+ All Categories
Home > Documents > V. Fourier transform

V. Fourier transform

Date post: 23-Feb-2016
Category:
Upload: kevork
View: 94 times
Download: 1 times
Share this document with a friend
Description:
V. Fourier transform. 5-1. Definition of Fourier Transform. * The Fourier transform of a function f ( x ) is defined as. The inverse Fourier transform , . 3-D: the Fourier transform of a function f ( x , y , z ). Note that. ux + vy + wz : can be considered as a scalar - PowerPoint PPT Presentation
Popular Tags:
43
V. Fourier transform . Definition of Fourier Transform e Fourier transform of a function f(x) efined as The inverse Fourier transform, dx e x f u F x f F iux 2 ) ( ) ( ) ( 1 F du e u F x f x f F F x f iux 2 1 ) ( ) ( ) ( ) (
Transcript
Page 1: V. Fourier  transform

V. Fourier transform5-1. Definition of Fourier Transform

* The Fourier transform of a function f(x) is defined as

dxexfuFxfF iux2)()()(

The inverse Fourier transform, 1F

dueuFxf

xfFFxfiux2

1

)()(

)()(

Page 2: V. Fourier  transform

3-D: the Fourier transform of a function f(x,y,z)

dxdydzezyxfwvuF wzvyuxi )(2),,(),,(

Note that zzyyxxr ˆˆˆ wwvvuuu ˆˆˆ

ux+vy+wz: can be considered as a scalarproduct of if the following conditions are met!

ur

1ˆˆ ;0ˆˆ ;0ˆˆ0ˆˆ ;1ˆˆ ;0ˆˆ0ˆˆ ;0ˆˆ ;1ˆˆ

wzvzuzwyvyuywxvxux

wzvyuxur

Page 3: V. Fourier  transform

Therefore,

rderfuFrfF uri 2)()()(

the vector may be considered as a vector in “Fourier transform space”

u

The inverse Fourier transform in 3-D space:

udeuFrfuFF uri 21 )()()(

Page 4: V. Fourier  transform

5-2. Dirac delta function

axax

axfor 0for

)(

1)(

dxax

Generalized function: the limit of a sequenceof functions

Start with the normalized Gaussian functions2

)( nxn enxg

2

1

n

: standard Gaussian width parameter

1)(

dxxgn

Page 5: V. Fourier  transform

Gaussian Integration:

dxeG x2

dxdyedyedxeG yxyx )(2 2222

dxdy: integration over a surface change to polar coordinate (r, )

rrd

dr

sin ;cos ryrx 222 ryx

2

0 0

2 2

rdrdeG r

Star from

1/2 GG ;2

Page 6: V. Fourier  transform

?2

dxe nx Let xny dxndy

dyenn

dyedxe yynx 222 1n

2

)( nxn enxg

1)(

dxxgn

Consider sequence of function21)(1

xexg

222

2)( xexg

2256256

256)( xexg );......( );( 43 xgxg

Page 8: V. Fourier  transform

What happen when n =

(a)(b)(c)(d)

)0(g0)0( xg

the width of the center peak = 01)(

dxxg

The sequence only useful if it appears as partof an integral, e.g.

dxxfendxxfxg nx

nnn)(lim)()(lim

2

Only f(0) is important

)0(lim)0(2

fdxenf nx

n

Page 9: V. Fourier  transform

dxxfxfdxxfen nx

n)()()0()(lim

2

Dirac Delta Function: limit of Gaussiandistribution function

2

lim)( nx

nenx

There are infinitely many sequences that canbe used to define the delta function

dxxdxen nx

n)(1lim

2

)'()()'( xfdxxfxx

Page 10: V. Fourier  transform

Dirac delta function is an even function

dueuFxf iux2)()(

')'()( '2 dxexfuF iux

duedxexfxf iuxiux 2'2 ')'()(

')'()( 2'2 dxdueexfxf iuxiux

)'(2 xxiue

Note that

')'()'()( dxxxxfxf =

duexx xxiu )'(2)'(

duey iuy 2)( y

Page 11: V. Fourier  transform

Similar

dxexfuF iux2)()(

dxedueuFuF iuxxiu 2'2 ')'()(

')'()( )'(2 dudxeuFuF xuui

')'()'()( duuuufuF

dxeuu xuui )'(2)'(

uuy 'Let

dxey iyx 2)(

duey iuy 2)(Compare to )()( yy

Page 12: V. Fourier  transform

5-3. A number of general relationships maybe written for any function f(x)real or complex.

Real Space Fourier Transform Spacef(x) F(u)f(-x) -F(-u)f(ax) F(u/a)/a

f(x)+g(x) F(u)+G(u)f(x-a) e-2iauF(u)

df(x)/dx 2iuF(u)dnf(x)/dxn (2iu)nF(u)

Page 13: V. Fourier  transform

Example

(1)

auF

aaxfF 1)}({

dxeaxfaxfF iux2)()}({

Set X = ax

adXeXfaufF a

Xiu2)()}({

dXeXf

aaufF

Xaui2

)(1)}({

auF

a1

Page 14: V. Fourier  transform

(2) uFeaxfF iau2)}({

dxeaxfaxfF iux2)()}({

Set X = x - a

)()()}({ a)(2 aXdeXfaxfF Xiu

dXeXfaxfF Xiu a)(2)()}({

dXeXfe iuXiu 2a2 )(

uF

uFeaxfF iau2)}({

Page 15: V. Fourier  transform

(3) uiuFdx

xdfF 2})({

dxedx

xdfdx

xdfF iux2)(})({

dueuFxf

xfFFxfiux2

1

)()(

)()(

dxedueuF

dxd

dxxdfF iuxxiu 2'2 ')'(})({

dxedu

dxdeuF

dxxdfF iux

xiu

2

'2

')'(})({

dxedueiuuF

dxxdfF iuxxiu 2'2 ''2)'(})({

Page 16: V. Fourier  transform

')'('2})({ )'(2 dudxeuFiu

dxxdfF xuui

')'()'('2})({ duuuuFiu

dxxdfF

)'( uu

)(2})({ uiuFdx

xdfF

Page 17: V. Fourier  transform

5-4. Fourier transform and diffraction(i) point source or point aperture

A small aperture in 1-D: (x) or (x-a).Fourier transform the function Fraunhofer diffraction pattern

For (x):

dxxedxexxF iuiux )()()}({ 022

= 1 = 1= 1

The intensity is proportional 1|)(| 2uF

Page 18: V. Fourier  transform

For (x-a):

dxeaxaxF iux 2)()}({

The intensity is proportional 1|)(| 2uF

dXeXXF aXiu )(2)()}({

Set X = x-a

dXeXe iuXiua 22 )(

iuaeaxF 2)}({

The difference between the point source atx = 0 and x = a is the phase difference.

Page 19: V. Fourier  transform

(ii) a slit function

2|| when12|| when0

)(bxbx

xf

dxexfuFxfF iux2)()()}({

uub

iuee

iueuF

iubiubb

b

iux

)sin(22

)(2/

2/

2

2/

2/

22/

2/

2 )2(21)(

b

b

iuxb

b

iux iuxdeiu

dxeuF

c.f. the kinematic diffraction from a slit

Page 20: V. Fourier  transform

c.f. the kinematic diffraction from a slit

Chapter 4 ppt p.28

ububbuF

)sin()(

sin

2sin2

2sin bbkbub

sin

u

2sin

2sinsin~

~ )('

kb

kb

eRbE tkRiL

Page 21: V. Fourier  transform

(iii) a periodic array of narrow slits

n

naxxf )()(

dxexfuFxfF iux2)()()}({

dxenaxuF iux

n

2)()(

n

iuxdxenaxuF 2)()(

n

iuna

n

iuna edxnaxeuF 22 )()(

Page 22: V. Fourier  transform

xx

n

n

11

1)(0

20

22

n

iuna

n

iuna

n

iuna eeeuF

0

2

n

iunae

1)(0

2

0

2

n

niua

n

niua eeuF

11

11

1)( 22

iuaiua eeuF

Page 23: V. Fourier  transform

11

11

1)( 22

iuaiua eeuF

Discussion12 iuae For

1)1)(1(

11)( 22

22

iuaiua

iuaiua

eeeeuF

= 1

0)( uF

12 iuae For )(uF

It occurs at the condition)2sin()2cos(12 uaiuae iua

hua 22 h: integerhua

Page 24: V. Fourier  transform

In other words,

h

huauF )()(

||)()(

axax Note that

dxxadxax )|(|)( Set xax ||

||1

||)()|(|

aaxdxdxxa

1)(

dxx

0for 00for

)(xx

x

Page 25: V. Fourier  transform

The Fourier transform of f(x)

hh ahuahuauF )()()(

h a

hua

uF )(1)( where a > 0

Hence, the Fourier transform of a set ofequally spaced delta functions with a perioda in x space a set of equally spaced delta functionswith a period 1/a in u space

Page 26: V. Fourier  transform

Similarly, a periodic 3-D lattice in real space;(a, b, c)

m n p

pcznbymaxr ),,()(

)()}({ uFrF

rdepcznbymax rui

m n p

2),,(

h k l c

lwbkv

ahu

abc)()()(1

This is equivalent to a periodic lattice inreciprocal lattice (1/a 1/b 1/c).

Page 27: V. Fourier  transform

(iv) Arbitrary periodic function

h

aihxheFxf /2)(

http://en.wikipedia.org/wiki/Fourier_series

)()}({ uFxfF

dxeeF iux

h

aihxh

2/2

dxeeF iuxaihx

hh

2/2

dxeF xahui

hh

)(2

)(ahuF

hh

Page 28: V. Fourier  transform

Hence, the F(u) ; i.e. diffracted amplitude,is represented by a set of delta functions equally spaced with separation 1/a and eachdelta function has “weight”, Fh, that is equalto the Fourier coefficient.

Page 29: V. Fourier  transform

5-5. ConvolutionThe convolution integral of f(x) and g(x) isdefined as

dXXxgXfxgxfxc )()()()()(

Page 30: V. Fourier  transform

examples:(1) prove that f(x) g(x) = g(x) f(x)

dXXxgXfxgxfxc )()()()()(

Set Y = x - X

)()()()()( YxdYgYxfxgxf

dYYgYxfxgxf )()()()(

)()( xfxg

Page 31: V. Fourier  transform

(2) Prove that )()()( xfxxf

dXXxXfxxf )()()()(

)()()()()( xfdXXxxfxxf

(3) Multiplication theoremIf )()}({ );()}({ uGxgFuFxfF

then )()()}()({ uGuFxgxfF

(4) Convolution theorem (proof next page)If )()}({ );()}({ uGxgFuFxfF

then )()()}()({ uGuFxgxfF

Page 32: V. Fourier  transform

Proof: Convolution theorem

dxedXXxgXfxgxfF iux2)()()}()({

dxedXXxgeXf XxiuiuX )(22 )()(

)()()( )(22 XxdedXXxgeXf XxiuiuX

)()()( )(22 XxdeXxgdXeXf XxiuiuX

= F(u) = G(u))()( uGuF

Page 33: V. Fourier  transform

Example: diffraction grating

2/)1(

2/)1(

)()()(Nn

Nn

xgnaxxf a single slit orruling function

a set of N delta function

2/)1(

2/)1(

)()()}({Nn

Nn

xgnaxFxfF

dxenaxnaxF iunaNn

Nn

Nn

Nn

22/)1(

2/)1(

2/)1(

2/)1(

)()(

dxnaxeNn

Nn

iuna )(2/)1(

2/)1(

2

2/)1(

2/)1(

2Nn

Nn

iunae

Page 34: V. Fourier  transform

)()( uGxgF

)()sin()sin()}({ uG

uauNaxfF

1

0

2)1(2/)1(

2/)1(

2Nn

n

iunaaNiuNn

Nn

iuna eee

iua

iuNaaNiu

eee

2

2)1(

11

)()()1(

iuaiuaiua

iuNaiuNaiuNaaNiu

eeeeeee

)sin()sin(

uauNa

Page 35: V. Fourier  transform

Supplement # 1Fourier transform of a Gaussian function isalso a Gaussian function.Suppose that f(x) is a Gaussian function

22

)( xaexf

dxeeuFxfF iuxxa 222

)()}({

dxee aiu

aiuax

22

22

2

2)(

)(

yiuxax

yax

aiuy

iuxaxy

22Define aiuax

adxd

Page 36: V. Fourier  transform

a

deeuF aiu

2

2

)(

deea

uF au

2

2

1)(

12 i

Chapter 5 pptpage 5

2

)(

au

ea

uF Gaussian Function

in u space

Page 37: V. Fourier  transform

Standard deviation is defined as the range of thevariable (x or u) over which the function dropsby a factor of of its maximum value.2/1e

22

)( xaexf 2/122 ee xa

21

ax

xax

21

2

)(

au

ea

uF

212

au

21

au

uau

2

21

221

a

aux

Page 38: V. Fourier  transform

c.f hpx ~hkx ~

hkhx ~2

2~kx

Page 39: V. Fourier  transform

22

),( xaexaf

),2( xf),8( xf

2

22

),( au

ea

uaf

),2( uf

),8( uf

Page 40: V. Fourier  transform

Supplement #2Consider the diffraction from a single slit

2/

2/

sin2)('~

~ b

b

iztkRiL dzeeR

E

The result from a single slit

dxexfuF iux2)()(

The expression is the same as Fourier transform.

Page 41: V. Fourier  transform

Supplement #3Definitions in diffractionFourier transform and inverse Fourier transform

System 1

dueuFxf

dxexfuFiux

iux

2

2

)()(

)()(:

System 2

dueuFxf

dxexfuF

iux

iux

)(21)(

)()(:

System 3

dueuFxf

dxexfuF

iux

iux

)(21)(

)(21)(

:

System 4

System 5

System 6

Page 42: V. Fourier  transform

relationship among Fourier transform, reciprocallattice, and diffraction condition

System 1, 4Reciprocal lattice

)(;

)(;

)(***

bacbac

acbacb

cbacba

**** clbkahGhkl

*

*

2 hkl

hkl

Gkk

GSS

Diffraction condition

Page 43: V. Fourier  transform

System 2, 3, 5, 6Reciprocal lattice

)(2;

)(2;

)(2 ***

bacbac

acbacb

cbacba

**** clbkahGhkl

*

*2

hkl

hkl

Gkk

GSS

Diffraction condition


Recommended