+ All Categories
Home > Documents > Varado N., Ross P.J., Braud I., Haverkamp R., Kao C.

Varado N., Ross P.J., Braud I., Haverkamp R., Kao C.

Date post: 18-Mar-2016
Category:
Upload: shayna
View: 41 times
Download: 1 times
Share this document with a friend
Description:
EVALUATION OF A FAST NUMERICAL SOLUTION OF THE 1D RICHARD’S EQUATION AND INCLUSION OF VEGETATION PROCESSES. Varado N., Ross P.J., Braud I., Haverkamp R., Kao C. Workshop DYNAS, December 6-8, 2004. A fast non iterative solution of the 1D Richards’ equation (Ross, 2003) - PowerPoint PPT Presentation
Popular Tags:
33
EVALUATION OF A FAST NUMERICAL SOLUTION OF THE 1D RICHARD’S EQUATION AND INCLUSION OF VEGETATION PROCESSES Varado N., Ross P.J., Braud I., Haverkamp R., Kao C. Workshop DYNAS, December 6-8, 2004
Transcript
Page 1: Varado N., Ross P.J., Braud I., Haverkamp R., Kao C.

EVALUATION OF A FAST NUMERICAL SOLUTION OF THE 1D RICHARD’S

EQUATION AND INCLUSION OF VEGETATION PROCESSES

Varado N., Ross P.J., Braud I., Haverkamp R., Kao C.

Workshop DYNAS, December 6-8, 2004

Page 2: Varado N., Ross P.J., Braud I., Haverkamp R., Kao C.

1. A fast non iterative solution of the 1D Richards’ equation (Ross, 2003)

2. How to evaluate the numerical solution ?– Use of analytical solutions:

• Moisture profile• Cumulative infiltration

– Use of a numerical h-iterative solution

3. A sink term to account for the water extraction by roots– Inclusion within the numerical solution– Test the accuracy of the vadose zone module

Page 3: Varado N., Ross P.J., Braud I., Haverkamp R., Kao C.

1. Ross (2003) numerical solution (1)• 1D Richards equation

ee

e

b

ese

b

es

hhhh

hhhh

KKhh

hh

si 1 si 1

si si /32/1

eeses

e

h

hhhhKnhK

hhn

KhdhhK

si 1

si 1

• Brooks and Corey (1964) model to describe soil hydraulic properties:

• Kirchhoff potential or degree of saturation used as calculation variable:

1

zh)h(K

zt

Page 4: Varado N., Ross P.J., Braud I., Haverkamp R., Kao C.

• Spatial discretisation :mass budget on layer n°i

iii qqQdtd

1

• Time discretisation:

0,1σ 1

ii qq

tQi

iiiiiii dScSbSa 11

• Tri-diagonal matrix:

• Taylor development at first order :

11

0i

i

ii

i

iii S

SqS

Sqqq

i-1

i

q i-1

q i

h i-1

h i

h i+1

xi

i+1

1. Ross (2003) numerical solution (2)

Page 5: Varado N., Ross P.J., Braud I., Haverkamp R., Kao C.

• ADVANTAGES:

Non-iterative solution fastLayers thickness is allowed to be greater than in classical

modelsRobust

• Flux discretisation:Flux qi between layers i and i+1 is expressed from Darcy low written with Kirchhoff potential and hydraulic conductivity of each layer.

i

iiii

i

iiii Z

KKZ

Kq

11

12/1 1

• calculation : at each time step and for each node Hypothesis: if the pressure is hydrostatic, flux will be null

zKq

1. Ross (2003) numerical solution (3)

Page 6: Varado N., Ross P.J., Braud I., Haverkamp R., Kao C.

1. A fast non iterative solution of the 1D Richards’ equation (Ross, 2003)

2. How to evaluate the numerical solution ?– Use of analytical solutions:

• Moisture profile• Cumulative infiltration

– Use of a numerical h-iterative solution

3. A sink term to account for the water extraction by roots– Inclusion within the numerical solution– Test the accuracy of the vadose zone module

Page 7: Varado N., Ross P.J., Braud I., Haverkamp R., Kao C.

2.1. Analytical solutions

• With the Brooks and Corey model, no analytical solution describes the moisture profile.

– Moisture profile with simplified soil properties description: Basha (1999) : linear solution

– Cumulative infiltration with BC models: Parlange et al. (1985) Haverkamp et al. (1990)

Page 8: Varado N., Ross P.J., Braud I., Haverkamp R., Kao C.

Basha (1999) analytical solution

• 8 soils with Gardner parameters (Mualem 1976 et Bresler 1978)

• Constant surface flux=15mm/h during 10h• Initially dry profile

hexpKhK s

hexprsr

Sols (m-1) Ks (m.sec-1) s Chino clay 0.0685 2.29E-07 0.532 Lamberg clay 32.7 3.34E-04 0.537 Peat 0.104 6.13E-07 0.47 Touched silt loam 1.56 4.86E-06 0.469 Oso Flasco fine

sand

7.2 2.00E-04 0.266 Crab Creek sand 46.6 1.27E-04 0.375 Rehovot sand 15.74 7.64E-05 0.44 Ida silt clay loam 6.7 4.17E-06 0.53

Gardner (1958) model: allows the analytical formulation of the Kirchhoff potential.

•Modification of the Ross (2003) numerical solution to deal with the same soils characteristics description•Huge simplification

Page 9: Varado N., Ross P.J., Braud I., Haverkamp R., Kao C.

layer 1

time (h)

wat

er c

onte

nt (

m3.

m-3

)

0 2 4 6 8 10

0.0

0.10

0.20

layer 2

time (h)

wat

er c

onte

nt (

m3.

m-3

)

0 2 4 6 8 10

0.0

0.10

0.20

layer 3

time (h)

wat

er c

onte

nt (

m3.

m-3

)

0 2 4 6 8 10

0.0

0.10

layer 4

time (h)

wat

er c

onte

nt (

m3.

m-3

)

0 2 4 6 8 10

0.0

0.10

layer 5

time (h)

wat

er c

onte

nt (

m3.

m-3

)

0 2 4 6 8 10

0.0

0.06

0.12

layer 6

time (h)

wat

er c

onte

nt (

m3.

m-3

)

0 2 4 6 8 10

0.0

0.04

0.08

layer 7

time (h)

wat

er c

onte

nt (

m3.

m-3

)

0 2 4 6 8 10

0.0

0.02

0.05

layer 8

time (h)

wat

er c

onte

nt (

m3.

m-3

)

0 2 4 6 8 10

0.0

0.02

layer 9

time (h)

wat

er c

onte

nt (

m3.

m-3

)0 2 4 6 8 10

0.0

0.01

0

Ross (2003)

Basha (1999)

Touched Silt Loam α=1.56x10-2 cm-1

Ks=4.86x10-4 cm.s-1

Page 10: Varado N., Ross P.J., Braud I., Haverkamp R., Kao C.

• I(t), I(q)

• 3 characteristics soils (sand, clay, loam)• θ(z=0)=θs

• Initially dry profile, hsurf=0

123

4

5

6

7

8

9

10

x=20cm

x=40cm

x=10cm exp * 11* * ln

1I

t I

Cumulative infiltration: Parlange et al. 1985, Haverkamp et al. 1990

Page 11: Varado N., Ross P.J., Braud I., Haverkamp R., Kao C.

clay

time (h)

cum

ulat

ive

infil

tratio

n (m

m)

0 2 4 6 8 10

020

4060

8010

012

014

0

Ross (2003)analytical solution

Page 12: Varado N., Ross P.J., Braud I., Haverkamp R., Kao C.

• I(t), I(q)

• 3 characteristics soils (sand, clay, loam)• θ(z=0)=θs

• Initially dry profile, hsurf=0

123

4

5

6

7

8

9

10

x=20cm

x=40cm

x=10cm

Results on infiltration are sensitive to the discretization, especially on clayey soils:

A finer discretization is needed close to the soil surface

exp * 11* * ln1

It I

Cumulative infiltration: Parlange et al. 1985, Haverkamp et al. 1990

Page 13: Varado N., Ross P.J., Braud I., Haverkamp R., Kao C.

clay 15 layers

time (h)

cum

ulat

ive

infil

tratio

n (m

m)

0 5 10 15 20

050

100

150

200

Ross (2003)analytical solution

Page 14: Varado N., Ross P.J., Braud I., Haverkamp R., Kao C.

Haverkamp (personal communication): moisture profile with the Brooks and Corey model.

• z(q, θ )

• Initially dry profile, θ(z=0)=θs, hsurf=0• 3 characteristics soils (sand, clay, loam)

42 ** * *

* * *

1ln 111 1 1

1 2 4

z

z z

cc cz z

z

qc czq q c q

Page 15: Varado N., Ross P.J., Braud I., Haverkamp R., Kao C.

1 h

teneur en eau (m^3/m^3)

prof

onde

ur (m

)

0.0 0.1 0.2 0.3 0.4 0.5

-2.0

-1.5

-1.0

-0.5

0.0

E=0.28

Profile 10 layers

HaverkampRoss (2003)

Page 16: Varado N., Ross P.J., Braud I., Haverkamp R., Kao C.

2 h

teneur en eau (m^3/m^3)

prof

onde

ur (m

)

0.0 0.1 0.2 0.3 0.4 0.5

-2.0

-1.5

-1.0

-0.5

0.0

E=0.44

Profile 10 layers

HaverkampRoss (2003)

Page 17: Varado N., Ross P.J., Braud I., Haverkamp R., Kao C.

3 h

teneur en eau (m^3/m^3)

prof

onde

ur (m

)

0.0 0.1 0.2 0.3 0.4 0.5

-2.0

-1.5

-1.0

-0.5

0.0

E=0.60

Profile 10 layers

HaverkampRoss (2003)

Page 18: Varado N., Ross P.J., Braud I., Haverkamp R., Kao C.

Haverkamp (personal communication): moisture profile with the Brooks and Corey model.

• z(q, θ )

• Initially dry profile, θ(z=0)=θs, hsurf=0• 3 characteristics soils (sand, clay, loam)

• The soil column needs to be homogeneously discretized from the surface to the bottom.

42 ** * *

* * *

1ln 111 1 1

1 2 4

z

z z

cc cz z

z

qc czq q c q

Page 19: Varado N., Ross P.J., Braud I., Haverkamp R., Kao C.

1 h

teneur en eau (m^3/m^3)

prof

onde

ur (m

)

0.0 0.1 0.2 0.3 0.4 0.5

-2.0

-1.5

-1.0

-0.5

0.0

E=0.96

HaverkampRoss (2003)

Profile 100 layers

Page 20: Varado N., Ross P.J., Braud I., Haverkamp R., Kao C.

2 h

teneur en eau (m^3/m^3)

prof

onde

ur (m

)

0.0 0.1 0.2 0.3 0.4 0.5

-2.0

-1.5

-1.0

-0.5

0.0

E=0.96

Profile 100 layers

HaverkampRoss (2003)

Page 21: Varado N., Ross P.J., Braud I., Haverkamp R., Kao C.

3 h

teneur en eau (m^3/m^3)

prof

onde

ur (m

)

0.0 0.1 0.2 0.3 0.4 0.5

-2.0

-1.5

-1.0

-0.5

0.0

E=0.97

Profile 100 layers

HaverkampRoss (2003)

Page 22: Varado N., Ross P.J., Braud I., Haverkamp R., Kao C.

4 h

teneur en eau (m^3/m^3)

prof

onde

ur (m

)

0.0 0.1 0.2 0.3 0.4 0.5

-2.0

-1.5

-1.0

-0.5

0.0

E=0.97

Profile 100 layers

HaverkampRoss (2003)

Page 23: Varado N., Ross P.J., Braud I., Haverkamp R., Kao C.

5 h

teneur en eau (m^3/m^3)

prof

onde

ur (m

)

0.0 0.1 0.2 0.3 0.4 0.5

-2.0

-1.5

-1.0

-0.5

0.0

E=0.98

Profile 100 layers

HaverkampRoss (2003)

Page 24: Varado N., Ross P.J., Braud I., Haverkamp R., Kao C.

6 h

teneur en eau (m^3/m^3)

prof

onde

ur (m

)

0.0 0.1 0.2 0.3 0.4 0.5

-2.0

-1.5

-1.0

-0.5

0.0

E=0.98

Profile 100 layers

HaverkampRoss (2003)

Page 25: Varado N., Ross P.J., Braud I., Haverkamp R., Kao C.

7 h

teneur en eau (m^3/m^3)

prof

onde

ur (m

)

0.0 0.1 0.2 0.3 0.4 0.5

-2.0

-1.5

-1.0

-0.5

0.0

E=0.97

Profile 100 layers

HaverkampRoss (2003)

Page 26: Varado N., Ross P.J., Braud I., Haverkamp R., Kao C.

8 h

teneur en eau (m^3/m^3)

prof

onde

ur (m

)

0.0 0.1 0.2 0.3 0.4 0.5

-2.0

-1.5

-1.0

-0.5

0.0

E=0.97

Profile 100 layers

HaverkampRoss (2003)

Page 27: Varado N., Ross P.J., Braud I., Haverkamp R., Kao C.

9 h

teneur en eau (m^3/m^3)

prof

onde

ur (m

)

0.0 0.1 0.2 0.3 0.4 0.5

-2.0

-1.5

-1.0

-0.5

0.0

E=0.98

Profile 100 layers

HaverkampRoss (2003)

Page 28: Varado N., Ross P.J., Braud I., Haverkamp R., Kao C.

10 h

teneur en eau (m^3/m^3)

prof

onde

ur (m

)

0.0 0.1 0.2 0.3 0.4 0.5

-2.0

-1.5

-1.0

-0.5

0.0

E=0.98

Profile 100 layers

HaverkampRoss (2003)

Page 29: Varado N., Ross P.J., Braud I., Haverkamp R., Kao C.

• Comparison with a SVAT model: SiSPAT (Braud et al., 1995), which provides a reference h-iterative solution (Celia et al. 1990)– Coupled resolution of heat and water transfers – Fine discretization (around 1 cm)– Numerous validations under distinct pedo-climatic

conditions.

• Raining and evaporation periods• Systematic tests on 3 characteristic soil types,

various climate forcing and initial conditions

• Systematic underestimation of the evaporation flux (-2%) and overestimation of water content in the first layer (8%)

2.2. Another reference numerical solution

Page 30: Varado N., Ross P.J., Braud I., Haverkamp R., Kao C.

1. A fast non iterative solution of the 1D Richards’ equation (Ross, 2003)

2. How to evaluate the numerical solution ?– Use of analytical solutions:

• Moisture profile• Cumulative infiltration

– Use of a numerical h-iterative solution

3. A sink term to account for the water extraction by roots– Inclusion within the numerical solution– Test the accuracy of the vadose zone module

Page 31: Varado N., Ross P.J., Braud I., Haverkamp R., Kao C.

• Inclusion of a sink term within the Richards’ equation (Feddes et al. 1978).

• Does not affect the resolution of the tridiagonal matrix

• Ex(z,t) from literature: Li et al. (2001) account for water stress and provides a compensation by the deeper layers still humid.

• Linear function of a PET

• Interception like a reservoir• No resolution of the energy budget; use of a partition law:

( ) 1 ,hK h Ex z tt z z

3. Account for vegetation processes (1)

1 2, , ,Ex z t z z g z TP

(1 exp( ))exp( )

bl

bl

TP ETP a LAIEP ETP a LAI

iiiiiii dScSbSa 11

Page 32: Varado N., Ross P.J., Braud I., Haverkamp R., Kao C.

• Test of the accuracy of the vadose zone module with the SiSPAT model

• Test on a soybean dataset

– Underestimation of soil evaporation greater than on bare soil

– Overestimation of water content in the first layer– Low relative error on transpiration– Different partition of the energy between the use of a

PET or the resolution of the energy budget.

3. Account for vegetation processes (2)

Page 33: Varado N., Ross P.J., Braud I., Haverkamp R., Kao C.

Conclusion• Fast, accurate and robust numerical solution• Validation against analytical solutions and a

numerical solution.• Inclusion of a sink term to account for vegetation

processes

– Another formulation of the evaporation flux?– Problem of partition of the energy

• Vadose zone module.• Inclusion within a large scale hydrological model


Recommended