micrairoideae should be added into the cladogram, as the sister group of Arundinoideae s.s. “Sánchez-Ken et al. 2007” should be added to the citations in the figure legend. Page 301, column 2, line 4 in “Additional references”: insert -- Hilu 2007 and Schneider et al. 2009 Page 302, column 1, line 14: …staminodes, and the leaf… …staminodes, nectaries two, positioned atop ovary, and the leaf… Page 302, column 2, line 17: Nectaries 2, positioned atop the ovary. Nectaries 2, positioned atop the ovary. Page 302, column 2, Genera/species: 50/1000 51/1000 Page 306, column 1, last line: insert “Classen-Bockhoff & Heller 2008” and “Pischtschan et al. 2010” in Additional references.

Page 11: Updates Required to Plant Systematics: A Phylogenetic ... · 1 Updates Required to Plant Systematics: A Phylogenetic Approach, Third Edition, as a Result of Recent Publications (Updated

11

Page 307, column 1, line 6: Soltis et al. 1997, 1998, 2000, 2003, 2005; Soltis et al. 1997, 1998, 2000, 2003, 2005, 2007, 2011; also add Moore et al. 2007, 2010, 2011 and Lee et al. 2011 and Morton 2011 to references. Add a paragraph discussing relationships under Eudicots, i.e., basal lineages, with Gunnera sister to Pentapetalae, which includes Superasteridae and Superrosidae, etc. Page 307, column 1, line 6 under Ranunculales: Add Soltis et al. 2011 and Wang et al. 2009 and Morton 2011 Page 307, column 2, line 7: Thorne 1974, 1992). Thorne 1974, 1992, 2007). Page 307, column 2, line 28: not readily apparent; not readily apparent, but they tend to have nectaries on the petals (Endress and Matthews 2006); Page 307, Figure 9.40: The internode representing the common ancestor of Menispermaceae + Berberidaceae + Ranunculaceae should be labeled with the putative synapomorphy: -- nectaries on the petals Page 307, Figure 9.40: To the internode referenced above, a second synapomorphy should be added: -- berberine [And this “berberine” character should be deleted from the base of the cladogram, as it is not an ordinal synapomorphy.] Page 307, Figure 9.40: The internode representing the common ancestor of Berberidaceae and Ranunculaceae is currently blank, but the following synapomorphic character should be added here: -- leaf bases broad For this figure also add Soltis et al. 2011, Wang et al. 2009 Page 308, column 2, lines 2, 3: embryo usually curved; embryo large, straight to curved; Page 308, last line of description: lacking (Figure 9.41). lacking; seed with ventral intrusion of the endocarp (or a ventral cavity) (Figure 9.41). Page 308, column 2, line 2 of “Discussion”: morphological characters (see above). morphological characters (see above) and ndhF, rbcL, and atpB sequences (Jacques and Bertolilno 2008; Ortiz et al. 2007; Hoot et al. 2009). Page 309, column 1, lines 1, 2: Relationships within Menispermaceae are unclear, but the clade is usually divided into 5-8 tribes… Menispermaceae are usually divided into 5-8 tribes… Page 309, column 1, line 5: Add the following at the end of this paragraph. Molecular data indicate that the family contains two major clades: the members of clade I (e.g., Calycocarpum, Odontocarya, and Tinospora) have retained the ancestral characters of a straight embryo and fruit, while those of clade II (e.g., Abuta, Cyclea, Chondrodendron, Cissampelos, Cocculus, Menispermum, and Stephania) possess the derived features of a curved embryo and fruit (i.e., with the style sublateral to basal). Page 312, column 1, line 3: 47/2000 62/2525 Page 312, column 1, line 3 in Discussion: add in Wang we al. (2009). Page 313, column 2, line 7: Nandina (in Nandinoideae) is sister… Nandina (in Nandinoideae) may be sister… Page 313, column 2, line 6: by two flaps. by two flaps; ndhF sequences, however, place this genus sister to Caulophyllum and relatives (Kim et al. 2004). Page 313, column 2, line 11: …and Jansen 1998a; …and Jansen 1998; Page 314, column 1, line 18: Chloroplast DNA restriction sites suggest, Chloroplast DNA data suggest, Page 314, column 1, line 20: 1998a). 1998; Kim et al. 2004). Page 314. Column 1, line 3: add in: Wang et al. 2009. Page 315, column 1, line 2: After …a presumed synapomorphy. Insert the following: Finally, in Wang et al. (2009) Pteridophyllum (along with Hypoecoum) is sister to Fumarioideae.

Page 12: Updates Required to Plant Systematics: A Phylogenetic ... · 1 Updates Required to Plant Systematics: A Phylogenetic Approach, Third Edition, as a Result of Recent Publications (Updated

12

Page 316, Key to Families of Proteales…: Delete “Vessels lacking” from first lead of couplet 2, and delete “Vessels present” from second lead of couplet 2; in both leads capitalize Carpels. Page 316, column 2, line 1: …Manos et al. 1993). Manos et al. 1993; Soltis et al. 2000, 2005, 2011). Page 316, column 2, line 5: Morphology, rbcL, atpB, matK, 18S and 26S rDNA sequences support this position, Morphology and DNA sequences support this position, Page 316, column 2, line 10: add Soltis et al. 2011 Page 317, column 1, line 7: Petals 3-7, Petals (or staminodes) 3-7, Page 317, column 1, line 8: Stamens 3-7; Stamens 3-7, opposite the sepals; Page 317, column 1, line 6 in Discussion: … (Feng et al. 2005). … (Feng et al. 2005), and among which there is evidence of extensive reticulate evolution (Grimm & Denk, 2010). Page 317, line 10 from bottom, under “Additional references”: add “Balthazar and Schönenberger 2009”. Page 317, column 2, line 6: usually adnate to tepals; usually opposite and adnate to tepals; Page 317, column 2, line 8: pollen grains usually pollen grains triangular in polar view, usually Page 317, column 2, line 20: Banksia (50) Banksia (170) [and move genus to a position directly following Grevillea, since it now is second largest in family, as a result of inclusion of Dryandra] Page 317, column 2, line 3 from bottom: by chloroplast DNA sequences by DNA sequences Page 317, column 2, line 12 from bottom: 1998). 1998; Weston 2007). Page 317, column 2, line 10 from bottom: Bellendena, Placospermum, Bellendena, Persoonia, Placospermum, Page 318, column 1, line 2: rbcL, atpB, matK, and 18S sequences nuclear, plastid, and mitochondrial DNA sequences Page 318, column 1, line 5: Add in support for monophyly: Soltis et al. 2011, Lee et al. 2011, Moore et al. 2011 Page 318, Figure 9.45: add to ordinal synapomorphies the following: --not mycorrhizal --root hair cells in vertical files Add synapomorphy “plastid crystalloid globular” to node linking Nyctaginaceae – “Portulacaceae” clade. Replace green box for “Portulacaceae” with the following: (Montiaceae (Talinaceae (Portulacaceae (Cactaceae)))) Successive cambia add note: (but see Carlquist 2010) Page 318, Figure 9.45: (Modified from Soltis et al. 2000). (Modified from Soltis et al. 2000; Brockington et al. 2009). Page 318, column 1, lines 2, 3, under Caryophyllales: …is supported by anther wall development, vessel elements with simple perforations, cytochrome… is supported by morphology (see Fig. 9.45), cytochrome… Page 318, column 1, line 6: two large clades, here… two large clades (Brockington et al. 2009; Crawley and Hilu 2012; Heubl et al. 2006), here… Page 318, column 2, line 20: The monophyly of the group has been strongly supported by rbcL, atpB, matK, and 18S rDNA sequences (… The monophyly of the group has been strongly supported by several chloroplast and nuclear DNA regions (… Brockington et al. 2009). Also add Soltis et al. 2011 and Crawley and Hilu 2012 in support of monophyly.

Page 13: Updates Required to Plant Systematics: A Phylogenetic ... · 1 Updates Required to Plant Systematics: A Phylogenetic Approach, Third Edition, as a Result of Recent Publications (Updated

13

Page 320, column 1, line 17: an indumentum of stalked, vascularized, gland-headed… an indumentum of sessile to stalked, gland-headed… Page 320, column 2, line 28: habit as well. habit as well (Heubl et al. 2006). Page 320, column 2, line 2: …by morphology, rbcL, and ORF 2280 sequence characters. …by morphology and DNA sequence characters (Harbaugh et al. 2010). Page 320, column 2, line 13: 70/2200 86/2200 Page 320, column 2, lines 1-4 in “Discussion”: Reword as follows:

Monophyly of Caryophyllaceae is supported by morphology and DNA sequence characters (Fior et al. 2006; Harbaugh et al. 2010; Greenberg and Donoghue 2011). The family traditionally has been divided into three subfamilies. The “Paronychioideae” (e.g., Paronychia, Stipulicida, Spergula, and Spergularia) have been thought to be a paraphyletic assemblage, defined only by the presence of stipules (a plesiomorphy within Caryophyllaceae). Some members of this “group” have petals while others (e.g., Paronychia) lack them. The “Alsinoideae” (e.g., Arenaria, Minuartia, Stellaria, Cerastium, and Sagina) and “Caryophylloideae” (e.g., Silene, Saponaria, Dianthus, and Gypsophila) have been thought to be related, both have exstipulate leaves and usually bilobed petals, but they are differentiated by perianth form (i.e., free sepals and non-jointed petals in the former and connate sepals and jointed petals in the latter) (Lüders 1907). These two traditional subfamilies also differ from most “Paronychioideae” in their embryo development and their basally connate leaves.

Recently Harbaugh et al. (2010) and Greenberg and Donoghue (2011) proposed the abandonment of these

traditional subfamilies in favor of a new system that recognizes 11 major lineages of the molecular phylogeny at the tribal level. Corrigioleae (Telephium, Corrigiola) are sister to the rest of the family; some of the other tribes include Paronychieae (Paronychia), Polycarpaeae (Drymaria, Polycarpon), Sperguleae (Spergula, Spergularia), Sagineae (Minuartia in part, Sagina), Sclerantheae (Schiedea, Geocarpon, Minuartia in part, Scleranthus), Caryophylleae (Dianthus, Gypsophila, Saponaria), Sileneae (Agrostemma, Silene), Eremogoneae (Arenaria subg. Eremogone), Arenarieae (Arenaria, subg. Arenaria and Moehringia), Alsineae (Arenaria subg. Odontostemma, Cerastium, Stellaria). The ancestral Caryophyllaceae are hypothesized to have had stipules, apetalous flowers with free sepals, and single-seeded fruits. Flowers with (often bilobed) petals and 10 stamens, and capsular fruits may have evolved in the common ancestor of the clade comprising the tribes Sperguleae + Sileneae + Caryophylleae + Eremogoneae + Alsineae + Arenarieae + Sclerantheae + Sagineae, and within this clade, a large subclade comprising all these tribes except for the Sperguleae is diagnosed by exstipulate leaves. A tubular calyx may have evolved in the branch leading to the Eremogoneae + Caryophylleae + Silineae clade, but was then lost in the Eremogoneae. The tribes Corrigioleae, Paronychieae, Polycarpaeae, and Sperguleae, all traditionally placed within “Paryonychioideae,” represent sequentially diverging lineages at and near the base of the tree. Thus, none of the traditional three subfamilies represent monophyletic groups.

Flowers of Caryophyllaceae…

Page 322, Plate 9.7 (D): Polygonum pensylvanicum Persicaria pensylvanicum Page 324, column 2, lines 3, 4: leathery to fleshy, usually accrescent, leathery to fleshy Page 324, column 2, first line of “Discussion”: Discussion: Several tribes… Discussion: Phylogenetic relationships within the family have been assessed on the basis of ndhF, rps16, rpl16, and nuclear ribosomal ITS sequences (Douglas and Manos 2007; see also Douglas & Spellenberg 2010). The Leucastereae (e.g., Andradena, Leucaster, Ramisia, Reichenbachia) and Boldoeae (e.g., Boldia, Salpianthus) are successively sister to the remaining genera. These two tribes have retained the ancestral characters of alternate leaves, an unexpanded (but still persistent) perianth in fruit, and tricolpate pollen. The remaining genera have opposite leaves, the basal portion of the perianth characteristically expanding (becoming leathery to fleshy), and polyporate pollen. Several tribes… Page 327, column 1, line 14 from bottom: likely constitute… constitute… Page 327, column 1, line 12 from bottom: Chenopodium, Chenopodium, Dysphania, … Page 327, column 1, line 13 from bottom: …a subclade. …a subclade (Sánchez del-Pino 2009). Page 327, column 2, Additional references: add Kadereit et al. 2010

Page 14: Updates Required to Plant Systematics: A Phylogenetic ... · 1 Updates Required to Plant Systematics: A Phylogenetic Approach, Third Edition, as a Result of Recent Publications (Updated

14

Page 327, column 2, line 8: Mesembryanthemum (30) Mesembryanthemum (100) [and move this genus into the appropriate position in the list, based on species number] Page 328, column 1: Split up the “Portulacaceae” sensu lato: Restructure treatment so it corresponds to Portulacaceae sensu stricto, and add in a treatment of Montiaceae, and mention characters for Talinaceae, Anacampserotaceae. See paper by Nyffeler & Eggli (2010) and treatment of APG III. Cite Ocampo and Columbus (2012) for support of monophyly of Portulacaceae (only Portulaca); this clade resolves into two subclades: 1) the OL clade (plants with opposite leaves, e.g., P. bicolor, P. quadrifida) and 2) the AL clade (plants with alternate or subopposite leaves, e.g., P. oleracea, P. umbraticola, P. amilis, and P. pilosa). Page 328, column 1, lines 16-18: Generic limits have varied widely, with some systematists considering nearly all species of Mesembryanthemoideae within the large genus Mesembryanthemum. Generic limits have varied widely, but phylogenetic analyses indicate that all species of Mesembryanthemoideae should be placed within the large genus Mesembryanthemum (Klak et al. 2007). Page 328: “Portulacaceae” – This paraphyletic group will be divided into Montiaceae, Talinaceae, Portulacaceae s.s. in the next edition. Didiereaceae also goes here. Column 2, Discussion: Add to the discussion of the ACPT clade the reference Ocampo & Columbus (2010) in support of monophyly of this group. Page 330, column 1, line 3 from bottom: 100/1400 111/1400 Page 330, column 2, line 3 in Discussion: (Edwards et al. 2005) (Edwards et al. 2005; Hernández-Hernández et al. 2011) Page 330, column 2, line 5 in “Discussion”: (Edwards et al. 2005; (Edwards and Donoghue 2006; Edwards et al. 2005; Ogburn and Edwards 2009; Bárcenas et al. 2011; … Page 330, column 2, line 7 in “Discussion”: nonsucculent stems, well-developed… nonsucculent stems, precocious periderm initiation, lack of stem stomata, well-developed… Page 330, column 2, line 22 in “Discussion”: Consolea, and relatives Consolea, Cylindropuntia, and relatives Page 330, column 2, line 25 in “Discussion”: cpDNA characters. cpDNA characters (Hernández-Hernández et al. 2011; Bárcenas et al. 2011; Majure et al. 2012). Page 330, column 2, line 30 in “Discussion”: genome (Nyffeler 2002). genome and nucleotide sequence data (Nyffeler 2002; Bárcenas et al. 2011; Hernández-Herández et al. 2011). Page 332, column 1, line 21: 1994. 1994; Mauseth 2007. Also add Griffith and Porter 2009 and De Groot 2011 Page 332, column 2, line 3 in “Discussion”: and Riradavia et al. (2003). …, Riradavia et al. (2003), and Renner and Specht (2011). Page 334, column 2, line 12: relationships within the group are in need of additional study. The group is composed of two large clades: Polygonoideae (e.g., Fagopyrum, Fallopia, Persicaria, Polygonum, Rheum, Rumex) and Eriogonoideae (e.g., Antigonon, Chorizanthe, Coccoloba, Eriogonum, Ruprechtia, Triplaris), except for Symmeria and Afrobrunnichia, which are successively sister to the rest of the family (Sanchez & Kron 2008; Sanchez et al. 2009; Burke et al. 2010; Schuster et al. 2011). Page 334, column 1, lines 6-7 from bottom: Polygonum (160, paraphyletic), and Coccoloba (120). Persicaria (100), Coccoloba (120), and Polygonum (75). Page 334, column 2, line 7: Rumex and Polygonum (possibly including Persicaria and Polygonella, knotweeds) are… Rumex, Persicaria (knotweeds), and Polygonum (including Polygonella, knotweeds) are… Page 334, column 2, line 28: Polygonum virginanum Persicaria virginiana Page 334, column 2, line 35 – add Kim & Donoghue 2008 to “Additional references”.

Page 15: Updates Required to Plant Systematics: A Phylogenetic ... · 1 Updates Required to Plant Systematics: A Phylogenetic Approach, Third Edition, as a Result of Recent Publications (Updated

15

Page 334, column 2, Santalales introduction, line 2: …presence of polyacetylenes, roots lacking root hairs, … …presence of polyacetylenes, long chain polyunsaturated fatty acids, roots lacking root hairs, free-central placentation with pendulous ovules (or reductions from this condition), … Page 334, last line: (see references by Nickrent and the website… (see Nickrent et al, 2010, and the website… Page 335, column 1, line 4: phylogeny of Nickrent and Malecot … phylogeny of Nickrent et al. (2010) should also be consulted (see also the website “Parasitic Plant Connection,” http://www.science… Page 335, column 2, lines 1-3: We recognize 8 families… We recognize 12 families… Note: Also, in the list of recognized families add Ximeniaceae. Page 335, column 2, lines 4-5: “Olacaceae” are paraphyletic, but relationships are too unclear to divide them. “Olacaceae” as traditionally recognized have been a paraphyletic assemblage, but recently they have been divided into eight families, most of which represent basal branches within the order. Page 335, Figure 9.53, caption, line 1: Polygonum scandens: Fallopia scandens: Page 335, Figure 9.53, caption, line 5: P. cuspidatum: F. japonica: Page 335, Figure 9.53, caption, line 8: P. sagittatum: Persicaria sagittata Page 336, column 1, line 4: in the group. … in the group (Nickrent 2002; Vidal-Russell and Nickrent 2008). Page 336, column 1, line 6: …may also be placed here. …should also be placed here (Barkman et al. 2007; Nickrent et al. 2005). Page 336, column 1, line 11: add Malécot & Nickrent 2008 to the “Additional references”. Page 336, column 2, lines 1-3 of “Discussion”: Nuytsia, a tree with root-haustoria, is sister to the rest of the family (Vidal-Russell and Nickrent 2005), most of which are stem (or epiphytic) parasites. Nuytsia, Atkinsonia, and Gaiadendron, trees or shrubs with root-haustoria, are successively sister to the rest of the family (Vidal-Russell and Nickrent 2005, 2008), and it is thus probable that stem (or epiphytic) parasitism is an apomorphy uniting the remaining taxa. The ancestral chromosomal condition in the family is x = 12, and a large clade (corresponding to subtribe Loranthinae) is characterized by x = 9; Psittacanthus and relatives have a base number of eight. Page 338, column 2, line 2: five or six clades of uncertain relationship, but… seven clades (Der & Nickrent 2008), but… Page 338, column 2, line 26: 1993, 1997). 1993, 1997; 2007, 2011). Page 338, column 2, line 30: Soltis et al. 1997, 2000; Soltis et al. 1997, 2000, 2007; Also add the reference Hermsen et al. 2006 Page 338, column 2, line 33: the rosid clade. …the rosid clade (Burleigh et al. 2009; Wang et al. 2009; Moore et al. 2011; Soltis et al. 2011). Page 338, column 2, line 3 from bottom of section on Saxifragales: …development and carpels that are free, at least apically; many also have flowers with a hypanthium; …development, and carpels that are free at least apically; many also have flowers with a hypanthium. Basifixed anthers are a potential synapomorphy, and the filament is attached at a basal pit in several groups, and all but Peridiscaceae are also united by follicle fruits (with ovaries being at least apically distinct) (Carlsward et al. 2011). Page 338, column 2, insert following new paragraph at end section on Saxifragales: Analyses of molecular data (Jian et al. 2008) indicate that Altingiaceae, Hamamelidaceae, and Cercidiphyllaceae, all woody taxa, form a clade sister to the herbaceous Paeoniaceae. This clade is, in turn, sister to the largely herbaceous, core Saxifragales (Crassulaceae, Haloragaceae, Iteaceae, Grossulariaceae, and Saxifragaceae). Iteaceae, Grossulariaceae, and Saxifragaceae are closely related, sharing flowers with a hypanthium and stamens equal and opposite the sepals.

Page 16: Updates Required to Plant Systematics: A Phylogenetic ... · 1 Updates Required to Plant Systematics: A Phylogenetic Approach, Third Edition, as a Result of Recent Publications (Updated

16

Page 340, column 2, line 1 of “Genera/species”: change to 33 genera Page 341, column 1, lines 2-3: of cp DNA restriction sites, rbcL, matK, and 18S sequences of DNA sequences Page 341, column 1, line 5: Soltis et al. 1993, 1997) Soltis et al. 1993, 1997, 2007 Page 341, column 2, line 3 from bottom: …within Saxifragaceae. …within Saxifragaceae. Saxifraga s.l. is sister to the remaining genera. Page 342, column 1, line 11 from bottom: 35 34 Page 342, column 2, line 11: sister to the rest. sister to the rest, and it is sometimes segregated as Kalanchoideae. Page 342, column 2, line 22: Mort et al. 1998) Mort et al. 2001) Page 342, column 2, line 8 from bottom: Spongberg 1978. Spongberg 1978; Thiede and Uggli 2007. Page 344, column 1, line 18 from bottom: a probably monophyletic group a monophyletic group Page 344, column 2, line 10: Altingiaceae Lindley Altingiaceae Horan. Page 344, column 2, line 3 from bottom: and Wen 2006). and Wen 2006; Ickert-Bond et al. 2007). Page 345, column 1, line 19: Li et al. 1999). Li et al. 1999; Magallón 2007). Page 346, column 1, line 6: and Wen 2006). and Wen 2006; Ickert-Bond et al. 2007). Page 346, column 1, lines 3-4 under Rosid clade: reword as follows: …has received support from analyses of plastid, mitochondrial, and nuclear DNA sequences (see Judd and Olmstead 2004; Soltis et al. 2005, 2011; Burleigh et al. 2009; Wang et al. 2009; Lee et al. 2011; Moore et al. 2011). Page 346, column 1, line 4 in “Rosid clade” paragraph: …Soltis et al. 2005). Most members… …Soltis et al. 2005, 2007). The presence of special mucilage cells in the flowers (especially abaxial epidermis of sepals) may be synapomorphic for the rosids (Matthews and Endress 2006). Most members… Page 346, column 1, lines 9-11 in “Rosid clade” paragraph: The position of Myrtales … between these two major clades. Myrtales and Geraniales are probably sister to the malvid clade. [Based on APG III and other references, in the fourth edition the circumscription of the malvid clade will be expanded to include not only Myrtales, but also Geraniales. See Wang et al. (2009).] Page 346, column 1, line 14 in “Rosid clade” paragraph: Soltis et al. 2000). Soltis et al. 2000, 2007, 2011; Wang et al. 2009; Wen 2007; Wen et al. 2007; Burleigh et al. 2009; Worberg et al. 2009; Moore et al. 2011). Page 348, column 1, lines 1-4: Replace sentence “Some are apparently non-monophyletic … form.” With the following: The basal lineages have 5-merous flowers (e.g., Ampelocissus, Ampelopsis, Parthenocissus, Yua, Vitis, and of course Leea), while the groups with 4-merous flowers form a clade (e.g., Cayratia, Cissus, Cyphostemma, Tetrastigma). There has been considerable parallel evolution in leaf shape and tendril and inflorescence form. Page 348, column 1, line 9: Brizicky 1965b; Brizicky 1965b; Chen and Manchester 2007; Page 350, column 1, line 3 in “Discussion”: Soltis et al. 2000) Soltis et al. 2000, 2011) Page 350, column 1, line 16 in “Discussion”: sister to the remaining genera. sister to the remaining genera (Albers and van der Walk 2007; Fiz et al. 2008). Page 350, column 2, line 7 from bottom: 26/200 22/230 Page 351, c olumn 1, line 7 in Discussion: rbcL DNA Page 351, column 1, line 14: Soltis et al. 2000) Soltis et al. 2000, 2011) Page 351, column 1, line 17: (Sheahan and Chase 2000) (Sheahan 2007; Sheahan and Chase 2000)

Page 17: Updates Required to Plant Systematics: A Phylogenetic ... · 1 Updates Required to Plant Systematics: A Phylogenetic Approach, Third Edition, as a Result of Recent Publications (Updated

17

Page 351, column 2, line 7 in Discussion: rbcL, atpB, and 18S sequences DNA sequences Page 351, column 2, line 12 in Discussion: Soltis et al. 2000). Soltis et al. 2000, 2011). Page 353, column 1, line 3 under Malpighiales: … 2000). … 2000, 2011; Wang et al. 2009; Wurdack and Davis 2009). Page 353, column 1, line 20 under Discussion: Reword: The herbaceous genera Parnassia and Lepuropetalon (often placed in Parnassiaceae) are now considered primitive members of Celastraceae. [Rework description of Celastraceae to take additional variation into account.] Page 353, column 1, line 6: 98/1221 89/1221 Page 353, column 1, line 9 in “Description”: delete “Clevinger and Panero 1998” Page 353, column 1, line 20: Change sentence: The herbaceous genera Parnassia and Lepuropetalon (usually treated as Parnassiaceae) are closely related to Celastraceae, and now are included as the first diverging lineage of this familial clade (Zhand and Simmons 2006; Soltis et al. 2011). Page 353, column 1, line 20; Additional references: add Simmons et al. 2008, 2012 Page 353, column 1, line 3 from bottom: …1998, 2000). … 1998, 2000; Wang et al. 2009; Wurdack et al. 2009). Page 353, column 2, line 8: Thorne 1992), Thorne 1992, 2007), Page 353, column 2, line 19: (2005). …(2005), and Wurdack and Davis (2009). Page 353, column 2, line 20: … Passifloraceae are characterized… …Passifloraceae form a clade and are characterized… Page 353, column 2, line 22: Passifloraceae are related, and all share Passifloraceae share… Page 353, column 2, line 29. Add the following additional potential synapomorphies of Rhizophoraceae and Erythroxylaceae: conduplicate petals enwrapping the stamens in bud, nectariferous androecial tube with attachment of the two stamen whorls at different positions, and a layer of idioblasts (lactifers?) in sepals and ovaries. Cite Matthews and Endress (2011). Page 353, column 2, line 31: add the following sentence to the end of this paragraph. Surprisingly, Euphorbiaceae are most closely related to the parasitic Rafflesiaceae (Davis et al. 2007). Page 354, column 2, lines 1-2: and cpDNA sequence characters (Chase et al. 1993; Soltis et al. 2000). and DNA sequence characters (Davis & Anderson 2010). Also, on line 5: is surely artificial (Anderson 1977). is artificial (Anderson 1977) as fruit form (especially wing development) is extremely homoplasious (Davis & Anderson 2010). Page 354, column 2, line 11: (Davis et al. 2001) (Davis et al. 2001; Davis & Anderson 2010) Page 354, column 2, line 12: (including Byrsonima and a few other genera) including Byrsonima, Galphimia, and a few other genera) Page 359, column 1, lines 1-4 in “Discussion”: Discussion: “The family has often…(as in this text).” [Delete this paragraph, so discussion section will start with “Euphorbiaceae are extremely…”.] Page 359, column 1, line 11: Soltis et al. 2000). Soltis et al. 2000, 2011). Page 359, column 2, line 9: etc.). etc.; Horn et al. 2012). Page 359, column 2, line 15: …associated bracts. …associated bracts (Horn et al. 2012; Prenner and Rudall 2007).

Page 18: Updates Required to Plant Systematics: A Phylogenetic ... · 1 Updates Required to Plant Systematics: A Phylogenetic Approach, Third Edition, as a Result of Recent Publications (Updated

18

Page361, column 2, line 1: Phyllanthaceae can easily Phyllanthaceae (Kathriarachchi et al. 2005) can easily… Page 362, column 1, line 16: add the reference – Kathriarachch et al. 2006 Page 362, column 1, Clusiaceae treatment: Put “Clusiaceae” in parentheses, as analyses of Wurdack and Davis (2009) indicate that the family is not monophyletic because Kielmeyeroideae and Clusioideae are not sister taxa. [Treatment in the fourth edition will be revised, so that Kielmeyeroideae will be considered as Calophyllaceae. See also APG III.] Also cite the paper Ruhfel et al. (2011) in support of Clusiaceae s.s., Calophyllaceae, and Hypericaceae. Paper also supports inclusion of Triadenum and Thornea in Hypericum. Page 362, column 1, line 4 from bottom: 27/1000 27/1090 Page 362, column 2, line 23: (personal communication) (2007) Page 363, column 2, line 6: for depression. for depression (Stevens 2007b). Page 363, column 2, line 2 in Discussion: … basis of preliminary molecular data (Gustaffson et al. 2002). …basis of morphological and molecular data (Gustaffson et al. 2002; Nürk & Blattner 2010; Wurdack & Davis 2009). Page 363, column 2, last line: Wood and Adams 1976). Thorne 2007; Wood and Adams 1976). Page 364, column 1, insert new paragraph (as follows) at top of column: Cratoxylum (stems with dark glands, 4-lined; capsules loculicidal; seeds flattened) and relatives are sister to the remaining genera (stems without lines; seeds cylindrical), which include both Vismia and Hypericum. The large and diverse genus Hypericum (incl. Triadenum, Thornea) forms a clade based on their leaves with pellucid dots and septicidal capsules (Nürk & Blattner 2010; Ruhfel et al. 2011). Vismia has black dots in its leaves and berries. Page 364, column 1, line 16 from bottom: 12/84 16/149 Page 364, column 1, line 5 from bottom: Tomlinson 1988a, b; Tomlinson 1988a, b; Setoguchi et al. 1999; Page 367, column 1: Passifloraceae – modify treatment so as to include Turneraceae and Malseherbiaceae, following APG III. Cite Thulin et al. 2012 for phylogeny of Turneroideae. Within this clade of 12 genera, two major subclades are evident, an American clade (e.g., Piriqueta, Turnera) and an African clade (e.g., Arboa, Streptopetalum, Tricliceras). Page 367, column 1, add Tokuoka 2008 to references. Page 367, column 2, line 6: 18/630 17/700 Page 367, column 2, line 6: Passiflora (400) Passiflora (500) Page 367, column 2, line 15: (de Wilde 1971, 1974). (de Wilde 1971, 1974; Feuillet and Mac Dougal 2007). Page 367, column 2, line 35: …outgrowths of the hypanthium. …outgrowths of the hypanthium and likely represent modifications of the androecium (Hemingway et al. 2011). Page 369, column 2, line 28: … (Chase et al. 2002). … (Chase et al. 2002; Chen et al. 2010). Page 369, column 2, line 17 from bottom: Thorne 1973a, 1992). Thorne 1973a, 2007). Page 370, column 2, last line: Rogers 1987; Rogers 1987, 2005; Page 371, column 1, line 3 from bottom: …is represented by rbcL, atpB, and 18S sequences is supported by both plastid and nuclear sequences [and also add “Bello et al. 2009” and “Wang et al. 2009” and “Soltis et al. 2011” to the references cited at the end of the sentence] Page 372, column 2, line 4: 630/18,000 730/19,400

Page 19: Updates Required to Plant Systematics: A Phylogenetic ... · 1 Updates Required to Plant Systematics: A Phylogenetic Approach, Third Edition, as a Result of Recent Publications (Updated

19

Page 372, column 2, line 5: Acacia (1000) Acacia (1075) Page 372, column 2, line 8: insert – Senegalia (200) Page 372, column 2, line 9: insert – Vachellia (160) Page 372, column 2, line 8 from bottom: Robinia (locust),… Robinia (locust), Vachellia… Page 277, column 2, line 4 under “Rosales”: Sytsma et al. 2002). …Sytsma et al. 2002; Wang et al. 2009). Page 377, column 2, line 5 from bottom: Thorne 1992). Thorne 1992, 2007). Page 377, column 2, Additional references: add “Eriksen and Persson 2007” Page 377, column 2, line 4 under Rosales: Add Wang et al. 2009 and Soltis et al. 2011 to support of monophyly of order. Page 379, column 1, line 1: 1992). 1992, 2007). Page 379, Fig. 9.73: Add supporting reference Soltis et al. 2011. Pzbd 379, treatment of Rosaceae. Throughout replace Spiraeoideae with Maloideae, and Pyreae with Maleae, etc. and Pyrodae [needs new supertribe name based on Malus]. Page 384, column 1, line 4 from bottom: delete “Evans 1999” Page 388, column 1: When treatment of Rosaceae is rewritten, the paper Lo and Donoghue (2012) should be cited in connection with Pyreae (change to Maleaae). Page 388, column 2, line Genera/species: 52/900 53/900 Page 388, column 2, line 5 in “Major genera”: Colubrina, Gouania, Colubrina, Frangula, Gouania, Page 388, column 2, line 11 from bottom: Colletia, Pomaderris, … Colletia, Frangula, Pomaderris, … Page 389, column 1, line 5: Rhamnus, Krugiodendron, Rhamnus, Frangula, Krugiodendron, Page 389, column 2, line 1: Brizicky 1964b; Bolmgren and Oxdlman 2004; Brizicky 1964b; Page 389, column 2, line 3 from bottom: with hypanthium. with or without hypanthium. Page 393, column 1, line 17: 53/1500 38/1500 Page 393, column 1, lines 13, 14 from bottom: on the basis of rbcL and ndhF sequences (Sytsma et al. 2002; Datwyler and Weiblen 2004). on the basis of rbcL, ndhF, and 26S sequences (Sytsma et al. 2002; Datwyler and Weiblen 2004; Zerega et al. 2005). Page 393, column 1, 9: At end of paragraph add the following sentence. The earliest lineages to diverge within Moraceae probably are the Artocarpeae s.s. (Artocarpus, Clarisia, and relatives) and Moreae s.s. (e.g., Morus, Sorocea). Most species belong to a large clade in which Maclura is sister to a subclade containing Broussonetia, Brosimum, Castilla, Dorstenia, and Ficus, among others (Clement and Weiblen 2009). Page 395, column 1, line 2: …inconspicuous. …inconspicuous, with or without hypanthium. Page 396, column 1, lines 6,7: 54/1160 54/2625, and Pilea (400 sp.) Pilea (600 sp.); Elatostema (200) Elatostema (300) Page 396, column 2, line 25: Soltis et al. 2000). Soltis et al. 2000, 2011; Xhang et al. 2006).

Page 20: Updates Required to Plant Systematics: A Phylogenetic ... · 1 Updates Required to Plant Systematics: A Phylogenetic Approach, Third Edition, as a Result of Recent Publications (Updated

20

Page 398, column 1, line3 3-7 in “Discussion”: Cucurbitaceae are easily recognized and monophyletic. Two subfamilies are recognized (Jeffrey 1967, 1980, 1990a, b). “Zanonioideae,” a small group characterized by separate styles, contains genera with numerous plesiomorphic features and probably is paraphyletic. Monophyly of Cucurbitoideae is supported by their completely connate styles and nrITS sequences (Jobst et al. 1998). Cucurbitaceae are easily recognized and monophyletic (Schaefer et al. 2009). Two subfamilies are recognized (Jeffrey 1967, 1980, 1990a, b; Kocyan et al. 2007). Nhandiroboideae, a small clade characterized by separate styles and pendulous ovules, contain genera with numerous plesiomorphic features. Monophyly of Cucurbitoideae is supported by their completely connate styles and DNA sequences (Jobst et al. 1998; Kocyan et al. 2007), and their ovules are usually ascending or horizontal. Page 398, column 2, line 1: insert “Gerrath et al. 2008” into Additional references. Page 398, column 2, line 2 from bottom: delete “Swensen et al. 2001” Page 400, Figure 9.84: move the synapomorphy “-- Pollen tube entering the ovule via the chalaza” to the internode of the cladogram representing the common ancestor of Juglandaceae + Myricaceae + Betulaceae + Casuarinaceae; so this synapomorphy will be listed just below “-- Triporoporate pollen”. Also, on the line representing the common ancestor of all members of the order, add the synapomorphy: -- Fertilization delayed Page 400, column 1, lines 3, 4 under Fagales: …per locule, pollen tube entering the ovule via the chalaza, absence… …per locule, delayed fertilization, absence… Page 400, column 2, lines 2-3: DNA restriction sites, rbcL, atpB, matK, and 18S sequences… DNA restriction sites and sequences … Page 400, column 2, line 5: Soltis et al. 2000) Soltis et al. 2000, 2011 Page 403, column 1, line 9: 2006), 2006, 2008), Page 403, column 1, lines 9-10: Lithocarpus, Castanea, Castanopsis, and Lithocarpus… Lithocarpus, Castanea, Castanopsis, and Chrysolepis… Page 403, column 1, line 14: …and tiny stigmas. …and tiny stigmas, but they have distinctively sculptured pollen grains (Denk and Grimm 2009). Page 403, column 1, line 18: Plate 9.13C). …Plate 9.13C) – and several floral characters, especially the large size of the style relative to the ovary at pollination (Deng et al. 2008). Page 403, column 1, line 20: Manos et al. 2000). Manos et al. 2000; Oh and Manos 2008). Page 403, column 1, line 12 from bottom: …fruits and clearly pubescent (vs. glabrous) inner fruit wall (Nixon et al. 1995). …fruits, clearly pubescent (vs. glabrous) inner fruit wall (Nixon et al. 1995), and pollen sculpturing (Denk and Grimm 2009). Page 403, column 1, line 8 from bottom: (Manos et al. 1999, 2001). (Manos et al. 1999, 2001; Oh and Manos 2008). Page 403, column 1, line 2 from bottom: 1989). 1989; Oh and Manos 2008; Denk and Grimm 2010). Page 404, column 2, line 4: 1989), and 1989), branched pollen tube, and Page 406, column 2, Discussion – rewrite first sentence: Casuarinaceae are easily recognized, and are considered monophyletic on the basis of morphology (see characters listed in bold above) and rbcL and matK sequences (Sogo et al. 2001; Steane et al. 2003). Page 406, column 2, line 8 in discussion: 1989, 1993). … 1989, 1993), and molecular data (Steane et al. 2003). Page 408, column 1: Expand circumscription of Juglandaceae so as to include Rhoiptelea. (This follows APG III.) Page 408, column 2, line 6 from bottom: Manos and Stone 2001) Manos and Stone; 2001; Manos et al. 2007)

Page 21: Updates Required to Plant Systematics: A Phylogenetic ... · 1 Updates Required to Plant Systematics: A Phylogenetic Approach, Third Edition, as a Result of Recent Publications (Updated

21

Page 410, column 2, line 3 under “Myrtales: Incertae Sedis within the Rosids”: … and rbcL, matK, atpB, ndhF, and 18S sequences and chloroplast and nuclear DNA sequences [also add “Wang et al. 2009” and “Soltis et al. 2011” to references cited] Page 410, column 2, “Myrtales: Incertae Sedis within the Rosids”: change title to “Myrtales” since its position is now more certainly known. Page 410, column 2, line 13 under “Myrtales”: Taxonomic placement of Myrtales is uncertain, although the group may be sister to the malvids (Eurosids II; Jansen et al. 2006). Myrtales (and the Geraniales) likely form a clade that is sister to the rest of the malvids (Eurosids II; Wang et al. 2009; Soltis et al. 2011). [In next edition the circumscription of the malvid clade will be expanded to include the Myrtales and Geraniales.] Page 412, column 1, line 1: 9000 10,000 Page 414, column 1, line 6: 30/600 31/600 Page 414, column 1, line 3 in “Discussion”: 1993a, b 1993 Page 414, column 1, line 8 in “Discussion”: 1993b 1993 Page 414, column 1, line 9 in “Discussion”: (Conti 1994; (Conti 1994; Graham 2007; Page 414, column 1, line 10 in “Discussion”: delete “Punica” Page 414, column 2, revise “Genera/species” as follows: Genera/species: 22/657. Major genera: Epilobium (165 spp.), Oenothera (145), Fuchsia (107), Ludwigia (82), Clarkia (42), Lopezia (22), Chylismia (16), Camissoniopsis (14), and Camissonia (12). Chamerion, Chylismiella, Circaea, Eremothera, Eulobus, Gayophytum, and Taraxia also occur in North America. Page 414, column 2, line 9 in “Description”: and Hoch 2005). and Hoch 2005; Wagner et al. 2007). Page 414, column 2, line 10 in “Description”: found that Ludwigia is… found that Ludwigia (in Ludwigioideae) is… Page 414, column 2, lines 12, 13 in “Description”: The rest of the family is united… The rest of the family (i.e., the Onagroideae) is united… Page 414, column 2, last line: unusual way; unusual way, and their fruits are indehiscent; Page 416, column 1, line 17: Stamens 4-10; filaments… Stamens 4-10, sometimes attached below summit of hypanthium; filaments… Page 416, column 1, Genera/species: 20/600 12/600. Under major genera, change to: …by Combretum (incl. Quisqualis), Conocarpus, Laguncularia, and Terminalia (incl. Bucida). Page 416, column 1, line 2 in “Discussion”: rbcL sequence DNA sequence Page 416, column 1, line 3 in “Discussion”: (Conti 1994) (Conti 1994; Maurin et al. 2010) Page 416, column 1, line 3 in “Discussion”: at end of first paragraph of the “Discussion” insert the following sentence. Strephonema has a half-inferior ovary and seeds with massive hemispherical cotyledons, and it is sister to the remaining taxa, which have a fully inferior ovary and variously folded cotyledons (Stace 2007; Maurin et al. 2010). The remaining genera form two clades, i.e., the Laguncularieae (Laguncularia, Lumnitzera; hypanthium with two adnate bractlets) and Combreteae (comprised mainly of the two large genera Terminalia and Combretum; bractlets free from hypanthium). Page 416, column 2, floral formula of Myrtaceae: A hypanthium is present, thus this needs to be indicated in the formula by a line below the K, C, and A, connecting these parts. Page 418. column 1, line 11: Wilson et al. 1996, 2001, 2005 Wilson et al. 2001, 2005

Page 22: Updates Required to Plant Systematics: A Phylogenetic ... · 1 Updates Required to Plant Systematics: A Phylogenetic Approach, Third Edition, as a Result of Recent Publications (Updated

22

Page 418, column 1, line 24 in “Discussion”: add to list of genera of myrtoid clade the following – Pimenta, Rhodomyrtus, Myrcia, Myrciaria. Page 418, column 1, last line: add reference – Lucas et al. 2007 Page 418, column 2: Expand circumscription (and appropriately modify treatment) of Melastomataceae so as it includes Memecylaceae. This change is necessary due to recommendation of APG III. Page 418, column 2, line 16 from bottom: 150/3000 182/4570 Page 420, column 1, line 6: Mecranium). Mecranium) (Goldenberg et al. 2008; Michelangeli et al. 2008). Page 420, column 1, line 9: complex) and Blakeeae… complex), Henrietteeae (e.g., Bellucia, Henriettea) and Blakeeae… Page 420, column 1, Additional references: add – Goldenberg et al. 2008; Penneys et al. 2010 Page 420, treatment of Brassicales and Brassicaceae. In the fourth edition, Brassicaceae s.l. will be divided into Brassicaceae s.s., Cleomiaceae, and Capparaceae s.s. [In terms of the current classification, this is merely raising the three subfamilies to familial rank. In this regard, the paper Iltis et al. 2011 will be cited. Also Cleome and Capparis are both non-monophyletic, as indicated in Hall (2008) and several publications by Iltis and associates, and for Cleome see also Feodorova et al. 2010, so these genera will need to be split into numerous segregates.] Note: Within Cleomaceae, a North American clade (containing Peritoma, Cleomella and Wislizenia and Oxystylis) is sister to the rest of the clade (which contains Polanisia, Arivela, Gynandropsis, Cleome s.s., Cleoserrata, Tarenaya, and various other segregate genera). Page 421, column 1, line 8: …a Eurasian weed, is… …a Eurasian weed (Koch et al. 2008), is… Page 422, column 1, line 8: Soltis et al. 1997, 2000; Soltis et al. 1997, 2000, 2011 Page 422, column 2, line 4 from bottom: (Hall et al. 2002) (Hall 2008; Hall et al. 2002) Page 423, column 1, line 5 from bottom: Brassicoideae. Brassicoideae (see also Franzke et al. 2009). Page 423, column 1, line 28: Replace sentence “Al-Shehbaz et al. … some 25 tribes; of these…” with the following: Reclassification following recent molecular findings is underway, with 25-40 tribes currently recognized (Al-Shehbaz et al. 2006; Bailey et al. 2006; Franzke et al. 2010); of these, … Page 423, column 2, line 13, to “Additional references” add: Beilstein et al. 2008 Page 423, column 2, lines 5-6: and rbcL, atpB, and 18S sequences and DNA sequences Page 423, column 2, line 8: add – Soltis et al. 2011 Page 425, column 1, line 19 from bottom: 204/2330 243/4225 Page 429, column 2, line 8 under “Sapindales”: …based on rbcL, atpB, and 18S sequence characters (…refs…) …based on DNA sequence characters (….Soltis et al. 1998, 2000, 2011; Wang et al. 2009; Morton 2011). Page 430, column 1, Genera/species: delete Poncirus from list of genera in the U.S. Page 430, column 1, last 2 lines: Several species of Citrus (oranges, tangerines, grapefruits, limes, lemons) are prized… Several species of Citrus (oranges, tangerines, pummelos, grapefruits, limes, lemons, limequats, calamondins, kumquats) are prized… Page 430, column 2, line 1: …their edible fruits (Plate 9.16H). …their edible fruits (Plate 9.16H), and represent ancient to recent anthropogenic hybrids or selections from wild species (Mabberly 2004; Barkley et al. 2006). Page 430, column 2, line 6: Severinia Atalantia

Page 23: Updates Required to Plant Systematics: A Phylogenetic ... · 1 Updates Required to Plant Systematics: A Phylogenetic Approach, Third Edition, as a Result of Recent Publications (Updated

23

[Note, recent evidence supports placing Severinia within generic circumscription of Atalantia, so this change is needed, and also on the CD.] Page 430, column 2, lines 3 & 4 in “Discussion”: …as well as rbcL and atpB sequences (Gadek et al. 1996; Morton et al. 2003; Chase et al. 1999). …as well as cpDNA sequences (Chase et al. 1999; Gadek et al. 1996; Groppo et al. 2008; Morton et al. 2003) and nuclear (Xdh) sequences (Morton 2011). Page 430, column 2, line 9 in “Discussion”: … Chase et al. 1999) except… … Chase et al. 1999; Pfeil and Crisp 2008; Bayer et al. 2009) except… Page 430, column 2, lines 11-12 from bottom: …Aurantioideae (Citroideae, incl. Citrus, Fortunella, Poncirus, Severinia, Atalantia, Aegle, and relatives), …Aurantioideae (Citroiodeae, incl. Aegle, Atalantia, Citrus, Limonia, Swinglea, and relatives), Page 430, column 2, line 7 from bottom: … are often problematic, …have been problematic, Page 430, column 2, lines 4, 5, 6 from bottom: (incl. Severinia, … Phellodendron, and relatives) may also be monophyletic, (incl. Casimiroa, Zanthoxylum, Amyris, Phellodendron, Ptelea, Skimmia, Tetradium, Toddalia, and relatives) may also be monophyletic (Groppo et al. 2008; Poon et al. 2007), (e.g., Citrus, Poncirus, Fortunella, Eremocitrus, and Microcitrus). (e.g., Atalantia, Citrus, Poncirus, Fortunella, Eremocitrus, and Microcitrus; and all of these except Atalantia should be included within Citrus s.l., see Bayer et al. 2009; Mabberly 2001, 2004). Page 431, Figure 9.102: Poncirus trifoliata Citrus trifoliata Page 434, Plate 9.16 (H): Citrus aurantifolia Citrus x aurantiifolia Page 435, column 1, line 3: such as Trichilia, Guarea, and Melia, are… such as Trichilia, Sandoricum, Guarea, and Melia, are… Page 435, column 1, line 15: add Mueller et al. 2008 to “Additional references:” Page 435, column 2, lines 5, 6: ...morphology and rbcL sequences (Fernando et al. 1995; Gadek et al. 1996). …morphology and DNA sequences (Clayton et al. 2007; Fernando et al. 1995; Gadek et al. 1996; Tobe 2011). Page 435, column 2, line 10: by serological data. …by serological data. Castela and Picrasma are sister taxa, forming a clade that is sister to the remaining genera, among which Ailanthus likely was the first to diverge. Page 435, column 2, last line: straight; endosperm scanty… straight, the cotyledons planoconvex to flat; endosperm scanty… Page 437, column 1, line 7 in “Discussion”: and Chase 1996). and Chase 1996; Wannan 2006). Page 437, column 1, line 8 in “Discussion”: The family is composed… The family may be composed… Page 437, column 1, line 15 in “Discussion”: 1990, 1991). 1990, 1991; Wannan 2006). Page 437, column 1, line 16 in “Discussion”: The remaining genera of the family form a large clade many members of which… The remaining genera of the family form a large clade (Anacardioideae) many members of which… Page 437, column 1, next to last line: others) others), but they are not closely related (Yi et al. 2007). Page 437, column 2, line 3: …not be monophyletic. …not be monophyletic. Rhus actually is more closely related to Protorhus and Searsia, from which it can be distinguished by fruit shape, endocarp, ovule, and seed characters. Page 437-438, last two lines of 437, and 1st line of 438: Change first line of Discussion as follows: Monophyly of Burseraceae has received support from cladistic analyses of plastid sequences (Gadek et al. 1995; Clarkson et al. 2005; Weeks et al. 2005; Becerra et al. 2012). Page 438, column 1, lines 1, 2 The smooth bark is distinctive and may be synapomorphic. The smooth bark is distinctive and may be synapomorphic. The Mexican genus Beiselia (which has 9-12 carpels and simple cotyledons)

Page 24: Updates Required to Plant Systematics: A Phylogenetic ... · 1 Updates Required to Plant Systematics: A Phylogenetic Approach, Third Edition, as a Result of Recent Publications (Updated

24

may be sister to the remaining genera (which have 3-5 carpels and folded, palmately lobed cotyledons). Among these genera, Boswellia, Canarium, and relatives form a clade that is the sister group of a clade comprising Bursera, Commiphora, Protium, and relatives. [And the sentence starting “The small nectar-secreting flowers…” should start a new paragraph.] Page 438, column 2, line 13 in Discussion: … and rbcL and matK sequences (Harrington et al. 2005). …and ITS plus chloroplast sequences (Buerki et al. 2010; Harrington et al. 2005). Page 438, column 2, line 14 in Discussion: Four well-supported … can be recognized. The first is the hippocastanoid clade… Five well-supported … can be recognized. The first is Xanthoceras, which is sister to the rest of the family. The second is the hippocastanoid clade… Page 441, column 1, line 3: rbcL. At[B, ndhF, matK, and 18S rDNA sequence 26S, plastid, mitochondrial, and nuclear DNA sequence Page 441, column 1, line 4: (Albach et al. 2001a,b; Bremer et al. 2002; Chase… (Albach et al. 2001a,b; Bremer et al. 2002; Burleigh et al. 2009; Chase… [Also add Lee et al. 2011, and Moore et al. 2011 and Morton 2011] Page 441, column 1, line 6 in paragraph under “Asterid clade”: Soltis et al. 1997, 2000, 2005) Soltis et al. 1997, 2000, 2005, 2007, 2011) Page 441, column 1, last line under Asterid Clade: add reference – Tank and Donoghue (2010) Page 441, column 1, line 4 under Cornales: Add Soltis et al. 2011 and Xiang et al. 2011. Page 441, column 1, line 6 under Cornales: reduced sepals, and an… reduced sepals, valvate petals, and an… Page 443, column 2, line 2: sister to the remaining genera (Hufford et al. 2003; but see also Weigend 2004). …sister to the remaining genera, and Loasoideae are likely monophyletic based on molecular data and their androecium of both fertile stamens and staminodes (Hufford et al., 2003, 2005; but see also Weigend 2004). Page 443, column 2, line 15: Cornaceae Bercht. & Presl Cornaceae Berchtold & J. Presl Page 445, column 1, line 21: Xiang and Murrell 1998)… Xiang and Murrell 1998; Xiang and Thomas 2008)… Page 445, column 1, line 23: …and red-fruited dogwoods. …and red-fruited dogwoods (although the latter clade also includes species with purple fruits or red fruits that turn black at maturity). Page 445, column 1, line 5 under Ericales: Add – Soltis et al. 2011 and Morton 2011 Page 449, column 1, line 4 from bottom: Masticodendron), Masticodendron; Smedmark and Anderberg 2007), Page 450, column 1, line 3 in discussion: sequences. …sequences (Duangjai et al. 2009). Page 450, column 1, line 7 in discussion: (Duangjai et al. 2006) (Duangjai et al. 2006, 2009) Page 452, column 1, line 2 in discussion: are not monophyletic, are not monophyletic (but see Luna and Ochoterena 2004), Page 454, column 1, line 1: The Ericoideae are… The Ericoideae (see Gillespie and Kron 2010, 2012) are… Page 454, column 1, line 11: (Erica and Calluna) (Erica, Calluna, and Daboecia; Pirie et al. 2011) Page 454, column 1, line 25: … Styphelia and Leucopogon). … Dracophyllum, Styphelia and Leucopogon; Crayn and Quinn 2000; ; Crayn et al. 1998; Johnson et al. 2012; Kron et al. 1999). Page 454, column 2, line 20: by bees and wasps. by bees, wasps, or flies. Page 454, column 2, line 5 from bottom: anther by pollinators. Capsular-fruited… … anther by pollinators. Wind pollination has evolved in the empetroid clade and several times in the ericoid clade. Capsular-fruited…

Page 25: Updates Required to Plant Systematics: A Phylogenetic ... · 1 Updates Required to Plant Systematics: A Phylogenetic Approach, Third Edition, as a Result of Recent Publications (Updated

25

Page 454, Fig. 9.111: Possibly Monotropoideae are distinct from Pyroloideae, and sister to Arbutoideae. See Braukmann & Stefanović 2012, and Feldenkris et al. 2011 (Botany 2011 abstracts, p. 163). Page 455, column 1, under Additional references: add Bush et al. 2009, Waselkov and Judd 2008, Liu et al. 2010 Page 455, column 1, Genera/species: 3/15 3/16 Page 455, column 1, Genera/species: Sarracenia (8 spp.), Sarracenia (9 spp.), Page 455, column 1, lines 6, 7 from bottom: Morphology, rbcL and ITS sequences Morphology and DNA sequences Page 455, column 1, line 5 from bottom: of the family. of the family, and the position of Darlingtonia as sister to a Heliamphora + Sarracenia clade (Neyland and Merchant 2006). Page 457, column 1, line 1: 17/285 25/310 Page 457, column 1, lines 4, 5 of “Discussion”: subfamilies; see Morton et al. 1997b, 1998; Thorne 2001). subfamilies; Morton et al. 1997b, 1998; Thorne 2001, 2007, but compare with Mori et al. 2007). Page 457, column 1, line 2 from bottom: Add “Mori 2007” and “Mori and Prance 1987” to list of “Additional references”. Page 457, column 2, line 7: … and connate. and connate, open in bud, the apices often spine-like. Page 457, column 2, line 15: …often mucilaginous …often mucilaginous Page 457, column 2, line 5 in Discussion: … (Hufford 1992) … (Hufford 1992; Schönenberger 2009) Page 459, column 1, line 4: …this clade. …this clade (Moore et al. 2011; Soltis et al. 2011). Page 459, column 1, lines 5-8: Change to the following: Lamiids are generally characterized by opposite leaves, hypogynous flowers, and “late sympetaly” with distinct petal primordial, while Campanulids typically have alternate leaves, epigynous flowers, and “early sympetaly” with a ring-shaped corolla primordium (Bremer et al. 2001). Page 459, column 1, line 14 in Solanales: with Lamiales, …with Lamiales (Soltis et al. 2011), Page 459, column 1, line 16 in Solanales: …Olmstead et al. 2000), …Olmstead et al. 2000; Moore et al. 2011). Page 461, column 1, line 6 from bottom: by D’Arcy (1979, 1991), using morphology by D’Arcy (1997, 1991) and Hunziker (2001) , using morphology Page 461, column 1, line 4 from bottom: Olmstead et al. (1995, 1999), Olmstead et al. (1995, 1999, 2008), Page 461, column 2, line 16: (1995, 1999), (1995, 1999, 2008), Page 461, column 2, line 29: Olmstead et al. 1999). Olmstead de al. 1999, 2008). Page 461, column 2, line 6 from bottom: … Palmer 1997; Spooner… …Palmer 1997; Peralta et al. 2008; Spooner… Page 466, column 1, line 7 in “Discussion”: add Gottschling et al. 2001 to the list of references. Page 466, column 2, line 9: and Heliotropioideae. …and Heliotropioideae (Moore & Jansen 2006). Page 466, column 2, line 2 from bottom: rbcL, matK, atpB, ndhF, 18S sequences… plastid, mitochondrial, and nuclear DNA sequences… [And add in support of monophyly Soltis et al. 2011] Page 469, column 2, line 1: 550/9000 660/11,150 Page 469, column 2, line 7 onward in discussion: …Rova et al. 2002) … the anthers. …Rova et al. 2000; Bremer 2009; Bremer and Eriksson 2009; Manns et al. 2012). [and replace this paragraph with the following]

Page 26: Updates Required to Plant Systematics: A Phylogenetic ... · 1 Updates Required to Plant Systematics: A Phylogenetic Approach, Third Edition, as a Result of Recent Publications (Updated

26

Cinchonoideae have traditionally been defined either on the basis of ovaries with numerous ovules or by the presence of endosperm, lack of raphide crystals, and seeds with a pitted-ridged coat (all likely symplesiomorphies). Analyses of rbcL, trnL-F, ndhF, atpB-rbcL spacer, and/or rps 16 intron sequences support, however, the division of this group of trees and shrubs into Cinchonoideae s.s. (including, among other genera, Antirhea, Catesbaea, Cephalanthus, Chiococca, Cinchona, Cubanola, Erithallis, Exostema, Guettarda, Hamelia, Hillia, Nauclea, Portlandia, Rondeletia, and Strumpfia) and Ixoroideae (e.g., Casasia, Coffea, Gardenia, Genipa, Ixora, Mussenda, Pinckneya, Randia). The former have flowers with imbricate or valvate corolla aestivation, but right-contorted corollas occur in some, e.g., Hamelia, Hillia, and relatives. The latter usually have flowers with valvate or left-contorted corolla aestivation, and many have a specialized, secondary pollen presentation mechanism. The anthers… Page 469, column 2, line 4 from bottom: This subfamily probably is monophyletic; potential… Potential synapomorphies of Rubioideae include the presence of raphides, an indumentum of septate (articulated) hairs, seeds with a smooth coat, the usually herbaceous habit… Page 470, column 1, line 2-4: [reword as follows] -- Representative genera are: Diodia, Ernodea, Galium, Geophila, Hedyotis, Houstonia, Hydnophytum, Morinda, Mitchella, Myrmecodia, Nertera, Oldenlandia, Palicourea, Pentas, Pentodon, Psychotria, Richardia, Rubia, Serissa, and Spermacoce. Fleshy fruits… Page 471, column 1, Genera/species, revise as follows: 91/1600. Major genera: Gentiana (360 spp.), Gentianella (250), Macrocarpaea (95), Fagraea (75), Halenia (70), Exacum (70), Sebaea (60), and Swertia (35). Gentiana, Gentianella, Halenia, and Swertia occur in the continental United States and/or Canada, along with Bartonia, Centaurium, Eustoma, Frasera, Obolaria, Sabatia, and Voyria. Page 471, column 1, line 12 from bottom: and Thiv et al. (1999). Thiv et al. (1999), and Struwe et al. (2002). Page 471, column 1, line 11 from bottom: delete “Obolaria” Page 471, column 1, line 3 from bottom. At the end of the first paragraph of the “Discussion” insert the new paragraph below. The Saccifolieae, which contain unusual genera such as Saccifolium (shrubs with saccate leaves) and Voyriella (mycoparasitic herbs), are probably sister to the remaining taxa. Exaceae (e.g., Exacum, Sebaea; with cells of seed coat sinuous, ovary more or less bilocular) likely diverged next, with the rest of the Gentianaceae constituting a xanthone-containing clade. Within this clade, Chironieae (e.g., Eustoma, Sabatia, Chironia, Blackstonia; with distinctive 6-substituted xanthones) are sister to a Helieae + Potalieae + Gentianeae clade, which have flowers with a nectar disk (or nectaries on the corolla): Helieae (e.g., Macrocarpaea), Potalieae (e.g., Fagraea, Lisianthus), and Gentianeae (e.g., Bartonia, Frasera, Gentiana, Gentianella, Obolaria, Swertia, Halenia). (Struwe et al. 2002). Page 472, column 1, line 3: 355/3700 384/4550 Page 474, Figure 9.122: (Modified from Judd et al. 1994 and Endress and Bruyns 2000.) (Modified from Judd et al. 1994, Endress and Bruyns 2000; Livshultz et al. 2007; Simões et al. 2007.) Page 474, column 1, line 8: Albert 2001) Albert 2001; Simões et al. 2007) Page 474, column 1, line 10: exhibit a stepwise accumulation exhibit an accumulation Page 474, column 1, lines 11, 12 from bottom: A group of genera, treated here as the subfamily Asclepiadoideae, is… A group of genera, i.e., the Asclepiadoideae + Secamonoideae clade, is… Page 474, column 2, lines 1, 2: (Fishbein 2001); Figure 9.122. Pollinia have evolved independently in Cryptostegia and relatives (Periplocoideae), (Fishbein 2001; Lahaye et al. 2007; Rapini et al. 2007); Figure 9.122. Pollinia have evolved independently in Cryptostegia and relatives (Periplocoideae; Ionta and Judd 2007), Page 474, column 2, line 8: add “Livshultz 2010” to list of references. Page 475, Fig. 9.123: Add Xia et al. 2009 as an additional reference, and update cladogram. Page 475, column 2, line 5: rbcL, atpB, ndhF, matK, and 18S sequences… plastid, mitochondrial and nuclear DNA sequences…

Page 27: Updates Required to Plant Systematics: A Phylogenetic ... · 1 Updates Required to Plant Systematics: A Phylogenetic Approach, Third Edition, as a Result of Recent Publications (Updated

27

Page 475, column 2, line 10: Soltis et al. 2000; Soltis et al. 2000, 2011; Page 480, column 2, line 4 under Genera/species: Osmanthus (15) Osmanthus (13). Change sentence as follows: All of the above except Olea are represented in the continental United States and Canada except Olea, and in addition Cartrema is common in the southeastern U.S. Page 481, column 1, line 12: (Kim and Jansen 1998b; Wallander… (Wallander… Page 481, column 1, line 16: (e.g., Chionanthus, (e.g., Cartrema, Chionanthus, … Page 481, column 1, Additional references: add Guo et al. 2011 Page 481, column 2, line 6 under “discussion”: The monophyly of the Cyrtandroideae, … The monophyly of the Didymopcarpoideae, … Page 481, column 2, line 10 under “discussion”: …ndhF sequences (Smith et al. 1997) also… …DNA sequences (Smith et al. 1997; Möller et al. 2009) also… Page 482, column 1, line 12: Maurandya, Scoparia, Maurandya, Nuttallanthus, Scoparia, Page 482, column 2, line 19: Reveal et al. (1999). Reveal et al. (2008). Page 482, column 2, line 31: genera Paulownia and Schlegelia. genera Paulownia, Schlegelia, and Rehmannia. Page 485, column 1, line 1: 65/1540 99/2060 Page 485, column 1, lines 3-5 in “discussion”: …and possibly racemose inflorescence. …racemose inflorescence, and flowers with two bracteoles. Page 485, column 1, last line: delete “de Pamphilis and Young 1995” Page 485, column 2, line 2: …Young et al. 1999). Young et al. 1999; Xia et al. 2009). Page 486, column 1, line 16: At end of paragraph add: …, and the family likely is most closely related to Rehmanniaceae, Phrymaceae, Paulowniaceae, and Mazaceae (Xia et al. 2009). Page 486, column 2, line 1: 104/860 106/860 Page 486, column 2, lines 1, 2: Tabebuia (100 spp.), Adenocalymma (80), Arrabidaea (70), Adenocalymma (80 spp.), Arrabidaea (70), Tabebuia (67), Page 486, column 2, lines 1-3 in “Discussion”: revise as follows: Bignoniaceae are easily recognized and surely monophyletic, as evidenced by rbcL, trnL-F, and ndhF sequence data (Olmstead et al. 2009) and the morphological synapomorphies indicated in the family description. Page 486, column 2, line 3: and Jacaranda (40). Jacaranda (40), and Handroanthus (30). Page 486, column 2, line 12: Tabebuia, and Tecoma Tabebuia, Handroanthus, and Tecoma Page 486, column 2, line 9 in “Discussion”: Olmstead 1999). Olmstead 1999; Grose and Olmstead 2007a, b; Olmstead et al. 2009). Page 486, column 2, line 17: add sentence at end of paragraph: Jacaranda is sister to the rest of the family. Page 488, column 1, line 2-3 from bottom: McDade et al. 2000). McDade et al. 2000, 2008). Page 488, column 1, line 4 from bottom: on the basis of ndhF, rbcL, trnL-F, and ITS sequences on the basis of ndhF, rbcL, rps 16, trnS-G, TrnL-F, trnT-L, and ITS sequences… Page 488, column 2, lines 1-2: Nelsonioideae (e.g., Nelsonia, Elytraria) may represent a paraphyletic basal complex within the family; Nelsonioideae (e.g., Nelsonia, Elytraria) are sister to the remaining genera of the family;

Page 28: Updates Required to Plant Systematics: A Phylogenetic ... · 1 Updates Required to Plant Systematics: A Phylogenetic Approach, Third Edition, as a Result of Recent Publications (Updated

28

Page 488, column 2, line 11: (Scotland 1990; (Scotland 1990; Scotland and Volleson 2000; Page 488, column 2, line 22: McDade et al. 2000). McDade et al. 2000, 2008). Page 488, column 2, line 27: 2002), 2002, 2008), Page 488, column 2, line 32: … 2002). … 2002; McDade et al. 2008; Borg & Schönenberger 2011) And on line 36: …ovules, and lack… …ovules, their collateral arrangement, vertical orientation of ovule curvature, an exposed sporangium wall that is contiguous with the ovary wall (as least early in development), and lack… Add at end of this paragraph: The flowers of Avicennia appear to have only four petal lobes, but five petal primordial are initiated and the uppermost corolla lobe is actually two strongly fused petals. Page 488, column 2, line 37: dehisce explosively. dehisce explosively (Witztum and Schulgasser, 1995). Page 492, column 1, lines 8-12: Delete paragraph “The inclusion of Petraea … the rest of the family.” And replace with the following: Petraea and Xolocotza, which have large showy calyces, are sister to the rest of the family, within which Duranta, Stachytarpheta, and relatives (i.e., Duranteae; inflorescences terminal spikes or compound racemes with terminal and axillary flowering shoots) were next to diverge. Most of the species of Verbenaceae belong to the Lantaneae and Verbeneae, which are specialized sister clades. Verbeneae (Junellia, Glandularia, Verbena, Mulguraea) have 2-carpellate ovaries and dry schizocarpic fruits with 4 nutlets/mericarps; they lack essential oils. Lantaneae (9 genera; incl. Aloysia, Lantana, Lippia, Phyla, Nashia) have 1-carpellate ovaries and either fleshy 2-pitted drupes or dry schizocarps with 2 nutlets; their tissues have essential oils (Marx et al. 2010). Page 492, column 2, line 4: 262/6800 252/7100 Page 494, column 1, line 9: … DNA data. …DNA data (Scheen et al. 2010). [and add Moluccella to list of genera in Lamioideae] Page 494, column 1, line 23: …forming a lever arm. …forming a lever arm, which as evolved more than once (Walter and Sytsma 2007; Walter et al. 2004). Page 494, column 2, line 6 from bottom: sympetalous corollas (obvious in many Pittosporaceae), sympetalous corollas (Erbar and Leins 2004; obvious in many Pittosporaceae), Page 495, column 1, line 2: …Olmstead et al. 2000a; Soltis et al. 2000, 2005) …Moore et al. 2011; Olmstead et al. 2000a; Soltis et al. 2000, 2005, 2011; Tank & Donoghue 2010) Page 497, column 1, line 10: usually inflexed usually inflexed Page 497, column 1, line 3 from bottom: add Cyclospermum Page 497, column 1, last line: Thaspium, Torilis, … Thaspium, Tiedemannia, Torilis, … Page 499, column 1, lines 8-9: …although some are difficult to diagnose due to… synapomorphies. …although some, including the subfamilies, are difficult to diagnose due to… synapomorphies (Calviño et al. 2007, 2008). Page 499, column 1, line 11: have a stylopodium… often have a stylopodium… Page 499, column 1, line 12: … narrow groove. … narrow groove, and Saniculeae have highly reduced (head-like) compound umbels (Kadereit et al. 2008). Page 499, column 1, line 17 from bottom: Baumann 1946; Baumann 1946; Calviño et al. 2006; Page 501, column 2, line 1: ndhF, rbcL, atpB, matK, and 18S nucleotide sequences plastid, mitochondrial and nuclear DNA nucleotide sequences Page 501, column 2, lines 2-5: add Tank & Donoghue 2010 and Soltis et al. 2011 to list of cited references.

Page 29: Updates Required to Plant Systematics: A Phylogenetic ... · 1 Updates Required to Plant Systematics: A Phylogenetic Approach, Third Edition, as a Result of Recent Publications (Updated

29

Page 501, Fig. 9.134: add Tank & Donoghue 2010 to cited references. Page 504, column 2, line 7 in Adoxaceae description: radial radial Page 504, column 2, line 4 from bottom in Adoxaceae description: thin-walled thin- or thick-walled Page 505, column 1, line 11: of the sterile locules. of the sterile locules, and the presence of small amorphous crystals in the endosperm cells. Page 505, column 2, line 2: add Jacobs et al. 2008 and Clement and Donoghue 2011 to the “Additional references:”. Page 506, column 1, lines 17-21: add Tank & Donoghue 2010 and Soltis et al. 2011 to cited references. Page 506, column 2, line 20: Morphological analyses suggest … Morphological and molecular analyses suggest… And on lines 26-28: delete sentence: “On the other hand, … Goodeniaceae and Calyceraceae.” Page 508, column 1, line 16 from bottom: 65/2200 84/2300 Page 508, column 1, line 7 from bottom: horticulturally. horticulturally. Lobelia, Codonopsis and Platycodon are used medicinally. Page 508, column 1, line 4 from bottom: (Cosner et al. 1994; Lundberg and Bremer 2002). (Cosner et al. 1994; Lammers 2007; Lundbergt and Bremer 2003). Page 508, column 1, next to last line: delete “(Thorne 1992)” Page 508, column 2, line 3: … style style, and molecular data (Haberle et al. 2009) Page 508, column 2, line 18: add “Antonelli 2008” to “Additional references”. Page 510, Figure 9.138: “Cichorioideae” Carduoideae Page 511, Figure 9.139: “Cichorioideae” Cichorioideae Page 511, column 1, line 4: 1535 1620 Page 512, Table 9.4, row 1. Barnadesieae: 9/92 9/91; add “3 +2 bilabiate” to “flower types” and change “pubescence of long hairs…” to “pubescence of 3-celled hairs…” Page 512, Table 9.4, row 2. “Mutisieae”: “Cichorioideae” Mutisieae (with related Nassauvieae, Onoserideae): Mutisioideae; 76/970 44/630; also delete Gochnatia from list of genera, and add Mutisia to list of genera.. Page 512, Table 9.4, row 3. Cardueae (= Cynareae): “Cichorioideae” Carduoideae (with related Dicomeae, Tarchonantheae, and Oldenburgieae); 83/2500 73/2500; add Arctium and Dicoma to list of genera Page 512, Table 9.4, row 4. Lactuceae (= Cichorieae): Lactuceae (=Cichorieae) Cichorieae (=Lactuceae); “Cichorioideae” Cichorioideae; 98/1550 86/1550; add Lygodesmia to list of genera Page 512, Table 9.4, row 5. Vernonieae: “Cichorioideae” Cichorioideae; 98/1300 126/1500; add Pseudelephantopus to list of genera Page 512, Table 9.4, row 6. Liabeae: “Cichorioideae” Cichorioideae; 14/160 17/174 Page 512, Table 9.4, row 7. Arctoteae: Arctoteae Arctotideae; “Cichorioideae” Cichorioideae; 16/200 18/215 Page 512, Table 9.4, row 8. Inuleae: 38/480 66/690; add Pterocaulon, Pluchea, Sphaeranthus to list of genera Page 512, Table 9.4, row 9. Plucheae: delete this entire row! [tribe has been combined with Inuleae] Page 512, Table 9.4, row 10. Gnaphalieae: Change this to row 9. Gnaphalieae: 162/2000 185/1240 Page 512, Table 9.4, row 11. Calenduleae: Change this to row 10. Calenduleae: 8/110 12/120

Page 30: Updates Required to Plant Systematics: A Phylogenetic ... · 1 Updates Required to Plant Systematics: A Phylogenetic Approach, Third Edition, as a Result of Recent Publications (Updated

30

Page 512, Table 9.4, row 12. Astereae: Change this to row 11. 174/2800 174/3000. Astereae: add Heterotheca, Chrysopsis, Ericameria, Eurybia, Bellis, Boltonia, Townsendia to list of genera Page 512, Table 9.4, row 13. Anthemideae: Change this to row 12. Anthemideae: 109/1740 111/1740; add Cotula to list of genera Page 512, Table 9.4, row 14. Senecioneae: Change this to row 13. Senecioneae: 120/3200 150/3500; add Petasites, Packera, Emilia to list of genera Page 512, Table 9.4, row 15. “Helenieae:” Change this to row 14. Helenieae: 110/830 13/120; add Balduina to list of genera, and delete Arnica, Flaveria, Pectis, and Tagetes from list of genera Page 512, Table 9.4, ADD NEW ROW, row 15. Coreopsideae: 15. Coreopsideae Asteroideae 24/550 Bidens, Cosmos, Coreopsis, Dahlia Page 512, Table 9.4, ADD NEW ROW, row 16. Tageteae: 16. Tageteae Asteroideae 32/270 Flaveria, Pectis, Tagetes Page 512, Table 9.4, row 16. Heliantheae: Change this to row 17. Heliantheae: 189/2500 113/1500; add Acmella, Parthenium, Melanthera, Silphium, Xanthium to list of genera; delete Bidens, Calea, Coreopsis, Cosmos, Dahlia, Viguiera from list of genera Page 512, Table 9.4, row 17. Eupatorieae: Change this to row 18. Eupatorieae: 170/2400 182/2400 Page 513, Table 9.4, row 1. Barnadesieae: long hairs 3-celled hairs Page 513, Table 9.4, row 8. Inuleae: Marginal flowers filiform; elongate crystals in epidermis of achene Marginal flowers filiform; add to “major synapomorphies” the following: “acute to obtuse, sweeping hairs on style branches” Page 513, Table 9.4, row 9. Delete this row that has information for Plucheae, a tribe that is now placed within Inuleae; and row 10. becomes new row 9. Gnaphalieae. Major synapomorphies: add – “involucral bracts usually papery and with a cartilaginous basal part”. Page 513, Table 9.4, “old” row 15, now row 14. Helenieae: Scales, short cup, bristles Scales, bristles None, due to segregation of following two tribes—based on opposite leaves, carbonized achene wall, endothecium of short cells (bracts lacking on receptacle) Unclear (bracts lacking on receptacle; crystals in achene wall), but lacking characters of following four tribes—which form a clade based on opposite leaves, carbonized achene wall, endothecium of short cells Page 513, Table 9.4, new row 15. Coreopsideae: [Insert the following information in the categories of Flower types; Pappus types; Style branches; Major synapomorphies] Disk (lobes short) and ray (these sometimes lost) 1-8 awns or absent Marginal stigmatic lines Heads with dimorphic involucral bracts, innermost translucent, chartaceous, the outer green, herbaceous Page 513, Table 9.4, new row 16. Tageteae: [Insert the following information] Disk (lobes short) and ray Scales, bristles Marginal stigmatic lines Unclear, but with glabrous, sclerified anther appendages, striate achenes; many with leaves and/or involucral bracts glandular

Page 31: Updates Required to Plant Systematics: A Phylogenetic ... · 1 Updates Required to Plant Systematics: A Phylogenetic Approach, Third Edition, as a Result of Recent Publications (Updated

31

Page 513, Table 9.4, row 17. Heliantheae: Awns, scales, bristles, or lacking Awns, scales, awns, erose crown, or lacking Bracts on receptacle; black anthers Compressed achenes, also often scabrous, 3-veined leaves (with bracts on receptacle); black anthers Page 513, Table 9.4, row 18. Eupatorieae. [no changes in this row on page 513] Page 515, column 1, lines 7, 8: which are often arranged into three subfamilies (K. Bremer 1987, 1994; Bremer and Jansen 1992). which are arranged into three (K. Bremer 1987, 1994; Bremer and Jansen 1992), five (Anderberg et al. 2007), or twelve subfamilies (Panero and Funk 2008). Page 515, column 1, lines 13-19: The remaining tribes are more or less equally divided into the “Cichorioideae” and the Asteroideae (K. Bremer 1987, 1994; Carlquist 1976; Thorne 1992). The former is paraphyletic, but is retained here because phylogenetic relationships within the complex are still incompletely known; it is often further divided (K. Bremer 1996; Funk et al. 2005; Panero and Funk 2002). The remaining tribes are often more or less equally divided into a paraphyletic “Cichorioideae” and a monophyletic Asteroideae (K. Bremer 1987, 1994; Carlquist 1976; Thorne 1992), but the major tribes here are considered to belong to the Mutisioideae, Stifftioideae, Wunderlichioideae, Gochnatioideae, Carduoideae, Cichorioideae, and Asteroideae (Table 9.4; see also Anderberg et al. 2007; K. Bremer 1996; Funk et al. 2005, 2009; Panero and Funk 2002, 2008). Page 515, column 1, lines 19, 20: “Cichorioideae” are characterized by style branches with the inner surface stigmatic. Mutisioideae, Carduoideae, and Cichorioideae are characterized by style branches with the inner surface stigmatic. Page 515, column 1, line 21: tribe Lactuceae, tribe Cichorieae, Page 515, column 1, line 23: within this subfamily, within these three subfamilies, Page 515, column 1, line 24: well developed in Lactuceae (Table 9.3). Lactuceae are… well developed in Cichorieae (Table 9.4). Cichorieae are… Page 515, Figure 9.141: (Adapted from K. Bremer 1994.) (Adapted from Anderberg et al. 2007; K. Bremer 1994; Panero and Funk 2008; Funk et al. 2009.) [Also this cladogram needs to be modified in the following ways:] “Mutisieae” Mutisioideae, and the three lines need to be labeled as: Mutisioideae, Stifftioideae, and Wunderlichioideae, and a fourth line needs to be added, and labeled: Gochnatioideae. [Note: The paraphyletic “Mutisieae has been divided up into four subfamilies, and several tribes, by Panero and Funk (2008), Funk et al. (2009).] Cardueae Carduoideae Lactuceae Cichorieae Arctoteae Arctoideae Bracket indicating Cichorioideae should include only the tribes Cichorieae, Vernonieae, Liabeae and Arctotideae; and these four tribes should be indicated as forming a clade Delete line leading to Plucheae The clade containing “Helenieae,” Heliantheae, and Eupatorieae should be redrawn so that the following tribes are shown, each sister to all those following in the list: Helenieae Coreopsideae Tageteae Heliantheae Eupatorieae The position of the Inuleae needs to be changed; it should be sister to the clade Helenieae + Coreopsideae + Tageteae + Heliantheae + Eupatorieae. The tribes Gnaphalieae + Calenduleae + Anthemideae + Astereae should be joined by a connecting line, to indicate that these form a subclade within the Asteroideae. Relationships are as follows: (((Astereae, Anthemidae) Gnaphalieae) Calenduleae)

Page 32: Updates Required to Plant Systematics: A Phylogenetic ... · 1 Updates Required to Plant Systematics: A Phylogenetic Approach, Third Edition, as a Result of Recent Publications (Updated

32

Page 515, column 2, Additional References: Add Pozner et al. 2012 Page 527: Replace “Jansen, R. K. and 18 others. 2006. Phylogeny of angiosperms based on whole chloroplast genome sequences” with the following: Jansen, R. K. and 15 others. 2007. Analysis of 81 genes from 64 chloroplast genomes resolves relationships in angiosperms and identifies genome-scale evolutionary patterns. Proc. Nat. Acad. Sci. U.S.A. 104: 19369-19374. Page 516 and following – the following are additional references for Chapter 9: Albers, F. and J. J. A. van der Walt. 2007. Geraniaceae. In The families and genera of vascular plants, Vol.9,

Berberidopsidales…Sabiaceae, K. Kubitzki (ed.), 156-167, Springer-Verlag, Berlin. Anderberg, A. A., B. G. Baldwin, R. G. Bayer, J. Breitwieser, C. Jeffrey, M. O. Dillon, P. Eldenäs, V. Funk, N. Garcia-

Jacas, D. J. N. Hind, P. O. Karis, H. W. Lack, G. Nesom, B. Nordenstam, C. H. Oberprieler, J. L. Panero, C. Puttock, H. Robinson, T. F. Stuessy, A. Susanna, E. Urtubey, R. Vogt, J. Ward, and L. E. Watson. 2007. Compositae. In The families and genera of vascular plants, Vol. 8, Asterales, J. W. Kadereit and C. Jeffrey (eds), 61-588. Springer-Verlag, Berlin.

Andrade, M. J. Gomez de, A. M. Giulietti, A. Rapini, L. Paganncci de Queiroz, A. de Sousa Conceicão, P. R. Machado

de Almeida, and C. van den Berg. 2010. A comprehensive phylogenetic analysis of Eriocaulaceae: Evidence from nuclear (ITS) and plastid (psbA-trnH and trnL-F) DNA sequences. Taxon 59: 379-388.

Angiosperm Phylogeny Group. 2009. An update of the Angiosperm Phylogeny Group classification for the orders and

families of flowering plants: APG III. Bot. J. Linn. Soc. 161: 105-121. Antonelli, A. 2008. Higher level phylogeny and evolutionary trends in Campanulaceae subfam. Lobeloideae:

Molecular signal overshadows morphology. Mol. Phyl. Evol. 46: 1-18. Bailey, C. D., M. A. Koch, M. Mayer, K. Mummenhoff, S. L. O’Kane Jr., S. I. Warwick, M. D. Windham, and I. A.

Al-Shehbaz. 2006. Towards a global phylogeny of the Brassicaceae. Mol. Biol. Evol. 23: 2142-2160. Balthazar, M. von, and J. Schönenberger. 2009. Floral structure and organization in Platanaceae. Int. J. Plant Sci.

170: 210-225. Bárcenas, R. T., C. Yesson, and J. A. Hawkins. 2011. Molecular systematics of the Cactaceae. Cladistics 27: 470-489. Barkley, N.A., M.L. Roose, R.R. Krueger, and C.T. Federici. 2006. Assessing genetic diversity and population

structure in a citrus germplasm collection utilizing simple sequence repeat markers (SSRs). Theoretical & Applied Genetics 112: 1519-1531

Barkman, T. J., J. R. MCNeal, S.-H. Lim, G. Coat, H. B. Croom, N. D. Young, and C. W. de Pamphilis. 2007.

Mitochondrial DNA suggests at least 11 origins of parasitism in angiosperms and reveals genomic chimerism in parasitic plants. BMC Evol. Biol. 7: 248.

Bayer, R.J., D.J. Mabberley, C. Morton, C.H. Miller, I.K. Sharma, B.E. Pfeil, S. Rich, R. Hitchcock, and S. Sykes.

2009. A molecular phylogeny of the orange subfamily (Rutaceae: Aurantioideae) using nine cpDNA sequences. Amer. J. Bot. 96: 668-685.

Becerra. J. X. K. Noge, S. Olivier, and D. L. Venable. 2012. The monophyly of Bursera and its impact for divergence

times of Burseraceae. Taxon 61: 333-343. Beilstein, M. A., I. A. Al-Shehbaz, S. Mathews, and E. A. Kellogg. 2008. Brassicaceae phylogeny inferred from

phytochrome A and ndhF sequence data: tribes and trichomes revisited. Amer. J. Bot. 95: 1307-1327. Bello, M.A., A. Bruneau, F. Forest, and J.A. Hawkins. 2009. Elusive relationships within order Fabales: phylogenetic

analyses using matK and rbcL sequence data. Syst. Bot. 34: 102-114. Bolmgren, K., and B. Oxelman. 2004. Generic limits in Rhamnus L. s.l. (Rhamnaceae) inferred from nuclear and

chloroplast DNA sequences. Taxon 53: 383-390.

Page 33: Updates Required to Plant Systematics: A Phylogenetic ... · 1 Updates Required to Plant Systematics: A Phylogenetic Approach, Third Edition, as a Result of Recent Publications (Updated

33

Borg, A. J. and J. Schönenberger. 2011. Comparative floral development and structure of the black mangrove genus Avicennia L. and related taxa in the Acanthaceae. Int. J. Plant Sci. 172: 330-344.

Borsch, T., K. W. Hilu, J. H. Wiersema, C. Löhne, W. Barthlott, and V. Wilde. 2007. Phylogeny of Nymphaea

(Nymphaeaceae): evidence from substitutions and microstructural changes in the chloroplast trnT-trnF region. Int. J. Plant Sci. 168: 639-671.

Borsch, T., C. Löhne, and J. Wiersema. 2008. Phylogeny and evolutionary patterns in Nymphaeales: integrating

genes, genomes and morphology. Taxon 57: 1052-1081. Braukmann, T. and S. Stefanović. 2012. Plastid genome evolution in mycoheterotrophic Ericaceae. Plant Mol. Biol.

79: 5-20. Bremer, B. 2009. A review of molecular phylogenetic studies of Rubiaceae. Ann. Missouri Bot. Gard. 96: 4-26. Bremer, B. and T. Eriksson. 2009. Time tree of Rubiaceae: phylogeny and dating of the family, subfamilies, and

tribes. Int. J. Plant Sci. 170: 766-793. Brockington, S.F., R. Alexandre, J. Ramdial, M.J. Moore, S. Crawley, A. Dhingra, K. Hilu, D.E. Soltis, and P.S. Soltis.

2009. Phylogeny of the Caryophyllales sensu lato: revisiting hypotheses on pollination biology and perianth differentiation in the core Caryophyllales. Int. J. Plant Sci. 170: 627-643.

Buerki, S., P. P. Lowry II, P. B. Phillipson, and M. W. Callmander. 2010. Molecular phylogenetic and morphological

evidence supports recognition of Gereaua, a new endemic genus of Sapindaceae from Madagascar. Syst. Bot. 35: 172-180.

Burke, J. M., A. Sanchez, K. Kron, and M. Luckow. 2010. Placing the woody tropical genera of Polygonaceae: a

hypothesis of character evolution and phylogeny. Amer. J. Bot. 97: 1377-1390. Burleigh, J. G., K. W. Hilu, and D. E. Soltis. 2009. Inferring phylogenies with incomplete data sets: a 5-gene, 567-

taxon analysis of angiosperms. BMC Evol. Biol. 9:61 (11 pp.). http://www/biomedcentral.com/1471-2148/9/61.

Burns, J. H., R. B. Faden, and S. J. Steppan. 2011. Phylogenetic studies in the Commelinaceae subfamily

Commelinoideae inferred from nuclear ribosomal and chloroplast DNA sequences. Syst. Bot. 36: 268-276. Bush, C.M., L. Lu, P.W. Fritsch, D.-Z. Li, and K.A. Kron. 2009. Phylogeny of Gaultherieae (Ericaceae:

Vaccinioideae) based on DNA sequence data from matK, ndhF, and nrITS. Int. J. Plant Sci. 170: 355-364. Cabrera, L. I., G. A. Salazar, M. W. Chase, S. J. Mayo, J. Bogner, and P. Dávila. 2008. Phylogenetic relationships of

aroids and duckweeds (Araceae) inferred from coding and non-coding plastid DNA. Amer. J. Bot. 1153-1165.

Calviño, C. I., P. M. Tilney, B.-E. van Wyk, and S. R. Downie. 2006. A molecular phylogenetic study of southern

African Apiaceae. Amer. J. Bot. 93: 1828-1847. Calviño, C. I. and S. R. Downie. 2007. Circumscription and phylogeny of Apiaceae subfamily Saniculoideae based on

chloroplast DNA sequences. Mol. Phylog. Evol. 44: 175-191. Calviño, C. I., G. Martínez, and S. R. Downie. 2008. Morphology and biogeography of Apiaceae subfamily

Saniculoideae as inferred by phylogenetic analysis of molecular data. Amer. J. Bot. 95: 196-214. Cameron, K. M. and C.-X. Fu. 2006. A nuclear rDNA phylogeny of Smilax (Smilacaceae). Aliso 22: 598-605. Carlquist, S. 2010. Caryophyllales: a key group for understanding wood anatomy character states and their evolution.

Bot. J. Linn. Soc. 164: 342-393. Carlsward, B. S., W. S. Judd, D. E. Soltis, S. Manchester, & P. S. Soltis. 2011. J. Bot. Res. Inst. Texas 5: 179-196. Chase, M. W., J. L. Reveal, and M. F. Fay. 2009. A subfamilial classification for the expanded Asparagalean families

Amaryllidaceae, Asparagaceae and Xanthorrhoeaceae. Bot. J. Linn. Soc. 161: 132-136.

Page 34: Updates Required to Plant Systematics: A Phylogenetic ... · 1 Updates Required to Plant Systematics: A Phylogenetic Approach, Third Edition, as a Result of Recent Publications (Updated

34

Chen, I. and S. R. Manchester. 2007. Seed morphology of modern and fossil Ampelocissus (Vitaceae) and implications for phytogeography. Amer. J. Bot. 94: 1534-1553.

Chen, J.-H., H. Sun, J. Win, Y.-P. Yang. 2010. Molecular phylogeny of Salix L. (Salicaceae) inferred from three

chloroplast datasets and its systematic implications. Taxon 59: 29-37. Chen, S.-C., Y.-X. Qiu, A.-L. Wang, K. M. Cameron, and C. X. Fu. 2006. A phylogenetic analysis of Smilacaceae

based on morphological data. Acta Phytotax. Sinica 44: 113-125. Clarkson, J. J., M. W. Chase, and M. M. Harley. 2002. Phylogenetic relationships in Burseraceae based on plastid

rps16 intron sequences. Kew Bull. 57: 183-193. Classen-Bockhoff, R. and A. Heller. 2008. Floral synorganization and secondary pollen presentation in four

Marantaceae from Costa Rica. Inter. J. Plant Sci. 169: 745-760. Clayton, J. W., E. S. Fernando, P. S. Soltis, and D. E. Soltis. 2007. Molecular phylogeny of the tree-of-heaven family

(Simaroubaceae) based on chloroplast and nuclear markers. Int. J. Plant Sci. 168: 1325-1339. Clement, W. L. and M. J. Donoghue. 2011. Dissolution of Viburnum section Megalotinus (Adoxaceae) of southeast

Asia and its implications for morphological evolution and biogeography. Int. J. Plant Sci. 172: 559-573. Clement, W. L. and G. D. Weiblen. 2009. Morphological evolution in the mulberry family (Moraceae). Syst. Bot. 34:

530-552. Crawley, S. S. and K. W. Hilu. 2012. Impact of missing data, gene choice, and taxon sampling on phylogenetic

reconstruction: the Caryophyllales (angiosperms). Plant Syst. Evol. 298: 297-312. Croat, T. B. 1985. Collecting and preparing specimens of Araceae. Ann. Missouri Bot. Gard. 72: 252-258. Cusimano, N., J. Bogner, S. J. Mayo, P. C. Boyce, S. Y. Wong, M. Hesse, W. L. A. Hetterscheid, R. C. Keating, and J.

C. French. 2011. Relationships within the Araceae: Comparison of morphological patterns with molecular phylogenies. Amer. J. Bot. 98: 654-668.

Davis, C. C. and W. R. Anderson. 2010. A complete generic phylogeny of Malpighiaceae inferred from nucleotide

sequence data and morphology. Amer. J. Bot. 97: 2031-2048. Davis, C. C., M. Latvis, D. L. Nickrent, K. J. Wurdack, and D. A. Baum. 2007. Floral gigantism in Rafflesiaceae.

Science 315: 1812. De Groot, S. J. 2011. Collecting and processing cacti into herbarium specimens, using ethanol and other methods.

Syst. Bot. 36: 981-989. Deng, M., Z.-K. Zhou, Y.-Q. Chen, and W.-B. Sun. 2008. Systematic significance of the development and anatomy of

flowers and fruit of Quercus schottkyana (subgenus Cyclobalanopsis: Fagaceae). Int. J. Plant Sci. 169: 1261-1277.

Denk, T. and G. W. Grimm. 2009. Significance of pollen characteristics for infrageneric classification and phylogeny

in Quercus (Fagaceae). Int. J. Plant Sci. 170: 926-840. Denk, T. and G. W. Grimm. 2010. The oaks of western Eurasia: Traditional classification and evidence from two

nuclear markers. Taxon 59: 351-366. Der, J. P. and D. L. Nickrent. 2008. A molecular phylogeny of Santalaceae (Santalales). Syst. Bot. 33: 107-116. Douglas, N. and R. Spellenberg. 2010. A new tribal classification of Nyctaginaceae. Taxon 59: 905-910. Doyle, J. A. 2007. Systematic value and evolution of leaf architecture across the angiosperms in light of molecular

phylogenetic analysis. Cour. Forsch.-Inst. Senckenberg 258: 21-37. Drábková, L. and Č. Vlček. 2007. The phylogenetic position of Oxychloë (Juncaceae): evidence from morphology,

nuclear and plastid DNA regions. Taxon 56: 95-102.

Page 35: Updates Required to Plant Systematics: A Phylogenetic ... · 1 Updates Required to Plant Systematics: A Phylogenetic Approach, Third Edition, as a Result of Recent Publications (Updated

35

Dransfield, J., N. W. Uhl, C. B. Asmussen, W. J. Baker, M. M. Harley, and C. E. Lewis. 2008. Genera palmarum: The evolution and classification of palms. Kew Publ., Royal Botanic Gardens, Kew, U.K.

Duangjai, S., R. Samuel, J. Munzinger, F. Forest, B. Wallnöfer, M. H. J. Barfuss, G. Fischer, and M. W. Chase. 2009.

Mol. Phylog. Evol. 52: 602-620. Edwards, E. J. and M. J. Donoghue. 2006. Pereskia and the origin of the cactus life form. Amer. Nat. 167: 777-793. Endress, P. K. 2008. Perianth biology in the basal grade of extant angiosperms. Int. J. Plant Sci. 169: 844-862. Endress, P. K. and J. D. Doyle. 2009. Reconstructing the ancestral angiosperm flower and its initial specializations.

Amer. J. Bot. 96: 22-66. Endress, P. K. and M. L. Matthews. 2006. Elaborate petals and staminodes in eudicots: diversity, function, and

evolution. Organisms, Diversity and Evolution: 6: 257-293. Erbar, C. and P. Leins. 2004. Sympetalae in Apiales (Apiaceae, Araliaceae, Pittosporaceae). South African J. Bot. 70:

458-467. Eriksen, B. and C. Persson. 2007. Polygalaceae. In The families and genera of vascular plants, Vol.9,

Berberidopsidales…Sabiaceae, K. Kubitzki (ed.), 345-363, Springer-Verlag, Berlin. Feodorova, T., E. V. Voznesenskatya, G. E. Edwards, and E. H. Roalson. 2010. Biogeographic patterns of

diversification and the origins of C4 in Cleome (Cleomaceae). Syst. Bot. 35: 811-826. Feuillet, C. and J. M. MacDougal. 2007. Passifloraceae. In The families and genera of vascular plants, Vol.9,

Berberidopsidales…Sabiaceae, K. Kubitzki (ed.), 270-281, Springer-Verlag, Berlin. Figlar, R. B. and H. P. Nooteboom. 2004. Notes on Magnoliaceae IV. Blumea 49: 87-100. Fiz, O., P. Vargas, M. Alarcón, C. Aedo, J. L. García, and J. J. Aldasoro. 2008. Phylogeny and historical

biogeography of Geraniaceae in relation to climate changes and pollination ecology. Syst. Bot. 33: 326-342. Franzke, A., D. German, I. A. Al-Shehbaz, and K. Mummenhoff. 2009. Arabidopsis family ties: molecular phylogeny

and age estimates in Brassicaceae. Taxon 58: 425-437. Franzke, A., M. A. Lysak, I. Al-Shehbaz, M. A. Koch, and K. Mummenhoff. 2010. Cabbage family affairs: The

evolutionary history of Brassicaceae. Trends in Pl. Sci. 16: 108-116. Friedman, W. E. and K. C. Ryerson. 2009. Reconstructing the ancestral female gametophyte of angiosperms: Insights

from Amborella and other ancient lineages of flowering plants. Amer. J. Bot. 96: 129-143. Fritsch, P. W., L. Lu, C. M. Bush, B. C. Cruz, K. A. Kron, and D.-Z. Li. 2011. Phylogenetic analysis of the

wintergreen group (Ericaceae) based on six genic regions. Syst. Bot. 36: 990-1003. Fukuda, T. H. Ashizawa, R. Suzuki, T. Ochiai, T. Nakamura, A. Kanno, T. Kameya, and J. Yokoyama. 2005.

Molecular phylogeny of the genus Asparagus (Asparagaceae) inferred from plastid petB intron and petD-rpoA intergenic spacer sequences. Plant Species Biology 20: 121-132.

Funk, V. A., A. Susanna, T. F. Stuessy, and R. J. Bayer, eds. 2009. Systematics, evolution, and biogeography of

Compositae. I.A.P.T., Vienna, Austria. Gerrath, J. M., T. B. Guthrie, T. A. Zitnak, and U. Posluszny. 2008. Development of the axillary bud complex in

Echinocystis lobata (Cucurbitaceae): interpreting the cucurbitaceous tendril. Amer. J. Bot. 95: 773-781. Gillespie, E. and K. A. Kron. 2010. Molecular phylogenetic relationships and a revised classification of the subfamily

Ericoideae (Ericaceae). Mol. Phylog. Evol. 56: 343-354. Gillespie, E. L. and K. A. Kron. 2012. A new tribe, Bryantheae (Ericoideae: Ericaceae), composed of disjunct genera

from South America and Japan. Brittonia 64: 73-75. Givnish, T. J., K. C. Millam, P. E. Berry, and K. J. Sytsma. 2007. Phylogeny, adaptive radiation, and historical

biogeography of Bromeliaceae inferred from ndhF sequence data. In: J. T. Columbus, E. A. friar, J. M.

Page 36: Updates Required to Plant Systematics: A Phylogenetic ... · 1 Updates Required to Plant Systematics: A Phylogenetic Approach, Third Edition, as a Result of Recent Publications (Updated

36

Porter, L. M. Prince, and M. G. Simpson (eds.), Monocots: Comparative biology and evolution – Poales, 3-26. Rancho Santa Ana Botanic Garden, Claremont, CA.

Givnish, T. J., M. Ames, J. R. McNeal, M. R. McKain, P. R. Steele, C. W. dePamphilis, S. W. Graham, J. C. Piers, D.

W. Stevenson, W. B. Zomlefer, B. G. Briggs, M. R. Duvall, M. J. Moore, J. M. Heaney, D. E. Soltis, P. S. Soltis, K. Thiele, and J. H. Leebens-Mack. 2010. Ann. Missouri Bot. Gard. 97: 584-616.

Givnish, T. J., M. H. J. Barfuss, B. Van Ee, R. Riina, K. Schulte, R. Horres, P. A. Gonsiska, R. S. Jabaily, D. M. Crayn,

J. A. C. Smith, K. Winter, G. K. Brown, T. M. Evans, B. K. Holst, H. Luther, W. Till, G. Zizka, P. E. Berry, and K. J. Sytsma. 2011. Phylogeny, adaptive radiation, and historical biogeography in Bromeliaceae: Insights from an eight-locus plastid phylogeny. Amer. J. Bot. 98: 872-895.

Goldblatt, P., A. Rodriguez, M. P. Powell, T. J. Davies, J. C. Manning, M. van der Bank, and V. Savolainen. 2008.

Iridaceae ‘out of Australasia’? Phylogeny, biogeography, and divergence time based on plastid DNA sequences. Syst. Bot. 33: 495-508.

Goldenberg, R., D. S. Penneys, F. Almeda, W. S. Judd, and F. A. Michelangeli. 2008. Phylogeny of Miconia

(Melastomataceae): patterns of stamen diversification in a megadiverse neotropical genus. Int. J. Plant Sci. 169: 963-979.

Good-Avila, S. V., V. Souza, B. S. Gaut, and L. E. Eguiarte. 2006. Timing and rate of speciation in Agave

(Agavaceae). Proc. Nat. Acad. Sci. 103: 9124-9129. Gottschling, M., H. H. Hilger, M. Wolf, and N. Diane. 2001. Secondary structure of the ITS1 transcript and its

application in a reconstruction of the phylogeny of Boraginales. Plant Bio. 3: 629-636. Graham, S. W. and W. J. D. Iles. 2009. Different gymnosperm outgroups have (mostly) congruent signal regarding

the root of flowering plant phylogeny. Amer. J. Bot. 96: 216-227. Greenberg, A. K. and M. J. Donoghue. 2011. Molecular systematics and character evolution in Caryophyllaceae.

Taxon 60: 1637-1652. Griffith, M. P. and J. M. Porter. 2009. Phylogeny of Opuntioideae (Cactaceae). Int. J. Plant Sci. 170: 107-116. Grimm, G. W. & T. Denk. 2010. The reticulate origin of modern plane trees (Platanus, Platanaceae): A nuclear

marker puzzle. Taxon 59: 134-147. Groppo, M., J. R. Pirani, M. L. F. Salatino, S. R. Blanco, and J. A. Kallunki. 2008. Phylogeny of Rutaceae based on

two noncoding regions from cpDNA. Amer. J. Bot. 95: 985-1005. Grose, S. O. and R. G. Olmstead. 2007a. Evolution of a charismatic neotropical clade: Molecular phylogeny of

Tabebuia s.l., Crescentieae, and allied genera (Bignoniaceae). Syst. Bot. 32: 650-659. Grose, S. O. and R. G. Olmstead. 2007b. Taxonomic revisions in the polyphyletic genus Tabebuia s.l. (Bignoniaceae).

Syst. Bot. 32: 660-670. Guo, S.-Q., M. Xiong, C.-F. Ji, Z.-R. Zhang, D.-Z. Li, and Z.-Y. Zhang. 2011. Molecular phylogenetic reconstruction

of Osmanthus Lour. (Oleaceae) and related genera based on three chloroplast intergenic spacers. Plant Syst. Evol. 294: 57-64.

Haberle, R. C., A. Dang, T. Lee, C. Peñaflor, H. Cortes-Burns, A. Oestreich, L. Raubeson, N. Cellinese, E. J. Edwards,

S.-T. Kim, W. M. M. Eddie, and R. K. Jansen. 2009. Taxonomic and biogeographic implications of a phylogenetic analysis of the Campanulaceae based on three chloroplast genes. Taxon 58: 715-734.

Hall, J. C. 2008. Systematics of Capparaceae and Cleomaceae: an evaluation of the generic delimitations of Capparis

and Cleome using plastid DNA sequence data. Can. J. Bot 86: 682-696. Harbaugh, D. T., M. Nepokroeff, R. K. Rabeler, J. McNweill, E. A. Zimmer, & W. L. Wagner. 2010. A new lineage-

based tribal classification of the family Caryophyllaceae. Int. J. Plant Sci. 171: 185-198. Haston, E., J. E. Richardson, P. F. Stevens, M. W. Chase, and D. J. Harris. 2009. The linear Angiosperm Phylogeny

Group (LAPG) III: a linear sequence of the families in APG III. Bot. J. Linn. Soc. 161: 128-131.

Page 37: Updates Required to Plant Systematics: A Phylogenetic ... · 1 Updates Required to Plant Systematics: A Phylogenetic Approach, Third Edition, as a Result of Recent Publications (Updated

37

Hemingway, C. A., A. R. Christensen, and S. T. Malcomber. 2011. B- and C-class gene expression during corona

development of the blue passionflower (Passiflora caerulea, Passifloraceae). Amer. J. Bot. 98: 923-934. Hermsen, E. J., K. C. Nixon, and W. L. Crepet. 2006. The impact of extinct taxa on understanding the early evolution

of angiosperm clades: An example incorporating fossil reproductive structures of Saxifragales. Pl. Syst. Evol. 260: 141-169.

Hernández-Hernández, T., H. M. Hernández, J. A. De-Nova, R. Puente, L. E. Eguiarte, and S. Magallón. 2011.

Phylogenetic relationships and evolution of growth form in Cactaceae (Caryophyllales, Eudicotyledoneae). Amer. J. Bot. 98: 44-61.

Heubl, G., G. Bringmann, and H. Meimberg. 2006. Molecular phylogeny and character evolution of carnivorous plant

families in Caryophyllales – revisited. Plant Biol. 8: 821-830. Hilu, K. W. 2007. A century of progress in grass systematics. Kew Bull. 62: 355-373. Hoot, S.B., H. Zautke, D.J. Harris, P.R. Crane, and S.S. Neves. 2009. Phylogenetic patterns in Menispermaceae based

on multiple chloroplast sequence data. Syst. Bot. 34: 44-56. Horn, J. W., J. B. Fisher, P. B. Tomlinson, C. E. Lewis, and K. Laubengayer. 2009. Evolution of lamina anatomy in the

palm family (Arecaceae). Amer. J. Bot. 96: 1462-1486. Horn, J. W., B. W. van Ee, J. J. Morawetz, R. Riina, V. W. Steinmann, P. E. Berry, and K. J. Wurdack. 2012.

Phylogenetics and the evolution of major structural characters in the giant genus Euphorbia L. (Euphorbiaceae). Mol. Phylog. Evol. 63: 305-326.

Hufford, L., M. M. McMahon, R. O’Quinn, and M. E. Poston. 2005. A phylogenetic analysis of Loasaceae subfamily

Loasoideae based on plastid DNA sequences. Int. J. Plant Sci. 166: 289-300. Hunziker, A. T. 2001. The genera of Solanaceae. Koeltz, Künigstein. Ickert-Bond, S. M., K. B. Pigg, and J. Wen. 2007. Comparative infructescence morphology in Altingia (Altingiaceae)

and discordance between morphological and molecular phylogenies. Amer. J. Bot. 94: 1094-1115. Iltis, H. H., J. C. Hall, T. S. Cochrane, and K. J. Sytsma. 2011. Studies in the Cleomaceae I. On the separate

recognition of Capparaceae, Cleomaceae, and Brassicaceae. Ann. Missouri Bot. Gard. 98: 28-36. Ionta, G. M. and W. S. Judd. 2007. Phylogenetic relationships in Periplocoideae (Apocynaceae s.l.) and insights into

the origin of pollinia. Ann. Missouri Bot. Gard. 94: 360-375. Jacobs, B., M. J. Donoghue, F. Bouman, S. Huysmans, and E. Smets. 2008. Evolution and phylogenetic importance of

endocarp and seed characters in Viburnum (Adoxaceae). Int. J. Plant Sci. 169: 409-431. Jaramillo, M. A., R. Callejas, C. Davidson, J. F. Smith, A. C. Stevens, and E. J. Tepe. 2008. A phylogeny of the

tropical genus Piper using ITS and chloroplast intron psbJ-petA. Syst. Bot. 33: 647-660. Jérémie, J., P.P. Lowry II, and F. Trochent. 2008. Amborellaceae. Species Plantarum: Flora of the World, Part 14: 1-

7. Jian, S., P. S. Soltis, M. A. Gitzendanner, M. J. Moore, R. Li, T. A. Hendry, Y.-L. Qiu, A. Dhingra, C. D. Bell, and D.

E. Soltis. 2008. Resolving an ancient, rapid radiation in Saxifragales. Syst. Biol. 57: 38-57. Johnson, K. A., B. R. Holland, M. M. Heslewood, and D. M. Crayn. 2012. Supermatrices, supertrees and serendipitous

scaffolding: Inferring a well-resolved, genus-level phylogeny of Styphelioideae (Ericaceae) despite missing data. Mol. Phylog. Evol. 62: 146-158.

Kadereit, J. W., M. Repplinger, N. Schmalz, C. H. Uhink, and A. Wörz. 2008. The phylogeny and biogeography of

Apiaceae subf. Saniculoideae tribe Saniculeae: from south to north and south again. Taxon 57: 365-382.

Page 38: Updates Required to Plant Systematics: A Phylogenetic ... · 1 Updates Required to Plant Systematics: A Phylogenetic Approach, Third Edition, as a Result of Recent Publications (Updated

38

Kadereit, J. W., E. V. Mavrodiev, E. H. Zacharias, and A. P. Sukhorukov. 2010. Molecular phylogeny of atripliceae (Chenopodioideae, Chenopodiaceae): Implications for systematics, biogeography, flower and fruit evolution, and the origin of C4 photosynthesis. Amer. J. Bot. 97: 1664-1687.

Kathriarachchi, H., P. Hoffmann, R. Samuel, K. J. Wurdack, and M. W. Chase. 2005. Molecular phylogenetics of

Phyllanthaceae inferred from five genes (plastid atpB, matK, 3’ ndhF, rbcL, and nuclear PHYC). Mol. Phylog. Evol. 36: 112-134.

Kathriarachchi, H., R. Samuel, P. Hoffmann, J. Mlinarec, K. J. Wurdack, H. Ralimanana, T. F. Stuessy, and M. W.

Chase. 2006. Phylogenetics of tribe Phyllantheae (Phyllanthaceae; Euphorbiaceae sensu lato) based on nrITS plastid matK sequence data. Amer. J. Bot. 93: 637-655.

Kim, J.-H., D.-K. Kim, F. Forest, M. F. Fay, and M. W. Chase. 2010. Molecular phylogenetics of Ruscaceae sensu lato

and related families (Asparagales) based on plastid and nuclear DNA sequences. Ann. Botany 106: 775-790. Kim, C.-K. and H.-K. Choi. 2011. Molecular systematics and character evolution of Typha (Typhaceae) inferred from

nuclear and plastid DNA sequence data. Taxon 60: 1417-1428. Kim, S.-T. and M. J. Donoghue. 2008. Molecular phylogeny of Persicaria (Persicarieae, Polygonaceae). Syst. Bot.

33: 77-86. Kim, Y.-D., S.-H. Kim, C. H. Kim, and R. K. Jansen. 2004. Phylogeny of Berberidaceae based on sequences of the

chloroplast gene ndhF. Biochem. Syst. Ecol. 32: 291-301. Klak, C., P. V. Bruyns, and T. A. J. Hedderson. 2007. A phylogeny and new classification for Mesembryanthemoideae

(Aizoaceae). Taxon 56: 737-756. Koch, M. A., M. Wernisch, and R. Schmickl. 2008. Arabidopsis thaliana’s wild relatives: an updated overview on

systematics, taxonomy and evolution. Taxon 57: 933-943. Kocyan, A., L.-B. Zhang, H. Schaefer, & S. S. Renner. 2007. A multi-locus chloroplast phylogeny for the

Cucurbitaceae and its implications for character evolution and classification. Mol. Phy. Evol. 44: 553-577. Lahaye, R., J. Klackenberg, M. Källersjö, E. van Campo, and L. Civeyrel. 2007. Phylogenetic relationships between

derived Apocynaceae s.l. and within Secamonoideae based on chloroplast sequences. Ann. Missouri Bot. Gard. 94: 376-391.

Lammers, T. G. 2007. Campanulaceae. In The families and genera of vascular plants, Vol. 8, Asterales, J. W. Kadereit

and C. Jeffrey (eds), 26-56. Springer-Verlag, Berlin. Lee, E. K., A. Cibrian-Jaramillo, S.-O. Kolokotronis, M. S. Katari, A. Stamatakis, M. Ott, J. C. Chiu, D. P. Little, D.

W. Stevenson, W. R. McCombie, R. A. Martienssen, G. Coruzzi, and R. DeSalle. 2011. PLoS Genetics 7 (12): 1-13.

Li, J. and J. G. Conran. 2003. Phylogenetic relationships in Magnoliaceae subfam. Magnoloideae: a morphological

cladistic analysis. Plant Syst. Evol. 242: 33-47. Lindqvist, C., J. DeLaet, R. R. Haynes, L. Aagesen, B. R. Keener, and V. A. Albert. 2006. Molecular phylogenetics of

an aquatic plant lineage, Potamogetonaceae. Cladistics 22: 568-588. Liu, A-Z., W. J. Kress, & D-Z. Li. 2010. Phylogenetic analyses of the banana family (Musaceae) based on nuclear

ribosomal (ITS) and chloroplast (trnL-F) evidence. Taxon 59: 20-28. [A treatment of Musaceae will be added in the next edition.]

Liu, Z.-W., J. Zhou, E.-D. Liu, & H. Peng. 2010. A molecular phylogeny and a new classification of Pyrola (Pyroleae,

Ericaceae). Taxon 59: 1690-1700. Livshultz, T. 2010. The phylogenetic position of milkweeds (Apocynaceae subfamilies Secamonoideae and

Asclepiadoideae): Evidence from the nucleus and chloroplast. Taxon 59: 1016-1030. Livshultz, T., D. J. Middleton, M. E. Endress, and J. K. Williams. 2007. Phylogeny of Apocynoideae and the APSA

clade (Apocynaceae s.l.). Ann. Missouri Bot. Gard. 94: 324-359.

Page 39: Updates Required to Plant Systematics: A Phylogenetic ... · 1 Updates Required to Plant Systematics: A Phylogenetic Approach, Third Edition, as a Result of Recent Publications (Updated

39

Lo, E. Y. Y. and M. J. Donoghue. 2012. Expanded phylogenetic and dating analysis of the apples and their relatives

(Pyreae, Rosaceae). Mol. Phylog. Evol. 63: 230-243. Löhne, C. and T. Borsch. 2007. Phylogenetic analysis of Nymphaeales using fast-evolving and noncoding chloroplast

markers. Bot. J. Linn. Soc. 154: 141-163. Lucas, E. J., S. A. Harris, F. F. Mazine, S. R. Belsham, E. M. Nic Lughadha, A. Telford, P. E. Gasson, and M. W.

Chase. 2007. Suprageneric phylogenetics of Myrteae, the generically richest tribe in Myrtaceae (Myrtales). Taxon 56: 1105-1128.

Luna, I. and H. Ochoterena. 2004. Phylogenetic relationships of the genera of Theaceae based on morphology.

Cladistics 20: 223-270. Mabberley, D.J. 2004. Citrus (Rutaceae): a review of recent advances in etymology, systematics, and medical

applications. Blumea 49: 481-498. Mabberley, D.J. 2001. Citrus reunited. Australian Plants 21: 52-54. Magallón, S. 2007. From fossils to molecules: phylogeny and the core eudicot floral groundplan in Hamamelidoideae

(Hamamelidaceae, Saxifragales). Syst. Bot. 32: 317-347. Majure, L. C., R. Puente, M. P. Griffith, W. S. Judd, P. S. Soltis, and D. E. Soltis. 2012. Phylogeny of Opuntia s.s.

(Cactaceae): Clade delineation, geographic origins, and reticulate evolution. Amer. J. Bot. 99: 847-864. Malécot, V. and D. L. Nickrent. 2008. Molecular phylogenetic relationships of Olacaceae and related Santalales. Syst.

Bot. 33: 97-106. Manning, J.C., F. Forest, D.S. Devey, M.F. Fay, and P. Goldblatt. 2009. A molecular phylogeny and a revised

classification of Ornithogaloideae (Hyacinthaceae) based on an analysis of four plastid DNA regions. Taxon 58: 77-107.

Manns, U., N. Wikström, C. M. Taylor, and B. Bremer. 2012. Historical biogeography of the predominantly

Neotropical subfamily Cinchonoideae (Rubiaceae): into or out of America? Int. J. Plant Sci. 173: 261-289. Manos, P. S., P. S. Soltis, D. E. Soltis, S. R. Manchester, S.-H. Oh, C. D. Bell, D. L. Dilcher, and D. E. Stone. 2007.

Phylogeny of extant and fossil Juglandaceae inferred from the integration of molecular and morphological data sets. Syst. Biol. 56: 412-430.

Marx, H. E., N. O’Leary, Y.-W. Yuan, P. Lu-Irving, D. C. Tank, M. E. Mulgura, & R. G. Olmstead. 2010. A molecular

phylogeny and classification of Verbenaceae. Amer. J. Bot. 97: 1647-1663. Matthews, M. L. and P. K. Endress. 2006. Floral structure and systematics in four orders of rosids, including a broad

survey of floral mucilage cells. Pl. Syst. Evol. 260: 199-221. Matthews, M. L. and P. K. Endress. 2011. Comparative floral structure and systematics in Rhizophoraceae,

Erythroxylaceae and the potentially related Ctenolophonaceae, Linaceae, Irvingiaceae and Caryocaraceae (Malpighiales). Bot. J. Linn. Soc. 166: 331-416.

Maurin, O., M. W. Chase, M. Jordaan, and M. van der Bank. 2010. Phylogenetic relationships of Combretaceae

inferred from nuclear and plastid DNA sequence data: Implications for generic classification. Bot. Jour. Linn. Soc. 162: 453-476.

Mauseth, J. D. 2007. Tiny but complex foliage leaves occur in many “leafless” cacti (Cactaceae). Int. J. Plant Sci. 168:

845-853. McDade, L. A., T. F. Daniel, and C. A. Kiel. 2008. Toward a comprehensive understanding of phylogenetic

relationships among lineages of Acanthaceae s.l. (Lamiales). Amer. J. Bot. 95: 1136-1152. Meerow, A. W. 2010. Convergence or reticulation? Mosaic evolution in the canalized American Amaryllidaceae. In

Seberg, Peterson, Barfod & Davis, eds. Diversity, phylogeny, and evolution in the monocotyledons. Aarhus University Press, Denmark. Pp. 145-168.

Page 40: Updates Required to Plant Systematics: A Phylogenetic ... · 1 Updates Required to Plant Systematics: A Phylogenetic Approach, Third Edition, as a Result of Recent Publications (Updated

40

Michelangeli, F. A., W. S. Judd, D. S. Penneys, J. D. Skean, Jr., E. R. Bécquer-Granados, R. Goldenberg, and C. V.

Martin. 2008. Multiple events of dispersal and radiation of the tribe Miconieae (Melastomataceae) in the Caribbean. Bot. Rev. 74: 53-77.

Moore, M. J., C. D. Bell, P. S. Soltis, and D. E. Soltis. 2007. Using plastid genome-scale data to resolve enigmatic

relationships among basal angiosperms. Proc. Nat. Acad. Sci. U.S.A. 104: 19363-19368. Moore, M. J. and R. K. Jansen. 2006. Molecular evidence for the age, origin, and evolutionary history of the

American desert plant genus Tiquilia (Boraginaceae). Mol. Phylogenetics Evol. 39: 668-687. Moore, M. J., P. S. Soltis, C. D. Bell, J. G. Burleigh, and D. E. Soltis. 2010. Phylogenetic analysis of 83 plastid genes

further resolves the early diversification of eudicots. Proc. Nat. Acad. Sci. U.S.A. 107: 4623-4628. Mori, S. A. 2007-onwards. The Lecythidaceae Pages. http://sweetgum.nybg.org/lp/index.html. Morris, A. B., C. D. Bell, J. W. Clayton, W. S. Judd, D. E. Soltis, and P. S. Soltis. 2007. Phylogeny and divergence

time estimation in Illicium with implications for New World biogeography. Syst. Bot. 32: 236-249. Morton, C. M. 2011. Newly sequenced nuclear gene (Xdh) for inferring angiosperm phylogeny. Ann. Missouri Bot.

Gard. 98: 63-89. Möller, M., M. Pfosser, C.-G. Jang, V. Mayer, A. Clark, M.L. Hollingsworth, M.H.J. Barfuss, Y.-Z. Wang, M. Kiehn,

and A. Weber. 2009. A preliminary phylogeny of the ‘didymocarpoid Gesneriaceae’ bassed on three molecular data sets: incongruence with available tribal classifications. Amer. J. Bot. 96: 989-1010.

Moore, M. J., N. Hassan, M. A. Gitzendanner, R. A. Bruenn, M. Croley, A. Vandeventer, J. W. Horn, A. Dhingra, S. F.

Brockington, M. Latvis, J. Ramdial, R. Alexandre, A. Piedrahita, Z.-X. Xi, C. C. Davis, P. S. Soltis, and D. E. Soltis. 2011. Int. J. Plant Sci. 172: 541-558.

Mori, S. A. and G. T. Prance. 1987. A guide to collecting Lecythidaceae. Ann. Missouri Bot. Gard. 74: 321-330. Mori, S. A., C.-H. Tsou, C.-C. Wu, B. Cronholm, and A. A. Anderberg. 2007. Evolution of Lecythidaceae with an

emphasis on circumscription of Neotropical genera: Information from combined ndhF and trnL-F sequence data. Amer. J. Bot. 94: 289-301.

Muellner, A. N., R. Samuel, M. W. Chase, A. Coleman, and T. F. Stuessy. 2008. An evaluation of tribes and generic

relationships in Melioideae (Meliaceae) based on nuclear ITS ribosomal DNA. Taxon 57: 98-108. Neinhuis, C., S. Wanke, K. W. Hilu, K. Müller, and T. Borsch. 2005. Phylogeny of Aristolochiaceae based on

parsimony, likelihood, and Bayesian analyses of trnL-trnF sequences. Pl. Syst. Evol. 250: 7-26. Neyland, R. and M. Merchant. 2006. Systematic relationships of Sarraceniaceae inferred from nuclear ribosomal DNA

sequences. Madroño 53: 223-232. Nickrent, D. L. 2002. Mistletoe phylogenetics: Current relationships gained from analysis of DNA sequences. Pp. 48-

57 in P. Angwin (ed.), Proceedings of the Forty-eight Annual Western International Forest Disease Work Conference. USDA Forest Service, Redding.

Nickrent, D. L., J. P. Der, and F. E. Anderson. 2005. Discovery of the photosynthetic relatives of the “Maltese

mushroom” Cynomorium. BMC Evol. Biol. 5: 38. Nickrent, D. L., V. Malécot, R. Vidal-Russell, and J. P. Der. 2010. A revised classification of Santalales. Taxon 59:

538-558. Nürk, N. M., and F. R. Blattner. 2010. Cladistic analysis of morphological characters in Hypericum (Hypericaceae).

Taxon 59: 1495-1507. Nyffeler, R. and U. Eggli. 2010. Disintegrating Portulacaceae: A new familial classification of the suborder

Portulacineae (Caryophyllales) based on molecular and morphological data. Taxon 59: 227-240. [In fourth edition the Montiaceae will be added to the book, and Portulacaceae will be restricted to the large genus Portulaca.]

Page 41: Updates Required to Plant Systematics: A Phylogenetic ... · 1 Updates Required to Plant Systematics: A Phylogenetic Approach, Third Edition, as a Result of Recent Publications (Updated

41

Ocampo, G. and J. T. Columbus. 2010. Molecular phylogenetics of suborder Cactineae (Caryophyllales), including

insights into photosynthetic diversification and historical biogeography. Amer. J. Bot. 97: 1827-1847. Ocampo, G. and J. T. Columbus. 2012. Molecular phylogenetics, historical biogeography, and chromosome number

evolution of Portulaca (Portulacaceae). Mol. Phylog. Evol. 63: 97-112. Ogburn, R. M. and E. J. Edwards. 2009. Anatomical variation in Cactaceae and relatives: trait lability and evolutionary

innovation. Amer. J. Bot. 96: 391-408. Oh, S.-H. and P. S. Manos. 2008. Molecular phylogenetics and cupule evolution in Fagaceae as inferred from nuclear

CRABS CLAW sequences. Taxon 57: 434-451. Ohi-Toma, T., T. Sugawara, H. Murata, S. Wanke, C. Neinhuis, and J. Murata. 2006. Molecular phylogeny of

Aristolochia sensu lato (Aristolochiaceae) based on sequences of rbcL, matK, and phyA genes, with special reference to differentiation of chromosome numbers. Syst. Bot. 31: 481-492.

Olmstead, R. G., L. Bohs, H. A. Migid, E. Santiago-Valentin, V. F. Garcia, and S. M. Collier. 2008. A molecular

phylogeny of the Solanaceae. Taxon 57: 1159-1181. Olmstead, R. G., M. L. Zjhra, L. G. Lohmann, S. O. Grose, and A. J. Eckert. 2009. A molecular phylogeny and

classification of Bignoniaceae. Amer. J. Bot. 96: 1731-1743. Ortiz, R. de C., E. A. Kellogg, and H. van der Werff. 2007. Molecular phylogeny of the moonseed family

(Menispermaceae): implications for morphological diversification. Amer. J. Bot. 94: 1425-1438. Qiu, Y.-L., L. Li, B. Wang, Z. Chen, O. Dombrovska, J. Lee, L. Kent, R. Li, R. W. Jobson, T. A. Hendry, D. W.

Taylor, C. M. Testa, and M. Ambros. 2007. A nonflowering land plant phylogeny inferred from nucleotide sequences of seven chloroplast, mitochondrial, and nuclear genes. Int. J. Plant Sci. 168: 691-708.

Panero, J. L. and V. A. Funk. 2008. The value of sampling anomalous taxa in phylogenetic studies: Major clades of

the Asteraceae revealed. Mol. Phyl. Evol. 47: 757-782. Pell, S. K., J. D. Mitchell, P. P. Lowry II. A. Randrianasolo, and L. E. Urbatsch. 2008. Phylogenetic split of Malagasy

and African taxa of Protorhus and Rhus (Anacardiaceae) based on cpDNA and ITS sequence data. Syst. Bot. 33: 375-383.

Pellicer, J., M. F. Fay, and I. J. Leitch. 2010. The largest eukaryotic genome of them all? Bot. J. Linn. Soc. 164: 10-15. Penneys, D. S., F. A. Michelangeli, W. S. Judd, and F. Almeda. 2010. Henrietteeae (Melastomataceae): A new

Neotropical berry-fruited tribe. Syst. Bot. 35: 783-800. Peralta, I. E., D. M. Spooner, and S. Knapp. 2008. Taxonomy of wild tomatoes and their relatives (Solanum sect.

Lycopersicoides, sect. Juglandifolia, sect. Lycopersicon; Solanaceae). Syst. Bot. Monogr. 84: 1-186. Pfeil, B. E. and M. O. Crisp. 2008. The age and biogeography of Citrus and the orange subfamily (Rutaceae:

Aurantioideae) in Australasia and New Caledonia. Amer. J. Bot. 95: 1621-1631. Pirie, M. D., E. G. H. Oliver, and D. U. Bellstedt. 2011. A densely sampled ITS phylogeny of the Cape flagship genus

Erica L. suggests numerous shifts in floral macro-morphology. Mol. Phylog. Evol. 61: 593-601. Pischtschan, E., A. C. Ley, and R. Classen-Bockhoff. 2010. Ontogenetic and phylogenetic diversification of the hooded

staminode in Marantaceae. Taxon 59: 1111-1125. Poon, W.-S., P.-C. Shaw, M. P. Simmons, and P. P.-H. But. 2007. Congruence of molecular, morphological, and

biochemical profiles in Rutaceae: a cladistic analysis of the subfamilies Rutoideae and Toddalioideae. Syst. Bot. 32: 837-846.

Pozner, R., C. Zanotti, and L. A. Johnson. 2012. Evolutionary origins of the Asteraceae capitulum: Insignts from

Calyceraceae. Amer. J. Bot. 99: 1-13.

Page 42: Updates Required to Plant Systematics: A Phylogenetic ... · 1 Updates Required to Plant Systematics: A Phylogenetic Approach, Third Edition, as a Result of Recent Publications (Updated

42

Prenner, G. and P. J. Rudall. 2007. Comparative ontogeny of the cyathium in Euphorbia (Euphorbiaceae) and its allies: Exploring the organ-flower-inflorescence boundary. Amer. J. Bot. 94: 1612-1629.

Preston, J. C., A. Christensen, S. T. Malcomber, and E. A. Kellogg. 2009. MADS-box gene expression and

implications for developmental origins of the grass spikelet. Amer. J. Bot. 96: 1419-1429. Rapini, A., C. van den Berg, and S. Liede-Schumann. 2007. Diversification of Asclepiadoideae (Apocynaceae) in the

New World. Ann. Missouri Bot. Gard. 94: 407-422. Ren, Y., L. Chen, Y. H. Tian, Y. H. Zhang, and A.-M. Lu. 2007. Discovery of vessels in Tetracentron

(Trochodendraceae) and its systematic significance. Plant Syst. Evol. 267: 155-161. Ren, H., L.-M. Lu, A. Soejima, Q. Luke, D,-X. Zhang, Z.-D. Chen, & J. Wen. 2011. Phylogenetic analysis of the

grape family (Vitaceae) based on the noncoding plastid trnC-petN, trnH-psbA, and trnL-F sequences. Taxon 60: 629-637.

Reveal, J. L., R. Olmstead, and W. S. Judd. 2008. (1812-1813) Proposals to conserve the name Veronicaceae

(Magnoliophyta), and to conserve it against Plantaginaceae, a “superconservation” proposal. Taxon 57: 643-644.

Rogers, G. K. 2005. The genera of Rubiaceae in the southeastern United States, part II. Subfamily Rubioideae, and

subfamily Cinchonoideae revisited (Chiococca, Erithalis, and Guettarda). Harvard Pap. Bot. 10: 1-45. Rohwer, J. G., J. Li, B. Rudolph, S. A. Schmidt, H. van der Werff, and H.-W. Li. 2009. Is Persea (Lauraceae)

monophyletic? Evidence from nuclear ribosomal ITS sequences. Taxon 58: 1153-1167. Rudall, P. J., D. D. Sokoloff, M. V. Remizowa, J. G. Conran, J. I. Davis, T. D. Macfarlane, and D. W. Stevenson. 2007.

Morphology of Hydatellaceae, an anomalous aquatic family recently recognized as an early-divergent angiosperm lineage. Amer. J. Bot. 94: 1073-1092.

Rudall, P. J., M.V. Remizowa, G. Prenner, C. J. Prychid, R. E. Tuckett, and D. D. Sokoloff. 2009. Nonflowers near

the base of extant angiosperms? Spatiotemporal arrangement of organs in reproductive units of Hydatellaceae and its bearing on the origin of the flower. Amer. J. Bot. 96: 67-82.

Rudall, P. J., R. A. Ryder, and W. J. Baker. 2011. Comparative gynoecium structure and multiple origins of apocarpy

in coryphoid palms (Arecaceae). Int. J. Plant Sci. 172: 674-690. Ruhfel, B. R., V. Bittrich, C. P. Bove, M. H. G. Gustafsson, C. T. Philbrick, Z.-X. Xi, and C. C. Davis. 2011.

Phylogeny of the clusioid clade (Malpighiales): Evidence from the plastid and mitochondrial genomes. Amer. J. Bot. 98: 306-325.

Saarela, J. M., H. S. Rai, J. A. Doyle, P. K. Endress, S. Mathews, A. D. Marchant, B. G. Briggs, and S. W. Graham.

2007. Hydatellaceae identified as a new branch near the base of the angiosperm phylogenetic tree. Nature 446: 312-315.

Samain, M.-S., G. Mathieu, S. Wanke, C. Neinhuis, and P. Goetghebeur. 2008. Verhuellia revisited – unraveling its

intricate taxonomic history and a new subfamilial classification of Piperaceae. Taxon 57: 583-587. Sanchez, A. and K. A. Kron. 2008. Phylogenetics of Polygonaceae with an emphasis on the evolution of

Eriogonoideae. Syst. Bot. 33: 87-96. Sanchez, A., T. M. Schuster, and K. A. Kron. 2009. A large-scale phylogeny of Polygonaceae based on molecular

data. Int. J. Plant. Sci. 170: 1044-1055. Sánchez del Pino, I., T. Borsch, and T.J. Motley. 2009. trnL-F and rpl16 sequence data and dense taxon sampling

reveal monophyly of unilocular anthered Gomphrenoideae (Amaranthaceae) and an improved picture of their internal relationships. Syst. Bot. 34: 57-67.

Sánchez-Ken, J. G., L. G. Clark, E. A. Kellogg, and E. E. Kay. 2007. Reinstatement and emendation of subfamily

Micrairoideae (Poaceae). Syst. Bot. 32: 71-80.

Page 43: Updates Required to Plant Systematics: A Phylogenetic ... · 1 Updates Required to Plant Systematics: A Phylogenetic Approach, Third Edition, as a Result of Recent Publications (Updated

43

Schaefer, H., C. Heibl and S. S. Renner. 2009. Gourds afloat: A dated phylogeny reveals an Asian origin of the gourd family (Cucurbitaceae) and numerous oversea dispersal events. Proc. R. Soc. B. 276: 843-851.

Schneider, J., E. Döring, K. W. Hilu, and M. Röser. 2009. Phylogenetic structure of the grass subfamily Pooideae

based on comparison of plastid matK gene—3’ trnK exon and nuclear ITS sequences. Taxon 58: 405-424. Schönenberger, J. 2009. Comparative floral structure and systematics of Fouquieriaceae and Polemoniaceae

(Ericales). Int. J. Plant Sci. 170: 1132-1167. Schuster, T. M., J. L. Reveal and K. A. Kron. 2011. Phylogeny of Polygoneae (Polygonaceae; Polygonoideae). Taxon

60: 1653-1666. Scotland, R. W. and K. Volleson. 2000. Classification of Acanthaceae. Kew Bull. 55: 513-589. Setoguchi, H., K. Kosuge, and H. Tobe. 1999. Molecular phylogeny of Rhizophoraceae based on rbcL gene sequences.

J. Plant Res. 112: 443-455. Sheahan, M. C. 2007. Zygophyllaceae. In The families and genera of vascular plants, Vol.9,

Berberidopsidales…Sabiaceae, K. Kubitzki (ed.), 488-500, Springer-Verlag, Berlin. Sheen, A.-C., M. Bendiksby, O. Ryding, C. Mathiesen, V. A. Albert, and C. Lindqvist. 2010. Molecular phylogenetics,

character evolution, and suprageneric classification of Lamoideae (Lamiaceae). Ann. Missouri Bot. Gard. 97: 191-217.

Simões, A. O., T. Livshultz, E. Conti, and M. E. Endress. 2007. Phylogeny and systematics of the Rauvolfioideae

(Apocynaceae) based on molecular and morphological evidence. Ann. Missouri Bot. Gard. 94: 268-294. Simpson, D. A., A. M. Muasya, M. V. Alves, J. J. Bruhl, S. Dhooge, M. W. Chase, C. A. Furness, K. Ghamkhar, P.

Goetghebeur, T. R. Hodkinson, A. D. Marchant, A. A. Reznicek, R. Nieuwborg, E. H. Roalson, E. Smets, J. R. Starr, W. W. Thomas, K. L. Wilson, and X. Zhang. 2007 [2008]. Phylogeny of Cyperaceae based on DNA sequence data – a new rbcL analysis. Aliso 23: 72-83.

Smedmark, J. E. E. and A. A. Anderberg. 2007. Boreotropical migration explains hybridization between geographically

distant lineages in the pantropical clade Sideroxyleae (Sapotaceae). Amer. J. Bot. 94: 1491-1505. Simmons, M. P., J. J. Cappa, R. H. Archer, A. J. Ford, D. Eichstedt, and C. C. Clevinger. 2008. Phylogeny of the

Celastreae (Celastraceae) and the relationships of Catha edulis (qat) inferred from morphological characters and nuclear and plastid genes. Mol. Phylog. Evol. 48: 745-757/

Simmons, M. P., M. J. McKenna, c. d. Bacon, K. Yakobson, J. J. Cappa, R. H. Archer, A. J. Ford. 2012. Phylogeny of

Celastraceae tribe Euonymeae inferred from morphological characters and nuclear and plastid genes. Mol. Phylog. Evol. 62: 9-20.

Sogo, A., H. Setoguchi, J. Noguchi, T. Jaffré, and H. Tobe. 2001. Molecular phylogeny of Casuarinaceae based on

rbcL and matK gene sequences. J. Plant Res. 114: 459-464. Sokoloff, D. D., M. V. Remizowa, T. D. Macfarlane, and P. J. Rudall. 2008. Classification of the early-divergent

angiosperm family Hydatellaceae: one genus instead of two, four new species and sexual dimorphism in dioecious taxa. Taxon 57: 179-200.

Soltis, D. E. 2007. Saxifragaceae. In The families and genera of vascular plants, Vol.9, Berberidopsidales…Sabiaceae,

K. Kubitzki (ed.), 418-435, Springer-Verlag, Berlin. Soltis, D. E., M. A. Gitzendanner, and P. S. Soltis. 2007. A 567-taxon data set for angiosperms: the challenges posed

by Bayesian analyses of large data sets. Int. J. Plant Sci. 168: 137-157. Soltis, D. E., S. A. Smith, N. Cellinese, K. J. Wurdack, D. C. Tank, S. F. Brockington, N. F. Refulio-Rodriguez, J. B.

Walter, M. J. Moore, B. S. Carlsward, C. D. Bell, M. Latvis, S. Crawley, C. Black, D. Diouf, Z.-X. Xi, C. A. Rushworth, M. A. Gitzendanner, K. J. Sytsma, Y.-L. Qiu, K. W. Hilu, C. C. Davis, M. J. Sanderson, R. S. Beaman, R. G. Olmstead, W. S. Judd, M. J. Donoghue, and P. S. Soltis. 2011. Angiosperm phylogeny: 17 genes, 640 t axa. Amer. J. Bot. 98: 704-730.

Page 44: Updates Required to Plant Systematics: A Phylogenetic ... · 1 Updates Required to Plant Systematics: A Phylogenetic Approach, Third Edition, as a Result of Recent Publications (Updated

44

Stace, C. A. 2007. Combretaceae. In The families and genera of vascular plants, Vol.9, Berberidopsidales…Sabiaceae, K. Kubitzki (ed.), 67-82, Springer-Verlag, Berlin.

Steane, D. A., K. L. Wilson, and R. S. Hill. 2003. Using matK sequence data to unravel the phylogeny of

Casuarinaceae. Mol. Phylog. Evol. 28: 47-59. Steele, P. R., K. L. Hertweck, D. Mayfield, M. R. McKain, J. Leebens-Mack, and J. C. Pires. 2012. Quality and

quantity of data recovered from massively parallel sequencing: Examples in Asparagales and Poaceae. Amer. J. Bot. 99: 330-348.

Stevens, P. F. 2007a. Clusiaceae-Guttiferae. In The families and genera of vascular plants, Vol.9, Berberidopsidales…

Sabiaceae, K. Kubitzki (ed.), 48-66, Springer-Verlag, Berlin. Stevens, P. F. 2007b. Hypericaceae. The families and genera of vascular plants, Vol.9, Berberidopsidales…Sabiaceae,

K. Kubitzki (ed.), 194-201, Springer-Verlag, Berlin. Stockey, R. A., G. W. Rothwell, and K. R. Johnson. 2007. Cobbania corrugata gen. et comb. nov. (Araceae): A

floating aquatic monocot from the upper Cretaceous of western North America. Amer. J. Bot. 94: 609-624. Struwe, L., J. W. Kadereit, J. Klakenberg, S. Nilsson, M. Thiv, K. B. von Hagen, and V. A. Albert. 2002. Systematics,

character evolution, and biogeography of Gentianaceae, including a new tribe and subfamilial classification. In Gentianaceae: Systematics and natural history, L. Struwe and V. A. Albert (eds.), 21-309, Cambridge University Press, Cambridge.

Tank, D. C. & M. J. Donoghue. 2010. Phylogeny and phylogenetic nomenclature of the Campanulidae based on an

expanded sample of genes and taxa. Syst. Bot. 35: 425-441. Taylor, D. W. 2008. Phylogenetic analysis of Cabombaceae and Nymphaeaceae based on vegetative and leaf

architectural characters. Taxon 57: 1082-1095. Thiede, T. and U. Eggli. 2007. Crassulaceae. In The families and genera of vascular plants, Vol.9,

Berberidopsidales…Sabiaceae, K. Kubitzki (ed.), 83-118, Springer-Verlag, Berlin. Thien, L. B., P. Bernhardt, M. S. Devall, Z.-D. Chen, Y.-B. Luo, J.-H. Fan, L.-C. Yuan, and J. H. Williams. 2009.

Pollination biology of basal angiosperms. Amer. J. Bot. 96: 166-182. Thorne, R. F. 2007. An updated classification of the class Magnoliopsida (“Angiospermae”). Bot. Rev. 73: 67-182.

[Add this also under “Suggested readings” delete Thorne (2001) and Thorne (2000).] Thulin, M., S. G. Razafimandimbison, P. Chafe, N. Heidari, A. Kool, and J. S. Shore. 2012. Phylogeny of the

Turneraceae clade (Passifloraceae s.l.): Trans-Atlantic disjunctions and two new genera in Africa. Taxon 61: 308-323.

Tobe, H. 2011. Embryological evidence supports the transfer of Leitneria floridana to the family Simaroubaceae. Ann.

Missouri Bot. Gard. 98: 277-293. Tokuoka, T. 2008. Molecular phylogenetic analysis of Violaceae (Malpighiales) based on plastid and nuclear DNA

sequences. J. Plant Res. 121: 253-260. Vidal-Russell, R. and D. L. Nickrent. 2008. Evolutionary relationships in the showy mistletoe family (Loranthaceae).

Amer. J. Bot. 95: 1015-1029. Vidal-Russell, R. and D. L. Nickrent. 2008. The first mistletoes: Origins of aerial parasitism in Santalales. Molec.

Phylog. Evol. 47: 523-527. Vinnersten, A. and J. Manning. 2007. A new classification of Colchicaceae. Taxon 56: 171-178. Wagner, W. L., P. C. Hoch, and P. H. Raven. 2007. Revised classification of the Onagraceae. Syst. Bot. Monogr. 83: 1-

240. Walker, J. B. and K. J. Sytsma. 2007. Staminal evolution in the genus Salvia (Lamiaceae): Molecular phylogenetic

evidence for multiple origins of the staminal level. Ann. Bot. 100: 375-391.

Page 45: Updates Required to Plant Systematics: A Phylogenetic ... · 1 Updates Required to Plant Systematics: A Phylogenetic Approach, Third Edition, as a Result of Recent Publications (Updated

45

Walker, J. B., K. J. Sytsma, J. Treutlein, and M. Wink. 2004. Salvia (Lamiaceae) is not monophyletic: Implications

for the systematics, radiation and ecological specializations of Salvia and tribe Mentheae. Amer. J. Bot. 91: 1115-1125.

Wang, H.-C., M.J. Moore, P.S. Soltis, C.D. Bell, S.F. Brockington, R. Alexandre, C.C. Davis, M. Latvis, S.R.

Manchester, and D.E. Soltis. 2009. Rosid radiation and the rapid rise of angiosperm-dominated forests. Proc. Nat. Acad. Sci. 106: 3853-3858.

Wang, W., A. M. Lu, Y. Ren, M. E. Endress, and Z.-D. Chen. 2009. Phylogeny and classification of Ranunculales:

Evidence from four nuclear loci and morphological data. Persp. Pl. Ecol. Evol. Syst. 11: 81-110. Wanke, S., M.-S. Samain, L. Vanderschaeve, G. Mathieu, P. Goetghebeur, and C. Neinhuis. 2006. Phylogeny of the

genus Peperomia (Piperaceae) inferred from the trnK/matK region (cpDNA). Plant Biol. (Stuttg.) 8: 93-102. Wanke, S., L. Vanderschaeve, G. Mathieu, C. Neinhuis, P. Goetghebeur, and M. S. Samain. 2007. From forgotten

taxon to missing link? The position of the genus Verhuelia (Piperaceae) revealed by molecules. Ann. Bot. (Oxford) 99: 1231-1238.

Wannan, B. S. 2006. Analysis of generic relationships in Anacardiaceae. Blumea 51: 165-195. Warner, K. A., P. J. Rudall, and M. W. Frohlich. 2008. Differentiation of perianth organs in Nymphaeales. Taxon 57:

1096-1109. Waselkov, K. and W. S. Judd. 2008. A phylogenetic analysis of Leucothoe s.l. (Ericaceae; tribe Gaultherieae) based on

phenotypic characters. Brittonia 60: 382-397. Weeks, A., D. C. Daly, and B. B. Simpson. 2005. The phylogenetic history and biogeography of the frankincense and

myrrh family (Burseraceae) based on nuclear and chloroplast sequence data. Mol. Phylog. Evol. 35: 85-101. Wen, J. 2007. Vitaceae. In The families and genera of vascular plants, Vol.9, Berberidopsidales…Sabiaceae, K.

Kubitzki (ed.), 467-479, Springer-Verlag, Berlin. Weston, P. H. 2007. Proteaceae. In The families and genera of vascular plants, Vol.9, Berberidopsidales…Sabiaceae,

K. Kubitzki (ed.), 364-404, Springer-Verlag, Berlin. Witztum, A. and K. Schulgasser. 1995. The mechanism of seed expulsion in Acanthaceae. Jour. Theoretical Biol.

176: 531-542. Worberg. A., M. H. Alford, D. Quandt, and T. Borsch. 2009. Huerteales sister to Brassicales plus Malvales, and newly

circumscribed to include Dipentodon, Gerrardina, Huertea, Perrottetia, and Tapiscia. Taxon 58: 468-478. Wurdack, K. J. and C. C. Davis. 2009. Malpighiales phylogenetics: Gaining ground on one of the most recalcitrant

clades in the angiosperm tree of life. Amer. J. Bot. 96: 1551-1570. Xia, Z., Y.-Z. Wang, and J.F. Smith. 2009. Familial placement and relations of Rehmannia and Triaenophora

(Scrophulariaceae s.l.) inferred from five gene regions. Amer. J. Bot. 96: 519-530. Xiang, Q-Y. and D. T. Thomas. 2008. Tracking character evolution and biogeographic history through time in

Cornaceae – Does choice of methods matter? Jour. Syst. Evol. 46: 349-374. Xiang, Q.-Y., D. T. Thomas, and Q. P. Xiang. 2011. Resolving and dating the phylogeny of Cornales – Effects of taxon

sampling, data partitions, and fossil calibrations. Mol. Phylog. Evol. 59: 123-138. Xu, F.-X. and P. J. Rudall. 2006. Comparative floral anatomy and ontogeny in Magnoliaceae. Plant Syst. Evol. 258:

1-15. Yi, T., A. J. Miller, and J. Wen. 2007. Phylogeny of Rhus (Anacardiaceae) based on sequences of nuclear Nia-i3 intron

and chloroplast trnC-trnD. Syst. Bot. 32: 379-391. Zerega, N. J. C., W. L. Clement, S. L. Datwyler, and G. D. Weiblen. 2005. Biogeography and divergence times in the

mulberry family (Moraceae). Mol. Phyol. Evol. 37: 402-416.

Page 46: Updates Required to Plant Systematics: A Phylogenetic ... · 1 Updates Required to Plant Systematics: A Phylogenetic Approach, Third Edition, as a Result of Recent Publications (Updated

46

Zhang, L.-B., M. P. Simmons, A. Kocyan, and S. S. Renner. 2006. Phylogeny of the Cucurbitales based on DNA sequences of nine loci from three genomes: Implications for morphological and sexual system evolution. Mol. Phyl. Evol. 39: 305-322.

The following are references that should be deleted from Chapter 9: Clevinger, C. C. and J. L. Panero. 1998. De Bruijn, A., V. A. Cox, and M. W. Chase. 1995. De Pamphilis, C. W. and N. D. Young. 1995. Evans, R. C. 1999. Graham, S. A., E. Conti, and K. Sytsma. 1993a. Kim, J. K. and R. K, Jansen. 1998b Mort, M. E., D. E. Soltis, and P. S. Soltis. 1998. Reveal, J. L., R. Olmstead, and W. S. Judd. 1999. Swensen, S. M., W. L. Clement, L. L. Forrest, and M. C. Tebbit. 2001. Wilson, P. G., P. A. Gadek, and C. J. Quinn. 1996. Xiang, Q. Y. and Z. Murrell. 1998. [In eventual 4th edition, additional references will be deleted, and replaced by newer ones.] Appendix 2. Page 560, column 1, line 14: 1986; 1986; Stevens 2005; Page 561, Table 1: Sida Journal of the Botanical Research Institute of Texas (= Sida) Page 563, column 2, line 1: …can be identified. Many herbaria… …can be identified. Surprisingly, even most new species are discovered, not in the field, but through the study of herbarium material, often specimens collected many years ago. Many herbaria… Literature cited in Appendix 2 – add the following references: Bebber, D. P., M. A. Carine, J. R. I. Wood, A. H. Wortley, D. J. Harris, G. T. Prance, G. Davidse, J. Paige, T. D.

Pennington, N. K. B. Robson, and R. W. Scotland. 2010. Proc. Nat. Acad. Sci. U.S.A. 107: 22169-22171. Mori, S. A., A. Berkov, C. A. Gracie, and E. F. Hecklau. 2011. Tropical plant collecting: From the field to the internet.

TECC Editora, Florianópolis, Brazil. Stevens, M. 2005. The art of botanical painting. Harper Collins Publ., London.


Recommended