+ All Categories
Home > Documents > UvA-DARE (Digital Academic Repository) Connecting the dots ... · Borkin D., He S., Miao H., et al....

UvA-DARE (Digital Academic Repository) Connecting the dots ... · Borkin D., He S., Miao H., et al....

Date post: 01-Oct-2020
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
23
UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl) UvA-DARE (Digital Academic Repository) Connecting the dots Delineating the regulation of H3K79 methylation by Dot1 Vlaming, H. Link to publication License Other Citation for published version (APA): Vlaming, H. (2017). Connecting the dots: Delineating the regulation of H3K79 methylation by Dot1. General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. Download date: 07 Feb 2021
Transcript
Page 1: UvA-DARE (Digital Academic Repository) Connecting the dots ... · Borkin D., He S., Miao H., et al. (2015). Pharmacologic Inhibition of the Menin-MLL Interaction Blocks Progression

UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Connecting the dotsDelineating the regulation of H3K79 methylation by Dot1Vlaming, H.

Link to publication

LicenseOther

Citation for published version (APA):Vlaming, H. (2017). Connecting the dots: Delineating the regulation of H3K79 methylation by Dot1.

General rightsIt is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s),other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulationsIf you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, statingyour reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Askthe Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam,The Netherlands. You will be contacted as soon as possible.

Download date: 07 Feb 2021

Page 2: UvA-DARE (Digital Academic Repository) Connecting the dots ... · Borkin D., He S., Miao H., et al. (2015). Pharmacologic Inhibition of the Menin-MLL Interaction Blocks Progression

B

Bibliography

Aksnes H., Drazic A., Marie M., and Arnesen T. (2016). First Things First:Vital Protein Marks by N-Terminal Acetyltransferases. Trends Biochem Sci,41(9):746–760.

Alabert C., Barth T.K., Reveron-Gomez N., et al. (2015). Two distinct modesfor propagation of histone PTMs across the cell cycle. Genes Dev, 29(6):585–90.

Alabert C. and Groth A. (2012). Chromatin replication and epigenome main-tenance. Nat Rev Mol Cell Biol, 13(3):153–167.

Albuquerque C.P., Wang G., Lee N.S., et al. (2013). Distinct SUMO ligasescooperate with Esc2 and Slx5 to suppress duplication-mediated genome rear-rangements. PLoS Genet, 9(8):e1003670.

Alpatov R., Lesch B.J., Nakamoto-Kinoshita M., et al. (2014). A chromatin-dependent role of the fragile X mental retardation protein FMRP in the DNAdamage response. Cell, 157(4):869–81.

Altaf M., Utley R.T., Lacoste N., et al. (2007). Interplay of Chromatin Modifierson a Short Basic Patch of Histone H4 Tail Defines the Boundary of TelomericHeterochromatin. Mol Cell, 28(6):1002–1014.

Alvarez F., Munoz F., Schilcher P., et al. (2011). Sequential Establishment ofMarks on Soluble Histones H3 and H4. J Biol Chem, 286(20):17714–17721.

Andersson R., Enroth S., Rada-Iglesias A., Wadelius C., and Komorowski J.(2009). Nucleosomes are well positioned in exons and carry characteristichistone modifications. Genome Res, 19(10):1732–41.

Andrews F.H., Shinsky S.A., Shanle E.K., et al. (2016). The Taf14 YEATSdomain is a reader of histone crotonylation. Nat Chem Biol, 12(6):396–398.

Armache K.J., Garlick J.D., Canzio D., Narlikar G.J., and Kingston R.E. (2011).Structural Basis of Silencing: Sir3 BAH Domain in Complex with a Nucleo-some at 3.0 A Resolution. Science (80- ), 334(6058):977–982.

Ashton T.M. and Hickson I.D. (2010). Yeast as a model system to study RecQhelicase function. DNA Repair (Amst), 9(3):303–14.

Ashyraliyev M., Fomekong-Nanfack Y., Kaandorp J.A., and Blom J.G. (2009).Systems biology: parameter estimation for biochemical models. FEBS J,276(4):886–902.

Atanassov B.S., Evrard Y.A., Multani A.S., et al. (2009). Gcn5 and SAGARegulate Shelterin Protein Turnover and Telomere Maintenance. Mol Cell,35(3):352–364.

Bao X., Wang Y., Li X., et al. (2014). Identification of erasers’ for lysine crotony-lated histone marks using a chemical proteomics approach. Elife, 3:786–794.

Barth T.K. and Imhof A. (2010). Fast signals and slow marks: the dynamics ofhistone modifications. Trends Biochem Sci, 35(11):618–26.

Baryshnikova A., Costanzo M., Dixon S., et al. (2010). Synthetic Genetic Array(SGA) Analysis in Saccharomyces cerevisiae and Schizosaccharomyces pombe.In Methods Mol Biol, volume 313, pages 145–179.

141

Page 3: UvA-DARE (Digital Academic Repository) Connecting the dots ... · Borkin D., He S., Miao H., et al. (2015). Pharmacologic Inhibition of the Menin-MLL Interaction Blocks Progression

B

Bibliography

Basavapathruni A., Jin L., Daigle S.R., et al. (2012). Conformational adap-tation drives potent, selective and durable inhibition of the human proteinmethyltransferase DOT1L. Chem Biol Drug Des, 80(6):971–80.

Basavapathruni A., Olhava E.J., Daigle S.R., et al. (2014). Nonclinical phar-macokinetics and metabolism of EPZ-5676, a novel DOT1L histone methyl-transferase inhibitor. Biopharm Drug Dispos, 35(4):237–52.

Batta K., Zhang Z., Yen K., Goffman D.B., and Pugh B.F. (2011). Genome-wide function of H2B ubiquitylation in promoter and genic regions. GenesDev, 25(21):2254–2265.

Bell J.T. and Spector T.D. (2011). A twin approach to unraveling epigenetics.Trends Genet, 27(3):116–25.

Ben-Aroya S., Coombes C., Kwok T., et al. (2008). Toward a comprehen-sive temperature-sensitive mutant repository of the essential genes of Saccha-romyces cerevisiae. Mol Cell, 30(2):248–58.

Ben-Shitrit T., Yosef N., Shemesh K., et al. (2012). Systematic identificationof gene annotation errors in the widely used yeast mutation collections. NatMethods, 9(4):373–378.

Bergink S., Salomons F.A., Hoogstraten D., et al. (2006). DNA damage trig-gers nucleotide excision repair-dependent monoubiquitylation of histone H2A.Genes Dev, 20(10):1343–52.

Bernt K.M., Zhu N., Sinha A.U., et al. (2011). MLL-Rearranged LeukemiaIs Dependent on Aberrant H3K79 Methylation by DOT1L. Cancer Cell,20(1):66–78.

Biswas D., Milne T.A., Basrur V., et al. (2011). Function of leukemogenic mixedlineage leukemia 1 (MLL) fusion proteins through distinct partner proteincomplexes. Proc Natl Acad Sci, 108(38):15751–15756.

Bitoun E., Oliver P.L., and Davies K.E. (2007). The mixed-lineage leukemiafusion partner AF4 stimulates RNA polymerase II transcriptional elongationand mediates coordinated chromatin remodeling. Hum Mol Genet, 16(1):92–106.

Black J.C., Van Rechem C., and Whetstine J.R. (2012). Histone lysine methy-lation dynamics: establishment, regulation, and biological impact. Mol Cell,48(4):491–507.

Boison D. (2013). Adenosine kinase: exploitation for therapeutic gain. Phar-macol Rev, 65(3):906–43.

Bonnet J., Wang C.Y., Baptista T., et al. (2014). The SAGA coactivator com-plex acts on the whole transcribed genome and is required for RNA poly-merase II transcription. Genes Dev, 28(18):1999–2012.

Borkin D., He S., Miao H., et al. (2015). Pharmacologic Inhibition of the Menin-MLL Interaction Blocks Progression of MLL Leukemia In Vivo. Cancer Cell,27(4):589–602.

Botuyan M.V., Lee J., Ward I.M., et al. (2006). Structural basis for the methyla-tion state-specific recognition of histone H4-K20 by 53BP1 and Crb2 in DNArepair. Cell, 127(7):1361–73.

Brachmann C.B., Davies A., Cost G.J., et al. (1998). Designer deletion strainsderived from Saccharomyces cerevisiae S288C: a useful set of strains and

142

Page 4: UvA-DARE (Digital Academic Repository) Connecting the dots ... · Borkin D., He S., Miao H., et al. (2015). Pharmacologic Inhibition of the Menin-MLL Interaction Blocks Progression

B

Bibliography

plasmids for PCR-mediated gene disruption and other applications. Yeast,14(2):115–32.

Branzei D., Sollier J., Liberi G., et al. (2006). Ubc9- and mms21-mediatedsumoylation counteracts recombinogenic events at damaged replication forks.Cell, 127(3):509–22.

Braun S. and Madhani H.D. (2012). Shaping the landscape: mechanistic conse-quences of ubiquitin modification of chromatin. EMBO Rep, 13(7):619–630.

Brien G.L., Valerio D.G., and Armstrong S.A. (2016). Exploiting the Epigenometo Control Cancer-Promoting Gene-Expression Programs. Cancer Cell,29(4):464–476.

Burgess R.C., Rahman S., Lisby M., Rothstein R., and Zhao X. (2007). TheSlx5-Slx8 complex affects sumoylation of DNA repair proteins and negativelyregulates recombination. Mol Cell Biol, 27(17):6153–62.

Buser R., Kellner V., Melnik A., et al. (2016). The Replisome-Coupled E3 Ubiq-uitin Ligase Rtt101Mms22 Counteracts Mrc1 Function to Tolerate GenotoxicStress. PLoS Genet, 12(2):e1005843.

Carrozza M.J., Li B., Florens L., et al. (2005). Histone H3 methylation bySet2 directs deacetylation of coding regions by Rpd3S to suppress spuriousintragenic transcription. Cell, 123(4):581–92.

Cecere G., Hoersch S., Jensen M.B., Dixit S., and Grishok A. (2013). TheZFP-1(AF10)/DOT-1 complex opposes H2B ubiquitination to reduce Pol IItranscription. Mol Cell, 50(6):894–907.

Chandrasekharan M.B., Huang F., and Sun Z.W. (2009). Ubiquitination ofhistone H2B regulates chromatin dynamics by enhancing nucleosome stability.Proc Natl Acad Sci U S A, 106(39):16686–91.

Chandrasekharan M.B., Huang F., and Sun Z.W. (2010). Histone H2B ubiqui-tination and beyond: Regulation of nucleosome stability, chromatin dynamicsand the trans-histone H3 methylation. Epigenetics, 5(6):460–468.

Chaplin T., Ayton P., Bernard O.A., et al. (1995). A novel class of zinc fin-ger/leucine zipper genes identified from the molecular cloning of the t(10;11)translocation in acute leukemia. Blood, 85(6):1435–41.

Chatterjee C., McGinty R.K., Fierz B., and Muir T.W. (2010). Disulfide-directed histone ubiquitylation reveals plasticity in hDot1L activation. NatChem Biol, 6(4):267–9.

Chen C.W. and Armstrong S.A. (2015). Targeting DOT1L and HOX geneexpression in MLL-rearranged leukemia and beyond. Exp Hematol, 43(8):673–684.

Chen C.W., Koche R.P., Sinha A.U., et al. (2015a). DOT1L inhibits SIRT1-mediated epigenetic silencing to maintain leukemic gene expression in MLL-rearranged leukemia. Nat Med, 21(4):335–343.

Chen S., Yang Z., Wilkinson A.W., et al. (2015b). The PZP Domain ofAF10 Senses Unmodified H3K27 to Regulate DOT1L-Mediated Methylationof H3K79. Mol Cell, 60(2):319–327.

Cheng X., Collins R.E., and Zhang X. (2005). Structural and sequence motifsof protein (histone) methylation enzymes. Annu Rev Biophys Biomol Struct,34:267–94.

143

Page 5: UvA-DARE (Digital Academic Repository) Connecting the dots ... · Borkin D., He S., Miao H., et al. (2015). Pharmacologic Inhibition of the Menin-MLL Interaction Blocks Progression

B

Bibliography

Cheng X. and Zhang X. (2007). Structural dynamics of protein lysine methyla-tion and demethylation. Mutat Res, 618(1-2):102–15.

Cherry J.M., Hong E.L., Amundsen C., et al. (2012). Saccharomyces GenomeDatabase: the genomics resource of budding yeast. Nucleic Acids Res,40(D1):D700–D705.

Cho M.H., Park J.H., Choi H.J., et al. (2015). DOT1L cooperates with thec-Myc-p300 complex to epigenetically derepress CDH1 transcription factorsin breast cancer progression. Nat Commun, 6:7821.

Conde F. and San-Segundo P.A. (2008). Role of Dot1 in the response to alkylat-ing DNA damage in Saccharomyces cerevisiae: regulation of DNA damage tol-erance by the error-prone polymerases Polzeta/Rev1. Genetics, 179(3):1197–210.

Corpet A. and Almouzni G. (2009). Making copies of chromatin: the challengeof nucleosomal organization and epigenetic information. Trends Cell Biol,19(1):29–41.

Costes A. and Lambert S.A.E. (2012). Homologous recombination as a replica-tion fork escort: fork-protection and recovery. Biomolecules, 3(1):39–71.

Couture J.F. and Trievel R.C. (2006). Histone-modifying enzymes: encryptingan enigmatic epigenetic code. Curr Opin Struct Biol, 16(6):753–760.

Cucinotta C.E., Young A.N., Klucevsek K.M., and Arndt K.M. (2015). TheNucleosome Acidic Patch Regulates the H2B K123 Monoubiquitylation Cas-cade and Transcription Elongation in Saccharomyces cerevisiae. PLoS Genet,11(8):e1005420.

Dahlin J.L., Chen X., Walters M.A., and Zhang Z. (2015). Histone-modifying en-zymes, histone modifications and histone chaperones in nucleosome assembly:Lessons learned from Rtt109 histone acetyltransferases. Crit Rev Biochem MolBiol, 50(1):31–53.

Dai J., Hyland E.M., Yuan D.S., et al. (2008). Probing nucleosome function:a highly versatile library of synthetic histone H3 and H4 mutants. Cell,134(6):1066–78.

Daigle S.R., Olhava E.J., Therkelsen C.a., et al. (2013). Potent inhibition ofDOT1L as treatment of MLL-fusion leukemia. Blood, 122(6):1017–1025.

Daigle S.R., Olhava E.J., Therkelsen C.A., et al. (2011). Selective Killing ofMixed Lineage Leukemia Cells by a Potent Small-Molecule DOT1L Inhibitor.Cancer Cell, 20(1):53–65.

Dang W., Steffen K.K., Perry R., et al. (2009). Histone H4 lysine 16 acetylationregulates cellular lifespan. Nature, 459(7248):802–7.

Dantuma N.P., Groothuis T.A.M., Salomons F.A., and Neefjes J. (2006). Adynamic ubiquitin equilibrium couples proteasomal activity to chromatin re-modeling. J Cell Biol, 173(1):19–26.

Darwanto A., Curtis M.P., Schrag M., et al. (2010). A modified “cross-talk”between histone H2B Lys-120 ubiquitination and H3 Lys-79 methylation. JBiol Chem, 285(28):21868–76.

De Vos D., Frederiks F., Terweij M., et al. (2011). Progressive methylation ofageing histones by Dot1 functions as a timer. EMBO Rep, 12(9):956–62.

Deal R. and Henikoff S. (2010). Capturing the dynamic epigenome. Genome

144

Page 6: UvA-DARE (Digital Academic Repository) Connecting the dots ... · Borkin D., He S., Miao H., et al. (2015). Pharmacologic Inhibition of the Menin-MLL Interaction Blocks Progression

B

Bibliography

Biol, 11(10):218.Del Rizzo P.A. and Trievel R.C. (2011). Substrate and product specificities of

SET domain methyltransferases. Epigenetics, 6(9):1059–1067.Deshpande A.J., Chen L., Fazio M., et al. (2013). Leukemic transformation by

the MLL-AF6 fusion oncogene requires the H3K79 methyltransferase Dot1l.Blood, 121(13):2533–2541.

Deshpande A.J., Deshpande A., Sinha A.U., et al. (2014). AF10 RegulatesProgressive H3K79 Methylation and HOX Gene Expression in Diverse AMLSubtypes. Cancer Cell, 26(6):896–908.

Deshpande A.J., Rouhi A., Lin Y., et al. (2011). The clathrin-binding domain ofCALM and the OM-LZ domain of AF10 are sufficient to induce acute myeloidleukemia in mice. Leukemia, 25(11):1718–1727.

Di Talia S., Skotheim J.M., Bean J.M., Siggia E.D., and Cross F.R. (2007). Theeffects of molecular noise and size control on variability in the budding yeastcell cycle. Nature, 448(7156):947–51.

DiMartino J.F., Ayton P.M., Chen E.H., et al. (2002). The AF10 leucine zipperis required for leukemic transformation of myeloid progenitors by MLL-AF10.Blood, 99(10):3780–5.

Dindar G., Anger A.M., Mehlhorn C., Hake S.B., and Janzen C.J. (2014).Structure-guided mutational analysis reveals the functional requirements forproduct specificity of DOT1 enzymes. Nat Commun, 5:5313.

Dion M.F., Kaplan T., Kim M., et al. (2007). Dynamics of Replication-Independent Histone Turnover in Budding Yeast. Science (80- ),315(5817):1405–1408.

Dittmar J.C., Pierce S., Rothstein R., and Reid R.J.D. (2013). Physical andgenetic-interaction density reveals functional organization and informs signifi-cance cutoffs in genome-wide screens. Proc Natl Acad Sci, 110(18):7389–7394.

Dover J., Schneider J., Tawiah-Boateng M.A., et al. (2002). Methylation ofhistone H3 by COMPASS requires ubiquitination of histone H2B by Rad6. JBiol Chem, 277(32):28368–71.

Dovey O.M., Foster C.T., Conte N., et al. (2013a). Histone deacetylase 1 and2 are essential for normal T-cell development and genomic stability in mice.Blood, 121(8):1335–44.

Dovey O.M., Foster C.T., Conte N., et al. (2013b). Histone deacetylase 1 and2 are essential for normal T-cell development and genomic stability in mice.Blood, 121(8):1335–1344.

Driscoll R., Hudson A., and Jackson S.P. (2007). Yeast Rtt109 promotes genomestability by acetylating histone H3 on lysine 56. Science (80- ), 315(5812):649–52.

Drouin S., Laramee L., Jacques P.E., et al. (2010). DSIF and RNA polymeraseII CTD phosphorylation coordinate the recruitment of Rpd3S to activelytranscribed genes. PLoS Genet, 6(10):e1001173.

Durand A., Bonnet J., Fournier M., Chavant V., and Schultz P. (2014). Map-ping the Deubiquitination Module within the SAGA Complex. Structure,22(11):1553–1559.

Duro E., Vaisica J.A., Brown G.W., and Rouse J. (2008). Budding yeast Mms22

145

Page 7: UvA-DARE (Digital Academic Repository) Connecting the dots ... · Borkin D., He S., Miao H., et al. (2015). Pharmacologic Inhibition of the Menin-MLL Interaction Blocks Progression

B

Bibliography

and Mms1 regulate homologous recombination induced by replisome blockage.DNA Repair (Amst), 7(5):811–8.

Efron B. and Tibshirani R.J. (1994). An introduction to the bootstrap. CRCpress.

Egelhofer T.A., Minoda A., Klugman S., et al. (2010). An assessment of histone-modification antibody quality. Nat Struct Mol Biol, 18(1):91–93.

Ehrentraut S., Hassler M., Oppikofer M., et al. (2011). Structural basis forthe role of the Sir3 AAA+ domain in silencing: interaction with Sir4 andunmethylated histone H3K79. Genes Dev, 25(17):1835–46.

Engel S.R., Dietrich F.S., Fisk D.G., et al. (2014). The Reference GenomeSequence of Saccharomyces cerevisiae: Then and Now. G3, 4(3):389–398.

Etchegaray J.P. and Mostoslavsky R. (2016). Interplay between Metabolismand Epigenetics: A Nuclear Adaptation to Environmental Changes. MolCell, 62(5):695–711.

Evers B., Jastrzebski K., Heijmans J.P.M., et al. (2016). CRISPR knockoutscreening outperforms shRNA and CRISPRi in identifying essential genes.Nat Biotechnol.

Evers T.H., van Dongen E.M.W.M., Faesen A.C., Meijer E.W., and Merkx M.(2006). Quantitative understanding of the energy transfer between fluorescentproteins connected via flexible peptide linkers. Biochemistry, 45(44):13183–92.

Farooq Z., Banday S., Pandita T.K., and Altaf M. (2016). The many faces ofhistone H3K79 methylation. Mutat Res Mutat Res, 768:46–52.

Feng Q., Wang H., Ng H.H., et al. (2002). Methylation of H3-Lysine 79 IsMediated by a New Family of HMTases without a SET Domain. Curr Biol,12(12):1052–1058.

Feng Y., Yang Y., Ortega M.M., et al. (2010). Early mammalian erythropoiesisrequires the Dot1L methyltransferase. Blood, 116(22):4483–91.

Feser J., Truong D., Das C., et al. (2010). Elevated histone expression promoteslife span extension. Mol Cell, 39(5):724–35.

Feser J. and Tyler J. (2011). Chromatin structure as a mediator of aging. FEBSLett, 585(13):2041–2048.

Fierz B., Chatterjee C., McGinty R.K., et al. (2011). Histone H2B ubiquityla-tion disrupts local and higher-order chromatin compaction. Nat Chem Biol,7(2):113–119.

Fierz B., Kilic S., Hieb A.R., Luger K., and Muir T.W. (2012). Stability of Nu-cleosomes Containing Homogenously Ubiquitylated H2A and H2B PreparedUsing Semisynthesis. J Am Chem Soc, pages 2–5.

Figueiredo L.M., Janzen C.J., and Cross G.A. (2008). A Histone Methyltrans-ferase Modulates Antigenic Variation in African Trypanosomes. PLoS Biol,6(7):e161.

Fingerman I.M., Li H.C., and Briggs S.D. (2007). A charge-based interac-tion between histone H4 and Dot1 is required for H3K79 methylation andtelomere silencing: identification of a new trans-histone pathway. Genes Dev,21(16):2018–29.

FitzGerald J., Moureau S., Drogaris P., et al. (2011). Regulation of the DNA

146

Page 8: UvA-DARE (Digital Academic Repository) Connecting the dots ... · Borkin D., He S., Miao H., et al. (2015). Pharmacologic Inhibition of the Menin-MLL Interaction Blocks Progression

B

Bibliography

Damage Response and Gene Expression by the Dot1L Histone Methyltrans-ferase and the 53Bp1 Tumour Suppressor. PLoS One, 6(2):e14714.

Fleming A.B., Kao C.F., Hillyer C., Pikaart M., and Osley M.A. (2008). H2Bubiquitylation plays a role in nucleosome dynamics during transcription elon-gation. Mol Cell, 31(1):57–66.

Frederiks F., Tzouros M., Oudgenoeg G., et al. (2008). Nonprocessive methy-lation by Dot1 leads to functional redundancy of histone H3K79 methylationstates. Nat Struct Mol Biol, 15(6):550–557.

Frederiks F., van Welsem T., Oudgenoeg G., et al. (2010). Heterologous expres-sion reveals distinct enzymatic activities of two DOT1 histone methyltrans-ferases of Trypanosoma brucei. J Cell Sci, 123(Pt 23):4019–23.

Freudenthal B.D., Gakhar L., Ramaswamy S., and Washington M.T. (2010).Structure of monoubiquitinated PCNA and implications for translesion syn-thesis and DNA polymerase exchange. Nat Struct Mol Biol, 17(4):479–84.

Fu H., Maunakea A.K., Martin M.M., et al. (2013). Methylation of Histone H3on Lysine 79 Associates with a Group of Replication Origins and Helps LimitDNA Replication Once per Cell Cycle. PLoS Genet, 9(6):e1003542.

Fuchs G., Hollander D., Voichek Y., Ast G., and Oren M. (2014). Cotranscrip-tional histone H2B monoubiquitylation is tightly coupled with RNA poly-merase II elongation rate. Genome Res, 24(10):1572–83.

Gardner R.G., Nelson Z.W., and Gottschling D.E. (2005). Ubp10/Dot4p regu-lates the persistence of ubiquitinated histone H2B: distinct roles in telomericsilencing and general chromatin. Mol Cell Biol, 25(14):6123–39.

Gassen A., Brechtefeld D., Schandry N., et al. (2012). DOT1A-dependentH3K76 methylation is required for replication regulation in Trypanosoma bru-cei. Nucleic Acids Res, 40(20):10302–10311.

Gavin A.C., Bosche M., Krause R., et al. (2002). Functional organization ofthe yeast proteome by systematic analysis of protein complexes. Nature,415(6868):141–147.

Ghaemmaghami S., Huh W.K., Bower K., et al. (2003). Global analysis ofprotein expression in yeast. Nature, 425(6959):737–741.

Giaever G., Chu A.M., Ni L., et al. (2002). Functional profiling of the Saccha-romyces cerevisiae genome. Nature, 418(6896):387–91.

Giaever G. and Nislow C. (2014). The Yeast Deletion Collection: A Decade ofFunctional Genomics. Genetics, 197(2):451–465.

Giannattasio M., Lazzaro F., Plevani P., and Muzi-Falconi M. (2005). TheDNA damage checkpoint response requires histone H2B ubiquitination byRad6-Bre1 and H3 methylation by Dot1. J Biol Chem, 280(11):9879–86.

Gibbons G.S., Owens S.R., Fearon E.R., and Nikolovska-Coleska Z. (2015).Regulation of Wnt signaling target gene expression by the histone methyl-transferase DOT1L. ACS Chem Biol, 10(1):109–14.

Gietz R.D. (2014). Yeast Transformation by the LiAc/SS Carrier DNA/PEGMethod. Yeast Protoc, 1163:33–44.

Greer E.L., Maures T.J., Ucar D., et al. (2011). Transgenerational epigeneticinheritance of longevity in Caenorhabditis elegans. Nature.

Greer E.L. and Shi Y. (2012). Histone methylation: a dynamic mark in health,

147

Page 9: UvA-DARE (Digital Academic Repository) Connecting the dots ... · Borkin D., He S., Miao H., et al. (2015). Pharmacologic Inhibition of the Menin-MLL Interaction Blocks Progression

B

Bibliography

disease and inheritance. Nat Rev Genet, 13(5):343–357.Greif P.A., Tizazu B., Krause A., Kremmer E., and Bohlander S.K. (2008). The

leukemogenic CALM/AF10 fusion protein alters the subcellular localizationof the lymphoid regulator Ikaros. Oncogene, 27(20):2886–2896.

Guenther M.G., Lawton L.N., Rozovskaia T., et al. (2008). Aberrant chromatinat genes encoding stem cell regulators in human mixed-lineage leukemia.Genes Dev, 22(24):3403–8.

Guppy B.J. and McManus K.J. (2015). Mitotic accumulation of dimethylatedlysine 79 of histone h3 is important for maintaining genome integrity duringmitosis in human cells. Genetics, 199(2):423–33.

Han J., Zhou H., Horazdovsky B., et al. (2007). Rtt109 acetylates histone H3lysine 56 and functions in DNA replication. Science, 315(5812):653–5.

Han Y., Luo J., Ranish J., and Hahn S. (2014). Architecture of the Sac-charomyces cerevisiae SAGA transcription coactivator complex. EMBO J,33(21):2534–46.

He N., Chan C.K., Sobhian B., et al. (2011). Human Polymerase-AssociatedFactor complex (PAFc) connects the Super Elongation Complex (SEC) toRNA polymerase II on chromatin. Proc Natl Acad Sci U S A, 108(36):E636–45.

Heideman M.R., Wilting R.H., Yanover E., et al. (2013). Dosage-dependenttumor suppression by histone deacetylases 1 and 2 through regulation of c-Myc collaborating genes and p53 function. Blood, 121(11):2038–2050.

Hein M.Y., Hubner N.C., Poser I., et al. (2015). A Human Interactome in ThreeQuantitative Dimensions Organized by Stoichiometries and Abundances. Cell,163(3):712–723.

Henikoff S. and Shilatifard A. (2011). Histone modification: cause or cog?Trends Genet, 27(10):389–396.

Henriksen P., Wagner S.A., Weinert B.T., et al. (2012). Proteome-wide analysisof lysine acetylation suggests its broad regulatory scope in Saccharomycescerevisiae. Mol Cell proteomics, 11(11):1510–22.

Henry K.W., Wyce A., Lo W.s., et al. (2003). Transcriptional activation viasequential histone H2B ubiquitylation and deubiquitylation, mediated bySAGA-associated Ubp8. Genes Dev, 17(21):2648–63.

Hirschhorn J.N., Bortvin A.L., Ricupero-Hovasse S.L., and Winston F. (1995).A new class of histone H2A mutations in Saccharomyces cerevisiae causesspecific transcriptional defects in vivo. Mol Cell Biol, 15(4):1999–2009.

Ho L.L., Sinha A., Verzi M., et al. (2013). DOT1L-Mediated H3K79 Methylationin Chromatin Is Dispensable for Wnt Pathway-Specific and Other IntestinalEpithelial Functions. Mol Cell Biol, 33(9):1735–1745.

Hoffman C.S. and Winston F. (1987). A ten-minute DNA preparation from yeastefficiently releases autonomous plasmids for transformation of Escherichia coli.Gene, 57(2-3):267–72.

Holt M.T., David Y., Pollock S., et al. (2015). Identification of a functionalhotspot on ubiquitin required for stimulation of methyltransferase activity onchromatin. Proc Natl Acad Sci, 112(33):10365–10370.

Horigome C., Bustard D.E., Marcomini I., et al. (2016). PolySUMOylation by

148

Page 10: UvA-DARE (Digital Academic Repository) Connecting the dots ... · Borkin D., He S., Miao H., et al. (2015). Pharmacologic Inhibition of the Menin-MLL Interaction Blocks Progression

B

Bibliography

Siz2 and Mms21 triggers relocation of DNA breaks to nuclear pores throughthe Slx5/Slx8 STUbL. Genes Dev, 30(8):931–945.

Hornbeck P.V., Kornhauser J.M., Tkachev S., et al. (2012). PhosphoSitePlus:a comprehensive resource for investigating the structure and function of ex-perimentally determined post-translational modifications in man and mouse.Nucleic Acids Res, 40(D1):D261–D270.

Huang F., Ramakrishnan S., Pokhrel S., et al. (2015). Interaction of the Jhd2Histone H3 Lys-4 Demethylase with Chromatin Is Controlled by Histone H2ASurfaces and Restricted by H2B Ubiquitination. J Biol Chem, 290(48):28760–28777.

Huber W., Carey V.J., Gentleman R., et al. (2015). Orchestrating high-throughput genomic analysis with Bioconductor. Nat Methods, 12(2):115–121.

Huff J.T., Plocik A.M., Guthrie C., and Yamamoto K.R. (2010). Reciprocalintronic and exonic histone modification regions in humans. Nat Struct MolBiol, 17(12):1495–9.

Husnjak K. and Dikic I. (2012). Ubiquitin-binding proteins: decoders ofubiquitin-mediated cellular functions. Annu Rev Biochem, 81:291–322.

Huyen Y., Zgheib O., Ditullio R.A., et al. (2004). Methylated lysine 79 of histoneH3 targets 53BP1 to DNA double-strand breaks. Nature, 432(7015):406–11.

Im H., Park C., Feng Q., et al. (2003). Dynamic regulation of histone H3methylated at lysine 79 within a tissue-specific chromatin domain. J BiolChem, 278(20):18346–52.

Jack A.P.M. and Hake S.B. (2014). Getting down to the core of histone modi-fications. Chromosoma, 123(4):355–371.

Jackson S.P. and Durocher D. (2013a). Regulation of DNA damage responsesby ubiquitin and SUMO. Mol Cell, 49(5):795–807.

Jackson S.P. and Durocher D. (2013b). Regulation of DNA Damage Responsesby Ubiquitin and SUMO. Mol Cell.

Janke C., Magiera M.M., Rathfelder N., et al. (2004). A versatile toolbox forPCR-based tagging of yeast genes: new fluorescent proteins, more markersand promoter substitution cassettes. Yeast, 21(11):947–962.

Janke R., Dodson A.E., and Rine J. (2015). Metabolism and Epigenetics. AnnuRev Cell Dev Biol, 31(1):473–496.

Janzen C.J., Hake S.B., Lowell J.E., and Cross G.A. (2006). Selective Di- orTrimethylation of Histone H3 Lysine 76 by Two DOT1 Homologs Is Importantfor Cell Cycle Regulation in Trypanosoma brucei. Mol Cell, 23(4):497–507.

Jin C., Li J., Green C.D., et al. (2011). Histone Demethylase UTX-1 RegulatesC. elegans Life Span by Targeting the Insulin/IGF-1 Signaling Pathway. CellMetab, 14(2):161–172.

Jo S.Y., Granowicz E.M., Maillard I., Thomas D., and Hess J.L. (2011). Re-quirement for Dot1l in murine postnatal hematopoiesis and leukemogenesisby MLL translocation. Blood, 117(18):4759–68.

Jones B., Su H., Bhat A., et al. (2008). The histone H3K79 methyltransferaseDot1L is essential for mammalian development and heterochromatin struc-ture. PLoS Genet, 4(9):e1000190.

149

Page 11: UvA-DARE (Digital Academic Repository) Connecting the dots ... · Borkin D., He S., Miao H., et al. (2015). Pharmacologic Inhibition of the Menin-MLL Interaction Blocks Progression

B

Bibliography

Jonkers I., Kwak H., and Lis J.T. (2014). Genome-wide dynamics of Pol IIelongation and its interplay with promoter proximal pausing, chromatin, andexons. Elife, 3:e02407.

Kaeberlein M. (2010). Lessons on longevity from budding yeast. Nature,464(7288):513–9.

Kanai M., Masuda M., Takaoka Y., et al. (2013). Adenosine kinase-deficient mu-tant of Saccharomyces cerevisiae accumulates S-adenosylmethionine becauseof an enhanced methionine biosynthesis pathway. Appl Microbiol Biotechnol,97(3):1183–90.

Kaplan T., Liu C.L., Erkmann J.A., et al. (2008). Cell Cycle and Chaperone-Mediated Regulation of H3K56ac Incorporation in Yeast. PLoS Genet,4(11):e1000270.

Keogh M.C., Kurdistani S.K., Morris S.A., et al. (2005). Cotranscriptional set2methylation of histone H3 lysine 36 recruits a repressive Rpd3 complex. Cell,123(4):593–605.

Kim J., Guermah M., McGinty R.K., et al. (2009). RAD6-Mediatedtranscription-coupled H2B ubiquitylation directly stimulates H3K4 methy-lation in human cells. Cell, 137(3):459–71.

Kim J., Hake S.B., and Roeder R.G. (2005). The human homolog of yeastBRE1 functions as a transcriptional coactivator through direct activator in-teractions. Mol Cell, 20(5):759–70.

Kim J., Kim J.A., McGinty R.K., et al. (2013). The n-SET Domain ofSet1 Regulates H2B Ubiquitylation-Dependent H3K4 Methylation. Mol Cell,49(6):1121–1133.

Kim S.K., Jung I., Lee H., et al. (2012a). Human Histone H3K79 Methyltrans-ferase DOT1L Binds Actively Transcribing RNA Polymerase II to RegulateGene Expression. J Biol Chem, 287(47):39698–39709.

Kim W., Choi M., and Kim J.E. (2014). The histone methyltransferaseDot1/DOT1L as a critical regulator of the cell cycle. Cell Cycle, 13(5):726–38.

Kim W., Kim R., Park G., Park J.W., and Kim J.E. (2012b). Deficiency ofH3K79 histone methyltransferase Dot1-like protein (DOT1L) inhibits cell pro-liferation. J Biol Chem, 287(8):5588–99.

Kofoed M., Milbury K.L., Chiang J.H., et al. (2015). An Updated Collection ofSequence Barcoded Temperature-Sensitive Alleles of Yeast Essential Genes.G3, 5(9):1879–87.

Kooistra S.M. and Helin K. (2012). Molecular mechanisms and potential func-tions of histone demethylases. Nat Rev Mol Cell Biol, 13(5):297–311.

Kouskouti A. and Talianidis I. (2005). Histone modifications defining ac-tive genes persist after transcriptional and mitotic inactivation. EMBO J,24(2):347–57.

Kreiling J.A., Tamamori-Adachi M., Sexton A.N., et al. (2011). Age-associatedincrease in heterochromatic marks in murine and primate tissues. Aging Cell,10(2):292–304.

Krivtsov A.V., Feng Z., Lemieux M.E., et al. (2008). H3K79 methylation profilesdefine murine and human MLL-AF4 leukemias. Cancer Cell, 14(5):355–68.

Kryczek I., Lin Y., Nagarsheth N., et al. (2014). IL-22(+)CD4(+) T cells

150

Page 12: UvA-DARE (Digital Academic Repository) Connecting the dots ... · Borkin D., He S., Miao H., et al. (2015). Pharmacologic Inhibition of the Menin-MLL Interaction Blocks Progression

B

Bibliography

promote colorectal cancer stemness via STAT3 transcription factor activationand induction of the methyltransferase DOT1L. Immunity, 40(5):772–84.

Kuntimaddi A., Achille N.J., Thorpe J., et al. (2015). Degree of Recruitmentof DOT1L to MLL-AF9 Defines Level of H3K79 Di- and Tri-methylation onTarget Genes and Transformation Potential. Cell Rep, 11(5):808–820.

Kuo M.H., Zhou J., Jambeck P., Churchill M.E., and Allis C.D. (1998). Histoneacetyltransferase activity of yeast Gcn5p is required for the activation of targetgenes in vivo. Genes Dev, 12(5):627–39.

Lanza A.M., Blazeck J.J., Crook N.C., et al. (2012). Linking Yeast Gcn5p Cat-alytic Function and Gene Regulation Using a Quantitative, Graded DominantMutant Approach. PLoS One, 7(4):e36193.

Leach B.I., Kuntimaddi A., Schmidt C.R., et al. (2013). Leukemia Fusion TargetAF9 Is an Intrinsically Disordered Transcriptional Regulator that RecruitsMultiple Partners via Coupled Folding and Binding. Structure, 21(1):176–183.

Lee K.K., Florens L., Swanson S.K., Washburn M.P., and Workman J.L. (2005).The Deubiquitylation Activity of Ubp8 Is Dependent upon Sgf11 and ItsAssociation with the SAGA Complex. Mol Cell Biol, 25(3):1173–1182.

Lenstra T.L., Benschop J.J., Kim T., et al. (2011). The specificity and topologyof chromatin interaction pathways in yeast. Mol Cell, 42(4):536–49.

Leroy G., Dimaggio P.A., Chan E.Y., et al. (2013). A quantitative atlas of his-tone modification signatures from human cancer cells. Epigenetics Chromatin,6(1):20.

Li B., Carey M., and Workman J.L. (2007). The role of chromatin duringtranscription. Cell, 128(4):707–19.

Li H. and Durbin R. (2009). Fast and accurate short read alignment withBurrows-Wheeler transform. Bioinformatics, 25(14):1754–1760.

Li Y., Sabari B.R., Panchenko T., et al. (2016). Molecular Coupling of HistoneCrotonylation and Active Transcription by AF9 YEATS Domain. Mol Cell,62(2):181–193.

Li Y., Wen H., Xi Y., et al. (2014). AF9 YEATS Domain Links Histone Acety-lation to DOT1L-Mediated H3K79 Methylation. Cell, 159(3):558–571.

Liang G., Klose R.J., Gardner K.E., and Zhang Y. (2007). Yeast Jhd2p is ahistone H3 Lys4 trimethyl demethylase. Nat Struct Mol Biol, 14(3):243–245.

Lin C.Y., Wu M.Y., Gay S., et al. (2014). H2B Mono-ubiquitylation FacilitatesFork Stalling and Recovery during Replication Stress by Coordinating Rad53Activation and Chromatin Assembly. PLoS Genet, 10(10):e1004667.

Lin Y.H., Kakadia P.M., Chen Y., et al. (2009). Global reduction of the epi-genetic H3K79 methylation mark and increased chromosomal instability inCALM-AF10-positive leukemias. Blood, 114(3):651–8.

Lu X., Simon M.D., Chodaparambil J.V., et al. (2008). The effect of H3K79dimethylation and H4K20 trimethylation on nucleosome and chromatin struc-ture. Nat Struct Mol Biol, 15(10):1122–1124.

Luger K., Dechassa M.L., and Tremethick D.J. (2012). New insights into nucle-osome and chromatin structure: an ordered state or a disordered affair? NatRev Mol Cell Biol, 13(7):436–447.

151

Page 13: UvA-DARE (Digital Academic Repository) Connecting the dots ... · Borkin D., He S., Miao H., et al. (2015). Pharmacologic Inhibition of the Menin-MLL Interaction Blocks Progression

B

Bibliography

MacLean B., Tomazela D.M., Shulman N., et al. (2010). Skyline: an open sourcedocument editor for creating and analyzing targeted proteomics experiments.Bioinformatics, 26(7):966–968.

Magraner-Pardo L., Pelechano V., Coloma M.D., and Tordera V. (2014). Dy-namic remodeling of histone modifications in response to osmotic stress inSaccharomyces cerevisiae. BMC Genomics, 15(1):247.

Margaritis T., Oreal V., Brabers N., et al. (2012). Two distinct repressive mech-anisms for histone 3 lysine 4 methylation through promoting 3’-end antisensetranscription. PLoS Genet, 8(9):e1002952.

Marson A., Levine S.S., Cole M.F., et al. (2008). Connecting microRNA genesto the core transcriptional regulatory circuitry of embryonic stem cells. Cell,134(3):521–33.

Mattiroli F., Vissers J.H.A., van Dijk W.J., et al. (2012). RNF168 ubiquitinatesK13-15 on H2A/H2AX to drive DNA damage signaling. Cell, 150(6):1182–95.

Maures T.J., Greer E.L., Hauswirth A.G., and Brunet A. (2011). The H3K27demethylase UTX-1 regulates C. elegans lifespan in a germline-independent,insulin-dependent manner. Aging Cell, 10(6):980–990.

McGinty R.K., Kim J., Chatterjee C., Roeder R.G., and Muir T.W. (2008).Chemically ubiquitylated histone H2B stimulates hDot1L-mediated intranu-cleosomal methylation. Nature, 453(7196):812–6.

McGinty R.K., Kohn M., Chatterjee C., et al. (2009). Structure-activity analysisof semisynthetic nucleosomes: mechanistic insights into the stimulation ofDot1L by ubiquitylated histone H2B. ACS Chem Biol, 4(11):958–68.

McGinty R.K. and Tan S. (2016). Recognition of the nucleosome by chromatinfactors and enzymes. Curr Opin Struct Biol, 37:54–61.

McKnight J.N., Boerma J.W., Breeden L.L., and Tsukiyama T. (2015). GlobalPromoter Targeting of a Conserved Lysine Deacetylase for TranscriptionalShutoff during Quiescence Entry. Mol Cell, 59(5):732–743.

McLean C.M., Karemaker I.D., and van Leeuwen F. (2014). The emerging rolesof DOT1L in leukemia and normal development. Leukemia, 28(11):2131–2138.

Meyer C., Hofmann J., Burmeister T., et al. (2013). The MLL recombinome ofacute leukemias in 2013. Leukemia, 27(11):2165–2176.

Mi H., Poudel S., Muruganujan A., Casagrande J.T., and Thomas P.D. (2016).PANTHER version 10: expanded protein families and functions, and analysistools. Nucleic Acids Res, 44(D1):D336–D342.

Milne T.A., Kim J., Wang G.G., et al. (2010). Multiple interactions recruitMLL1 and MLL1 fusion proteins to the HOXA9 locus in leukemogenesis. MolCell, 38(6):853–63.

Min J., Feng Q., Li Z., Zhang Y., and Xu R.M. (2003). Structure of the Cat-alytic Domain of Human DOT1L, a Non-SET Domain Nucleosomal HistoneMethyltransferase. Cell, 112(5):711–723.

Minsky N., Shema E., Field Y., et al. (2008). Monoubiquitinated H2B is asso-ciated with the transcribed region of highly expressed genes in human cells.Nat Cell Biol, 10(4):483–8.

Mohan M., Herz H.M., Takahashi Y.H., et al. (2010). Linking H3K79 trimethy-lation to Wnt signaling through a novel Dot1-containing complex (DotCom).

152

Page 14: UvA-DARE (Digital Academic Repository) Connecting the dots ... · Borkin D., He S., Miao H., et al. (2015). Pharmacologic Inhibition of the Menin-MLL Interaction Blocks Progression

B

Bibliography

Genes Dev, 24(6):574–89.Morgan M.T., Haj-Yahya M., Ringel A.E., et al. (2016). Structural basis for

histone H2B deubiquitination by the SAGA DUB module. Science (80- ),351(6274):725–728.

Moyal L., Lerenthal Y., Gana-Weisz M., et al. (2011). Requirement of ATM-dependent monoubiquitylation of histone H2B for timely repair of DNAdouble-strand breaks. Mol Cell, 41(5):529–42.

Mueller D., Bach C., Zeisig D., et al. (2007). A role for the MLL fusion part-ner ENL in transcriptional elongation and chromatin modification. Blood,110(13):4445–54.

Mueller D., Garcıa-Cuellar M.P., Bach C., et al. (2009). Misguided transcrip-tional elongation causes mixed lineage leukemia. PLoS Biol, 7(11):e1000249.

Muntean A.G., Tan J., Sitwala K., et al. (2010). The PAF complex synergizeswith MLL fusion proteins at HOX loci to promote leukemogenesis. CancerCell, 17(6):609–21.

Musselman C.A., Lalonde M.E., Cote J., and Kutateladze T.G. (2012). Perceiv-ing the epigenetic landscape through histone readers. Nat Struct Mol Biol,19(12):1218–27.

Nagai S., Dubrana K., Tsai-Pflugfelder M., et al. (2008). Functional targeting ofDNA damage to a nuclear pore-associated SUMO-dependent ubiquitin ligase.Science (80- ), 322(5901):597–602.

Nakamura T., Alder H., Gu Y., et al. (1993). Genes on chromosomes 4, 9, and 19involved in 11q23 abnormalities in acute leukemia share sequence homologyand/or common motifs. Proc Natl Acad Sci U S A, 90(10):4631–5.

Nakanishi S., Lee J.S., Gardner K.E., et al. (2009). Histone H2BK123 monoubiq-uitination is the critical determinant for H3K4 and H3K79 trimethylation byCOMPASS and Dot1. J Cell Biol, 186(3):371–7.

Ng H.H., Ciccone D.N., Morshead K.B., Oettinger M.A., and Struhl K. (2003).Lysine-79 of histone H3 is hypomethylated at silenced loci in yeast and mam-malian cells: a potential mechanism for position-effect variegation. Proc NatlAcad Sci U S A, 100(4):1820–5.

Ng H.H., Feng Q., Wang H., et al. (2002). Lysine methylation within theglobular domain of histone H3 by Dot1 is important for telomeric silencingand Sir protein association. Genes Dev, 16(12):1518–27.

Nguyen A.T., Xiao B., Neppl R.L., et al. (2011). DOT1L regulates dystrophinexpression and is critical for cardiac function. Genes Dev, 25(3):263–274.

Nguyen A.T. and Zhang Y. (2011). The diverse functions of Dot1 and H3K79methylation. Genes Dev, 25(13):1345–1358.

Nguyen U.T.T., Bittova L., Muller M.M., et al. (2014). Accelerated chro-matin biochemistry using DNA-barcoded nucleosome libraries. Nat Methods,11(8):834–840.

O’Connor C.M., DiMaggio P.A., Shenk T., and Garcia B.A. (2014). Quantita-tive Proteomic Discovery of Dynamic Epigenome Changes that Control Hu-man Cytomegalovirus (HCMV) Infection. Mol Cell Proteomics, 13(9):2399–2410.

Oh S., Jeong K., Kim H., Kwon C.S., and Lee D. (2010). A lysine-rich region in

153

Page 15: UvA-DARE (Digital Academic Repository) Connecting the dots ... · Borkin D., He S., Miao H., et al. (2015). Pharmacologic Inhibition of the Menin-MLL Interaction Blocks Progression

B

Bibliography

Dot1p is crucial for direct interaction with H2B ubiquitylation and high levelmethylation of H3K79. Biochem Biophys Res Commun, 399(4):512–7.

Okada Y., Feng Q., Lin Y., et al. (2005). hDOT1L links histone methylation toleukemogenesis. Cell, 121(2):167–78.

Oksenych V., Zhovmer A., Ziani S., et al. (2013). Histone MethyltransferaseDOT1L Drives Recovery of Gene Expression after a Genotoxic Attack. PLoSGenet, 9(7):e1003611.

Onder T.T., Kara N., Cherry A., et al. (2012). Chromatin-modifying enzymesas modulators of reprogramming. Nature, 483(7391):598–602.

Ontoso D., Acosta I., van Leeuwen F., Freire R., and San-Segundo P.A. (2013).Dot1-Dependent Histone H3K79 Methylation Promotes Activation of theMek1 Meiotic Checkpoint Effector Kinase by Regulating the Hop1 Adaptor.PLoS Genet, 9(1):e1003262.

Ontoso D., Kauppi L., Keeney S., and San-Segundo P.A. (2014). Dynamicsof DOT1L localization and H3K79 methylation during meiotic prophase I inmouse spermatocytes. Chromosoma, 123(1-2):147–164.

Ooga M., Inoue A., Kageyama S.i., et al. (2008). Changes in H3K79 methylationduring preimplantation development in mice. Biol Reprod, 78(3):413–24.

Osborne E.A., Dudoit S., and Rine J. (2009). The establishment of gene silencingat single-cell resolution. Nat Genet, 41(7):800–6.

O’Sullivan R.J., Kubicek S., Schreiber S.L., and Karlseder J. (2010). Reducedhistone biosynthesis and chromatin changes arising from a damage signal attelomeres. Nat Struct Mol Biol, 17(10):1218–25.

Panier S. and Boulton S.J. (2014). Double-strand break repair: 53BP1 comesinto focus. Nat Rev Mol Cell Biol, 15(1):7–18.

Park G., Gong Z., Chen J., and Kim J.E. (2010a). Characterization of theDOT1L Network: Implications of Diverse Roles for DOT1L. Protein J,29(3):213–223–223.

Park S., Osmers U., Raman G., et al. (2010b). The PHD3 domain of MLL acts asa CYP33-regulated switch between MLL-mediated activation and repression. Biochemistry, 49(31):6576–86.

Peng W., Togawa C., Zhang K., and Kurdistani S.K. (2008). Regulators ofcellular levels of histone acetylation in Saccharomyces cerevisiae. Genetics,179(1):277–89.

Pesavento J.J., Yang H., Kelleher N.L., and Mizzen C.A. (2008). Certain andprogressive methylation of histone H4 at lysine 20 during the cell cycle. MolCell Biol, 28(1):468–86.

Pettersen E.F., Goddard T.D., Huang C.C., et al. (2004). UCSF Chimera–avisualization system for exploratory research and analysis. J Comput Chem,25(13):1605–12.

Piro A.S., Mayekar M.K., Warner M.H., Davis C.P., and Arndt K.M. (2012).Small region of Rtf1 protein can substitute for complete Paf1 complex infacilitating global histone H2B ubiquitylation in yeast. Proc Natl Acad Sci,109(27):10837–10842.

Pokholok D.K., Harbison C.T., Levine S., et al. (2005). Genome-wide map ofnucleosome acetylation and methylation in yeast. Cell, 122(4):517–27.

154

Page 16: UvA-DARE (Digital Academic Repository) Connecting the dots ... · Borkin D., He S., Miao H., et al. (2015). Pharmacologic Inhibition of the Menin-MLL Interaction Blocks Progression

B

Bibliography

Probst A.V., Dunleavy E., and Almouzni G. (2009). Epigenetic inheritanceduring the cell cycle. Nat Rev Mol Cell Biol, 10(3):192–206.

R Core Team (2016). R: A language and environment for statistical computing.R Foundation for Statistical Computing.

Radman-Livaja M., Verzijlbergen K.F., Weiner A., et al. (2011). Patterns andmechanisms of ancestral histone protein inheritance in budding yeast. PLoSBiol, 9(6):e1001075.

Reisenauer M.R., Anderson M., Huang L., et al. (2009). AF17 competes withAF9 for binding to Dot1a to up-regulate transcription of epithelial Na+ chan-nel alpha. J Biol Chem, 284(51):35659–69.

Reisenauer M.R., Wang S.W., Xia Y., and Zhang W. (2010). Dot1a containsthree nuclear localization signals and regulates the epithelial Na+ channel(ENaC) at multiple levels. Am J Physiol Renal Physiol, 299(1):F63–76.

Richon V.M., Johnston D., Sneeringer C.J., et al. (2011). Chemogenetic Anal-ysis of Human Protein Methyltransferases. Chem Biol Drug Des, 78(2):199–210.

Rodrıguez C.I., Buchholz F., Galloway J., et al. (2000). High-efficiency deletermice show that FLPe is an alternative to Cre-loxP. Nat Genet, 25(2):139–40.

Rossmann M.P., Luo W., Tsaponina O., Chabes A., and Stillman B. (2011). Acommon telomeric gene silencing assay is affected by nucleotide metabolism.Mol Cell, 42(1):127–36.

Rossodivita A.A., Boudoures A.L., Mecoli J.P., et al. (2014). Histone H3 K79methylation states play distinct roles in UV-induced sister chromatid ex-change and cell cycle checkpoint arrest in Saccharomyces cerevisiae. NucleicAcids Res, 42(10):6286–6299.

Rothbart S.B., Dickson B.M., Raab J.R., et al. (2015). An Interactive Databasefor the Assessment of Histone Antibody Specificity. Mol Cell, 59(3):502–511.

Rubnitz J., Morrissey J., Savage P., and Cleary M. (1994). ENL, the gene fusedwith HRX in t(11;19) leukemias, encodes a nuclear protein with transcrip-tional activation potential in lymphoid and myeloid cells. Blood, 84(6):1747–1752.

Sabra M., Texier P., El Maalouf J., and Lomonte P. (2013). The tudor proteinsurvival motor neuron (SMN) is a chromatin-binding protein that interactswith methylated histone H3 lysine 79. J Cell Sci, (June).

Sadeh R., Launer-Wachs R., Wandel H., Rahat A., and Friedman N. (2016).Elucidating Combinatorial Chromatin States at Single-Nucleosome Resolu-tion. Mol Cell, 63(6):1080–8.

Sadhu M.J., Guan Q., Li F., et al. (2013). Nutritional control of epigeneticprocesses in yeast and human cells. Genetics, 195(3):831–44.

San-Segundo P.A. and Roeder G.S. (2000). Role for the Silencing Protein Dot1in Meiotic Checkpoint Control. Mol Biol Cell, 11(10):3601–3615.

Santoro F., Botrugno O.A., Dal Zuffo R., et al. (2013). A dual role for Hdac1:oncosuppressor in tumorigenesis, oncogene in tumor maintenance. Blood,121(17):3459–3468.

Sawada K., Yang Z., Horton J.R., et al. (2004). Structure of the conserved coreof the yeast Dot1p, a nucleosomal histone H3 lysine 79 methyltransferase. J

155

Page 17: UvA-DARE (Digital Academic Repository) Connecting the dots ... · Borkin D., He S., Miao H., et al. (2015). Pharmacologic Inhibition of the Menin-MLL Interaction Blocks Progression

B

Bibliography

Biol Chem, 279(41):43296–306.Scharf A.N.D., Barth T.K., and Imhof A. (2009a). Establishment of histone

modifications after chromatin assembly. Nucleic Acids Res, 37(15):5032–40.Scharf A.N.D. and Imhof A. (2011). Every methyl counts - Epigenetic calculus.

FEBS Lett, 585(13):2001–2007.Scharf A.N.D., Meier K., Seitz V., et al. (2009b). Monomethylation of Lysine 20

on Histone H4 Facilitates Chromatin Maturation. Mol Cell Biol, 29(1):57–67.Scheuermann J.C., de Ayala Alonso A.G., Oktaba K., et al. (2010). Histone

H2A deubiquitinase activity of the Polycomb repressive complex PR-DUB.Nature, 465(7295):243–7.

Schneider B.L., Steiner B., Seufert W., and Futcher A.B. (1996). pMPY-ZAP:a reusable polymerase chain reaction-directed gene disruption cassette forSaccharomyces cerevisiae. Yeast, 12(2):129–34.

Schubeler D., MacAlpine D.M., Scalzo D., et al. (2004). The histone modifica-tion pattern of active genes revealed through genome-wide chromatin analysisof a higher eukaryote. Genes Dev, 18(11):1263–71.

Schulze J.M., Hentrich T., Nakanishi S., et al. (2011). Splitting the task: Ubp8and Ubp10 deubiquitinate different cellular pools of H2BK123. Genes Dev,25(21):2242–2247.

Schulze J.M., Jackson J., Nakanishi S., et al. (2009). Linking cell cycle to histonemodifications: SBF and H2B monoubiquitination machinery and cell-cycleregulation of H3K79 dimethylation. Mol Cell, 35(5):626–41.

Shahbazian M.D., Zhang K., and Grunstein M. (2005). Histone H2B ubiquity-lation controls processive methylation but not monomethylation by Dot1 andSet1. Mol Cell, 19(2):271–7.

Shanower G.A., Muller M., Blanton J.L., et al. (2005). Characterization of thegrappa gene, the Drosophila histone H3 lysine 79 methyltransferase. Genetics,169(1):173–84.

Shi J. and Petrie H.T. (2012). Activation kinetics and off-target effects ofthymus-initiated cre transgenes. PLoS One, 7(10):e46590.

Shiloh Y., Shema E., Moyal L., and Oren M. (2011). RNF20RNF40: Aubiquitin-driven link between gene expression and the DNA damage response.FEBS Lett, 585(18):2795–2802.

Siebold A.P., Banerjee R., Tie F., et al. (2010). Polycomb Repressive Complex2 and Trithorax modulate Drosophila longevity and stress resistance. ProcNatl Acad Sci U S A, 107(1):169–74.

Skarnes W.C., Rosen B., West A.P., et al. (2011). A conditional knock-out resource for the genome-wide study of mouse gene function. Nature,474(7351):337–342.

Smith B.C. and Denu J.M. (2009). Chemical mechanisms of histone lysine andarginine modifications. Biochim Biophys Acta - Gene Regul Mech, 1789(1):45–57.

Smolle M. and Workman J.L. (2013). Transcription-associated histone modifi-cations and cryptic transcription. Biochim Biophys Acta, 1829(1):84–97.

Soares L.M. and Buratowski S. (2013). Histone Crosstalk: H2Bub and H3K4Methylation. Mol Cell, 49(6):1019–20.

156

Page 18: UvA-DARE (Digital Academic Repository) Connecting the dots ... · Borkin D., He S., Miao H., et al. (2015). Pharmacologic Inhibition of the Menin-MLL Interaction Blocks Progression

B

Bibliography

Soria-Valles C., Osorio F.G., Gutierrez-Fernandez A., et al. (2015). NF-κBactivation impairs somatic cell reprogramming in ageing. Nat Cell Biol,17(8):1004–13.

Speranzini V., Pilotto S., Sixma T.K., and Mattevi A. (2016). Touch, act andgo: landing and operating on nucleosomes. EMBO J, 35(4):376–388.

Steger D.J., Lefterova M.I., Ying L., et al. (2008). DOT1L/KMT4 recruitmentand H3K79 methylation are ubiquitously coupled with gene transcription inmammalian cells. Mol Cell Biol, 28(8):2825–39.

Stein E.M. and Tallman M.S. (2015). Mixed lineage rearranged leukaemia:pathogenesis and targeting DOT1L. Curr Opin Hematol, 22(2):92–6.

Struys E.A., Jansen E.E., de Meer K., and Jakobs C. (2000). Determinationof S-adenosylmethionine and S-adenosylhomocysteine in plasma and cere-brospinal fluid by stable-isotope dilution tandem mass spectrometry. ClinChem, 46(10):1650–6.

Stulemeijer I.J., Pike B.L., Faber A.W., et al. (2011). Dot1 binding induces chro-matin rearrangements by histone methylation-dependent and -independentmechanisms. Epigenetics Chromatin, 4(1):2.

Stulemeijer I.J.E., De Vos D., van Harten K., et al. (2015). Dot1 histone methyl-transferases share a distributive mechanism but have highly diverged catalyticproperties. Sci Rep, 5:9824.

Su X.A., Dion V., Gasser S.M., and Freudenreich C.H. (2015). Regulationof recombination at yeast nuclear pores controls repair and triplet repeatstability. Genes Dev, 29(10):1006–1017.

Sun Z.W. and Allis C.D. (2002). Ubiquitination of histone H2B regulates H3methylation and gene silencing in yeast. Nature, 418(6893):104–8.

Suzuki H., Takatsuka S., Akashi H., et al. (2011). Genome-wide Profiling ofChromatin Signatures Reveals Epigenetic Regulation of MicroRNA Genes inColorectal Cancer. Cancer Res, 71(17):5646–5658.

Sweet S.M.M., Li M., Thomas P.M., Durbin K.R., and Kelleher N.L. (2010).Kinetics of Re-establishing H3K79 Methylation Marks in Global Human Chro-matin. J Biol Chem, 285(43):32778–32786.

Takahashi Y.H., Schulze J.M., Jackson J., et al. (2011). Dot1 and HistoneH3K79 Methylation in Natural Telomeric and HM Silencing. Mol Cell,42(1):118–26.

Tan J., Jones M., Koseki H., et al. (2011a). CBX8, a Polycomb Group Protein,Is Essential for MLL-AF9-Induced Leukemogenesis. Cancer Cell, 20(5):563–575.

Tan M., Luo H., Lee S., et al. (2011b). Identification of 67 Histone Marks andHistone Lysine Crotonylation as a New Type of Histone Modification. Cell,146(6):1016–1028.

Taylor B.S., DeCarolis P.L., Angeles C.V., et al. (2011). Frequent Alterationsand Epigenetic Silencing of Differentiation Pathway Genes in StructurallyRearranged Liposarcomas. Cancer Discov, 1(7):587–597.

Terweij M., van Welsem T., van Deventer S., et al. (2013). Recombination-induced tag exchange (RITE) cassette series to monitor protein dynamics inSaccharomyces cerevisiae. G3, 3(8):1261–72.

157

Page 19: UvA-DARE (Digital Academic Repository) Connecting the dots ... · Borkin D., He S., Miao H., et al. (2015). Pharmacologic Inhibition of the Menin-MLL Interaction Blocks Progression

B

Bibliography

Tessarz P. and Kouzarides T. (2014). Histone core modifications regulatingnucleosome structure and dynamics. Nat Rev Mol Cell Biol, 15(11):703–708.

Thiel A.T., Blessington P., Zou T., et al. (2010). MLL-AF9-induced leuke-mogenesis requires coexpression of the wild-type Mll allele. Cancer Cell,17(2):148–59.

Thornton J.L., Westfield G.H., Takahashi Y.H., et al. (2014). Context depen-dency of Set1/COMPASS-mediated histone H3 Lys4 trimethylation. GenesDev, 28(2):115–20.

Tong A.H.Y. and Boone C. (2006). Synthetic Genetic Array Analysis in Sac-charomyces cerevisiae. In Yeast Protoc, volume 313, pages 171–192. HumanaPress, New Jersey.

Tong Q., Cui G., Botuyan M.V., et al. (2015). Structural plasticity of methylly-sine recognition by the tandem tudor domain of 53BP1. Structure, 23(2):312–21.

Tsalik E.L. and Gartenberg M.R. (1998). Curing Saccharomyces cerevisiae ofthe 2 micron plasmid by targeted DNA damage. Yeast, 14(9):847–52.

Tsunaka Y., Kajimura N., Tate S.i., and Morikawa K. (2005). Alteration of thenucleosomal DNA path in the crystal structure of a human nucleosome coreparticle. Nucleic Acids Res, 33(10):3424–3434.

Tu S., Bulloch E.M.M., Yang L., et al. (2007). Identification of histone demethy-lases in Saccharomyces cerevisiae. J Biol Chem, 282(19):14262–71.

Vaisica J.A., Baryshnikova A., Costanzo M., Boone C., and Brown G.W. (2011).Mms1 and Mms22 stabilize the replisome during replication stress. Mol BiolCell, 22(13):2396–2408.

Vakoc C.R., Sachdeva M.M., Wang H., and Blobel G.A. (2006). Profile ofhistone lysine methylation across transcribed mammalian chromatin. MolCell Biol, 26(24):9185–95.

van Leeuwen F., Frederiks F., Terweij M., De Vos D., and Bakker B.M. (2012).News about old histones: A role for histone age in controlling the epigenome.Cell Cycle, 11(1):11–12.

Van Leeuwen F., Gafken P.R., and Gottschling D.E. (2002). Dot1p ModulatesSilencing in Yeast by Methylation of the Nucleosome Core. Cell, 109(6):745–756.

Van Leeuwen F. and Gottschling D.E. (2002). Assays for gene silencing in yeast.In Methods Enzymol, volume 350, pages 165–186.

Van Oevelen C.J.C., Van Teeffelen H.A.A.M., Van Werven F.J., and TimmersH.T.M. (2006). Snf1p-dependent Spt-Ada-Gcn5-acetyltransferase (SAGA) re-cruitment and chromatin remodeling activities on the HXT2 and HXT4 pro-moters. J Biol Chem, 281(7):4523–31.

Van Welsem T., Frederiks F., Verzijlbergen K.F., et al. (2008). Synthetic LethalScreens Identify Gene Silencing Processes in Yeast and Implicate the Acety-lated Amino Terminus of Sir3 in Recognition of the Nucleosome Core. MolCell Biol, 28(11):3861–3872.

Veloso A., Kirkconnell K.S., Magnuson B., et al. (2014). Rate of elongation byRNA polymerase II is associated with specific gene features and epigeneticmodifications. Genome Res, 24(6):896–905.

158

Page 20: UvA-DARE (Digital Academic Repository) Connecting the dots ... · Borkin D., He S., Miao H., et al. (2015). Pharmacologic Inhibition of the Menin-MLL Interaction Blocks Progression

B

Bibliography

Venkatesh S. and Workman J.L. (2015). Histone exchange, chromatin structureand the regulation of transcription. Nat Rev Mol Cell Biol, 16(3):178–189.

Verzijlbergen K.F., Menendez-Benito V., van Welsem T., et al. (2010).Recombination-induced tag exchange to track old and new proteins. ProcNatl Acad Sci U S A, 107(1):64–8.

Verzijlbergen K.F., van Welsem T., Sie D., et al. (2011). A Barcode Screen forEpigenetic Regulators Reveals a Role for the NuB4/HAT-B Histone Acetyl-transferase Complex in Histone Turnover. PLoS Genet, 7(10):e1002284.

Vitaliano-Prunier A., Menant A., Hobeika M., et al. (2008). Ubiquitylation ofthe COMPASS component Swd2 links H2B ubiquitylation to H3K4 trimethy-lation. Nat Cell Biol, 10(11):1365–71.

Vlaming H., Molenaar T.M., van Welsem T., et al. (2016). Direct screeningfor chromatin status on DNA barcodes in yeast delineates the regulome ofH3K79 methylation by Dot1. Elife, 5.

Vlaming H. and Van Leeuwen F. (2012). Crosstalk between aging and theepigenome. Epigenomics, 4(1):5–7.

Vlaming H. and van Leeuwen F. (2016). The upstreams and downstreams ofH3K79 methylation by DOT1L. Chromosoma, 125(4):593–605.

Vlaming H., van Welsem T., de Graaf E.L., et al. (2014). Flexibility incrosstalk between H2B ubiquitination and H3 methylation in vivo. EMBORep, 15(10):1077–1084.

Wagner T., Robaa D., Sippl W., and Jung M. (2014). Mind the methyl:methyllysine binding proteins in epigenetic regulation. ChemMedChem,9(3):466–83.

Wakeman T.P., Wang Q., Feng J., and Wang X.F. (2012). Bat3 facilitatesH3K79 dimethylation by DOT1L and promotes DNA damage-induced 53BP1foci at G1/G2 cell-cycle phases. EMBO J, 31(9):2169–81.

Wang E., Kawaoka S., Yu M., et al. (2013). Histone H2B ubiquitin ligaseRNF20 is required for MLL-rearranged leukemia. Proc Natl Acad Sci U S A,110(10):3901–6.

Wang X., Chen C.W., and Armstrong S.A. (2016). The role of DOT1L in themaintenance of leukemia gene expression. Curr Opin Genet Dev, 36:68–72.

Wang X., Gao W., Ma X., et al. (2014). Dot1L mediated histone H3 lysine79methylation is essential to meiosis progression in mouse oocytes. Neuro En-docrinol Lett, 35(6):523–30.

Wang Z., Zang C., Rosenfeld J.A., et al. (2008). Combinatorial patterns ofhistone acetylations and methylations in the human genome. Nat Genet,40(7):897–903.

Weake V.M. and Workman J.L. (2008). Histone Ubiquitination: TriggeringGene Activity. Mol Cell, 29(6):653–663.

Weinberger L., Voichek Y., Tirosh I., et al. (2012). Expression Noise and Acety-lation Profiles Distinguish HDAC Functions. Mol Cell, 47(2):193–202.

Weiner A., Hsieh T.H.S.S., Appleboim A., et al. (2015). High-Resolution Chro-matin Dynamics during a Yeast Stress Response. Mol Cell, 58(2):371–386.

West A.C. and Johnstone R.W. (2014). New and emerging HDAC inhibitorsfor cancer treatment. J Clin Invest, 124(1):30–39.

159

Page 21: UvA-DARE (Digital Academic Repository) Connecting the dots ... · Borkin D., He S., Miao H., et al. (2015). Pharmacologic Inhibition of the Menin-MLL Interaction Blocks Progression

B

Bibliography

White C.L., Suto R.K., and Luger K. (2001). Structure of the yeast nucleo-some core particle reveals fundamental changes in internucleosome interac-tions. EMBO J, 20(18):5207–18.

Williamson A., Werner A., and Rape M. (2013). The Colossus of Ubiquitylation:Decrypting a Cellular Code. Mol Cell, 49(4):591–600.

Wolfram Research, Inc (2007). Mathematica. Wolfram Research, Inc., version6. edition.

Woo Park J., Kim K.B., Kim J.Y., et al. (2015). RE-IIBP Methylates H3K79and Induces MEIS1-mediated Apoptosis via H2BK120 Ubiquitination byRNF20. Sci Rep, 5:12485.

Wood A., Krogan N.J., Dover J., et al. (2003). Bre1, an E3 Ubiquitin LigaseRequired for Recruitment and Substrate Selection of Rad6 at a Promoter.Mol Cell, 11(1):267–274.

Wood J.G., Hillenmeyer S., Lawrence C., et al. (2010). Chromatin remodelingin the aging genome of Drosophila. Aging Cell, 9(6):971–8.

Wu H., Chen L., Zhang X., et al. (2013a). Aqp5 Is a New Transcriptional Targetof Dot1a and a Regulator of Aqp2. PLoS One, 8(1):e53342.

Wu H., Zeng H., Lam R., et al. (2011a). Structural and Histone Binding AbilityCharacterizations of Human PWWP Domains. PLoS One, 6(6):e18919.

Wu L., Lee S.Y., Zhou B., et al. (2013b). ASH2L Regulates Ubiquitylation Sig-naling to MLL: trans-Regulation of H3 K4 Methylation in Higher Eukaryotes.Mol Cell, 49(6):1108–1120.

Wu L., Li L., Zhou B., Qin Z., and Dou Y. (2014). H2B Ubiquitylation PromotesRNA Pol II Processivity via PAF1 and pTEFb. Mol Cell, 54(6):920–31.

Wu L., Zee B.M., Wang Y., Garcia B.A., and Dou Y. (2011b). The RING FingerProtein MSL2 in the MOF Complex Is an E3 Ubiquitin Ligase for H2B K34and Is Involved in Crosstalk with H3 K4 and K79 Methylation. Mol Cell,43(1):132–44.

Wu P.Y.J., Ruhlmann C., Winston F., and Schultz P. (2004). Molecular archi-tecture of the S. cerevisiae SAGA complex. Mol Cell, 15(2):199–208.

Wu R., Yue Y., Zheng X., and Li H. (2015). Molecular basis for histone N-terminal methylation by NRMT1. Genes Dev, 29(22):2337–42.

Wysocki R., Javaheri A., Allard S., et al. (2005). Role of Dot1-Dependent His-tone H3 Methylation in G1 and S Phase DNA Damage Checkpoint Functionsof Rad9. Mol Cell Biol, 25(19):8430–8443.

Xie Y., Kerscher O., Kroetz M.B., et al. (2007). The Yeast Hex3.Slx8 Het-erodimer Is a Ubiquitin Ligase Stimulated by Substrate Sumoylation. J BiolChem, 282(47):34176–34184.

Xu M., Wang W., Chen S., and Zhu B. (2011). A model for mitotic inheritanceof histone lysine methylation. EMBO Rep, 13(1):60–67.

Xu Y., Zhang M., Li W., et al. (2016). Transcriptional Control of Somatic CellReprogramming. Trends Cell Biol, 26(4):272–288.

Xue Y., Van C., Pradhan S.K., et al. (2015). The Ino80 complex preventsinvasion of euchromatin into silent chromatin. Genes Dev, 29(4):350–5.

Yan Z., Costanzo M., Heisler L.E., et al. (2008). Yeast Barcoders: a chemoge-nomic application of a universal donor-strain collection carrying barcode iden-

160

Page 22: UvA-DARE (Digital Academic Repository) Connecting the dots ... · Borkin D., He S., Miao H., et al. (2015). Pharmacologic Inhibition of the Menin-MLL Interaction Blocks Progression

B

Bibliography

tifiers. Nat Methods, 5(8):719–25.Yang A., Ha S., Ahn J., et al. (2016). A chemical biology route to site-specific

authentic protein modifications. Science (80- ), 354(6312):623–626.Yang L., Lin C., Jin C., et al. (2013). lncRNA-dependent mecha-

nisms of androgen-receptor-regulated gene activation programs. Nature,500(7464):598–602.

Yang X.J. and Seto E. (2008). The Rpd3/Hda1 family of lysine deacetylases:from bacteria and yeast to mice and men. Nat Rev Mol Cell Biol, 9(3):206–18.

Yao X., Tang Z., Fu X., et al. (2015). The Mediator subunit MED23 couples H2Bmono-ubiquitination to transcriptional control and cell fate determination.EMBO J, page e201591279.

Yokoyama A., Lin M., Naresh A., Kitabayashi I., and Cleary M.L. (2010). Ahigher-order complex containing AF4 and ENL family proteins with P-TEFbfacilitates oncogenic and physiologic MLL-dependent transcription. CancerCell, 17(2):198–212.

Yu W., Chory E.J., Wernimont A.K., et al. (2012). Catalytic site remodelling ofthe DOT1L methyltransferase by selective inhibitors. Nat Commun, 3:1288.

Zee B.M., Levin R.S., Dimaggio P.A., and Garcia B.A. (2010a). Global turnoverof histone post-translational modifications and variants in human cells. Epi-genetics Chromatin, 3(1):22.

Zee B.M., Levin R.S., Xu B., et al. (2010b). In vivo residue-specific histonemethylation dynamics. J Biol Chem, 285(5):3341–50.

Zentner G.E. and Henikoff S. (2013). Regulation of nucleosome dynamics byhistone modifications. Nat Struct Mol Biol, 20(3):259–266.

Zhang L., Deng L., Chen F., et al. (2014). Inhibition of histone H3K79 methy-lation selectively inhibits proliferation, self-renewal and metastatic potentialof breast cancer. Oncotarget, 5(21):10665–10677.

Zhang L., Ma H., and Pugh B. (2011). Stable and dynamic nucleosome statesduring a meiotic developmental process. Genome Res, 21(6):875–884.

Zhang T., Cooper S., and Brockdorff N. (2015). The interplay of histone modi-fications - writers that read. EMBO Rep, 16(11):1467–1481.

Zhang W., Hayashizaki Y., and Kone B.C. (2004). Structure and regulation ofthe mDot1 gene, a mouse histone H3 methyltransferase. Biochem J, 377(Pt3):641–51.

Zhang W., Xia X., Jalal D.I., et al. (2006a). Aldosterone-sensitive repression ofENaCalpha transcription by a histone H3 lysine-79 methyltransferase. Am JPhysiol Cell Physiol, 290(3):C936–46.

Zhang W., Xia X., Reisenauer M.R., Hemenway C.S., and Kone B.C. (2006b).Dot1a-AF9 complex mediates histone H3 Lys-79 hypermethylation and re-pression of ENaCalpha in an aldosterone-sensitive manner. J Biol Chem,281(26):18059–68.

Zhang W., Xia X., Reisenauer M.R., et al. (2007). Aldosterone-induced Sgk1 re-lieves Dot1a-Af9-mediated transcriptional repression of epithelial Na+ chan-nel alpha. J Clin Invest, 117(3):773–83.

Zhang Z. and Zhang M.Q. (2011). Histone modification profiles are predictivefor tissue/cell-type specific expression of both protein-coding and microRNA

161

Page 23: UvA-DARE (Digital Academic Repository) Connecting the dots ... · Borkin D., He S., Miao H., et al. (2015). Pharmacologic Inhibition of the Menin-MLL Interaction Blocks Progression

B

Bibliography

genes. BMC Bioinformatics, 12(1):155.Zhao X. and Blobel G. (2005). A SUMO ligase is part of a nuclear multiprotein

complex that affects DNA repair and chromosomal organization. Proc NatlAcad Sci U S A, 102(13):4777–82.

Zheng S., Wyrick J.J., and Reese J.C. (2010). Novel trans-tail regulation of H2Bubiquitylation and H3K4 methylation by the N terminus of histone H2A. MolCell Biol, 30(14):3635–45.

Zhou L., Holt M.T., Ohashi N., et al. (2016). Evidence that ubiquitylated H2Bcorrals hDot1L on the nucleosomal surface to induce H3K79 methylation. NatCommun, 7:10589.

Zhu B., Mandal S.S., Pham A.D., et al. (2005a). The human PAF complexcoordinates transcription with events downstream of RNA synthesis. GenesDev, 19(14):1668–73.

Zhu B., Zheng Y., Pham A.D., et al. (2005b). Monoubiquitination of HumanHistone H2B: The Factors Involved and Their Roles in HOX Gene Regulation.Mol Cell, 20(4):601–611.

162


Recommended