+ All Categories
Home > Documents > Uri Feige Microsoft Understanding Parallel Repetition Requires Understanding Foams Guy Kindler...

Uri Feige Microsoft Understanding Parallel Repetition Requires Understanding Foams Guy Kindler...

Date post: 28-Mar-2015
Category:
Upload: katherine-ramsey
View: 212 times
Download: 0 times
Share this document with a friend
Popular Tags:
43
Uri Feige Microsoft Understanding Parallel Repetition Requires Understanding Foams Guy Kindler Weizmann Ryan O’Donnell CMU
Transcript
Page 1: Uri Feige Microsoft Understanding Parallel Repetition Requires Understanding Foams Guy Kindler Weizmann Ryan ODonnell CMU.

Uri FeigeMicrosoft

Understanding Parallel Repetition

Requires Understanding Foams

Guy KindlerWeizmann

Ryan O’DonnellCMU

Page 2: Uri Feige Microsoft Understanding Parallel Repetition Requires Understanding Foams Guy Kindler Weizmann Ryan ODonnell CMU.

What we wanted to solve

Strong Parallel Repetition Problem:

Let be a 2-prover 1-round game with answer sets A, B.

Is it true that val( ) · 1 −

) val( d) · (1 − ())d/log(|A||B|) ?

Page 3: Uri Feige Microsoft Understanding Parallel Repetition Requires Understanding Foams Guy Kindler Weizmann Ryan ODonnell CMU.

A special case

Strong Unique-Games Parallel Repetition Problem:

Let be a 2P1R game with answer sets A, B and unique constraints.

Is it true that val( ) · 1 −

) val( d) · (1 − ())d/log(|A||B|) ?

Page 4: Uri Feige Microsoft Understanding Parallel Repetition Requires Understanding Foams Guy Kindler Weizmann Ryan ODonnell CMU.

A further special case

Strong 2-Lin Parallel Repetition Problem:

Let be a 2P1R game with 2-Lin constraints.

Is it true that val( ) · 1 −

) val( d) · (1 − ())d ?

Page 5: Uri Feige Microsoft Understanding Parallel Repetition Requires Understanding Foams Guy Kindler Weizmann Ryan ODonnell CMU.

A further further special case

Odd-Cycle Parallel Repetition Problem:

Let Cm be the Odd-Cycle game of length m, which satisfies

Is it true that val(Cm) = 1 − (1/m).

Is it true that val(Cmd) · (1 − (1/m))d ?

Page 6: Uri Feige Microsoft Understanding Parallel Repetition Requires Understanding Foams Guy Kindler Weizmann Ryan ODonnell CMU.

Further reduces to

Torus Blocking Problem on (md)1:

Let (md)1 be the “discrete torus graph”:

vertex set = md,

edge set = {(x, y) : ||x − y||1 · 1}.

To block all cycles that “wrap around”, what’s the least fraction of

edges you can delete?

Page 7: Uri Feige Microsoft Understanding Parallel Repetition Requires Understanding Foams Guy Kindler Weizmann Ryan ODonnell CMU.

Our results

• Improved lower bound for Torus Blocking Problem,

which implies

• Improved upper bounds for Odd Cycle Parallel Repetition problem.

• At least, if you look at the parameters in the right way.

Page 8: Uri Feige Microsoft Understanding Parallel Repetition Requires Understanding Foams Guy Kindler Weizmann Ryan ODonnell CMU.

This looks kind of pathetic

Page 9: Uri Feige Microsoft Understanding Parallel Repetition Requires Understanding Foams Guy Kindler Weizmann Ryan ODonnell CMU.

But it’s not our fault

Page 10: Uri Feige Microsoft Understanding Parallel Repetition Requires Understanding Foams Guy Kindler Weizmann Ryan ODonnell CMU.

Further further reduces to

Foam on d / d Problem:

What is the least surface area of a cell which tiles d by d ?

Page 11: Uri Feige Microsoft Understanding Parallel Repetition Requires Understanding Foams Guy Kindler Weizmann Ryan ODonnell CMU.

Further further reduces to

Foam on d / d Problem:

What is the least surface area of a cell which tiles d by d ?

Page 12: Uri Feige Microsoft Understanding Parallel Repetition Requires Understanding Foams Guy Kindler Weizmann Ryan ODonnell CMU.
Page 13: Uri Feige Microsoft Understanding Parallel Repetition Requires Understanding Foams Guy Kindler Weizmann Ryan ODonnell CMU.

Kelvin foam

Page 14: Uri Feige Microsoft Understanding Parallel Repetition Requires Understanding Foams Guy Kindler Weizmann Ryan ODonnell CMU.

Similar questions are hard open problems in geometry

Page 15: Uri Feige Microsoft Understanding Parallel Repetition Requires Understanding Foams Guy Kindler Weizmann Ryan ODonnell CMU.

Foam on d / d

Let A(d) denote the least possible surface area…

Upper bound?

A(d ) · d.

Lower bound?

÷ 2.

the unit cube

the volume-1 ball

Page 16: Uri Feige Microsoft Understanding Parallel Repetition Requires Understanding Foams Guy Kindler Weizmann Ryan ODonnell CMU.

Other bounds

• A(d) · d − 2−O(d log d) (put a radius-½ sphere at cube’s corner)

• (the hexagon was optimal [Choe’89])

• For d = 3, nothing known except sphere vs. cube:

2.42 ¼ (9/2)1/3 · A(3) < 3.

Experts’ d = 3 conjecture: same combinatorial structure as “Kelvin Foam”

Page 17: Uri Feige Microsoft Understanding Parallel Repetition Requires Understanding Foams Guy Kindler Weizmann Ryan ODonnell CMU.

A prize

For £100:

Prove or disprove: A(d) ¸ d 1−o(1).

For £25: Prove

Page 18: Uri Feige Microsoft Understanding Parallel Repetition Requires Understanding Foams Guy Kindler Weizmann Ryan ODonnell CMU.

Foams as torus blockers

Take the unit cube in d.

Identify opp. faces so it’s a torus.

Page 19: Uri Feige Microsoft Understanding Parallel Repetition Requires Understanding Foams Guy Kindler Weizmann Ryan ODonnell CMU.

Foams as torus blockers

Take the unit cube in d.

Identify opp. faces so it’s a torus.

To block all cycles that “wrap around”, what’s the least amount

of “wall” (d −1 dimensional surface) you need to build?

Page 20: Uri Feige Microsoft Understanding Parallel Repetition Requires Understanding Foams Guy Kindler Weizmann Ryan ODonnell CMU.

Foams as torus blockers

Take the unit cube in d.

Identify opp. faces so it’s a torus.

To block all cycles that “wrap around”, what’s the least amount

of “wall” (d −1 dimensional surface) you need to build?

(Hence the ÷ 2: surface counted twice – inside and outside.)

Page 21: Uri Feige Microsoft Understanding Parallel Repetition Requires Understanding Foams Guy Kindler Weizmann Ryan ODonnell CMU.

A worse lower bound: ssss

• Wall S at least blocks all axis-parallel cycles.

• So projecting S onto d faces must cover them.

• Let P be a tiny patch on S, with unit normal n.

• Area contributed to projection on ith face:

|h n, eii| area(P)

• Sum over i: Equals (i |ni|) · area(P)

· · area(P) [Cauchy-Schwarz]

• Integrate over P: · · area(S).

• But this contribution better exceed d.P

n

Page 22: Uri Feige Microsoft Understanding Parallel Repetition Requires Understanding Foams Guy Kindler Weizmann Ryan ODonnell CMU.

A worse lower bound: ssss

• Wall S at least blocks all axis-parallel cycles.

• So projecting S onto d faces must cover them.

• Let P be a tiny patch on S, with unit normal n.

• Area contributed to projection on ith face:

|h n, eii| area(P)

• Sum over i: At most hn, (1, …, 1)i area(P)

· · area(P) [Cauchy-Schwarz]

• Integrate over P: · · area(S).

• But this contribution better exceed d. P

n

We already lost here.

Page 23: Uri Feige Microsoft Understanding Parallel Repetition Requires Understanding Foams Guy Kindler Weizmann Ryan ODonnell CMU.

What’s this got to do with Parallel Repetition?

What is Parallel Repetition?

Page 24: Uri Feige Microsoft Understanding Parallel Repetition Requires Understanding Foams Guy Kindler Weizmann Ryan ODonnell CMU.

Bipartite Constraint Graphs

w – a weight

Label Set = { }

– a constraint

not OKOKOKOKnot OKOKOKOKnot OK

The w’s sum up to 1.

Whole thing is called . val( ) denotes max weight simultaneously satisfiable.

X Y1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Page 25: Uri Feige Microsoft Understanding Parallel Repetition Requires Understanding Foams Guy Kindler Weizmann Ryan ODonnell CMU.

Bipartite Constraint Graphs

w – a weight

Label Set = { }

– a constraint

not OKOKOKOKnot OKOKOKOKnot OK

The w’s sum up to 1.

Whole thing is called . val( ) denotes max weight simultaneously satisfiable.

X Y1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

2-Prover 1-Round Games

in complexity theory

Page 26: Uri Feige Microsoft Understanding Parallel Repetition Requires Understanding Foams Guy Kindler Weizmann Ryan ODonnell CMU.

Bipartite Constraint Graphs

w – a weight

Label Set = { }

– a constraint

not OKOKOKOKnot OKOKOKOKnot OK

The w’s sum up to 1.

Whole thing is called . val( ) denotes max weight simultaneously satisfiable.

X Y1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Nonlocal Games

in foundations of quantum mechanics

Page 27: Uri Feige Microsoft Understanding Parallel Repetition Requires Understanding Foams Guy Kindler Weizmann Ryan ODonnell CMU.

Parallel Repetition: d “rounds”

w – a weight

Label Set = { }

– a constraint

not OKOKOKOKnot OKOKOKOKnot OK

The w’s sum up to 1.

Whole thing is called . val( ) denotes max weight simultaneously satisfiable.

X Y1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Page 28: Uri Feige Microsoft Understanding Parallel Repetition Requires Understanding Foams Guy Kindler Weizmann Ryan ODonnell CMU.

Parallel Repetition: d “rounds”

w – a weight

Label Set = { }

– a constraint

not OKOKOKOKnot OKOKOKOKnot OK

The w’s sum up to 1.

Whole thing is called . val( ) denotes max weight simultaneously satisfiable.

Xd Yd

1 8 4 3 8 14 20 13 17 18

d

eg:

weight = w1,14 w8,20 w4,13 w3,17 w8,18

constraint = 1,14 8,20 4,13 3,17 8,18

d

d

Page 29: Uri Feige Microsoft Understanding Parallel Repetition Requires Understanding Foams Guy Kindler Weizmann Ryan ODonnell CMU.

Value under Parallel Repetition

val(d) = val()d ?

val(d) · val() ?

val(2) < val() ?

val(d) ! 0 as d ! 1 ?

false

true

false

true

(took 6 years to prove)

True or False?

Page 30: Uri Feige Microsoft Understanding Parallel Repetition Requires Understanding Foams Guy Kindler Weizmann Ryan ODonnell CMU.

Raz’s Parallel Repetition Theorem

Raz ’95: val( ) · 1 − ) val( d) · (1 − poly()) d/log(# labels)

Tremendously important theorem for proving hardness of approximation results.

Holenstein ’07: poly() can be 3 / 4000.

Strong Parallel Repetition Problem: can this be improved to ()?

Page 31: Uri Feige Microsoft Understanding Parallel Repetition Requires Understanding Foams Guy Kindler Weizmann Ryan ODonnell CMU.

The “2-Lin” special case

# labels = 2, each constraint is either “=” or “”

Feige-Lovász ’91 + Goemans-Williamson ’95:

val( ) · 1 − ) val( d) · (1 − c)) d, where c = 2/4.

Strong 2-Lin Parallel Repetition Problem: Can this be improved to ()?

My conjecture: Yes.

My motivation: Would show that sharp hardness-of-approx for Max-Cut is

“Unique Games Conjecture”-complete,

not just “Unique Games Conjecture”-hard.

Page 32: Uri Feige Microsoft Understanding Parallel Repetition Requires Understanding Foams Guy Kindler Weizmann Ryan ODonnell CMU.

Simplest 2-Lins: The Odd Cycle Games

m nodes ) val = 1 – 1/m

Page 33: Uri Feige Microsoft Understanding Parallel Repetition Requires Understanding Foams Guy Kindler Weizmann Ryan ODonnell CMU.

Simplest 2-Lins: The Odd Cycle Games

1/3 total weight on self-loops ) val = 1 – (2/3)/m

Page 34: Uri Feige Microsoft Understanding Parallel Repetition Requires Understanding Foams Guy Kindler Weizmann Ryan ODonnell CMU.

After Parallel Rep: Discrete Torus Graph

52

NB: Constraints are “unique”

(x,y) an edge iff ||x-y||1 · 1

1st col. diff., 2nd col. same

1st col. diff., 2nd col. diff.

1st col. same, 2nd col. diff.

1st col. same, 2nd col. same

(self-loops, not pictured)

Constraints

Page 35: Uri Feige Microsoft Understanding Parallel Repetition Requires Understanding Foams Guy Kindler Weizmann Ryan ODonnell CMU.

After Parallel Rep: Discrete Torus Graph

52

NB: Constraints are “unique”

(x,y) an edge iff ||x-y||1 · 1

1st col. diff., 2nd col. same

1st col. diff., 2nd col. diff.

1st col. same, 2nd col. diff.

1st col. same, 2nd col. same

(self-loops, not pictured)

Constraints

Page 36: Uri Feige Microsoft Understanding Parallel Repetition Requires Understanding Foams Guy Kindler Weizmann Ryan ODonnell CMU.

After Parallel Rep: Discrete Torus Graph

52

NB: Constraints are “unique”

(x,y) an edge iff ||x-y||1 · 1

Given set of Failure Edges,

there’s a corresp. labeling iff all “topologically nontrivial” cycles blocked (*)

Page 37: Uri Feige Microsoft Understanding Parallel Repetition Requires Understanding Foams Guy Kindler Weizmann Ryan ODonnell CMU.

val(Cmd) vs. Torus Blocking

Basically(*), val(Cmd) = 1 − (d, m),

where (d, m) = least fraction of edges you need to delete from md graph

to eliminate all cycles that “wrap around”.

To prove strong upper bound for val(Cmd),

must prove strong lower bound for (d, m).

Page 38: Uri Feige Microsoft Understanding Parallel Repetition Requires Understanding Foams Guy Kindler Weizmann Ryan ODonnell CMU.

Discrete vs. Continuous Foams

But strong lower bound for (d, m) implies strong lower bound for A(d).

Proposition: Upper bound for A(d) implies upper bound for (d, m).

Specifically, (d, m) · const. A(d) / m.

Proof:

Page 39: Uri Feige Microsoft Understanding Parallel Repetition Requires Understanding Foams Guy Kindler Weizmann Ryan ODonnell CMU.

Discrete vs. Continuous Foams

But strong lower bound for (d, m) implies strong lower bound for A(d).

Proposition: Upper bound for A(d) implies upper bound for (d, m).

Specifically, (d, m) · const. A(d) / m.

Proof:

Page 40: Uri Feige Microsoft Understanding Parallel Repetition Requires Understanding Foams Guy Kindler Weizmann Ryan ODonnell CMU.

Hence the paper’s title

To understand the truth about parallel repetition,

you must get good upper bounds for val(Cmd)

(a special case of a special case of a special case of the general case).

But this requires good lower bounds for the continuous d / d Foam Problem.

Page 41: Uri Feige Microsoft Understanding Parallel Repetition Requires Understanding Foams Guy Kindler Weizmann Ryan ODonnell CMU.

Our results

What do we actually prove in the paper?!

Main Theorem: The continuous foam lower bound

can be discretified into a lower bound for (d, m):

(d, m) ¸ (if d · m2 log m, say).

Hence val(Cmd) · 1 −

Proof: A lot of Fourier analysis.

Page 42: Uri Feige Microsoft Understanding Parallel Repetition Requires Understanding Foams Guy Kindler Weizmann Ryan ODonnell CMU.

Our results

What we got: val(Cmd) · 1 −

Best previously: 1 − (d) ¢ (1/m)2

What we really wanted: 1 − (d) ¢ (1/m)

m = 33

Page 43: Uri Feige Microsoft Understanding Parallel Repetition Requires Understanding Foams Guy Kindler Weizmann Ryan ODonnell CMU.

Recommended