+ All Categories
Home > Documents > Vertical distribution of zooplankton with emphasis on variation in ...

Vertical distribution of zooplankton with emphasis on variation in ...

Date post: 08-Feb-2017
Category:
Upload: truongdung
View: 215 times
Download: 1 times
Share this document with a friend
54
Vertical distribution of zooplankton with emphasis on variation in lipid content and stable isotope signatures in Calanus finmarchicus in the deep part of Skagerrak Christoffer Bruus Pedersen Master thesis in biology December 2015 Department of Bioscience Aarhus University
Transcript

Vertical  distribution  of  zooplankton  with  emphasis  on  variation  in  lipid  content  and  stable  isotope  signatures  in  Calanus  

finmarchicus  in  the  deep  part  of  Skagerrak          

   

Christoffer  Bruus  Pedersen  Master  thesis  in  biology  

December  2015      

Department  of  Bioscience  Aarhus  University  

     

  1  

Forord      Denne   specialerapport   indeholder   en   generel   introduktion   til   de   teoretisk   aspekter  vedrørende     forståelsen   af   populationsbevægelserne   i   det   pelagiske   zooplanktonsamfund   i  forbindelse   med   de   vertikale   dagsvandringer   og   sæsonmæssige   overvintringsadfærd.  Introduktionen   vil   forsøge   at   belyse   den   teoretiske   årsagssammenhæng   til   denne   studeret  adfærd,  ud  fra  tidligere  studier  baseret  på  calanoida  arten  Calanus  finmarchicus.  Formålet  er  at  skabe  et  overordnede  indblik  i  emnet,  samt  en  række  af  de  metoder  som  det  efterfølgende  artikeludkast   er   fundamenteret   ud   fra.   Desuden   behandles   isotop   signaturen   fra   en   række  fundene   pelagiske   zooplankton   arter   ift.   C.   finmarchicus,   og   eventulle   trofiske   relationer  fremlægges.    Artikeludkastet   er   lavet   på   baggrund   af   sommertogtet   2014,   hvor   der   blev   taget   en   række  prøver   for   at   undersøge   den   vertikale   dybdefordeling   og   trofiske   struktur   af  zooplanktonsamfundet  i  Skagerrak.  Artikeludkastet  forsøger  at  belyse  eventuel  dagsvandring  mellem  de  indsamlede  dybde  strata  for  de  fundene  arter,  samt  estimerer  retning  og  styrke  af  vandringen.  På  baggrund  af  abundance  og  tidligere  studier  af  arten,  vil  der   i  artikeludkastet  blive   sat   fokus   på   C.   finmarchicus,   ved   yderligere   analyser   af   dybdefordeling   mellem   lipid  indhold,  udviklingsstadier  samt  isotopsignatur.      Specielt   er   lavet   i   samarbejde   med   Afdeling   for   Marin   Økologi   på   Biosciens   på   Aarhus  Universitet.  Speciale  projektet  har  modtaget   finansiel  støtte  af  Elisabeth  og  Knud  Pedersens  Fond  og  fra  Dansk  Center  for  Havforskning.      Jens  Tang  Christensen  fra  Aarhus  Universitet  har  fungeret  som  intern  vejleder,  og  jeg  vil  i  den  forbindelse  gerne  rette  en  stor  tak  for  den  store  hjælp  og  sparing  jeg  har  modtaget  undervejs.  Ligeledes  skal  der  lyde  en  stor  tak  til  de  resterende  vejledere,  laboranter  og  medstudierne  på  Afdeling  for  Marin  Økologi  på  Biosciens  på  Aarhus  Universitet.  Jeg  har  nydt  godt  af  den  store  professionalisme  og   faglig   støtte   som  afdelingen  besidder,   og  dette  har  været   en   stor  hjælp  igennem  arbejdsprocessen.                      Christoffer  Bruus  Pedersen  Aarhus  Universitet,  December  2015.  

  2  

Resumé  

Specialet  omhandler  den  vertikale   fordeling  af   zooplankton,  herunder  med  særligt   fokus  på  calanoida  arten  Calanus  finmarchicus,  i  Skagerrak.  Et  af  de  mest  studeret  marine  fænomener  i  marinøkologiske   sammenhænge  er  den  vertikale   fordeling  af   arterne   i   vandsøjlen  herunder  særligt  den  daglige  vertikale  vandring  af  zooplankton.  Denne  daglige  vertikale  vandring,  hvor  pelagiske  zooplantonarter  migrere  fra  få  til  hundrede  meter  i  en  24  timers  dagsrytme,  anses  for   at   være   dyrerigest   største   migration   i   forhold   til   biomasse.   Det   normale  migrationsmønster  involverer  bevægelse  fra  øvre  områder  af  vansøjlen  om  natten,  til  større  dybder   i   løbet   af   dagen.   Adskillige   hypoteser   er   blevet   fremsat   i   et   forsøg   på   at   forklare  årsagen  til  denne  adfærd,  men  tilstedeværelse  af  dagsaktive  rovdyr  betragtes  som  den  bedste  forklarende  årsagssammenhæng.    Amplituden   af   den   vertikale   bevægelse   af   en   population   har   vist   sig   at   være   forskellige  mellem   arter,   også   mellem   ontogenetiske   stadier   af   samme   art,   og   kan   være   påvirket   af  faktorer  som  tilgængelighed  af  ressourcer  og  sult.  Amplituden  af  den  vertikal  fordeling  har  i  den   forbindelse   vist   sig   at   stige   gradvist  med   udviklingsstadiet,   og  maksimeres   i   de   større  copepodite  stadier  med  tilsvarende  større  lipid  indhold.  Tidligere  studier  tyder  også  på  at  sult  kan   være   en   primær   kontrollerende   faktor   for   hvornår   individer   migrere   tilbage   mod  overfladen,   derved   kan   energi   reserver   ligeledes   være   kontrollerne   for   migrationen  amplituden   i   forholdet   mellem   sikkerheden   i   dybet   og   fourageringsmulighederne   ved  overfladen.  Opgaven   forsøger   i   den   forbindelse   at   belyse   dybdefordelingen   samt   styrken   af  døgnvandring   for   de   fundet   arter,   samt   undersøge   C.   finmarchicus   dybdefordeling   ift.   lipid  indhold,  størrelse  samt  udviklingsstadie.  Vi   fandt   i   den   forbindelse   både   en   sammenhæng   mellem   lipid   indholdet   og   størrelsen   ift.  dybden.   Dertil   fordelte   de   større   copepodite   udviklingsstadier   sig   relative   dybere   end   de  tidligere  stadier.  Mistanke  om  begyndende  overvintring  i  de  dybeste  beliggende  individer  af  C.  finmarchicus   blev   ligeledes   bestyrket   ved   sammenligning   af   resultater   med   andre  sammenlignelige  studier.  Yderligere   undersøgte   vi   de   isotopiske   forskelle   i   vandsøjlen   for   C.   finmarchicus,   for   at  undersøge   de   potentielle   variationer  mellem   isotopiske   forhold  mellem   δ15N   og   δ13C,   samt  belyste  den  trofiske  zooplankton  struktur   ift.  C.  finmarchicus.  Undersøgelserne  viste   løbende  ændring   af   kulstofkilden   med   dybden,   men   tilsvarende   uændret   trofiske   position   mellem  individerne   i   hele   vandsøjlen.   Vores   undersøgelser   kunne   ligeledes   indikere   en   mere   eller  mindre  omnivorisk  fødesøgningsadfærd  for  C.  finmarchicus   fundet   i  Skagerrak.  Overordnede  indgik   copepod   arterne   i   samme   trofiske   nivieau   som  C.   finmarchicus,   dog  med   varierende  kulstofkilder.      

 

     

  3  

Summery    The   thesis   is   concerned  with   the   vertical   distribution  of   zooplankton,  with   special   focus  on  calanoida   species   Calanus   finmarchicus,   in   the   Skagerrak.   One   of   the   most   studied   marine  phenomena   in   marine   ecology   is   the   vertical   distribution   of   species   in   the   water   column,  including   the  diel   vertical  migration  of   zooplankton.  This  diel   vertical  migration,  where   the  pelagic  zooplankton  species  migrate  from  a  few  to  hundred  meters  in  a  24-­‐h  diurnal  rhythm,  is   considered   to   be   the   biggest   animal   migration   in   terms   of   biomass   on   the   planet.   The  normal  pattern  involves  movement  from  shallow  depths  at  night  to  greater  depths  during  the  day.   Several   hypotheses   has   been   put   forward   in   an   attempt   to   explain   the   adaptive  significance  of  diel  vertical  migration,  but  the  predator  evasion  hypothesis  are  today  consider  the  best-­‐explanatory  reason.    The   amplitude   of   the   vertical   movement   of   a   population   has   been   found   to   be   different  between   species,   including   between   ontogenetic   stages   of   the   same   species,   and   may   be  influenced   by   factors   such   as   availability   of   resources   and   hunger.   The   amplitude   of   the  vertical   distribution   has   been   found   to   increase   gradually  with   the   development   stage   and  maximized   in   the   larger   copepodite   stages  with   higher   lipid   content.   Previous   studies   have  also   indicated   that  hunger  can  be  a  primary  controlling   factor   for  when   individuals  migrate  back   to   the   surface.   Thus   energy   reserves   would   also   control   the   migration   amplitude   in  relation  between  the  safety  of   the  depths  and  the   foraging  opportunities  at   the  surface.  The  overall  objective  of  this  study  was  to  determine  the  strength  of  the  diel  vertical  migration  for  the   examined   pelagic   zooplankton   community,   with   a   specific   focus   on   C.   finmarchicus  distribution  patterns  in  relation  to  size,  lipid  content  and  copepodite  stages.  In  relation  to  the  size  and  lipid  mass  distribution  of  C.  finmarchicus  did  we  find  a  significant  correlation  for  both  size  and  lipid  mass  with  depth.  In  addition,  the  larger  copepodite  stages  distributed  relatively  deeper  than  the  earlier  stages.  The  observed  pattern  of  larger  and  late  copepodite   stages,   stationary   in  deep   strata,  with  highest   lipid   content   in   the  deep-­‐position  individuals,  agrees  well  with  an  onset  dormancy  pattern  according  to  several  studies.    Further,   we   examined   the   isotopic   differences   in   the   water   column   for   C.   finmarchicus,   in  order  to  examine  the  potential  variations  between  the  isotopic  ratio  of  δ15N  and  δ13C,  as  well  as  examine  the  trophic  structure  of  the  zooplankton  community  in  relation  to  C.  finmarchicus.  The   studies   showed   continuous   change   of   carbon   source  with   depth,  with   correspondingly  unchanged  trophic  position  between  the  individuals  in  the  entire  water  column.  Our  studies  could  also  indicate  more  or  less  omnivorous  foraging  behaviour  for  the  C.  finmarchicus  found  in  Skagerrak.  Overall  entered  the  copepod  species  in  the  same  trophic  level  as  C.  finmarchicus,  however  with  some  varying  carbon  sources.            

  4  

Table  of  Contents      General  Introduction    Forord  .....................................................................................................................................................  1  Resumé  ...................................................................................................................................................  2  Summery  ................................................................................................................................................  3  Table  of  Contents  ................................................................................................................................  4  Introduction  ..........................................................................................................................................  6  Calanus  finmarchicus  ...................................................................................................................  7  Dormancy  ..........................................................................................................................................  8  Seasonal  dynamics  of  life  stages  ..............................................................................................  8  Egg  production  ................................................................................................................................  9  Skagerrak  ........................................................................................................................................  10  Diel  vertical  migration  ..............................................................................................................  12  Distribution  of  C.  finmarchicus  ..............................................................................................  14  Energy  base  ...................................................................................................................................  15  Stable  isotope  ................................................................................................................................  16  Isotopic  baseline  .....................................................................................................................  18  

The  trophic  position  of  C.  finmarchicus  relative  to  the  other  zooplankton  and  micronekton  species  found  in  the  Skagerrak.  ................................................................  19  

References  ..........................................................................................................................................  21      Article    Vertical  distribution  of  zooplankton  with  emphasis  on  variation  in  lipid  content  and  stable  isotope  signatures  in  Calanus  finmarchicus  in  the  deep  part  of  Skagerrak  ............................................................................................................................................  30  Abstract  ...........................................................................................................................................  30  Introduction  ..................................................................................................................................  30  Materials  and  methods  .............................................................................................................  32  Sampling  .....................................................................................................................................  32  Laboratory  analyses  ..............................................................................................................  33  Isotope  analyses  ......................................................................................................................  34  Vertical  distribution  analyses  ............................................................................................  34  Statistical  analyses  .................................................................................................................  35  

Results  ..............................................................................................................................................  35  Hydrography  .............................................................................................................................  35  Vertical  distribution  ..............................................................................................................  36  

  5  

Size,  lipid  and  copepodite  stage  distribution  of  C.  finmarchicus  ........................  37  Isotope  analysis  .......................................................................................................................  43  

Discussion  ......................................................................................................................................  44  Vertical  distribution  ..............................................................................................................  44  Size,  lipid  and  copepodite  stage  distribution  of  C.  finmarchicus  ........................  46  Isotopic  distribution  between  depth  strata  of  C.  finmarchicus  ...........................  47  

References  ......................................................................................................................................  49                  

  6  

Introduction    The  pelagic  community  has  an  essential  role  in  the  transport  of  energy  from  the  photic  zone  to   the   mesopelagic   zone   and   the   benthic   communities.   Plankton   and   micro   nekton  additionally  contributes  directly  to  the  transport  of  organic  matter  and  nutrients  in  the  water  column   by   their   diel   vertical  migration   displacement.  Calanus   finmarchicus  plays   a   decisive  role   in   this   context,   by   converting   low-­‐energy   carbohydrates   and   proteins   in   algae   and  phytoplankton  into  high-­‐energy  wax  esters  (Falk-­‐Petersen  et  al.  2009).  In  relation  with  their  daily  migration  in  the  upper  water  layers  and  annual  immersion  to  the  deep,  C.  finmarchicus  constitute  a  vital  link  in  the  flow  of  energy  from  primary  producers  to  the  higher  levels  in  the  marine   food   chain   (Runge   and   DeLafontaine   1996,   Hansson   et   al.   1997,   Petursdottir   et   al.  2008).   Their   ecological   role   is   enabled   trough   their   often  massive   populations   in   costal   or  shelf   areas   and   their   ability   to   fast   accumulate   high-­‐energy   reserves   (Plourde   and   Runge  1993,  Falk-­‐Petersen  et  al.  2009),  making  C.  finmarchicus   the  major  source  of  energy   for   the  larger  stocks  of  fish,  birds  and  marine  mammals  in  the  north  Atlantic  Seas  (Falk-­‐Petersen  et  al.   2009).   For   the  majority   of   the   distribution   areas,  C.   finmarchicus   account   for   about   40   –  90%  of   the   zooplankton   community   (Melle   et   al.   2014),   and   function   as   an   important   food  basis  of  a  number  of  planktivorous  fish  species,  including  herring,  mackerel,  capelin,  sandeel,  young   blue   whiting   and   salmon,   all   of   which   are   commercially   significant   species   for   the  fishing  industry  (Trumble  1973,  Dalpadado  et  al.  2000,  Hind  et  al.  2000,  Darbyson  et  al.  2003,  Dommasnes   et   al.   2004,   Smith   and   Link   2010).   Consumption   by   herring   along   has   been  estimated  at  about  20-­‐100%  of  the  annual  C.  finmarchicus  production  (Dalpadado  et  al.  2000,  Gislason  and  Astthorsson  2002,  Dommasnes  et  al.  2004,  Skjoldal  et  al.  2004,  Prokopchuk  and  Sentyabov  2006,  Utne  et  al.  2012).  With  that  influence  on  the  energy  flux  in  the  marine  food  web  in  mind,  it  is  crucial  to  understand  the  population  dynamics  and  trophic  relationships  in  the  pelagic  communities  of  key  species  like  C.  finmarchicus.  This  thesis  is  therefore  concerned  

with   the   trophic   role   of   C.  finmarchicus   and   its   vertical  distribution   in   the   water   column,   as  well   as   any   diel   vertical   migration  patterns.  The   thesis  will  be  based  on  data   collected   during   a   cruise   in   the  Skagerrak   Sea   (Fig.   1)   in   mid-­‐late  summer   2014,   however   before   the  manuscript;  a  brief  introduction  to  C.  finmarchicus   and   a   review   of   the  location,   diel   vertical   migration   and  stable  isotope  technique  used,  will  be  presented.    Figure  1.  Map  of  the  study  area  with  the  position  of  sampling  

stations  (Bergstad  et  al.  2003).

  7  

Calanus  finmarchicus  The  Calanus  species,  C.  finmarchicus  (Fig.  2)  is  an  oceanic  species  with  its  core  distribution  in  the   Arctic   and  Northern   Seas   (Aksnes   and   Blindheim   1996).   It   considered   one   of   the  most  important   multicellular   zooplankton   species   in   the   northern   North   Atlantic,   based   on   its  abundance   and   role   in   food   webs   and   biogeochemical   cycles.   Together   with   two   other  important   herbivore   species   of   Calanus,   C.   glacialis   and   C.   Hyperboreus,   C.   finmarchicus  constitute   a   key   link   in   the   lipid-­‐based   energy   flux   in   the   Arctic   and   Northern   Seas,   by  converting   low-­‐energy   carbohydrates   and   proteins   in   algae   and   phytoplankton   into   high-­‐energy  wax  esters  (Falk-­‐Petersen  et  al.  2009).  For   the  majority  of   its  area  of  distribution,  C.  finmarchicus  account   for  about  40  –  90%  of   the  zooplankton  community  by  abundance  and  are  concentrated  in  the  two  subpolar  cyclonic  gyres,   in  the  Labrador/Irminger  Seas  and  the  southern  Norwegian  Sea  (Melle  et  al.  2014).  These  cyclonic  gyres  are  centred  over  deep  ocean  basins,  and  do  also  function  as  overwintering  sites  for  C.  finmarchicus  (Båmstedt  2000,  Hind  et   al.   2000,   Heath   et   al.   2004,   Falk-­‐Petersen   et   al.   2009).   Population   centres,   defined   as  regions   where   populations   are   overwintering,   have   been   identified   in   the   Labrador   Sea,  northern  Irminger  Basin,  northern  Iceland  Basin,  Faroe-­‐Shetland  Channel,  eastern  Norwegian  Sea  and  Norwegian  Trench  (incl.  Skagerrak)  (Heath  et  al.  2004,  Melle  et  al.  2014).       During  C.  finmarchicus  life  cycle  it  develops  from  eggs  to  adult  via  six  naupliar  (NI-­‐NVI)  and   five   copepodid   (CI-­‐CV)   stages   after   hatching.   (Hind   et   al.   2000).   The   first   two  naupliar  stages  do  not  feed,  and  neither  does  the  lipid-­‐rich  overwintering  stages  throughout  dormancy  (Sato   et   al.   2002,  Petursdottir   et   al.   2010).  During  winter   the   larger  part   of   the  population,  mainly  copepodite  stages  (CIV-­‐CV),  migrates  down  to  deep  water.   In   the  Norwegian  Sea  the  overwintering  stages  start  migrating  to  depths  of  >500m  at  the  end  of  the  vernal  bloom  in  late  summer  and  fall.  (Williams  1985,  Kaartvedt  1996,  Fiksen  and  Carlotti  1998,  Båmstedt  2000,  Hind   et   al.   2000,   Maar   et   al.   2002,   Sato   et   al.   2002,   Head   et   al.   2003,   Heath   et   al.   2004,  Petursdottir  et  al.  2008,  Falk-­‐Petersen  et  al.  2009,  Melle  et  al.  2014).  In  fjords  and  shelf  seas,  the  overwintering  populations  are  found  in  deep  trenches  and  basins  (Kaartvedt  1996).  The  deep   coastal   basins   and   fjord   of   the   Skagerrak,   along   the   Danish   and   Norwegian   coastline  have   shown   sustainable-­‐   and   overwintering   population   of  C.   finmarchicus   (Kaartvedt   1996,  Båmstedt  2000,  Heath  et  al.  2004,  Melle  et  al.  2014).    

Figure  2.    Calanus  finmarchicus.  Photo  (Miller  2004)  

  8  

Dormancy  When  C.   finmarchicus  enters   dormancy   in   late   summer   and   fall,   they   carry  with   them   lipid  stores  that  make  up  for  the  most  of  their  body  weight  (Hind  et  al.  2000,  Falk-­‐Petersen  et  al.  2009,   Melle   et   al.   2014).   These   lipid   stores   sustain   metabolism   during   the   overwintering  period   (Falk-­‐Petersen   et   al.   2009).   The   current   theory   is   that   this   overwintering-­‐behaviour  enhances  winter  survival  by  reducing  both  predation  risks  and  physiological  costs,  although  the   low   temperatures   may   simply   reduce   physiological   costs   encountered   at   depth,   by  reducing   the   metabolism   (Lampert   1989,   Kaartvedt   1996,   Hind   et   al.   2000,   Hays   2003).  Studies   have   shown   considerable   variability   in   the   timing   when   C.   finmarchicus   enters  dormancy,  across  their  distribution  range  (Planque  et  al.  1997,  Hind  et  al.  2000).  Melle  et  al.  (2014)  demonstrated   the  start  date  of  dormancy  was  more  variable   than   the  end  date,   and  that  C.   finmarchicus   enters  dormancy   later   in   the  Northwest  Atlantic,   than   in   the  Northeast  Atlantic  over  similar  spatial  scales.  They  did  also  show  that  the  timing  of  arousal  occurs  over  a  relatively  short  period  in  late  winter  across  the  entire  range.  This  spatial  variability  in  timing  of  dormancy  could  be  explained  by  factors  of  food  and  temperature  conditions,  controlling  the  accumulation  of  storage  lipid  or  environmental  conditions  experienced  by  individuals  within  populations.   According   to   Clark   et   al.   (2012),   C.   finmarchicus   would   remain   active   if   the  threshold   of   stored   lipid   is   not   sufficient,   and   from   there   molts   to   adulthood   before  descending   to  overwintering  depth.   In  addition,   the  duration  of  dormancy   is  determined  by  the   rate  of   stored   lipid  utilisation,  which   is   temperature  dependent   (Hind  et   al.   2000,   Falk-­‐Petersen  et  al.  2009).  Melle  et  al.  (2014)  explain  the  small  variation  for  the  timing  of  arousal  across  the  entire  range  of  North  Atlantic  as  an  effect  of  short  dormancy  duration  due  to  warm  water   in   the   northwest   area.   In   this   area,   studies   (Maps   et   al.   2012)   have   shown   that   the  population   is   forced   in   and   out   of   dormancy   during   the   late   summer   and   only   in   late   fall  enters   into   full   dormancy.   This   could   contribute   to   the   explanation   of   the   relatively   short  period   in   late   winter   over   which   stage   CVs   emerge   from   dormancy   throughout   the   North  Atlantic,   and   why   the   Northwest   Atlantic   population   enters   dormancy   later   than   the  Northeast  Atlantic  population.  

Seasonal  dynamics  of  life  stages  The  main  overwintering   stage   is   the  pre-­‐adult   CV   (McLaren   et   al.   2001,  Heath   et   al.   2004).  However,   in   regions   influenced   by   arctic   outflow,   where   water   temperature   is   low,  development   rates   are   reduced   and   copepodite   stages   (CI-­‐CIII)   are   found   among   the   older  overwintering  copepodite  stages  (Broms  and  Melle  2007,  Heath  et  al.  2008),  suggesting  that  there  is  either  a  multiannual  life  cycle  or  an  incapability  to  reach  pre-­‐adult  stages  within  the  first   season  (Melle  and  Skjoldal  1989).   In   the  northern  distribution,   life   cycles  with  a  single  annual  generation  are  often  the  norm,  and  have  mainly  only  a  life  span  of  one  year  (Båmstedt  2000,  McLaren  et  al.  2001,  Falk-­‐Petersen  et  al.  2009).  Further  south  there  may  be  up  to  three  generations   per   year,   although   the   number   of   generations  may   vary   among   years   in   some  areas  and  might  even  overlap  (Irigoien  2000,  Hirche  et  al.  2001,  McLaren  et  al.  2001,  Plourde  et   al.   2001,   Head   et   al.   2013).   Life   span   longer   than   one   year   is   only   described   for   C.  finmarchicus   from   the  Canadian  archipelago   (Longhurst  et  al.  1984),  but  are  common   for  C.  

  9  

glacialis  and  C.  hyperboreus,  that   show  an   impressive  plasticity,  with   life   spans   from  one   to  few  years  or  even   longer   (Hirche  and  Kattner  1993,  Hirche  and  Niehoff  1996,  Bonnet  et   al.  2005).    

Egg  production  In  mid-­‐late  winter  (February-­‐April)  most  C.  finmarchicus  leave  dormancy  from  the  depth  and  migrates   to   the   surface  waters,  where   they  molt   into   adults   and  mate   (Falk-­‐Petersen   et   al.  2009).  Females  then  lay  their  eggs  in  presence  of  the  right  environmental  conditions.  In  this  respect,   egg   production   has   proved   to   be   closely   coupled   to   water   temperature   and   food  levels  of  phytoplankton,  for  which  chlorophyll-­‐a  concentration  has  shown  to  be  a  good  proxy  (Hirche   1990,   Hirche   et   al.   1997,   Runge   et   al.   2006).   Studies   of   Hirche   et   al.   (1997)   and  Pasternak   et   al.   (2013)   showed   that   egg   production   rate   (EPR)   increased  with   higher   food  concentrations,  and  increased  exponentially  with  temperature.  Their  studies  showed  that  egg  production   of  C.   finmarchicus   stops   under   conditions   of   food   shortage,  which  demonstrates  that   EPR   depends   on   the   external   food   availability.   However,   egg   production   prior   to   the  spring   bloom   has   been   observed,   when   chlorophyll-­‐a   concentration   were   extremely   low,  indicating  that  C.  finmarchicus  is  also  able  to  use  internal  energy  sources  such  as  lipid  reserves  for   egg   production,   or   feed   on   alternative   food   (Richardson   et   al.   1999).   But   the   extent   to  which  internal  body  stores  contribute  to  egg  production  for  C.  finmarchicus  is  still  unspecified  (Melle  et  al.  2014).  For  comparison,   it   is  well  known  that  C.  hyperboreus  uses   internal  body  stores  to  produce  eggs  without  any  external   food  supply  (Conover  1988).   In  general,  EPR  is  clearly  strongly  related   to   food  availability,  and  especially   the  phytoplankton  concentration,  throughout  the  North  Atlantic  (Hirche  et  al.  1997,  Båmstedt  2000,  Hind  et  al.  2000).  But  some  studies   have   demonstrated   that   large   spawning   events   sometimes   occurs   at   relatively   low  food  concentrations  and   low   individual   rates  before   the  spring  bloom,  simply  due   to  higher  abundance  of  females  (Niehoff  et  al.  1999,  Richardson  et  al.  1999,  Stenevik  et  al.  2007).  This  may  point   to  other  controlling   factors   for   the  spawning  period  of  C.  finmarchicus,  than   food  variability  alone.  In  regard  to  the  temperature,  both  Hirche  et  al.  (1997)  and  Pasternak  et  al.    (2013)  discloses  findings  that  show  the  EPR  of  C.  finmarchicus  to  increase  with  temperature  in   laboratory   studies.   Their   results   suggest   that   the   C.   finmarchicus   EPR   increases   with  temperature   under   favourable   feeding   conditions.   Though,   the   effects   of   changes   in  temperature  in  situ  are  not  broadly  predictable.  For  example  Melle  et  al.  (2014)  in  situ  trials,  could  only  find  a  positive  correlation  between  temperature  and  EPR  in  three  study  regions,  a  negative   correlation   in   one   and   no   relationship   in   eighth   other.   Hirche   (1990)   also  demonstrated  some  regional  differences  with  a  higher  average  daily  EPR  measured,  24,4  eggs  female-­‐1  d-­‐1  at  0  °C,  than  the  highest  rate  of  21.9  eggs  female-­‐1  d-­‐1  reported  for  C.  finmarchicus  by  Marshall    and  Orr  (1952)  at  5  °C,  and  considerably  higher  than  the  average  rates  of  4  to  5  eggs  female-­‐1  d-­‐1  assumed  by  Davis  (1987).    Other  controlling  factors  may  also  influence  EPR  at  different  distribution  areas.    For  example,  local  effect  of   food  types  available  during  spawning  has  shown  an  effect  on  timing  and  EPR,  based  on  the  available  external  energy  e.g.  (Niehoff  et  al.  1999,  Jonasdottir  et  al.  2002,  Niehoff  

  10  

2004).  The  fact  that  females  are  known  to  feed  omnivorously  (Runge  and  DeLafontaine  1996,  Ohman   and   Hirche   2001),   can  make   chlorophyll   concentrations   less   relevant,   and   to   some  extent,   a  unfitting  measure   for   the  overall   food  concentration.   In   light  of   the  high  degree  of  variability   represented   by   these   studies,   prediction   of   EPR   for   C.   finmarchicus   from   mere  environmental   variables   such   as   chlorophyll   concentration   and   especially   temperature   can  seem  inadequate,  and  other  local  factors  may  prove  to  be  just  as  important.      

Skagerrak  Skagerrak  (Fig.  3A)   is  a  continental  margin  sea  covering  32000  km2  of  both  shelf  and  slope  environments   (Stahl   et   al.   2004).   It’s   located   in-­‐between   the   North   Sea   and   Kattegat,   and  borders  from  the  line  between  Lindeness  (Norway)  and  Hanstholm  (Denmark),  into  Kattegat  Marstand  (Sweden)  and  Skagens  rev  (Denmark).  The  area  creates  the  transition  zone  where  water  masses   from   the  North  Sea,   and   the   shallow  brackish  Kattegat/Baltic   Sea  meets.  The  area   is  characteristic  of   its  steep  slopes  dropping  down  to  a  maximum  depth  of  a   little  over  700m  and  with  mean  depth  of  210m,  making  it  a  deep  water  area  (Rodhe  1987,  Lund-­‐Hansen  et   al.   1994).   The   deepest   basin,   called   the   Norwegian   Trench,   cuts   through   the   entire  Skagerrak   in   a   northeastern   to   southwestern   direction   with   a   shelf   to   the   south   at   270m,  giving  it  a  topography  of  a  large  fjord  (Rodhe  1987,  Fonselius  1995,  Stahl  et  al.  2004).  At  the  northeastern  end,  the  Trench  has  a  narrow  continuation  into  the  Kattegat  with  average  depth  of  about  100m  (Rodhe  1987).     The   surface  water   consist   of   the   incoming   Jutland  Current,   passing   along   the  western  Danish  coastline,  and  the  outgoing  brackish  Baltic  current,  that  together  forms  the  Norwegian  Coastal   Current   (Svansson   1975,   Lund-­‐Hansen   et   al.   1994,   Maar   et   al.   2002).   A   counter-­‐clockwise   circulation   dominates   the  water   exchange   of   the   Skagerrak  with  water   from   the  North  Sea,  with  a  salinity  of  33–35  ppt,  entering  the  deep  southwestern  Skagerrak  two  places  via   the   Jutland   current   and   the   Central   North   Sea   current.   From   the   southeast   comes   the  outgoing  Kattegat/  Baltic  water  with  a  salinity  of  10  -­‐20  ppt.  The  northbound  Kattegat/  Baltic  current  originates   from  the   innermost  of   the  Baltic  Sea  and  has  been  mixed   in   the  Kattegat.  This  current  continues  north  into  Skagerrak  along  the  Swedish  coastline  and  mostly  out  to  the  North   Sea   along   the   Norwegian   coast,   but   a   small   part   is   re-­‐circulated   back   around   the  Skagerrak   (Fig.  3B)   (Rodhe  1987,  Rodhe  et  al.  2004).   In  depth  along   the  Norwegian  Trench  flows  colder  Atlantic  water   from  north  directly   into   the  Skagerrak,   this   is  only  partly  mixed  with  North  Sea  waters.  The  Atlantic  current  flow  is  parallel  to  the  depth  of  the  contours  along  the   Norwegian   Trench,   which   indicate   a   separate   body   of   water   (Rodhe   1987,   Lalli   and  Parsons  1997,  Hvas  et  al.  1998).  The  yearly  mean  fresh  water  supply  comes  from  the  Baltic  with  around  15000  m3   s-­‐1,   and  an  additional  2000  m3   s-­‐1   from  river  outlet  directly   into   the  Skagerrak,  of  which  the  majority  comes  from  the  Norwegian  rivers  and  fjords.  The  remaining  water   supply   is   a  mixture   of   the   different  water  masses   entering   the   area   (Svansson  1975,  Lund-­‐Hansen   et   al.   1994,   Stahl   et   al.   2004).   This   circulation   of   water   masses   creates   a  characteristic   pycnocline   profile   across   the   Skagerrak   by   mixing   the   water   column   at   the  periphery,  while  the  central  part  is  stratified  most  of  the  year.  In  summertime  a  thermocline  

  11  

of   10°C   difference   between   the   surface   and   bottom  water   often   arise,   thus   reinforcing   the  stratification  effect  in  the  centre.  (Rodhe  et  al.  2004).       The  Skagerrak  is  characterized  by  high  current  velocities  generated  by  the  many  water  bodies  entering  the  area  to  replace  the  water  which  is  transported  out  through  the  Norwegian  Coastal  Current  (Svansson  1975,  Lund-­‐Hansen  et  al.  1994).  The  mean  transport  of  water  due  to  the  counter-­‐clockwise  circulation  is  estimated  at  between  0.5  and  1.0  X  106  m3  s-­‐1  giving  it  a  flushing   time   above   the   shelf   depth   of   around   100   days   (Rodhe   1987).   The   direction   of  circulation   occasionally   changes   in   at   the   upper   layers,   whereas   in   the   deeper   layers,   the  cyclonic   circulation   is   more   or   less   present   at   all   times.   The  mean   velocity   is   also   highest  below  and  close  to  the  shelf  depth  in  the  area  of  the  Danish  slope  of  the  trench,  0,15-­‐0,2  m  s-­‐1,  and  gets  lesser  where  the  water  leaves  the  Skagerrak,  along  the  Norwegian  coast,  0,05-­‐0,1  m  s-­‐1  (Rodhe  1987,  Rodhe  et  al.  2004).      

 Figure   3.   A:   Skagerrak   and   the   bordering   seas.   The   coloured   scale   indicates   the  water   depth   in  meters.   From  (Hvas   et   al.   1998).  B:  Representation  of   the   general   circulation   in   the  North   Sea,   Skagerrak   and  Kattegat.   The  black  arrows  show  the  surface  currents  while  the  grey  arrows  showing  the  water  current   in  depth.  The  arrow  thickness  indicates  the  strength  of  the  currents.  From  (Hvas  et  al.  1998).          

A   B  

  12  

  Waters   entering   the   Skagerrak   are   strongly   influenced   by   the   heavily   populated  catchment  areas  from  both  the  Kattegat,  Baltic  and  North  Sea  areas.  A  total  of  about  85  million  people   are   living   in   the   Kattegat/   Baltic   Sea   catchment,   and   184   million   in   the   North   Sea  catchment   (Rodhe  et   al.   2004).  This   gives   the  area  a  potentially   strong   impact  by  nutrients  and  organic  compounds  originating  from  anthropological  activity,  which  heavily  can  affect  the  ecosystem  structure.  Deposition  of  nitrogen   from   the  atmosphere   is   estimated   to   represent  30-­‐40%  of   the   total   nitrogen   input,   but   this  has  been   shown   to   rise   in   recent   years,   due   to  nitrogen   limitation   from   agriculture   over   the   last   decade.   The   nutrient   concentration  fluctuates  during  the  year,  depending  on  the  primary  production  and  runoff  from  catchment  areas.   Especially   the   inner   Danish   waters   is   a   source   of   large   nutrient   discharge   via   the  Kattegat  during  autumn  and  winter  storms  (Miljøministeriet  2011).  The  nutrients  considered  limiting   for   the   organic   primary   production   in   the   Skagerrak   are   generally   nitrogen,  phosphorus  and  silicon.  Seasonal  limiting  of  ions  like  iron  and  cobalt  may  sometimes  also  be  important  (Tett  et  al.  2003).    

Diel  vertical  migration    Many  taxa  of  both  marine  and  freshwater  zooplankton  perform  diel  vertical  migrations  (DVM)  and  this  behaviour  probably  represents  the  largest  animal  migration,  in  terms  of  biomass,  on  the  planet.  The  normal  pattern   involves  movement   from  shallow  depths  at  night   to  greater  depths  during  the  day.  The  causation  of  DVM  in  the  planktonic  community  has  over  the  last  century,  led  to  numerous  investigations  into  this  phenomenon.  Early  studies  have  focused  on  quantifying  the  occurrence  of  this  behaviour,  and  to  which  extent  this  behaviour  was  present  in  different  taxa  (Hays  et  al.  2001).  Around  the  sixties  the  main  focus  on  DVM  was  to  identify  the  stimuli  for  initiation  of  the  migration,  and  the  ambient  light  intensity  was  determined  as  the   triggering   cue   for   the   direction   of   the   migration   (e.g.   (McNaught   and   Hasler   1964,  Ringelberg  et  al.  1967).  Later  the  focus  of  most  research  shifted  from  environmental  cues,  to  consideration   of   the   ultimate   reasons   that   drives   this   behaviour   (e.g.   (Huntley   and   Brooks  1982,  Giske  et  al.  1990,  Bollens  et  al.  1992,  Fiksen  and  Carlotti  1998).    The  normal  pattern  for  DVM  is  an  evening  ascent  to  the  surface  layers  where  they  feed  during  the   night,   and   decent   around   dawn   at   sunrise,   though   several   cases   of   reversed  migration  have   been   describe   (Ohman   et   al.   1983).   This   may   be   strongly   depending   on   size   and  pigmentation  of  the  individual  zooplankton  species  (e.g.  (Zaret  and  Kerfoot  1975,  Hays  et  al.  1994).  The  difference  between  the  day  and  night  depths  defines  the  amplitude  of  DVM,  and  the   shape   of  migration  may   either   go   up   and   down   together   in   a   narrow   band,   or  may   be  sharply   stratified   in   deep   waters   during   the   day   but   spread   throughout   the   entire   water  column  at   night   (Hays  2003).   The   amplitude   and   the   shape  of   the   vertical   distribution  of   a  population   has   been   shown   to   be   very   different   between   species   and   between   ontogenetic  stages  of   the   same  species,   and  may  be   influenced  by   factors   like   turbidity   food  abundance  and  hunger  (Bohrer  1980,  Huntley  and  Brooks  1982,  George  1983).       A  number  of  different  hypotheses  of  DVM  have  been  presented  to  explain  the  ultimate  reasons   for   this   behaviour.   The  majority   of   them   can   be   divided   into   two   broad   categories  

  13  

(Lampert  1989).  1)  DVM  may  provide  a  metabolic  advantage  for  migrants  e.g  (McLaren  1963,  1974,  Enright  1977),  where  individuals  will  harvest  an  energetic  bonus  by  feeding  at  night  in  the  warm,   food-­‐rich  waters   and   resting   in   the   cold   during   the   day.   However,   all   empirical  attempts  to  test  this  hypotheses  has  failed  to  demonstrate  a  metabolic  advantage  of  migrating  zooplankton,   whereas  most   evidence   suggest   that   the   reverse   is   true:   vertical  migration   is  energetically   disadvantageous   (Lampert   1989).   2)   It   reduces   the   light-­‐dependent  mortality  risk,  where  DVM  serves  to  reduce  the  risk  of  predation  from  visually  orientating  predators,  or  simply   avoid   the   risk   of   UV   light   exposure   near   the   surface.   Although   the   risk   of   UV   light  damage  would  only  be  a  problem  in  uppermost  surface  layer,  as  UV  is  quickly  absorbed  in  the  upper  part  of  the  water  column.  Long  migration  would  therefore  be  unnecessary  in  order  to  avoid   UV   damage   (Lampert   1989).   With   respect   to   reducing   the   risk   of   predation   from  visually  orientating  predators  by  avoiding  light,  the  so-­‐called  predator  evasion  hypothesis,  it  is  suggested  that  zooplankton  remaining  near  the  surface  during  the  day,  would  have  higher  risk  of  being   seen  by  visually  orientating  predators.  The  hypothesis   therefore   suggests   that  zooplankton   consequently  migrates   into   the   deep   to   use   darkness   of   the   ocean   depth   as   a  refuge  during  daytime.  Kremer   and  Kremer   (1988)   suggested   that   the  benefit   of   a   reduced  probability  of  predation  would  outweigh  the  cost  of  a  reduced  potential  for  daytime  feeding,  and  argued  with  the  aphorism  being  ‘better  hungry  than    dead’.     The   predator   evasion   hypothesis   is   considered   the   best-­‐explanatory   to   the   ultimate  reason   for   DVM,   because   of   its   somehow   intuitive   appeal   (Hays   et   al.   2001),   and   a   strong  evidence  base  of  studies  supports  this  hypothesis  (e.g.  (Ohman  et  al.  1983,  Bollens  et  al.  1992,  Fiksen  and  Carlotti  1998,  Cohen  and  Forward  2009).  For  example  as  mentioned  earlier,  DVM  tends  to  be  most  pronounced  in   larger  and  more  pigmented  species,   i.e.   individuals  that  are  easier   to  detect   by   visual   predation   (Bollens   et   al.   1992).   Furthermore,   as   the  open  pelagic  water  mass  is  a  relatively  homogeneous  environment,  zooplankton  have  no  shelter  where  to  hide  from  visual  predators,  and  studies  show  that  DVM  tends  to  be  more  pronounced  when  planktivorous  fish  are  abundant  (Bollens  and  Frost  1989b).  Their  only  refuges  are  therefore  in   the   dark   depths.   Some   of   the   strongest   arguments   in   favour   of   the   predator   evasion  hypothesis  are  the  artificial  enclosure  trials  where  introduction  of  planktivorous  fish  has  been  shown  to  induce  the  DVM  behaviour  (e.g.  (Dawidowicz  et  al.  1990,  1992,  1994)  Though   several   cases  of   reversed  migrations  have  been  described   (e.g.   (Ohman  et   al.   1983,  Neill   1990)   when   larger   migrating   zooplankton   prey   on   smaller   they   show   reverse   DVM,  where  the  smaller  zooplankton  stays  near  the  surface  during  the  day,  and  deeper  at  night,  in  order  to  reduce  predation  risk.  This  behaviour  has  been  shown  to  occur  only  when  the  main  predator  use  tactile  stimuli  rather  than  visual,  and  when  the  predator  migrates  in  a  ‘normal’  pattern  (Hays  et  al.  2001).     The   predator   evasion   hypothesis   might   explain   the   reason   for   DVM   for   ‘normal’  migration  behaviour  on   the  basis   of   predation   risk   from  visually   orientating  predators   that  are  dependent  on  light  intensity.  Although,  because  individual  zooplankton  visibility  would  be  strongly  influenced  by  their  size  and  pigmentation,  one  might  expect  that  relative  smaller  or  less  pigmented  individuals  may  be  more  likely  to  rise  to  the  surface  during  periods  of  higher  

  14  

ambient   light   than   larger   pigmented   individuals.   Hays   (1995)   comparison   between   species  and  developmental   stages   support   this   argument.  The   study   showed   that   juvenile   stages  of  the  copepod  Metridia  lucens  spend  longer  time  near  the  surface  than  the  larger  adult  stages,  whereas  the  larger  copepod,  Metridia  longa,  spends  even  less  time  at  the  surface  each  night.  From  this  consideration  of  size:predation  risk,  argues  Fiksen  and  Carlotti  (1998)  theoretically  that  the  benefit  of  DVM  on  daily  basis  may  depend  on  the  given  individual’s  body  condition.  They   looked   at   C.   finmarchicus   optimal   migration   strategy   relative   to   the   individual   lipid  reserves.   They   suggested   that   individuals   with   larger   lipid   reserves,   thus   potentially   also  more   visible,   might   benefit   less   from   near   surface   foraging,   since   they   have   sufficient  resources  to  remain  at  depth  until  the  reserves  are  depleted  and  hunger  again  drives  them  to  the   surface.   Moreover,   this   prediction   has   been   supported   by   empirical   observations   that  showed  how  lipid  rich  individuals  can  maintain  their  reproductive  output  without  increasing  their  risk  of  predation  by  near-­‐surface  foraging  and  therefore  spend  less  time  at  the  surface  than  their  lipid  poor  co-­‐specifics  (Hays  et  al.  2001).     The  different   suggested  DVM  controlling   factors   agree  well  with   (Huntley   and  Brooks  1982)  earlier  findings.  They  investigated  age-­‐specific  differences  in  DVM  behaviour  of  Calanus  pacificus,  and  found  interestingly  that  the  amplitude  of  vertical  migration  gradually  increased  with  age,  becoming  maximal  in  the  larger  copepodite  stages.  Night  depths  remained  constant  with  age  while  daytime  depths  increased.  They  also  showed  that  the  migratory  behaviour  of  larger  copepodite  stages  was  influenced  by  the  available  food  quantity.  When  phytoplankton  was   abundant   and   individual   ingestion   rates   were   high,   copepodites   performed   high-­‐amplitude  migrations.  As  food  availability  declined,  however,  migration  amplitudes  decreased  and  the  copepodites  remained  in  the  relatively  food-­‐rich  surface  waters  at  all  times  (Huntley  and   Brooks   1982).   These   results   conform  with   the   predator   evasion   hypothesis,   that   large  more   visually   recognizable   individuals   seek   safety   deeper   during   daytime.   It   also   suggests  that  hunger  could  be  a  primary  controlling  factor  for  when  individuals  migrates  back  towards  the  surface,  and  that  energy  reserves  may  control  the  migration  amplitudes.    

Distribution  of  C.  finmarchicus  As  mention  earlier,  C.  finmarchicus  occurs   throughout   the  North  Atlantic   (Fig.  4),   and   it  has  long  been  recognized  that  the  species  is  a  key  contributor  to  the  zooplankton  ecosystem  and  particularly  to  the  copepod  biomass  in  this  ocean.  Main  C.  finmarchicus  centres  of  distribution  are   in   the   Norwegian   Sea   and   the   Labrador   Sea.   Overwintering   and   breeding   areas   are  generally  concentrated  around  deep  ocean  basins  and  shelf  seas.  (Båmstedt  2000,  Hind  et  al.  2000,  Heath  et  al.  2004,  Falk-­‐Petersen  et  al.  2009,  Melle  et  al.  2014).  Matthews  (1969)  found  two   oceanic   centres   of   abundance   of   C.   finmarchicus,   firstly   in   the   oceanic   area   south   of  Greenland  to  the  Labrador/Irminger  Seas,  secondly  in  the  Norwegian  Sea  extending  into  the  northern  North   Sea.   These   two   areas   do   also   function   as   centres   of   reproduction,   and   two  oceanic  cyclonic  gyres,  one  within  each  area,  transport  the  populations  by  currents  from  these  reproduction  centres  into  other  regions  of  the  North  Atlantic.  The  spatial  distribution  of  the  log-­‐transformed  mean  annual  abundance  of  C.  finmarchicus  across  the  North  Atlantic  between  

  15  

1958-­‐1996  is  shown  in  figure  4.  The  abundance  is  highest  in  the  western  part  of  the  Atlantic,  especially   in   the   area   of   the   Labrador   Sea,   and   the   ocean   between   the   Irminger   Basin   and  south  of  Greenland.  From  here  the  majority  of  the  population  disperses  with  the  Gulf  Stream  and   the   North   Atlantic   drift   to   the   Northeastern   Atlantic.   The   data   showed   a   restricted  northern  distribution  partly  due   to  northbound  transport  by   the  north  Atlantic  current,  but  also   a   tendency   to   a   temperature   restriction   for   a   southern  passage  via   the  Azores  Current  (Planque  and  Batten  2000)  Temperature  is  in  this  context  considered  one  of  the  main  factors  controlling  C.  finmarchicus  abundance  and  distribution  range,  thus  creating  a  southern  border  (Kvile  et  al.  2014).      

 Figure  4.  Spatial  distribution  of  C.  finmarchicus  in  the  period  between  1958-­‐1996.  The  original  abundance  data  have  been  log-­‐transformed  (log10  (x+1)),  interpolated  on  regular  grid  and  averaged.  Grey  scale  is  proportional  to  the  resulting  mean  log-­‐abundance.  From  (Planque  and  Batten  2000).      

Energy  base  The   synthesis   of   wax   esters   is   a   special   adaptation   in   Calanus   species   and   some   other  zooplankton  to  cope  with  the  high  seasonality  of   food  availability.  These  lipid  stores  sustain  metabolism  during  overwintering  and  subsequent  molting  and  partial  development  of  gonads  in   mid-­‐late   winter   (Rey-­‐Rassat   et   al.   2002).   The   adaptation   is   an   effective   way   to   quickly  produce  and  to  ensure  high  amounts  of  lipids  during  food  plenty.  The  chemical  components  of  wax  esters  are  simple  and  consist  of  one  fatty  acid  esterified  to  a   long  chain  fatty  alcohol   in  equimolar  amounts  (Bell  et  al.  1986).         The   arousal   lipid-­‐rich   C.   finmarchicus   returning   from   winter   diapause   function   as   an  important   basis   for   the   diet   of   a   number   of   planktivorous   fish   species,   including   herring,  

  16  

mackerel,   capelin,   sandeel   and   young   blue   whiting   and   salmon,   which   are   commercially  significant  for  the  industry  on  the  western  seaboard  of  Europe  and  eastern  seaboard  of  North  America   (Trumble   1973,   Dalpadado   et   al.   2000,   Hind   et   al.   2000,   Darbyson   et   al.   2003,  Dommasnes   et   al.   2004,   Smith   and   Link   2010).   The   high-­‐energy   lipid   compounds   as   C.  finmarchicus  pose  a  significant   influence  on  the  flow  of  energy  transferred  through  the  food  chain   towards   higher   trophic   levels   such   as   birds,   and  marine  mammals   (Dahl   et   al.   2003,  Broms   and   Melle   2007,   Falk-­‐Petersen   et   al.   2009),   making   C.   finmarchicus   a   fundamental  species  of  the  marine  food  web.  The  larvae  of  many  fish  species  also  feed,  sometimes  almost  exclusively,  on   the  eggs  and  nauplii  of  C.  finmarchicus,  and  copepodite   stages  are   important  food   for   the   juvenile   fish   in   shelf   and   shallow   sea   nursery   areas   (Runge   and   DeLafontaine  1996,  Heath   and  Lough  2007).   Studies   of   predation  mortality   in  C.   finmarchicus   copepodite  stages  from  the  Norwegian  Sea,  have  shown  that  especially  herring,  mackerel  and  young  blue  whiting   are   important   predators   on   C.   finmarchicus   copepodites.   Consumption   by   herring  alone   has   been   estimated   in   several   studies,   and   range   at   about   20-­‐100%   of   the   annual  C.  finmarchicus  production  (Dalpadado  et  al.  2000,  Gislason  and  Astthorsson  2002,  Dommasnes  et  al.  2004,  Skjoldal  et  al.  2004,  Prokopchuk  and  Sentyabov  2006,  Utne  et  al.  2012).  The  total  pelagic   fish   stock  size   from   the  previous  year   is  also  having  a  negative  correlation   to   the  C.  finmarchicus  stock  size  in  the  following  year  (Olsen  et  al.  2007,  Huse  et  al.  2012),  making  the  pelagic   fish   stock   the   greatest   controlling   factor   for   C.   finmarchicus   annual   recruitment  potential.   Other   common   predatory   taxa   in   the   area   of   the  Norwegian   Sea   are   Amphipods,  Cnidarians,  Chaetognaths,  Krill  and   larger  Copepods.  Generally   for  these  predatory  taxa   it   is  difficult  to  estimate  their  predatory  impact.  Reliable  estimates  of  diet,  biomass  and  stomach  evacuation   rates  are  generally  not  known  (Melle  et  al.  2014),   although   it   is   clear   that   these  taxa  also  are  important  for  C.  finmarchicus  predation  mortality  (Melle  et  al.  2004,  Skjoldal  et  al.  2004).    

Stable  isotope    Stable   carbon   (δ13C)   and   nitrogen   (δ15N)   isotope   analyses   are   commonly   used   to   describe  structures   and   interaction   in  marine   food  webs.   (Hobson   and  Welch   1992,   Peterson   1999,  Hobson  et  al.  2002,  Post  2002,  Sato  et  al.  2002,  Søreide  et  al.  2006,  Petursdottir  et  al.  2008,  Petursdottir  et  al.  2010,  Hansen  et  al.  2012,  Kurten  et  al.  2013)  The  method  offers  a  simple  way   to  define   and   characterize   the   functional   role   of   organisms   and   facilitates   estimates   of  energy   or  mass   flow   through   ecological   communities   (Post   2002).   It   also   provides   a   time-­‐integrated  estimation  of  an  organism’s  trophic  position,  and  offers  an  overview  of  the  carbon  flow   to   consumers   in   food   webs   (Hansen   et   al.   2012).   The   advantage   of   using   the   stable  isotopes  13C  and  15N   is   that   they  are  both  rare   isotopes,  and  tends  to  accumulate  relative  to  the   lighter   12C   and   14N   up   thought   the   trophic   levels   (Hobson   et   al.   2002).   They   provide   a  continuous   measure   of   an   organism’s   trophic   position   and   feeding   ecology,   in   contrast   to  traditional  examination  of  feeding  behaviour  and  stomach  content  (Hobson  and  Welch  1992,  Hansen  et  al.  2012).  However,  stable  isotope  analysis  is  not  very  specific.  Marine  ecosystems  do  often  contain  complex  trophic  interactions  between  different  levels  and  are  often  hard  to  

  17  

examine   under   strict   empirical   conditions.   Observations   of   feeding   behaviour   and   trophic  relations  are  therefor  often  hard  or  almost  impossible  to  collect.  Stable  isotope  analysis  offers  in  contrast  a  possibility  to  examining  these  structures  and  the  dynamics  in  marine  food  webs  (Peterson  and  Fry  1987,  Vander  Zanden  et  al.  1999).  The  use  of   stable   isotopes  of   carbon   and  nitrogen   for   analysis   of  marine   ecosystems  began  with  DeNiro  and  Epstein  (1978,  1981).  They  found  a  correlation  between  the  ratio  of  heavy  to  light   isotopes  of  C   and  N   in  organisms  and   their   trophic  position   (Hansen  et   al.   2012).  The  method  to  estimate  the  trophic  position  and  feeding  strategy  of  an  organism  is  based  on  the  principle  that  heavier  isotopes  accumulate  from  prey  to  predator  (i.e.  diet-­‐tissue  enrichment)  and  thus  builds  up  through  the  food  chain.  The  principle  is  that  the  lighter  isotope  (i.e.  12C  and  14N)   reacts   at   a   faster   rate   -­‐   leading   to   a   higher   δ   value   (heavy   isotope   enrichment)   in   the  remaining   substrate   (Hansen   et   al.   2012).   This   accumulation   of   isotopes   between  prey   and  predator   is   called   fractionation,   and   13C   and   15N   accumulates   differently   between   trophic  levels,  due  to  the  different  metabolic  retention  (Peterson  and  Fry  1987).    

Mean  fractionation  of  15N  between  each  trophic  level  is  estimated  at  3  to  4‰,  relative  to  the   organism’s   diet,   and   can   therefore   be   used   to   estimate   the   organism   trophic   position  (Deniro  and  Epstein  1981,  Peterson  and  Fry  1987,  Post  2002).  In  contrast  to  15N  fractionation,  the  13C   isotope  changes   little  as   it  moves  through  the   food  web  (0  to  1‰  acc.  Peterson  and  Fry   (1987)).   Sweeting   et   al.   (2007)   found   fractionation   values   among   fish   at   1   to   2‰.  Whereas  DeNiro   and   Epstein   (1978)   showed   that   δ13C   values   between   primary   producers-­‐  and  consumers  were  almost  unchanged.  Due  to  this  small  or  no  fractionation  of  13C  between  trophic  levels,  makes  δ13C  to  a  poor  indicator  for  determining  the  organism  trophic  positions,  in   contrast   with   δ15N.   Instead,   δ13C   is   used   to   determine   the   organisms’   position   in   the  environment  (carbon  source)  as  well  as  any  migration  pattern,  due  to  the  spatial  variation  in  the  carbon  composition  of   the  sources.  Therefore,  δ13C   is  often  used   to  estimate   the  carbon  source   and   mass   flow   through   all   the   different   trophic   pathways   leading   to   the   organism  (Rounick  and  Winterbourn  1986,  Peterson  and  Fry  1987,  Post  2002).    

Due  to  the  high  fractionation  of  15N  between  each  trophic  level  (3  to  4‰,  (Peterson  and  Fry  1987)),   δ15N   is   considered   ideal   for   estimation  of   trophic   levels.   Post   (2002)   concludes  that   the   simplest  model   for   estimating   the   trophic   position  of   a   secondary   consumer   is   the  measure  of  enrichment  of  nitrogen  per  trophic  level,  using  the  formula:    

 

 TL!  = λ!"#$  +!"#!!"#$%&'()  !"#$%&'(  !  !"#!!"#$)

!"#$!    

 were  λbase  is  the  trophic  position  of  the  organism  used  to  estimate  δ15Nbase  (e.g.  1  for  primary  producers   or   2   for   herbivores   (primary   consumers)).   The   δ15Nsecondary   consumer   is   the   δ15N  measured  value  for  the  organism  of  interest  (secondary  consumer  or  any  higher).  The  δ15Nbase  is  the  mean  value  of  the  isotopic  baseline  and  must  capture  the  temporal  variation  in  δ15N  of  primary   producers   and   detrital   energy   sources   for   those   consumers   in   question.   Δδ15N   is  fractionation  enrichment  per   trophic   level,   assumed   to  be  between  3‰  and  4‰  (Peterson  and  Fry  1987).  From  the  equation  it  is  important  to  note  the  unknowns  of  δ15Nscondary  consumer  

  18  

and  δ15Nbase.  These  are  measured,  but  to  get  a  sufficient  estimate  of  the  trophic  position,  one  most  have  a  good  estimate  of  δ15Nbase  (sample  baseline).  Post  (2002)  stated  that  the  isotopic  signature  of  a   consumer  alone   is  not  generally   sufficient   to   infer   trophic  position  or  carbon  source  without  an  appropriate  isotopic  baseline.      

Isotopic  baseline    In  general,   it   is  straightforward  to  use  the  stable  isotope  ratio  to  evaluate  structures  of  food  webs   but   the   challenge   in   this   method   is   to   compare   the   results   across   multiple   systems  (Cabana   and   Rasmussen   1996,   Post   2002).   There   are   considerable   variation   among  ecosystems   from  which  organisms  draw   their   carbon  and  nitrogen.  This  variation   is  due   to  the  differences  in  isotope  ratio  for  the  biologically  available  carbon  and  nitrogen  at  the  base  of  the   food   chain   and   the   variation   in   the   fractionation   rate   (Rounick   and  Winterbourn   1986,  Vander   Zanden   et   al.   1999,   Post   et   al.   2000,   Hansen   et   al.   2012).   These   conditions   make  comparison   between   multiple   systems   difficult   and   it   is   therefore   necessary   to   have   an  isotopic  baseline  to  correct  for  the  relative  ratios  of  δ13C  and  δ15N.  Without  suitable  estimates  of  δ13Cbase  and  δ15Nbase  in  each  system,  there  is  genuinely  no  way  to  determine  if  variation  in  the  δ13C  and  δ15N  of  an  organism  reflects  changes  in  food  web  structure  and  carbon  flow,  or  just  a  variation  in  the  δ13Cbase  and  δ15Nbase  However,  obtaining  a  suitable  isotopic  baseline  is  one  of  the  most  difficult  problems  the  application  of  stable  isotope  techniques  are  facing  (Post  2002).   In  marine  ecosystems,  most  primary  producers  has  a  high  variation  in  δ13C  and  δ15N  over   time,  which   complicate   their  direct  usefulness  as   indicators  of  δ13Cbase   and  δ15Nbase   for  consumers   higher   up   the   food   chain,   that   integrate   δ13C   and   δ15N   over   much   longer   time  periods   (Cabana   and   Rasmussen   1996).   Furthermore,   it   is   difficult   to   sample   primary  producers   in  pelagic  systems.   In  order  to  reduce  the  variation   in  the  base   level,  Cabana  and  Rasmussen   (1996)   and   Vander   Zanden   and   Rasmussen   (1999)   suggest   using   long   lived  organisms   to   quantify   δ13Cbase   and   δ15Nbase,   because   the   temporal   variance   of   their   isotopic  signature  is  much  lower  than  that  of  short  living  primary  producers  (Post  2002).  This  could  be  for  example  mussels,  which  live  as  stationary  primary  consumers  in  the  same  area,  making  them  less  sensitive  to  temporal  variations.    

For  a  simple  and  more  straightforward  evaluation  of  food  web  structures  and  material  flow  within  a  single  confined  system,  a  relatively  simple  use  of  stable  isotope  ratios,  without  a  baseline,  has  shown  potential  (Peterson  et  al.  1985,  Keough  et  al.  1996,  Hansson  et  al.  1997).  This  evaluation,  however,  will  only  have  a  mere  outline  representation  of   the  systems  mass  flow  and  trophic  relations,  and  would  only  really  show  an   image  of   the  accumulation  of   the  heavier   isotopes   through  the   food  chain.   It  would  therefore  only  represent  a  small  confined  structure,   with   no   possibility   of   compare   the   results   across   multiple   systems   (Kling   et   al.  1992,  Post  2002).  However,   this  approach  could  give  a  structural   idea  of  carbon  source  and  trophic  order  within  a  single  system  (Peterson  et  al.  1985,  Hansson  et  al.  1997).    

  19  

The  trophic  position  of  C.  finmarchicus  relative  to  the  other  zooplankton  and  micronekton  species  found  in  the  Skagerrak.    Søreide   et   al.   (2008)   and  Petursdottir   et   al.   (2010),   both   of  which   investigated   variation   in  stable  isotope  ratios  for  C.  finmarchicus   in  relation  to  life  history  found  lower  values  of  δ15N  than  the  10  to  10.8  ‰  found  in  our  study.  Their  results  suggested  that  C.  finmarchicus  was  a  pure  herbivore,   even  during   times  with   low  algal   biomass.  Previous   studies,   however,   have  suggested  that  ciliates  and  heterotrophic  dinoflagellates  could  be  important  food  sources  for  C.   finmarchicus   in   periods   of   deeper  distribution   and  post-­‐bloom,  when   algal   food   is   scarce  (Ohman  and  Runge  1994,  Levinsen  et  al.  2000).  Other  studies  have  also  shown  that  females  feed   omnivorously   in   periods   of   low   food   source   availability   during   spawning   (Runge   and  DeLafontaine  1996,  Ohman  and  Hirche  2001).  It  therefore  appears  that  C.  finmarchicus  feeds  omnivorously  in  the  Skagerrak  in  August  throughout  the  water  column,  as  we  did  not  find  any  significant  change  in  δ15N  with  depth.  It  is  interesting  to  note,  that  the  Dinoflagellate  Ceratium  tripos   that  was  obtained  in  great  numbers  in  the  55µm  surface  samples  appear  to  be  on  the  same  trophic  level  as  C.  finmarchicus  according  to  its  δ15N  value,  while  δ13C  indicate  that  they  rely  on  different  carbon  sources.  The  other  species  sampled  in  the  Multinet  appeared  to  feed  at  almost  the  same  trophic  level  as   C.   finmarchicus,   based   on   δ15N,   and   positioned   4   –   6   ‰   above   the   δ15N   signature   of  particles  (POM)  obtained   in  a  sediment   trap  at  40  m  depth.  However,   the  variations   in  δ13C  values  suggest  that  carbon  sources  may  differ  and  that  these  differences  vary  with  respect  to  depth   stratum.   Some   species   like   Parathemisto   abyssorum   and   young   Meganyctiphanes  norvegica   also   displayed   variation   between   depth   intervals.   Parathemisto   abyssorum   mean  δ15N  values  vary  from  8.6  to  10.5‰  and  Meganyctiphanes  norvegica  between  9.4  and  11.4‰.  These  difference  may  indicate  a  trophic  shifts  in  relation  to  their  position  in  the  water  column.  Studies   of   C.   finmarchicus   have   shown   a   high   degree   of   plasticity,   both   in   time   and   space  (Fiksen   and  Giske   1995,   Fiksen   and   Carlotti   1998,   Pepin   and  Head   2009,   Kvile   et   al.   2014,  Melle  et  al.  2014).  The  isotopic  composition  has  been  shown  to  be  able  to  change  within  a  few  weeks.   In   C.   finmarchicus,   for   example,   a   switch   in   diet   (from   Bacillariophyceae   to  Dinophyceae)  changed  the   isotopic   fingerprints  within  only  two  weeks  (Graeve  et  al.  2005).  These   somewhat   fluctuating   factors   of   individual   feeding   and   ontogenetic   stage   strategies,  only   adds   to   the   rationale   for   interpreting   the   trophic   picture   in   a  more   three   dimensional  way.    The   isotopic   signature   of   C.   finmarchicus   was   compared   to   signatures   of   Euphausids   and    Decapods  obtained   in  hauls  of  an   Isaacs-­‐Kidd  Midwater  Trawl  (Fig.  5F).  These  data  showed  clear  segregation  of  isotopic  niches,  with  Pontophilus  norvegicus  lying  more  than  one  trophic  level   above   C.   finmarchicus   according   to   accepted   values   for   fractionation   between   trophic  levels,   (Michener   and   Kaufman   2008),   (Deniro   and   Epstein   1981,   Peterson   and   Fry   1987).  Thus,  C.  finmarchicus  may  constitute  an  important  food  source  for  some  of  these  Decapods.          

  20  

                                                                                             

100-­‐200m  

Calanus  vinmarchicus  Parathemisto  abyssorum  Gaidius  tenuispinus  

C  

5  

7  

9  

11  

13  

δ15 N    

200-­‐350m  

Calanus  vinmarchicus   Pareuchata  norvegica  Parathemisto  abyssorum   Gaidius  tenuispinus  Meganyctiphanes  norvegica  

D  

5  

7  

9  

11  

13  

δ15 N    

350-­‐500m  

Calanus  vinmarchicus   Pareuchata  norvegica  

Parathemisto  abyssorum   Sagitta  spp.    

Meganyctiphanes  norvegica  

E  

9  

10  

11  

12  

13  

14  

15  δ1

5 N    

F  

Calanus  vinmarchichus  

Pasiphaea  multidentata  

Munida  tenuimana  

Pasiphaea  tarda  

Crangon  crangon  

Pandalus  borealis  

Pontophilus  norvegicus  

Pasiphaea  sivado  

Meganyctiphanes  norvegica  

-­‐25   -­‐23   -­‐21   -­‐19   -­‐17  δ13C     0-­‐50m  

Calanus  vinmarchicus   Pareuchata  norvegica  Centropages  typicus   Metridia  longa  Meganyctiphanes  norvegica   Ceratium  tripos  POM  

4  

6  

8  

10  

12  

14  -­‐25   -­‐23   -­‐21   -­‐19   -­‐17  

δ15 N    

δ13C     50-­‐100m  

Calanus  vinmarchicus  Metridia  longa  Gaidius  tenuispinus  

B  A

Figure  5.  Mean  δ13C  and  δ15N  ratio  for  the  sampled  zooplankton  and  shrimp  species  from  Skagerrak.  A-­‐E:  Comparison   of   C.   finmarchicus   with   the   sampled   pelagic   zooplankton,   according   to   sampling   depth  intervals.  F:  Comparison  of  C.  finmarchicus  with  collected  krill  and  shrimp  species.  

  21  

References      Aksnes,  D.  L.,  and  J.  Blindheim.  1996.  Circulation  patterns   in  the  North  Atlantic  and  possible  

impact  on  population  dynamics  of  Calanus  finmarchicus.  Ophelia  44:7-­‐28.  Bell,  M.  V.,  R.  J.  Henderson,  and  J.  R.  Sargent.  1986.  The  role  of  polyunsaturated  fatty-­‐acids  in  

fish.   Comparative   Biochemistry   and   Physiology   B-­‐Biochemistry   &  Molecular   Biology  83:711-­‐719.  

Bergstad,  O.  A.,  A.  D.  Wik,  and  O.  Hildre.  2003.  Predator-­‐prey  relationships  and  food  sources  of  the   Skagerrak   deep-­‐water   fish   assemblage.   Journal   of   Northwest   Atlantic   Fishery  Science  31:165-­‐180.  

Bohrer,  R.  1980.  Experimental  studies  on  diel  vertical  migration.  In  Ecology  and  Evolution  of  Zooplankton   Communities   (ed.   W.C.   Kerfoot)   University   Press   of   New   England,  Hanover,  New  Hampshire:111-­‐121.  

Bollens,  S.  M.,  and  B.  W.  Frost.  1989a.  Predator-­‐induced  diel  vertical  migration  in  a  planktonic  copepod.  J  Plankton  Res  11:1047-­‐1065.  

Bollens,   S.   M.,   and   B.   W.   Frost.   1989b.   Zooplanktivorous   fish   and   vanable   diel   vertical  migration   in   the   marine   planktonic   copepod   Calanus   pacificus.   Limnol.Oceanogr.  34:1072-­‐1083.  

Bollens,   S.   M.,   B.  W.   Frost,   D.   S.   Thoreson,   and   S.   J.  Watts.   1992.   Diel   vertical   migration   in  zooplankton:   field   evidence   in   support   of   the   predator   avoidance   hypothesis.  Hydrobiologia  234:33-­‐39.  

Bonnet,   D.,   A.   Richardson,   R.   Harris,   A.   Hirst,   G.   Beaugrand,   M.   Edwards,   S.   Ceballos,   R.  Diekman,  A.  Lopez-­‐Urrutia,  L.  Valdes,  F.  Carlotti,  J.  C.  Molinero,  H.  Weikert,  W.  Greve,  D.  Lucic,   A.   Albaina,   N.   D.   Yahia,   S.   F.   Umani,   A.   Miranda,   A.   dos   Santos,   K.   Cook,   S.  Robinson,  and  M.  L.  F.  de  Puelles.  2005.  An  overview  of  Calanus  helgolandicus  ecology  in  European  waters.  Progress  in  Oceanography  65:1-­‐53.  

Broms,  C.,  and  W.  Melle.  2007.  Seasonal  development  of  Calanus   finmarchicus   in  relation   to  phytoplankton   bloom   dynamics   in   the   Norwegian   Sea.   Deep-­‐Sea   Research   Part   Ii-­‐Topical  Studies  in  Oceanography  54:2760-­‐2775.  

Båmstedt,   U.   2000.   Life   cycle,   seasonal   vertical   distribution   and   feeding   of   Calanus  finmarchicus  in  Skagerrak  coastal  water.  Marine  Biology  137:279-­‐289.  

Cabana,   G.,   and   J.   B.   Rasmussen.   1996.   Comparison   of   aquatic   food   chains   using   nitrogen  isotopes.   Proceedings   of   the   National   Academy   of   Sciences   of   the   United   States   of  America  93:10844-­‐10847.  

Clark,   K.   A.   J.,   A.   S.   Brierley,   and   D.  W.   Pond.   2012.   Composition   of  wax   esters   is   linked   to  diapause  behavior  of  Calanus  finmarchicus  in  a  sea  loch  environment.  Limnology  and  Oceanography  57:65-­‐75.  

Cohen,   J.   H.,   and   R.   B.   Forward.   2009.   Zooplankton   diel   vertical   migration   -­‐   a   review   of  proximate  control.  Pages  77-­‐109  in  R.  N.  Gibson,  R.  J.  A.  Atkinson,  and  J.  D.  M.  Gordon,  editors.   Oceanography   and   Marine   Biology:   An   Annual   Review,   Vol   47.   Crc   Press-­‐Taylor  &  Francis  Group,  Boca  Raton.  

Conover,  R.  J.  1988.  Comparative  life  histories  of  the  genera  Calanus  and  Neocalanus  in  high  latitudes  of  the  northern  hemisphere.  Hydrobiologia  167:127-­‐142.  

Conway,   D.   V.   P.   2006.   Identification   of   the   copepodite   developmental   stages   of   twenty-­‐six  North   Atlantic   copepods.   Marine   Biological   Association   of   the   United   Kingdom,  Occasional  Publications.  

  22  

Dahl,   T.  M.,   S.   Falk-­‐Petersen,   G.  W.  Gabrielsen,   J.   R.   Sargent,  H.  Hop,   and  R.  M.  Millar.   2003.  Lipids   and   stable   isotopes   in   common   eider,   black-­‐legged   kittiwake   and   northern  fulmar:  a  trophic  study  from  an  Arctic  fjord.  Marine  Ecology  Progress  Series  256:257-­‐269.  

Dalpadado,  P.,  B.  Ellertsen,  W.  Melle,  and  A.  Dommasnes.  2000.  Food  and  feeding  conditions  of  Norwegian  spring-­‐spawning  herring  (Clupea  harengus)  through  its  feeding  migrations.  Ices  Journal  of  Marine  Science  57:843-­‐857.  

Darbyson,  E.,  D.  P.  Swain,  D.  Chabot,  and  M.  Castonguay.  2003.  Diel  variation   in   feeding  rate  and   prey   composition   of   herring   and  mackerel   in   the   southern   Gulf   of   St   Lawrence.  Journal  of  Fish  Biology  63:1235-­‐1257.  

Davis,   C.   S.   1987.  Components  of   the   zooplankton  production   cycle   in   the   temperate  ocean.  Journal  of  Marine  Research  45:947-­‐983.  

Dawidowicz,  P.,   and  C.   J.   Loose.  1992.  Metabolic   costs  during  predator-­‐induced  diel   vertical  migration  of  Daphnia.  Limnology  and  Oceanography  37:1589-­‐1595.  

Dawidowicz,   P.,   J.   Pijanowska,   and   K.   Ciechomski.   1990.   Vertical   migration   of   Chaoborus  larvae  is  induced  by  the  presence  of  fish.  Limnology  and  Oceanography  35:1631-­‐1637.  

Deniro,   M.   J.,   and   S.   Epstein.   1978.   Influence   of   Diet   on   Distribution   of   Carbon   Isotopes   in  Animals.  Geochimica  Et  Cosmochimica  Acta  42:495-­‐506.  

Deniro,  M.  J.,  and  S.  Epstein.  1981.  Influence  of  Diet  on  the  Distribution  of  Nitrogen  Isotopes  in  Animals.  Geochimica  Et  Cosmochimica  Acta  45:341-­‐351.  

Dommasnes,  A.,  W.  Melle,  P.  Dalpadado,  and  B.  Ellertsen.  2004.  Herring  as  a  major  consumer  in  the  Norwegian  Sea.  Ices  Journal  of  Marine  Science  61:739-­‐751.  

Enright,   J.   T.   1977.   Diurnal   vertical   migration:   adaptive   significance   and   timing.   Part   1.  Selective  advantage:  a  metabolic  model.  Limnology  and  Oceanography  22:856-­‐872.  

Falk-­‐Petersen,  S.,  P.  Mayzaud,  G.  Kattner,  and  J.  Sargent.  2009.  Lipids  and  life  strategy  of  Arctic  Calanus.  Marine  Biology  Research  5:18-­‐39.  

Falkenhaug,  T.,  K.  S.  Tande,  and  T.  Semenova.  1997.  Diel,  seasonal  and  ontogenetic  variations  in  the  vertical  distributions  of   four  marine  copepods.  Marine  Ecology  Progress  Series  149:105-­‐119.  

Fiksen,  O.,  and  F.  Carlotti.  1998.  A  model  of  optimal  life  history  and  Diel  vertical  migration  in  Calanus  finmarchicus.  Sarsia  83:129-­‐147.  

Fiksen,  O.,  and   J.  Giske.  1995.  Vertical-­‐distribution  and  population-­‐dynamics  of  copepods  by  dynamic  optimization.  Ices  Journal  of  Marine  Science  52:483-­‐503.  

Fonselius,  S.  1995.  Västerhavets  och  östersjöns  Oceanografi.  .in  SMHI,  editor.,  Norrköping.  Fransz,  H.  G.,  J.  M.  Colebrook,  J.  C.  Gamble,  and  K.  M.  1991.  The  zooplankton  of  the  North  Sea.  

Neth  Jsea  Res  28(1/2)::1-­‐52.  George,  D.  G.  1983.  Interrelations  between  the  vertical  migration  of  Daphnia  and  chlorophyll  a  

in  two  large  limnetic  enclosures.  J  Plankton  Res  5:457-­‐475.  Giske,  J.,  D.  L.  Aksnes,  B.  M.  Balino,  S.  Kaartvedt,  U.  Lie,   J.  T.  Nordeide,  A.  G.  V.  Salvanes,  S.  M.  

Wakili,   and   A.   Aadnesen.   1990.   Vertical   distribution   and   trophic   interactions   of  zooplankton  and  fish  in  Masfjorden,  Norway.  Sarsia  75:65-­‐81.  

Gislason,  A.,  and  A.  S.  Astthorsson.  2002.  The  food  of  Norwegian  spring-­‐spawning  herring  in  the   western   Norwegian   Sea   in   relation   to   the   annual   cycle   of   zooplankton.   Sarsia  87:236-­‐247.  

Graeve,  M.,   C.  Albers,   and  G.  Kattner.  2005.  Assimilation  and  biosynthesis  of   lipids   in  Arctic  Calanus  species  based  on  feeding  experiments  with  a  C-­‐13  labelled  diatom.  Journal  of  Experimental  Marine  Biology  and  Ecology  317:109-­‐125.  

  23  

Gaard,   E.,   A.   Gislason,   T.   Falkenhaug,   H.   Soiland,   E.   Musaeva,   A.   Vereshchaka,   and   G.  Vinogradov.  2008.  Horizontal  and  vertical  copepod  distribution  and  abundance  on  the  Mid-­‐Atlantic   Ridge   in   June   2004.   Deep-­‐Sea   Research   Part   Ii-­‐Topical   Studies   in  Oceanography  55:59-­‐71.  

Hansen,   J.   H.,   R.   B.  Hedeholm,  K.   Sunksen,   J.   T.   Christensen,   and  P.   Gronkjaer.   2012.   Spatial  variability  of  carbon  (delta  C-­‐13)  and  nitrogen  (delta  N-­‐15)  stable  isotope  ratios  in  an  Arctic  marine  food  web.  Marine  Ecology  Progress  Series  467:47-­‐59.  

Hansson,   S.,   J.   E.  Hobbie,   R.   Elmgren,  U.   Larsson,  B.   Fry,   and   S.   Johansson.   1997.   The   stable  nitrogen  isotope  ratio  as  a  marker  of  food-­‐web  interactions  and  fish  migration.  Ecology  78:2249-­‐2257.  

Hays,   G.   C.   1995.   Ontogenetic   and   seasonal   variation   in   the   diel   vertical   migration   of   the  copepods  Metridia  lucens  and  Metridia  longa.  Limnol.  Oceanogr  40:1461-­‐1465.  

Hays,   G.   C.   2003.   A   review   of   the   adaptive   significance   and   ecosystem   consequences   of  zooplankton  diel  vertical  migrations.  Hydrobiologia  503:163-­‐170.  

Hays,  G.  C.,  H.  Kennedy,  and  B.  W.  Frost.  2001.  Individual  variability  in  diel  vertical  migration  of   a   marine   copepod:  Why   some   individuals   remain   at   depth   when   others   migrate.  Limnology  and  Oceanography  46:2050-­‐2054.  

Hays,  G.  C.,  C.  A.  Proctor,  A.  W.  G.  John,  and  A.  J.  Warner.  1994.  Interspecific  differences  in  diel  vertical   migration   of   marine   copepods:   the   implications   of   size,   colour   and  morphology.  Limnology  and  Oceanography  39:1621-­‐1629.  

Head,   E.   J.   H.,   L.   R.   Harris,   and   I.   Yashayaev.   2003.   Distributions   of   Calanus   spp.   and   other  mesozooplankton   in   the   Labrador   Sea   in   relation   to   hydrography   in   spring   and  summer  (1995-­‐2000).  Progress  in  Oceanography  59:1-­‐30.  

Head,  E.   J.  H.,  W.  Melle,  P.  Pepin,  E.  Bagoien,  and  C.  Broms.  2013.  On   the  ecology  of  Calanus  finmarchicus   in   the   Subarctic   North   Atlantic:   A   comparison   of   population   dynamics  and   environmental   conditions   in   areas   of   the   Labrador   Sea-­‐Labrador/Newfoundland  Shelf   and   Norwegian   Sea   Atlantic   and   Coastal   Waters.   Progress   in   Oceanography  114:46-­‐63.  

Heath,  M.   R.,   P.   R.   Boyle,   A.   Gislason,  W.   S.   C.   Gurney,   S.   J.   Hay,   E.   J.   H.   Head,   S.   Holmes,   A.  Ingvarsdottir,  S.  H.  Jonasdottir,  P.  Lindeque,  R.  T.  Pollard,  J.  Rasmussen,  K.  Richards,  K.  Richardson,  G.   Smerdon,   and  D.   Speirs.  2004.  Comparative  ecology  of  over-­‐wintering  Calanus   finmarchicus   in   the   northern   North   Atlantic,   and   implications   for   life-­‐cycle  patterns.  Ices  Journal  of  Marine  Science  61:698-­‐708.  

Heath,  M.  R.,  and  R.  G.  Lough.  2007.  A  synthesis  of  large-­‐scale  patterns  in  the  planktonic  prey  of  larval  and  juvenile  cod  (Gadus  morhua).  Fisheries  Oceanography  16:169-­‐185.  

Heath,  M.  R.,   J.   Rasmussen,   Y.   Ahmed,   J.   Allen,   C.   I.  H.   Anderson,  A.   S.   Brierley,   L.   Brown,  A.  Bunker,  K.  Cook,  R.  Davidson,  S.  Fielding,  W.  S.  C.  Gurney,  R.  Harris,  S.  Hay,  S.  Henson,  A.  G.   Hirst,   N.   P.   Holliday,   A.   Ingvarsdottir,   X.   Irigoien,   P.   Lindeque,   D.   J.   Mayor,   D.  Montagnes,   C.  Moffat,   R.   Pollard,   S.   Richards,   R.   A.   Saunders,   J.   Sidey,   G.   Smerdon,  D.  Speirs,  P.  Walsham,  J.  Waniek,  L.  Webster,  and  D.  Wilson.  2008.  Spatial  demography  of  Calanus  finmarchicus  in  the  Irminger  Sea.  Progress  in  Oceanography  76:39-­‐88.  

Hind,  A.,  W.  S.  C.  Gurney,  M.  Heath,  and  A.  D.  Bryant.  2000.  Overwintering  strategies  in  Calanus  finmarchicus.  Marine  Ecology  Progress  Series  193:95-­‐107.  

Hirche,  H.  J.  1990.  Egg  production  of  Calanus  finmarchicus  at  low  temperature.  Marine  Biology  106:53-­‐58.  

Hirche,  H.  J.  1996.  Diapause  in  the  marine  copepod,  Calanus  finmarchicus  -­‐  A  review.  Ophelia  44:129-­‐143.  

  24  

Hirche,  H.  J.,  T.  Brey,  and  B.  Niehoff.  2001.  A  high-­‐frequency  time  series  at  ocean  Weather  ship  station   M   (Norwegian   Sea):   population   dynamics   of   Calanus   finmarchicus.   Marine  Ecology  Progress  Series  219:205-­‐219.  

Hirche,   H.   J.,   and   G.   Kattner.   1993.   Egg   production   and   lipid   content   of   Calanus   glacialis   in  spring:   Indication   of   a   food-­‐dependent   and   food-­‐independent   reproductive   mode.  Marine  Biology  117:615-­‐622.  

Hirche,  H.  J.,  U.  Meyer,  and  B.  Niehoff.  1997.  Egg  production  of  Calanus  finmarchicus:  Effect  of  temperature,  food  and  season.  Marine  Biology  127:609-­‐620.  

Hirche,  H.  J.,  and  B.  Niehoff.  1996.  Reproduction  of  the  Arctic  copepod  Calanus  hyperboreus  in  the  Greenland  Sea-­‐field  and  laboratory  observations.  Polar  Biology  16:209-­‐219.  

Hobson,   K.   A.,   A.   Fisk,   N.   Karnovsky,  M.   Holst,   J.   M.   Gagnon,   and  M.   Fortier.   2002.   A   stable  isotope  (delta  C-­‐13,  delta  N-­‐15)  model  for  the  North  Water  food  web:  implications  for  evaluating   trophodynamics   and   the   flow   of   energy   and   contaminants.   Deep-­‐Sea  Research  Part  Ii-­‐Topical  Studies  in  Oceanography  49:5131-­‐5150.  

Hobson,   K.   A.,   and  H.   E.  Welch.   1992.   Determination   of   trophic   relationships  within   a   high  arctic   marine   food   web   using   delta-­‐c-­‐13   and   delta-­‐n-­‐15   analysis.   Marine   Ecology  Progress  Series  84:9-­‐18.  

Huntley,   M.,   and   E.   R.   Brooks.   1982.   Effects   of   Age   and   Food   Availability   on   Diel   Vertical  Migration  of  Calanus  pacificus.  Marine  Biology  71:23-­‐31.  

Huse,  G.,   J.   C.  Holst,  K.  Utne,   L.  Nottestad,  W.  Melle,  A.   Slotte,  G.  Ottersen,  T.   Fenchel,   and  F.  Uiblein.  2012.  Effects  of  interactions  between  fish  populations  on  ecosystem  dynamics  in   the   Norwegian   Sea   -­‐   results   of   the   INFERNO   project   Preface.   Marine   Biology  Research  8:415-­‐419.  

Hvas,  E.,  M.-­‐L.  Maarup,  L.  E.  Hansen,  K.  Brock,  and  P.  Blanner.  1998.  Skagerrak  1992-­‐  1996.  En  sammenstilling  af  resultater   fra  Nordjyllands  Amts  recipienttilsyn   i  den  kystnære  del  af  Skagerrak.,  Nordjyllands  Amt.  

Irigoien,   X.   2000.   Vertical   distribution   and   population   structure   of   Calanus   finmarchicus   at  station   India   (59   degrees   N,   19   degrees  W)   during   the   passage   of   the   great   salinity  anomaly,  1971-­‐1975.  Deep-­‐Sea  Research  Part  I-­‐Oceanographic  Research  Papers  47:1-­‐26.  

Irigoien,  X.  2004.  Some  ideas  about  the  role  of  lipids  in  the  life  cycle  of  Calanus  finmarchicus.  J  Plankton  Res  26:259-­‐263.  

Jónasdóttir,   S.   H.   1999.   Lipid   content   of   Calanus   finmarchicus   during   overwintering   in   the  Faroe-­‐Shetland  Channel.  Fisheries  Oceanography  8:62-­‐72.  

Jonasdottir,  S.  H.,  H.  G.  Gudfinnsson,  A.  Gislason,  and  O.  S.  Astthorsson.  2002.  Diet  composition  and  quality   for  Calanus   finmarchicus  egg  production  and  hatching   success  off   south-­‐west  Iceland.  Marine  Biology  140:1195-­‐1206.  

Jonasdottir,   S.  H.,   and  M.  Koski.   2011.  Biological   processes   in   the  North   Sea:   comparison   of  Calanus  helgolandicus  and  Calanus  finmarchicus  vertical  distribution  and  production.  J  Plankton  Res  33:85-­‐103.  

Keough,  J.  R.,  M.  E.  Sierszen,  and  C.  A.  Hagley.  1996.  Analysis  of  a  Lake  Superior  coastal  food  web  with  stable  isotope  techniques.  Limnology  and  Oceanography  41:136-­‐146.  

Kling,  G.  W.,  B.  Fry,  and  W.  J.  Obrien.  1992.  Stable  isotopes  and  planktonic  trophic  structure  in  arctic  lakes.  Ecology  73:561-­‐566.  

Kremer,   P.,   and   J.   N.   Kremer.   1988.   Energetic   and   behavioral   im-­‐   plications   of   pulsed   food  availability  for  zooplankton.  .  Bull.  mar.  sci,:797-­‐809.  

  25  

Kurten,   B.,   S.   J.   Painting,   U.   Struck,   N.   V.   C.   Polunin,   and   J.   J.   Middelburg.   2013.   Tracking  seasonal   changes   in   North   Sea   zooplankton   trophic   dynamics   using   stable   isotopes.  Biogeochemistry  113:167-­‐187.  

Kvile,  K.  O.,  P.  Dalpadado,  E.  Orlova,  N.  C.  Stenseth,  and  L.  C.  Stige.  2014.  Temperature  effects  on   Calanus   finmarchicus   vary   in   space,   time   and   between   developmental   stages.  Marine  Ecology  Progress  Series  517:85-­‐104.  

Kaartvedt,  S.  1996.  Habitat  preference  during  overwintering  and   timing  of   seasonal  vertical  migration  of  Calanus  finmarchicus.  Ophelia  44:145-­‐156.  

Lagergren,  R.,  K.  Leberfinger,  and  J.  A.  E.  Stenson.  2008.  Seasonal  and  ontogenetic  variation  in  diel   vertical   migration   of   Chaoborus   flavicans   and   its   effect   on   depth-­‐selection  behavior  of  other  zooplankton.  Limnology  and  Oceanography  53:1083-­‐1092.  

Lalli,   C.   M.,   and   T.   R.   Parsons.   1997.   Biological   Oceanography   an   introduction.   Elder   &  Williams,  University  of  British  Columbia.  

Lampert,   W.   1989.   The   adaptive   significance   of   diel   vertical   migration   of   zooplankton.  Functional  Ecology  3:21-­‐27.  

Lee,   R.   F.,   W.   Hagen,   and   G.   Kattner.   2006.   Lipid   storage   in   marine   zooplankton.   Marine  Ecology  Progress  Series  307:273-­‐306.  

Levinsen,   H.,   J.   T.   Turner,   T.   G.   Nielsen,   and   B.   W.   Hansen.   2000.   On   the   trophic   coupling  between  protists  and  copepods  in  arctic  marine  ecosystems.  Marine  Ecology  Progress  Series  204:65-­‐77.  

Longhurst,   A.,   D.   Sameoto,   and   A.   Herman.   1984.   Vertical   distribution   of   zooplankton   in  summer:  Eastern  Canadian  archipelago.  J  Plankton  Res  6:137-­‐168.  

Loose,  C.   J.,  and  P.  Dawidowicz.  1994.  Trade-­‐offs   in  diel  vertical  migration  by  zooplankton  –  the  costs  of  predator  avoidance.  Ecology  75:2255-­‐2263.  

Lund-­‐Hansen,  L.  C.,  C.  Christiansen,  C.  Jügensen,  K.  Richardson,  and  P.  Skyum.  1994.  Basisbog  i  fysisk-­‐biologisk  Oceanografi.  G.E.C  Gads  forlag,  København.  

Laakmann,  S.,  M.  Kochzius,  and  H.  Auel.  2009.  Ecological  niches  of  Arctic  deep-­‐sea  copepods:  Vertical  partitioning,  dietary  preferences  and  different   trophic   levels  minimize   inter-­‐specific   competition.   Deep-­‐Sea   Research   Part   I-­‐Oceanographic   Research   Papers  56:741-­‐756.  

Maps,  F.,  J.  A.  Runge,  A.  Leising,  A.  J.  Pershing,  N.  R.  Record,  S.  Plourde,  and  J.  J.  Pierson.  2012.  Modelling  the  timing  and  duration  of  dormancy  in  populations  of  Calanus  finmarchicus  from  the  Northwest  Atlantic  shelf.  J  Plankton  Res  34:36-­‐54.  

Marshall,   S.   M.,   and   A.   P.   Orr.   1952.   On   the   biology   of   Calanus   fin-­‐   marchicus.   VII.   Factors  affecting  egg  production.  J  Mar  biol  Ass  UK  30:527-­‐547.  

Marshall,   S.   M.,   and   A.   P.   Orr.   1955.   The   biology   of   marine   copepod   Calanus   finmarchicus  (Gunners).  Oliver  and  Boyd,  Edinburgh.  

Matthews,   J.   B.   L.   1969.   Continuous   Plankton   Records:   The   geographical   and   seasonal  distribution  of  Calanus  finmarehicus  in  the  North  Atlantic.  Bulletin  of  Marine  Ecology  6:251-­‐273.  

McLaren,  I.  A.  1963.  Effect  of  temperature  on  growth  of  zooplankton  and  the  adaptive  value  of  vertical  migration.  Journal  of  the  Fisheries  Research  Board  of  Canada  20:685-­‐727.  

McLaren,   I.   A.   1974.   Demographic   strategy   of   vertical   migration   by   a   marine   copepod.  American  Naturalist  108:91-­‐102.  

McLaren,   I.   A.,   E.   Head,   and   D.   D.   Sameoto.   2001.   Life   cycles   and   seasonal   distributions   of  Calanus   finmarchicus   on   the   central   Scotian   Shelf.   Canadian   Journal   of   Fisheries   and  Aquatic  Sciences  58:659-­‐670.  

  26  

McNaught,   D.   C.,   and   A.   D.   Hasler.   1964.   Rate   of   movement   of   populations   of   Daphnia   in  relation  to  changes  in  light  intensity.  Journal  of  the  Fisheries  Research  Board  of  Canada  21:291-­‐318.  

Melle,  W.,  B.  Ellertsen,  and  H.  R.  Skjoldal.  2004.  Zooplankton:  The  link  to  higher  trophic  levels  In:  Skjoldal,  H.R.  (Ed).  .  The  Norwegian  Sea  Ecosystem.  Tapir,  Trondheim:137-­‐202.  

Melle,  W.,   J.  Runge,  E.  Head,  S.  Plourde,  C.  Castellani,  P.  Licandro,   J.  Pierson,  S.   Jonasdottir,  C.  Johnson,  C.  Broms,  H.  Debes,  T.  Falkenhaug,  E.  Gaard,  A.  Gislason,  M.  Heath,  B.  Niehoff,  T.  G.  Nielsen,  P.  Pepin,  E.  K.  Stenevik,  and  G.  Chust.  2014.  The  North  Atlantic  Ocean  as  habitat   for   Calanus   finmarchicus:   Environmental   factors   and   life   history   traits.  Progress  in  Oceanography  129:244-­‐284.  

Melle,   W.,   and   H.   R.   Skjoldal.   1989.   Zooplankton   reproduction   in   the   Barents   Sea:   vertical  distribution   of   eggs   and   nauplii   of   Calanus   finmarchicus   in   relation   to   spring  phytoplankton  development.  Olsen  &  Olsen,  Fredensborg.  

Michener,  R.  H.,  and  L.  Kaufman.  2008.  Stable  isotope  ratios  as  tracers  in  marine  food  webs:  An  update.  Pages  238-­‐283  in  R.  M.  A.  K.  LAJTHA,  editor.  Stable  Isotopes  in  Ecology  and  Environmental  Science.  Blsckweel  Publidhing.  

Miljøministeriet,   N.   2011.   Vandplan   2009-­‐2015.   Nordlige   Kattegat   og   Skagerrak.  Hovedvandopland  1.1.  Vanddistrikt:  Jylland  og  Fyn.  

Miller,   C.   B.   2004.   Calanus   finmarchicus.in   N.   Fisheries,   editor.   Teri   Frady,  http://www.nefsc.noaa.gov/press_release/2004/news04.14.htm.  

Miller,  C.  B.,  J.  A.  Crain,  and  C.  A.  Morgan.  2000.  Oil  storage  variability  in  Calanus  finmarchicus.  Ices  Journal  of  Marine  Science  57:1786-­‐1799.  

Maar,   M.,   T.   G.   Nielsen,   K.   Richardson,   U.   Christaki,   O.   S.   Hansen,   S.   Zervoudaki,   and   E.   D.  Christou.   2002.   Spatial   and   temporal   variability   of   food   web   structure   during   the  spring  bloom  in  the  Skagerrak.  Marine  Ecology  Progress  Series  239:11-­‐29.  

Neill,  W.   E.   1990.   Induced   vertical  migration   in   copepods   as   a   defence   against   invertebrate  predation.  Nature  345:524-­‐526.  

Niehoff,  B.  2004.  The  effect  of   food   limitation  on  gonad  development  and  egg  production  of  the  planktonic  copepod  Calanus  finmarchicus.  Journal  of  Experimental  Marine  Biology  and  Ecology  307:237-­‐259.  

Niehoff,  B.,  U.  Klenke,  H.  J.  Hirche,  X.  Irigoien,  R.  Head,  and  R.  Harris.  1999.  A  high  frequency  time   series   at   Weathership   M,   Norwegian   Sea,   during   the   1997   spring   bloom:   the  reproductive  biology  of  Calanus  finmarchicus.  Marine  Ecology  Progress  Series  176:81-­‐92.  

Ohman,  M.  D.,  B.  W.  Frost,  and  E.  B.  Cohen.  1983.  Reverse  diel  vertical  migration  -­‐  an  escape  from  invertebrate  predators.  Science  220:1404-­‐1407.  

Ohman,   M.   D.,   and   H.   J.   Hirche.   2001.   Density-­‐dependent   mortality   in   an   oceanic   copepod  population.  Nature  412:638-­‐641.  

Ohman,  M.  D.,  and  J.  A.  Runge.  1994.  Sustained  fecundity  when  phytoplankton  resources  are  in  short   supply—omnivory   by   Calanus   finmarchicus   in   the   Gulf   of   St-­‐Lawrence.  Limnology  and  Oceanography  39:21-­‐36.  

Olsen,   E.   M.,   W.   Melle,   S.   Kaartvedt,   J.   C.   Holst,   and   K.   A.   Mork.   2007.   Spatially   structured  interactions   between   a   migratory   pelagic   predator,   the   Norwegian   spring-­‐spawning  herring  Clupea  harengus  L.,  and  its  zooplankton  prey.  Journal  of  Fish  Biology  70:799-­‐815.  

  27  

Pasternak,  A.,  E.  Arashkevich,  K.  Tande,  and  T.  Falkenhaug.  2001.  Seasonal  changes  in  feeding,  gonad  development  and  lipid  stores  in  Calanus  finmarchicus  and  C-­‐hyperboreus  from  Malangen,  northern  Norway.  Marine  Biology  138:1141-­‐1152.  

Pasternak,   A.   F.,   E.   G.   Arashkevich,   U.   Grothe,   A.   B.   Nikishina,   and   K.   A.   Solovyev.   2013.  Different   effects   of   increased   water   temperature   on   egg   production   of   Calanus  finmarchicus  and  C-­‐glacialis.  Oceanology  53:547-­‐553.  

Pepin,   P.,   and  E.   J.  H.  Head.   2009.   Seasonal   and  depth-­‐dependent   variations   in   the   size   and  lipid   contents   of   stage   5   copepodites   of   Calanus   finmarchicus   in   the   waters   of   the  Newfoundland   Shelf   and   the   Labrador   Sea.   Deep-­‐Sea   Research   Part   I-­‐Oceanographic  Research  Papers  56:989-­‐1002.  

Peterson,  B.  J.  1999.  Stable  isotopes  as  tracers  of  organic  matter  input  and  transfer  in  benthic  food  webs:  A  review.  Acta  Oecologica-­‐International  Journal  of  Ecology  20:479-­‐487.  

Peterson,   B.   J.,   and   B.   Fry.   1987.   Stable   isotopes   in   ecosystem   studies.   Annual   Review   of  Ecology  and  Systematics  18:293-­‐320.  

Peterson,  B.   J.,  R.  W.  Howarth,  and  R.  H.  Garritt.  1985.  Multiple  stable   isotopes  used  to  trace  the  flow  of  organic-­‐matter  in  estuarine  food  webs.  Science  227:1361-­‐1363.  

Petursdottir,  H.,   S.  Falk-­‐Petersen,  H.  Hop,  and  A.  Gislason.  2010.  Calanus   finmarchicus  along  the  northern  Mid-­‐Atlantic  Ridge:  variation  in  fatty  acid  and  alcohol  profiles  and  stable  isotope  values,  delta  N-­‐15  and  delta  C-­‐13.  J  Plankton  Res  32:1067-­‐1077.  

Petursdottir,   H.,   A.   Gislason,   S.   Falk-­‐Petersen,   H.   Hop,   and   J.   Svavarsson.   2008.   Trophic  interactions  of   the  pelagic  ecosystem  over   the  Reykjanes  Ridge  as  evaluated  by   fatty  acid   and   stable   isotope   analyses.   Deep-­‐Sea   Research   Part   Ii-­‐Topical   Studies   in  Oceanography  55:83-­‐93.  

Planque,   B.,   and   S.   D.   Batten.   2000.   Calanus   finmarchicus   in   the  North  Atlantic:   the   year   of  Calanus  in  the  context  of  interdecadal  change.  Ices  Journal  of  Marine  Science  57:1528-­‐1535.  

Planque,  B.,  G.  C.  Hays,  F.  Ibanez,  and  J.  C.  Gamble.  1997.  Large  scale  spatial  variations  in  the  seasonal  abundance  of  Calanus  finmarchicus.  Deep-­‐Sea  Research  Part  I-­‐Oceanographic  Research  Papers  44:315-­‐326.  

Plourde,   S.,   P.   Joly,   J.   A.   Runge,   B.   Zakardjian,   and   J.   J.   Dodson.   2001.   Life   cycle   of   Calanus  finmarchicus   in   the   lower   St.   Lawrence   Estuary:   the   imprint   of   circulation   and   late  timing  of   the  spring  phytoplankton  bloom.  Canadian  Journal  of  Fisheries  and  Aquatic  Sciences  58:647-­‐658.  

Plourde,   S.,   and   J.   A.   Runge.   1993.   Reproduction   of   the   planktonic   copepod   Calanus  finmarchicus  in  the  Lower  St.  Lawrence  Estuary:  relation  to  the  cycle  of  phytoplankton  production   and   evidence   for   a   Calanus   pump.   .   Marine   Ecology   Progress   Series  102:217-­‐227.  

Post,   D.  M.   2002.   Using   stable   isotopes   to   estimate   trophic   position:  Models,  methods,   and  assumptions.  Ecology  83:703-­‐718.  

Post,  D.  M.,  M.  L.  Pace,  and  N.  G.  Hairston.  2000.  Ecosystem  size  determines  food-­‐chain  length  in  lakes.  Nature  405:1047-­‐1049.  

Prokopchuk,   I.,   and  E.   Sentyabov.   2006.  Diets   of   herring,  mackerel,   and   blue  whiting   in   the  Norwegian   Sea   in   relation   to   Calanus   finmarchicus   distribution   and   temperature  conditions.  Ices  Journal  of  Marine  Science  63:117-­‐127.  

Rey-­‐Rassat,   C.,   X.   Irigoien,   R.   Harris,   and   F.   Carlotti.   2002.   Energetic   cost   of   gonad  development   in  Calanus   finmarchicus   and  C.   helgolandicus.  Marine  Ecology  Progress  Series  238:301-­‐306.  

  28  

Richardson,  K.,  S.  H.   Jonasdottir,  S.   J.  Hay,  and  A.  Christoffersen.  1999.  Calanus   finmarchicus  egg  production  and  food  availability  in  the  Faroe-­‐Shetland  Channel  and  northern  North  Sea:  October-­‐March.  Fisheries  Oceanography  8:153-­‐162.  

Ringelberg,  J.,  J.  Van  Kasteel,  and  H.  Servaas.  1967.  The  sensitivity  of  Daphnia  magna  Straus  to  changes   in   light   intensity  of   various   adaptation   levels   and   its   implications   in  diurnal  vertical  migration.  Zeitschrift  fur  vergleichende  Physiologie.  56:317-­‐407.  

Rodhe,   J.   1987.   The   large   scale   circulation   in   the   Skagerrak:   interpretation   of   some  observations.  Tellus  39:245-­‐253.  

Rodhe,   J.,   P.   Tett,   and   F.  Wulf.   2004.   The   baltic   and   north   seas:   a   regional   review   of   some  important  physical-­‐chemical-­‐  biological  interaction  processes  The  Sea  14:1029-­‐1072.  

Rounick,   J.   S.,   and   M.   J.   Winterbourn.   1986.   Stable   Carbon   Isotopes   and   Carbon   Flow   in  Ecosystems.  Bioscience  36:171-­‐177.  

Runge,   J.  A.,  and  Y.  DeLafontaine.  1996.  Characterization  of   the  pelagic  ecosystem  in  surface  waters  of  the  northern  Gulf  of  St  Lawrence  in  early  summer:  The  larval  redfish  Calanus  microplankton  interaction.  Fisheries  Oceanography  5:21-­‐37.  

Runge,   J.   A.,   S.   Plourde,   P.   Joly,   B.   Niehoff,   and   E.   Durbin.   2006.   Characteristics   of   egg  production  of  the  planktonic  copepod,  Calanus  finmarchicus,  on  Georges  Bank:  1994-­‐1999.  Deep-­‐Sea  Research  Part  Ii-­‐Topical  Studies  in  Oceanography  53:2618-­‐2631.  

Sato,   M.,   H.   Sasaki,   and   M.   Fukuchi.   2002.   Stable   isotopic   compositions   of   overwintering  copepods   in   the   arctic   and   subarctic  waters   and   implications   to   the   feeding   history.  Journal  of  Marine  Systems  38:165-­‐174.  

Skjoldal,  H.  R.,  P.  Dalpadado,  and  A.  Dommasnes.  2004.  Food  webs  and  trophic  interactions.  In:  Skjoldal  H.R:  (Ed.),  The  Norwegian  Sea  Ecosystem.  Tapir,  Trondheim:447-­‐506.  

Smith,  B.  E.,  and  J.  S.  Link.  2010.  The  trophic  dynamics  of  50  finfish  and  2  squid  species  on  the  northeast  U.S.  Continental  Shelf.,  NOAA  Tech.  Mem.  

Stahl,  H.,  A.  Tengberg,  J.  Brunnegard,  E.  Bjornbom,  T.  L.  Forbes,  A.  B.  Josefson,  H.  G.  Kaberi,  I.  M.  K.   Hassellov,   F.   Olsgard,   P.   Roos,   and   P.   O.   J.   Hall.   2004.   Factors   influencing   organic  carbon   recycling   and   burial   in   Skagerrak   sediments.   Journal   of   Marine   Research  62:867-­‐907.  

Stenevik,  E.  K.,  W.  Melle,  E.  Gaard,  A.  Gislason,  C.  T.  A.  Broms,  I.  Prokopchuk,  and  B.  Ellertsen.  2007.  Egg  production  of  Calanus  finmarchicus  -­‐  A  basin-­‐scale  study.  Deep-­‐Sea  Research  Part  Ii-­‐Topical  Studies  in  Oceanography  54:2672-­‐2685.  

Svansson,  A.   1975.  Physical   and   chemical   oceanography  of   the   Skagerrak   and   the  Kattegat.,  Inst  Mar  Res  (GENERIC),  Lysekil.  

Sweeting,   C.   J.,   J.   T.   Barry,   N.   V.   C.   Polunin,   and   S.   Jennings.   2007.   Effects   of   body   size   and  environment  on  diet-­‐tissue  delta  C-­‐13  fractionation  in  fishes.  Journal  of  Experimental  Marine  Biology  and  Ecology  352:165-­‐176.  

Søreide,   J.   E.,   S.   Falk-­‐Petersen,   E.   N.   Hegseth,   H.   Hop,   M.   L.   Carroll,   K.   A.   Hobson,   and   K.  Blachowiak-­‐Samolyk.   2008.   Seasonal   feeding   strategies   of   Calanus   in   the   high-­‐Arctic  Svalbard  region.  Deep-­‐Sea  Research  Part  Ii-­‐Topical  Studies  in  Oceanography  55:2225-­‐2244.  

Søreide,  J.  E.,  T.  Tamelander,  H.  Hop,  K.  A.  Hobson,  and  I.  Johansen.  2006.  Sample  preparation  effects   on   stable   C   and  N   isotope   values:   a   comparison   of  methods   in   Arctic  marine  food  web  studies.  Marine  Ecology  Progress  Series  328:17-­‐28.  

Tett,  P.,  L.  Gilpin,  H.  Svendsen,  C.  P.  Erlandsson,  U.  Larsson,  S.  Kratzer,  E.  Fouilland,  C.  Janzen,  J.  Y.   Lee,   C.   Grenz,   A.   Newton,   J.   G.   Ferreira,   T.   Fernandes,   and   S.   Scory.   2003.  

  29  

Eutrophication   and   some   European  waters   of   restricted   exchange.   Continental   Shelf  Research  23:1635-­‐1671.  

Trumble,   R.   J.   1973.   Distribution,   relative   abundance   and   general   biology   of   selected  underutilized  fishery  resources  of  the  eastern  North  Pacific  Ocean.  

Utne,  K.  R.,  S.  S.  Hjollo,  G.  Huse,  and  M.  Skogen.  2012.  Estimating  the  consumption  of  Calanus  finmarchicus   by   planktivorous   fish   in   the   Norwegian   Sea   using   a   fully   coupled   3D  model  system.  Marine  Biology  Research  8:527-­‐547.  

Vander  Zanden,  M.  J.,  B.  J.  Shuter,  N.  Lester,  and  J.  B.  Rasmussen.  1999.  Patterns  of  food  chain  length  in  lakes:  A  stable  isotope  study.  American  Naturalist  154:406-­‐416.  

Williams,   R.   1985.   Vertical   distribution   of   Calanus   finmarchicus   and   C.   helgolandicus   in  relation   to   the   development   of   the   seasonal   thermocline   in   the   Celtic   Sea.   Marine  Biology  86:145-­‐149.  

Worthington,   E.   1931.   Vertical   movements   of   freshwater   macroplankton.   Int.   Rev.   Gesam.  Hydrobiol  25:394-­‐436.  

Zaret,   T.   M.,   and   W.   C.   Kerfoot.   1975.   Fish   predation   on   Bosmina   longirostris,   body   size  selection  versus  visibility  selection.  Ecology  56:232-­‐237.  

             

  30  

Vertical  distribution  of  zooplankton  with  emphasis  on  variation  in  lipid  content  and  stable  isotope  signatures  in  Calanus  finmarchicus  in  the  

deep  part  of  Skagerrak        Christoffer  Bruus,  Jens  Tang  Christensen    Marine  Ecology,  Department  of  Bioscience,  Aarhus  University,  8000  Aarhus  C,  Denmark    

Abstract  Diel  vertical  migration  (DVM)  of  zooplankton  describes  the  behavioural  displacement  among  species,  and  deals  with  their  movements  across  24-­‐h  period.  In  this  context,  was  the  DVM  of  the  pelagic  zooplankton  community,  with  a  specific  focus  on  Calanus  finmarchicus  in  relation  to  body  size,  lipid  content  and  copepodite  stages,  examined  during  a  cruise  in  the  Skagerrak  Sea   in   mid-­‐late   summer   2014.   We   found   evidence   of   DVM,   with   varying   strength,   in   the  pelagic  zooplankton  community.  The  majority  of  the  larger  zooplankton  and  copepod  species  moved  in  a  normal  vertical  migration  pattern,  while  the  smaller  copepod  species  e.g.  O.  similis  showed  patterns  of   reveres  migration.   In   regard   to  C.  finmarchicus,  were   there  a   significant  increase   in   body   size   and   lipid   content  with   depth,   and   vertical   displacement   between   the  copepodite  stages.  The  larger  and  late  stages  of  C.  finmarchicus  distributed  in  the  deepest  part  of   the  water  column,  and  vice  versa   for  the  smaller.  The   isotopic  differences  between  depth  strata   in   C.   finmarchicus   showed   increasing   values   of  δ!"C  with   depth   while   there   was   no  change   in  δ!"N,   suggesting   that  C.   finmarchicus   maintains   its   trophic   position  while   carbon  sources  may  shift.      Keywords:  Copepods;  Diel  vertical  migration;  Stable  isotope;  Copepodite  stages.  

Introduction    The   vertical   distribution   and   diel   vertical   migration   are   among   the  most   studied   topics   in  aquatic  biology.  It  describes  the  behaviour  in  relation  to  the  depth  distribution  among  species  and  deals  with  their  movements  across  periods  of  days  and  seasons.  The  vertical  distributions  of   the   species   are  often  an  effect   of   their  different   ability   to   exploit   various  habitats,  which  vary   with   respect   to   e.g.   resources,   competition   and   risk   of   predation.   Adaptation   due   to  competitors   and   predators   therefore   affect   habitat   choice   and   influence   the   character   of  vertical  distribution  (Fiksen  and  Giske  1995).  In  winter  the  surface  waters  often  only  contain  a  few  individuals,  and  a  larger  number  are  found  in  the  deep  (Hirche  1996).  The  theory  is  that  this  overwintering-­‐behaviour  enhance  overwinter  survival  by  reducing  both  predations  risk  and   physiological   costs,   although,   the   low   temperatures   may   simply   reduce   physiological  costs  encountered  at  depth,  by  reducing  the  metabolism  (Kaartvedt  1996,  Hind  et  al.  2000).    Diel  vertical  migration  (DVM)  whereby  animals  migrate  a   few  to  several  hundred  meters   in  search  of  food  sources,  or  seek  refuge  by  descending  into  the  darkness  of  the  depth  has  been  

  31  

observed  in  a   large  number  of  pelagic  species.  The  normal  pattern  involves  movement  from  shallow  depths  at  night  to  greater  depths  during  the  day.  Several  hypotheses  have  been  put  forward   in  an  attempt   to  explain   the  adaptive   significance  of  DVM  (Lampert  1989),  but   the  predator  evasion  hypothesis  is  today  considered  the  best-­‐explanatory  reason  for  DVM  (Hays  et  al.  2001),  and  a  strong  evidence  base  of  studies  supports  this  hypothesis  (e.g.  (Ohman  et  al.  1983,  Bollens  et  al.  1992,  Fiksen  and  Carlotti  1998,  Cohen  and  Forward  2009).  Many  taxa  of  both  marine  and   freshwater   zooplankton  perform   these  vertical  migrations  both  on  a  daily  and  on  a  seasonal  basis.  The  behaviour  probably  represents  the  biggest  animal  migration,  in  terms  of  biomass,  on  the  planet  and  is  continually  closely  studied.    The   planktonic   copepod   Calanus   finmarchicus,   is   one   of   the   most   important   multicellular  zooplankton  species   in  the  northern  Atlantic  Ocean,  based  one   its  abundance  and  ecological  role  e.g.   in  food  webs  and  biogeochemical  cycles.  It  has  been  the  target  species  of  numerous  research   articles,   including   investigations   on   its   vertical   distribution   behaviour   (e.g.  (Kaartvedt  1996,  Fiksen  and  Carlotti  1998,  Broms  and  Melle  2007)  and  particularly  in  relation  to  DVM  (Båmstedt  2000).  The  many  studies  of  the  behaviour,  biology  and  life  history  makes  it  an  ideal  target  species  for  further  investigation  on  local  and  seasonal  scales.  C.   finmarchicus   is   generally   considered   an   oceanic   species   with   its   core   distribution   in  northern   seas,   and   are   also   fund   in   the   deep   coastal   basins   of   Skagerrak   (Aksnes   and  Blindheim  1996,   Båmstedt   2000).   The   species   dominates   its   area   of   distribution,   and   often  account   for   about   40   –   90%   of   the   zooplankton   community   by   abundance   (Planque   and  Batten   2000)   and   is   therefore   considered   a   vital   link   in   the   flow   of   energy   from   primary  producers   to   the  higher   levels   in   the   trophic  structure  of   the  marine   food  webs  (Runge  and  DeLafontaine  1996,  Hansson  et  al.  1997,  Petursdottir  et  al.  2008).  During  C.  finmarchicus   life  cycle   it   develops   from   eggs   to   adult   via   six   naupliar   (NI-­‐NVI)   and   five   copepodid   (CI-­‐CV)  stages  after  hatching.  (Hind  et  al.  2000).  C.  finmarchicus  also  undergoes  a  period  of  dormancy  which  may  involve  a  diapause  state,  as  a  means  of  surviving  through  winter  (Marshall  and  Orr  1955).   During  winter   the   larger   part   of   the   population,  mainly   copepodite   stages   (CIV-­‐CV),  migrates   down   to   deep   water.   In   the   Norwegian   Sea   and   the   Skagerrak   area,   the  overwintering  stages  start  migrating  to  depths  of  >500m  at  the  end  of  the  vernal  bloom  in  late  summer  and   fall   (Williams  1985,  Kaartvedt  1996,  Fiksen  and  Carlotti  1998,  Båmstedt  2000,  Hind   et   al.   2000,   Maar   et   al.   2002,   Sato   et   al.   2002,   Head   et   al.   2003,   Heath   et   al.   2004,  Petursdottir   et   al.   2008,   Falk-­‐Petersen   et   al.   2009,   Melle   et   al.   2014).   The   duration   of  dormancy   is   most   often   determined   by   the   rate   of   stored   lipid   utilisation,   which   is  temperature   dependent   (Hind   et   al.   2000,   Falk-­‐Petersen   et   al.   2009).   Lipid   levels   also  generally   have   a   key   role   in   the   vertical   distribution.   Fiksen   and   Carlotti   (1998)   suggested  that  individuals  with  larger  lipid  reserves  might  benefit  less  from  near  surface  foraging,  since  they  have  sufficient  resources  to  remain  at  depth  until  the  reserves  are  depleted.  In  addition,  it   is   the  generally  believed,   that   lipid  accumulation   triggers   the  onset  of  dormancy  (Irigoien  2004),  and  that  individuals  of  C.  finmarchicus  will  remain  active  if  the  amount  of  stored  lipids  is  insufficient  before  descending  to  overwintering  depth  (Clark  et  al.  2012).    

  32  

The  habitat  conditions  for  zooplankton  in  the  region  of  Skagerrak  is  influenced  by  the  inflow  of  North  Atlantic  water,  which  reintroduces  C.  finmarchicus  through  the  North  Sea  each  spring  from   overwintering   stocks   on   the   North   Atlantic   shelf   (Fransz   et   al.   1991),   although  overwintering  also  occurs  inside  Skagerrak  (Båmstedt  2000).  The  hydrography  of  Skagerrak  is  characterized  as  a  transition  zone  where  water  masses  from  the  North  Sea,  and  the  shallow  brackish  Kattegat/Baltic  Sea  meet.  It  is  characterized  by  a  deep  slope  and  shelf  environment  (Stahl  et  al.  2004)  with  slops  dropping  down  to  a  maximum  depth  of  >700m,  with  mean  depth  of  210m  (Rodhe  1987).  The  surface  water  consists  of   the   incoming  Jutland  Current,  and  the  outgoing   brackish   Baltic   Current.   A   counter-­‐clockwise   circulation   dominates   the   area   with  northbound  outgoing   current   from   the   east,  with   incoming  deep  North  Atlantic  water   from  north  (Svansson  1975,  Rodhe  1987,  Lund-­‐Hansen  et  al.  1994).    Information  on   the  vertical  distribution  and   trophic   structure  of   zooplankton   in   the  pelagic  ecosystem  of   Skagerrak   is   scarce.   Few  studies  of   zooplankton  distribution   (e.g.   (Giske  et   al.  1990,   Båmstedt   2000)   and   trophic   relationships   (e.g.   (Giske   et   al.   1990,   Maar   et   al.   2002,  Bergstad   et   al.   2003)   gives   an   overall   picture   of   the   structure   of   the   area   such   as   species  seasonal   distribution,   development   and   ecological   relationships,   but   there   is   not   much  information   on   the   diversity   of   zooplankton,   DVM,   and   trophic   relationships.   Studies   of  vertical  isotopic  differences  on  C.  finmarchicus  are  also  absent  from  the  Skagerrak  area.    The  overall  objective  of   this   study  was   to  determine  variation   in   the  diel  vertical  distribution  of  the   pelagic   zooplankton   community   with   a   specific   focus   on   C.   finmarchicus   distribution  patterns   in   relation   to   size,   lipid   content   and   copepodite   stages.     The   isotopic   differences  between  depth  strata  of  C.  finmarchicus  were  examined  to  study  potential  variation  in  trophic  relationships  of  the  species  with  depth.      

Materials  and  methods  

Sampling       All   samples  were   collected   from   the   research   vessel   Aurora   in  August   2014.   The   study  area  was  positioned  in  the  deep  part  of  Skagerrak  (Table  1,  Fig.  1).  Samples  were  collected  at  two  stations  (St.  1,  400  m  depth,  58°06’  N,  09°50’  E;  St.  2,  610  m  depth,  58°03’  N,  09°09’  E).  At  both  stations  a  day  and  night  sampling  was  performed  with  approximately   twelve  hours  interval.    

Zooplankton   samples   were   obtained   by   vertical   hauls   of   a   0.5   m2   Multinet   sampler  (Hydro-­‐Bios,  Kiel)  from  bottom  to  surface.  The  Mulitnet  sampler  was  lowered  to  the  desired  depth  and  slowly  retrieved  (0.5  -­‐  1m  s-­‐1).  The  sampler  system  consists  of  9  conical  net  bags  (four  55µm  and  five  300µm)  attached  to  a  stainless  steel  frame.  The  net  bags  are  opened  and  closed  by  means  of   spring-­‐loaded   levers,  which  are   triggered   from   the   research  vessel.  The  sampler  was   further  equipped  with  a  CTD  providing  data  on  pressure  (depth),   temperature  and   salinity.   Each   operation   of   the   system   consisted   of   two   consecutive   hauls,   the   first   of  which  sampled  four  strata  with  55µm-­‐nets  while  the  second  sampled  five  strata  with  300µm-­‐nets.    

  33  

After  collection,   the  samples  were  concentrated   to  400ml  on  a  55μm  sieve  and  split   in   two.  One   half  was   fixed   in   4  %   phosphate   buffered   formalin   and   the   other   half  was   frozen   and  subsequently   freeze-­‐dried.   Seabird  CTD  profiles  were   intended  prior   to   each  multinet   haul,  but   unfortunately   the   CTD   of   the   vessel   malfunctioned   and   profiles   of   phytoplankton  distribution,   nutrients,   fluorescence   and   light   attenuation   could   not   be   obtained   so   only  temperature  and  salinity  profiles  are  available.  

Laboratory  analyses     In  the  laboratory  the  formalin  preserved  zooplankton  samples  were  counted  to  obtain  the  individual   species   abundance   pr.   volume   at   different   depth   strata.   Mean   cephalothorax  lengths  of  C.  finmarchicus  were  measured  on  random  subsamples  for  each  depth  stratum.    

The  lipid  mass  analyses  of  C.  finmarchicus  were  obtained  by  measuring  subsamples  of  the  freeze-­‐dried  net  samples  (2543  ±  576μg  dry  mass,  mean  ±  SD).  The  subsamples  were  covered  with  chloroform:methanol  2:1  by  volume  for  2x12  hours  at  room  temperature  in  small  glass      

                               Table  1:  Sampling  stations  incl.  coordinates  and  sample  depth  intervals.  

                           Station  ID  

     Coordinates  

           Depth  intervals  (m)    

       

       300µm-­‐nets:  

 55µm-­‐nets:  

                     

0-­‐15,  15-­‐50,  50-­‐100,    

0-­‐50,  50-­‐100,    Station  1  

   

58°05.9N,  09°50.3E    

 

 100-­‐200,  200-­‐300  

 

100-­‐200,  200-­‐300  

                     

0-­‐50,  50-­‐100,  100-­‐  200,      

0-­‐50,  50-­‐100,    Station  2  

     58°02.3N,  09°07.4E  

      200-­‐350,  350-­‐500       100-­‐200,  200-­‐350  

       

     

 

 

 

 

 

 

 

 

   

Figure  1:  Map  of  the  study  area  with  the  position  of  sampling  stations  (Bergstad  et  al.  2003).  

  34  

vials  with   lids,  quickly  rinsed  with  milli-­‐Q  ultrapure  water  and   later   freeze-­‐dried   for   twelve  hours   before   being   measured   for   lipid   weight   loss   (Hobson   et   al.   2002,   Sato   et   al.   2002,  Søreide   et   al.   2006,   Petursdottir   et   al.   2008,   Petursdottir   et   al.   2010,   Hansen   et   al.   2012,  Kurten  et  al.  2013).  The   lipid   extracted   C.   finmarchicus  were   subsequently   soaked   in   1ml   2   N   HCL   for   ca.   few  minutes  to  remove  carbonates  and  rinsed  with  small  portions  of  milli-­‐Q  ultrapure  water  until  pH  6-­‐7,  to  wash  away  acid  and  acid  waste  (Hobson  et  al.  2002,  Søreide  et  al.  2006,  Hansen  et  al.  2012).  Thereafter,   the  samples  were   freeze-­‐dried   for   twelve  hours  before  being  used   for  isotope   analyses   of  δ!"C.   The   dried   samples   were   kept   in   a   desiccating   cabinet   containing  silica  gel  between  analyses  (Hobson  et  al.  2002).     The   copepodite   stage   abundances   of   C.   finmarchicus   at   each   depth   interval   were  determined   by   random   subsampling   from   each   formalin   sample.   From   each   sample   40–60  random  individuals  were  measured  and  copepodite  stages  between  (CVI-­‐CI)  were  determined  according  to  Conway  (2006).  The  copepodite  stage  CV  and  CVI  were  difficult  to  separate,  since  they  both  have  almost  the  same  external  appendages  and  morphology,  and  can  therefore  only  be   separated   by   approximation   between   the   mean   prosome   lengths   (Conway   2006).   The  prosome  length  separating  CV  from  CVI  where  defined  by  the  intervals  (CV:  ~2500-­‐3400μm)  and  (CVI:  >3400μm)  according  to  Marshall  and  Orr  (1955)  and  Conway  (2006).  

Isotope  analyses     Stable   carbon  and  nitrogen   isotopes   ratios  were  analysed  at   the  Department  of  Physics  and  Astronomy,  Aarhus  University,  Denmark.  Analyses  were  performed  with  the  above  dried  samples.  For  C.  finmarchicus  analyses  were  performed  on  both  lipid  extracted  and  acid  treated  samples  as  well  as  on  untreated  samples.  Samples  for  isotope  analysis  on  other  species  were  untreated.   Approximately   400μg   dry  mass   (DM)   of   zooplankton   sample   (391   ±   225μg   DM,  mean   ±   SD)  was   packaged   into   pre-­‐weighed   tin   capsules   (5   x   9  mm)   as  whole   individuals.  Dried  zooplankton  individuals  larger  than  400μg  DM  pr.  individual  were  homogenized  using  a  mortar  and  pestle.  Several  smaller  specimens  with  no  visible  stomach  contents,  and  collected  in  the  same  net,  were  selected  and  pooled  into  one  sample  (Hansen  et  al.  2012).  A  total  of  352  C.  finmarchicus  and  226  samples  of  different  zooplankton  species  were  analysed  and  the  isotopic  δ13C  and  δ15N  signatures  were  calculated  as:    

δ!"C  or  δ!"N   ‰ =   𝑅!"#$%& 𝑅!"#$%#&%  x  1000,      where   R   is   (13C/12C)     or   (15N/14N),   and   expressed   relative   to   V-­‐PDB   (Vienna   Pee   Dee  Belemnite)  and  pure  N2  gas,  respectively.  

Vertical  distribution  analyses       We   used   two   separate   indices   of   DVM   as   employed   by   Bollens   and   Frost   (1989b)   and  Falkenhaug  et  al.  (1997).  (1)  The  weighted  mean  depth  (WMD)  method  for  both  day  and  night  samples.  Day-­‐  and  night  time  WMD  were  calculated  for  each  taxon  using  a  modified  variant  of  the  model  developed  by  Worthington  (1931)  :    

  35  

𝑊𝑀𝐷 = 𝑛!𝑑!𝑙! ( 𝑛!𝑙!),      

where  ni  is  abundance  (individuals  pr.  m3)  at  depth  di  taken  to  be  the  midpoint  of  each  sample  interval,  and   li   is   the   depth   range   in  meters   of   the   ith   stratum.   The   li   values  were   included  because  sampling  intervals  (depth  range  of  strata)  were  not  of  equal  length.  (2)  To  estimate  the   strength   and   pattern   of   migration   behaviour,   a   parameter   of   DVM   according   to  Falkenhaug   et   al.   (1997)   was   calculated   as   the   proportion   of   a   zooplankton   population  migrating  across  a  given  depth  during  the  diel  cycle  between  the  day  and  night  sampling.  This  diel   migration   parameter   was   calculated   as   the   difference   between   the   proportions   of   the  population  above   the   reference  depth   for  each   taxon  at  night  and   the  proportion  above   the  same   depth   during   day.   Individual   reference   depths   were   calculated   for   each   taxon   as   the  midpoint  between  day  and  night  WMD.  The  resulting  parameter  value  signifies  the  strength  of  the  DVM,  and  may  vary  between  1  and   -­‐1,  with  positive  values   indicating  normal  DVM  and  negative  values  indicating  the  reverse.  

Statistical  analyses    The  distribution  of  length,  lipid  contents  and  isotope  analyses  data  were  analysed  in  IBM  SPSS  ver.   19.   GLM’s   were   used   in   cases   where   variances   were   homogeneous   (Levene’s   test),  otherwise,   non-­‐parametric   tests   were   employed.   The   level   of   statistical   significance   was  α=0.05  in  all  cases.    

Results    A  total  of  36  different  net  samples  were  taken  at  the  two  Skagerrak  stations,  with  18  samples  from   each   station   during   the   sampling   cruse   August   2014.   Due   to   CTD   malfunction,   only  profiles  of  temperature,  salinity  and  density  could  be  presented  for  the  area  hydrography.    

Hydrography  Profiles  of  temperature  and  salinity  and  corresponding  density  displayed  a  strong  pycnocline  at  20  to  40  meters  at  both  stations  day  and  night  (Fig.  2).  This  showed  that  the  water  masses  were   stratified   at   same  depth   interval   across  both   sampling   areas,   and   the   structure  of   the  water  masses  at  the  two  stations  were  therefore  the  same.                        

0  

100  

200  

300  

400  

500  

0   5   10   15   20  

Depth  (m

)  

Temperature  (°C)  25   30   35   40  

Salinity  (PSU)  1015   1020   1025   1030   1035  

Density  (kg/m³)  

Figure   2.   Profiles   of   temperature   (°C),   salinity   (PSU)   and   density   (kg/m3)   with   depth   at   both   Skagerrak  sampling  stations,  Station  1  and  Station  2,  day  and  night.    

  36  

Table  2.  The  mean  weighted  mean  depth  (WMD)  and  diel  vertical  migration  direction  and  strength  (DVM)  of  the  analysed   species   at   Station   1   and   Station   2.  WMD  were   calculated   according   to   Lagergren   et   al.   (2008),   and  represents  the  mean  depth  (m)  the  specie  population  migrate  across.  DVM  is  calculated  according  to  Falkenhaug  et   al.   (1997):   DVM   =   1,   indicates   maximum   normal   migration   strength,   while   DVM   =   -­‐1,   maximum   reverse  migration  strength.  *  Are  species  collated  in  55μm  sample  nets,  the  rest  are  sample  in  300μm  nets.    

Species      

Station  1        

Station  2               Mean  WMD   DVM       Mean  WMD   DVM  Calanus  finmarchicus   163   0.20     260   0.31  Oithona  similis*   63   -­‐0.03     -­‐   -­‐  Paracalanus  parvus*   42   -­‐0.10     113   0.00  Microstella  norvegica*   53   0.05     127   -­‐0.34  Centropages  typicus   37   0.13     25   0.00  Acartia  longiremis     120   0.43     329   0.43  Metridia  longa   216   -­‐0.02     235   0.46  Gaidius  tenuispinus   140   -­‐0.07  

 254   0.02  

Parathemisto  abyssorum   225   0.12    

321   -­‐0.01  Meganyctiphanes  norvegica   61   0.42  

 287   0.31  

Conchoecia  spp.   181   0.16    

254   0.21  Sagitta  spp.       198   0.10       297   0.02  

   Mesozooplankton    A  total  of  23  different  zooplankton  species  were  found  of  which  13  were  copepods  (Calanus  finmarchicus,  Paracalanus  parvus,  Metridia   longa,  Centropages   typicus,  Acartia  clausi,  Acartia  longiremis,   Oithona   similis,   Microstella   norvegica,   Corycaeus   anglicus,   Heterorhabdus  norvegicus,   Gaidius   tenuispinus,   Pareuchata   norvegica,   Gaidius   brevispinus),   2   were   shrimp  species  (Crangon  crangon,  Pasiphaeidae  multidentata),  2  were  Eumalacostraca  (Parathemisto  abyssorum,  Meganyctiphanes  norvegica),  1  crab  species  (Carcinus  maenas),  1  Errantia  species  (Tomopteris   helgolandica),   1   Acrania   species   (Amphioxus   lanceolatum)   and   species   of  Ostracoda  (Conchoecia  spp.),  Chaetognatha  (Sagitta  spp.)  and  jellyfish  (Semaeostomeaes  spp.)  which  could  not  be  determined  to  species  level.    The   three  most   abundant   taxa  were Conchoecia   spp.   and   the   copepods  C.   finmarchicus   and  Oithona  similis.  C.  finmarchicus  and  Conchoecia  spp.  were  found  in  large  numbers  in  every  net  sample  from  the  two  sampling  stations,  whereas  the  smaller  Oithona  similis  were  only  found  in  the  fine  meshed  55μm  nets,  which  was  also  the  case  for  the  smaller  Microstella  norvegica  and  Paracalanus  parvus.     For   most   of   the   sampled   zooplankton   species,   the   sample   sizes   were   too   small   for  further   analyses   (<0.1%   of   the   total   abundance)   and   only   the   species   presented   in   table   2  were  considered  abundant  enough  for  additional  representation  and  analyses.  

Vertical  distribution  At  Station  1  the  highest  zooplankton  concentration  was  observed  in  the  upper  100m  to  200m  of   the   water   column   both   day   and   night,   whereas   at   the   deeper   Station   2,   the   highest  

  37  

concentrations   were   found   below   200m.   The   concentration   distributions   of   zooplankton  differed  between  the  two  stations,  but  were  more  or  less  in  same  range  within  stations.  Of  the  total  zooplankton  at  Station  1,  63%  and  74%  occurred  above  100m,  and  66%  and  88%  above  200m  by  day  and  night,  respectively.  Correspondingly,  only  18%  and  30%  were  above  100m,  and  24%  and  44%  above  200m  at  Station  2  by  day  and  night,  respectively.  With  respect  to  the  deeper  part  of   the  water  column,  only  34%  and  12%  of   the  zooplankton  were   found  below  200m  by  day  and  night,  respectively,  at  Station  1,  while  the  majority  of  the  zooplankton  was  found  below  200m  at  Station  2  with  76%  and  56%  by  day  and  night,  respectively.  However,  the  relative  depth  distribution  was  differed  among  genera  and  species  (Fig.  3  &  4).     Several   species   had  wide   vertical   depth   ranges,   covering   0-­‐500m   e.g.   C.   finmarchicus,  Oithona  similis,  Metridia   longa,   and  Conchoecia  spp.  Most   taxa   caught   in   the  deepest   sample  interval   350-­‐500m  were   also   found   the   rest   of   the  water   column.     The   only   exception  was  Gaidius  brevispinus,  which  was  restricted  to  depths  below  200m.         The  smaller  copepod  species  e.g.  O.  similis,  M.  norvegica,  C.  typicus  and  P.  parvus  differed  from  the  rest  by  being  distributed  in  the  upper  layers  of  the  water  column.  This  distribution  was   found   to  be   consistent  both  day  and  night   at  both   stations.  However,   some   individuals  tended  to  migrate  down  during  night  (Fig.  3  &  4).  We  did  not  find  any  individuals  of  O.  similis  in   the   day   sample   of   Station   2.   This  was   puzzling   since  we   found   it   in   almost   all   sampling  strata   at   night.   The   overall   result   of   the   vertical   distribution   of   three   of   these   four   small  species   showed  a   reverse  DVM  of  between  day  and  night  at  both   stations   (table  2).  Only  C.  typicus  differed  by  remaining   in   the  upper  water  column  during  day  and  night  although  the  DVM  parameter  for  Station  3  indicated  a  weak  normal  DVM.       The  larger  zooplankton  and  copepod  species  (Fig.  3  and  4)  were  distributed  throughout  the  water  column  and  tended  to  normal  DVM  for  the  majority  of  the  listed  species  (table  2).  The  DVM   index   showed  normal  diel  migration   across   the  mean  WMD   for   the  majority   of   larger  zooplankton   and   copepod   species,   but   the   strength   of   DVM   varied   among   species.   A   few  species   had   so   low   DVM   index   values   (<0.09)   that   they   were   considered   insignificant,  indicating  that  these  species  remained  stationary  or  only  migrated  within  the  sampled  strata.    

Size,  lipid  and  copepodite  stage  distribution  of  C.  finmarchicus    The  length  of  C.  finmarchicus  was  strongly  correlated  with  depth  at  both  stations  (Spearman’s  rho,  ρ=0.348,  p<0.001)  and  (ρ=0.92,  p<0.001)  for  Station  1  and  Station  2,  respectively  (Fig.  5  A-­‐B).   Pairwise   2-­‐tailed   t-­‐test   comparison   for  C.   finmarchicus   length   between   day   and   night  were   only   significant   at   Station  1,   15-­‐50m,   (t28=-­‐2.34   p=0.013),   and   at   Station  2,   100-­‐200m  (t38=-­‐2.04   p=0.049),   signifying   that  C.   finmarchicus  were   larger   at   night   in   these   two   depth  strata.   All   other   pairwise   comparison   between   day   and   night   were   not   significant.   Lipid  content  of  C.  finmarchicus  was  also   correlated  with  depth  at  both   stations   (Spearman’s   rho,  ρ=0.365  p=0.009)  and  (ρ=0.755  p<0.001)  for  Station  1  and  Station  2,  respectively  (Fig.  5  C-­‐D).        

  38  

 

 

 

       

0   50   100  Abundance  (%)  

Night  

0  50  100  Abundance  (%)  

Day  

O.  similis  

0  50  100  Abundance  (%)  

Day  

0   50   100  Abundance  (%)  

Night  

Microstella  norvegica  

0  50  100  Abundance  (%)  

Day  

0   50   100  Abundance  (%)  

Night  

P.  parvus  

0  50  100  Abundance  (%)  

Day  

0   50   100  Abundance  (%)  

Night  

C.  typicus  

0  50  100  Abundance  (%)  

Day  

0   50   100  Abundance  (%)  

Night  

C.  finmarchicus  

0  50  100  Abundance  (%)  

Day  

0   50   100  Abundance  (%)  

Night  

A.  longiremis  

0  50  100  Abundance  (%)  

Day  

0   50   100  Abundance  (%)  

Night  

M.  longa  

0  50  100  Abundance  (%)  

Day  

0   50   100  Abundance  (%)  

Night  

G.  tenuispinus  

0  50  100  Abundance  (%)  

Day  

0   50   100  Abundance  (%)  

Night  

Conchoecia  spp.  

0  50  100  Abundance  (%)  

Day  

0   50   100  Abundance  (%)  

Night  

Sagitta  spp.  

  39  

0   50   100  Abundance  (%)  

Night  

figure  continued    

   

 

0  50  100  Abundance  (%)  

Day  

0   50   100  Abundance  (%)  

Night  

P.  abyssorum    

0  50  100  Abundance  (%)  

Day  

0   50   100  Abundance  (%)  

Night  

Meganyctiphanes  norvegica  

Figure   3.     Vertical   distribution   of   the   zooplankton   species   during   day   and   night   sampling   at   Station   1,  showing   the  means  of   relative  abundance   (%)  of   the   sampling  depth   strata:  0-­‐15,  15-­‐50,  50-­‐100,  100-­‐200  and  200-­‐300,  respectively,  starting  from  the  top.  The  copepod  species  O.  similis,  Microstella  norvegica  and  P.  parvus  were  collected  in  55μm  nets  while  the  rest  were  sampled  in  300μm  nets.  

0  50  100  Abundance  (%)  

Day  

0   50   100  Abundance  (%)  

Night  

O.  similis  

0  50  100  Abundance  (%)  

Day  

0   50   100  Abundance  (%)  

Night  

Microstella  norvegica  

0  50  100  Abundance  (%)  

Day  

0   50   100  Abundance  (%)  

Night  

P.  parvus  

0  50  100  Abundance  (%)  

Day  

0   50   100  Abundance  (%)  

Night  

C.  typicus  

0  50  100  Abundance  (%)  

Day  

0   50   100  Abundance  (%)  

Night  

C.  finmarchicus  

0  50  100  Abundance  (%)  

Day  

0   50   100  Abundance  (%)  

Night  

A.  longiremis  

0  50  100  Abundance  (%)  

Day  

0   50   100  Abundance  (%)  

Night  

M.  longa  

0  50  100  Abundance  (%)  

Day  

G.  tenuispinus  

  40  

figure  continued    

 Additionally,  Lipid  content  was  significantly  larger  at  daytime  than  at  night  for  both  stations  (St1:  F9,  40=6.66  p<0.001,  St2:  F9,  40=16.23  p<0.001).  We  did  also   found  a  sudden   increase   in  the   lipid   level,   starting  below  100m  and  200m   for  Station  1  and  Station  2   respectively.  The  shift  varied  between   the  stations,  but  was  significantly   larger   than  subsequent  upper  strata  (F9,  40=7.54   p=0.034)   and   (F9,  40=9.43   p<0.001)   for   Station   1   and   Station   2,   respectively.   To  check   for   difference   in   lipid   content   according   to   body   size,   additional   subsamples   of   C.  finmarchicus  were  analysed  of  two  separate  body  size  classes  (Large:  3852±843μm  and  Small:  2240±497μm,  mean  ±  SD)  from  the  deepest  stratum  at  both  stations  (Fig.  6).  These  samples  showed  that  smaller  individuals  were  significantly  fatter  than  the  large  individuals,  relative  to  their  body  size   (F1,  34=7.13  p=0.013),  and   further  confirmed   that   lipid  content  was   larger   in  the  day  samples  (F1,  34=14.39  p=0.001).       The  C.  finmarchicus  copepodite  stages  CI-­‐CIV  were  largely  distributed  in  the  upper  100m  and   stages   CV-­‐CVI   mostly   below   100m   in   the   water   column.   The   concentrations   of   the  different  copepodite  stages  were  more  or  less  unchanged  between  day  and  night  (Fig.  7)  with  76%  and  75%,  respectively,  of  the  CI-­‐CIV  occurring  above  100m  at  Station  1.  The  larger  stages  (CV-­‐CVI)   were   distributed   mostly   below   100m   with   67%   and   61%   at   day   and   night,  respectively.   Similar   trend  was   found   at   Station   2  with   64%   and   69%   of   the   CI-­‐CIV   stages  above   100m   and   87%   and   87%   of   CV-­‐CVI   below   100m   for   day   and   night   samples,  respectively.  The  adult  stage  (CVI)  was  most  prevalent  in  the  deepest  strata  and  the  smallest  copepodite  stage  (CI)  only  found  in  the  upper  strata.    

0  50  100  Abundance  (%)  

Day  

0   50   100  Abundance  (%)  

Night  

Conchoecia  spp.  

0  50  100  Abundance  (%)  

Day  

0   50   100  Abundance  (%)  

Night  

Sagitta  spp.  

0  50  100  Abundance  (%)  

Day  

0   50   100  Abundance  (%)  

Night  

P.  abyssorum    

0  50  100  Abundance  (%)  

Day  

0   50   100  Abundance  (%)  

Night  

Meganyctiphanes  norvegica  

Figure  4.    Vertical  distribution  of  the  zooplankton  species  during  day  and  night  sampling  at  Station  2,  showing  the  means  of  relative  abundance  (%)  of  the  sampling  depth  strata:  0-­‐50,  50-­‐100,  100-­‐200,  200-­‐350  and  350  -­‐  500,   respectively,   starting   from   the   top.   The   copepods   species   O.   similis,   M.   norvegica  and   P.   parvus   were  collected  in  55μm  nets,  the  rest  were  sampled  in  300μm  nets.  

  41  

     

   

0  

50  

100  

150  

200  

250  

300  

1800   1900   2000   2100   2200   2300   2400  

Depth  (m)  

Mean  length  (μm)    A  

0  

100  

200  

300  

400  

500  

1800   2300   2800   3300  

Depth  (m)  

B  

0   20   40   60   80  

Lipid  mass  (%)  C  

0   20   40   60   80  D  

Day   Night  

Figure   5.   A-­‐B:   Mean   length   (μm)   of   C.   finmarchicus   cephalothorax   (±SE),   at   Station   1   and   Station   2  respectively.  C-­‐D:  Mean  lipid  mass  (%)  (±SE)  of  C.  finmarchicus  along  sample  depth  strata  at  Station  1  and  Station  2  respectively.    Data  are  plotted  against  the  mid-­‐point  of  the  depth  interval  sampled.  

 

  42  

                                                       

                             

Figure   7.   Vertical   distribution   of   the   copepodite   stage   abundances   (%)   of   C.   finmarchicus,  during   day   and   night   sampling.   A-­‐B   Station   1   day   and   night.   C-­‐D   Station   2   day   and   night,  respectively.    

 

0  

20  

40  

60  

80  

Lipid  mass  (%)  

Figure  6.  Mean  lipid  mass  (%)  of  bottom  net  samples  at  Station  1  (200-­‐300m)   and   Station   2   (350-­‐500m)   (±SD)   for   C.   finmarchicus.   Round:  Juvenile   individuals.   Square:   Adult   individuals.   Hallow:   Day   sample.  Filled:  Night  sample.  

0%   20%   40%   60%   80%   100%  

0-­‐50  

50-­‐100  

100-­‐200  

200-­‐350  

350-­‐500  

Copepodite  stage  abundances  (%)  

Depth  level  (m)  

C  

0%   20%   40%   60%   80%   100%  

0-­‐15  

15-­‐50  

50-­‐100  

100-­‐200  

200-­‐300  

Copepodite  stage  abundances  (%)  

Depth  level  (m)  

A  0%   20%   40%   60%   80%   100%  

0-­‐15  

15-­‐50  

50-­‐100  

100-­‐200  

200-­‐300  

Copepodite  stage  abundances  (%)  

Depth  level  (m)  

B  

0%   20%   40%   60%   80%   100%  

0-­‐50  

50-­‐100  

100-­‐200  

200-­‐350  

350-­‐500  

Copepodite  stage  abundances  (%)  

Depth  level  (m)  

 D  

CVI   CV   CIIII   CIII   CII   CI  

  43  

Isotope  analysis  C.  finmarchicus  isotopic  composition  ranged  in  δ13C  from  -­‐21.1‰  to  -­‐16.4‰  (lipid  extracted  and  acidified  samples)  (Fig.  8)  and  in  δ15N  from  7.6‰  to  11.3‰(untreated  samples)  (Fig.  9).  The  extraction  of  lipid  and  acidification  to  remove  carbonates  raised  the  overall  mean  of  δ13C  from  -­‐21.57‰  to  -­‐19.87‰.    There  were  no  significant  differences  in  isotopic  signatures  between  night  and  day  samples  at  either  station.  However,  there  was  a  significant  effect  of  depth  on  δ13C  at  both  stations  (Fig.  8)  independent  of  time  (Station  1  F4.20  =  7.535,  p<  0.01);  Station  2  (unequal  variances),  (Kruskal-­‐Wallis:  H4=26.35  p<0.01)).  Pairwise  comparisons  at  Station  2,  showed  significant  differences  in  δ!"C  between   depth   strata   (350-­‐500m)   and   (0-­‐50m)   (Mann-­‐Whitney   U-­‐test:   U=32.433  ,p<0.001),   and   between   (350-­‐500m)   and   (50-­‐100m)   (Mann-­‐Whitney   U-­‐test:   U=27.333  ,p=0.002).  At  both  stations  the  upper  strata  (0-­‐50m)  had  the  lowest  mean  δ15N  values,  but  there  were  no  significant  effect  of  depth  on  δ15N  at  either  station  (Fig.  9).    To  test  for  the  possibility  that  size  could  have  an  effect  on  δ13C  and  δ15N  values,  new  tests  on  separated   size   classes   CV-­‐CVI   (3912.45±714μm)   and   CI-­‐CIIII   (2272.96±450μm)   from   200-­‐300m  at  Station  1,  and  350-­‐500m  at  Station  2  were  conducted.  The  test  revealed  a  significant  effect  of  body  size  on  δ13C  (F=  df=1  p<0.001),  but  no  effect  on  δ15N.  The  large  individuals  (CV-­‐CVI)  of  C.  finmarchicus  had  a  higher  δ13C,  than  the  small  (CI-­‐CIIII).  Again,  there  was  no  effect  of  sampling  time.        

Figure  8.  A-­‐B:  Mean  δ13C  (±SE)  values  of  lipid  and  carbonate  treated  C.  finmarchicus  along  sample  depth  strata  at  Station  1  and  Station  2  respectively.    

0  

50  

100  

150  

200  

250  

300  

-­‐23   -­‐21   -­‐19   -­‐17   -­‐15  

Depth  (m)  

Mean  δ13C    

A  

Day   Night  

0  

50  

100  

150  

200  

250  

300  

350  

400  

450  

500  

-­‐23   -­‐21   -­‐19   -­‐17   -­‐15  

Depth  (m)  

Mean  δ13C    B  

Day   Night  

  44  

 

Discussion    

Vertical  distribution  Our   study   provides   evidence   of   vertical   migration,   with   various   strength,   in   all   examined  zooplankton   species,   except   for   G.   tenuispinus.   These   findings   are   widely   supported   by  previous  studies  e.g.  (Bohrer  1980,  Bollens  et  al.  1992,  Hays  1995,  Hays  et  al.  2001),  which  all  found   patterns   of  movement   by   larger   zooplankton   from   shallow  depth   at   night   to   greater  depths  during  the  day.  Hays  et  al.  (1994)  argued  that  this  patterns  may  be  strongly  depending  on  size  and  pigmentation  of  the  individual  zooplankton  species,  due  to  the  risk  of  predation  from   visually   orientating   predators   by   avoiding   light,   the   so-­‐called   predator   evasion  hypothesis.  Our  finding  supports  this  argument,  where  the  larger  zooplankton  species  in  our  samples  appear  to  use  relatively  deeper  water  as  a  daytime  refuge,  by  distributing  deepest  at  day.   Conversely,   the   four   smallest   copepod   species  O.  similis,  M.  norvegica,  C.   typicus   and  P.  parvus,  in  accordance  with  Ohman  et  al.  (1983)  and  Hays  et  al.  (1994,  1995)  showed  patterns  of  reverse  DVM  by  staying  in  the  surface  layers  during  daytime  and  moving  deeper  at  night.    These  observed  movements  therefore  support  the  conventional  theory  of  DVM  as  a  predator  avoidance  adaptation.  The  larger  bodied  species  perform  normal  DVM  to  potentially  avoid  the  visually  orientating  predators,  while  smaller  species  like  e.g.  O.  similis,  which  often  is  preyed  upon  by  the  larger  species,  shows  reverse  DVM  in  order  to  reduce  the  risk  of  encountering  the  larger  migrating  species  (Neill  1990).  Due  to  low  vertical  resolution  of  our  samples  we  were  not  able  to  detect  diurnal  vertical  movements  on  a  finer  scale.  Small  individuals  probably  will  

0  

50  

100  

150  

200  

250  

300  

5   10   15  

Depth  (m)  

Mean  δ15N    

A  

Day   Night  

Figure  9.  A-­‐B:  Mean  δ15N  (±SE)  values  of  lipid  and  carbonate  untreated  C.  finmarchicus  along  sample  depth  strata  at  Station  1  and  Station  2  respectively.    

0  

50  

100  

150  

200  

250  

300  

350  

400  

450  

500  

5   10   15  

Depth  (m)  

Mean  δ15N  B  

Day   Night  

  45  

not  migrate  hundreds  of  meters   in  one  single  diurnal  rhythm,  especially   in  considering   that  the   amplitude   of   migration   is   associated   with   energetic   costs   (Huntley   and   Brooks   1982).  Fiksen  and  Carlotti  (1998)  argues  that  the  benefit  of  DVM  amplitude  may  dependent  on  the  given  individual  body  condition.  Huntley  and  Brooks  (1982)  also  suggests  that  hunger  could  be  a  primary  controlling  factor  for  whether  individuals  migrate  back  and  forth  to  the  surface  and  that  energy  reserves  may  control  the  migration  amplitudes.  Thus,  individuals  only  move  according  to  their  energy  needs,  and  therefore  tend  to  position  themselves  in  accordance  with  predation-­‐risk,   refuge   options   and   energy   needs,   qua   the   cost   benefit   relation   (Fiksen   and  Giske   1995).     Båmstedts   (2000)   similar   study   in   the   same   waters,   observed   only   daily  movements  over  distances  of  a  few  to  tens  of  meters.       There   are,   however,   some   limitations   to   this   approach  when   samples   are   only   obtained  once   during   day   and   once   during   night   for   each   station.   This   makes   it   impossible   to   test  statistically   for   differences   in  WMD   and   DVM   and   also   involves   a   risk   of   not   detecting   all  copepods  passing  this  reference  depth  during  a  24  h  period.  Thus,  the  index  will  only  provide  a   rough  picture  of   this   behaviour  between  day   and  night,   and  will   not   show  any   individual  variability  in  the  migration  schedule.  Thus,  due  to  these  methodological  restrictions,  the  WMD  and   the   DVM   parameter   presented   in   this   study   should   therefore   only   be   regarded   as  approximations  on  the  vertical  migration  changes  between  day  and  night.    We   found   a   clear   difference   in   the   zooplankton   depth   dispersal   between   stations.   The  

deeper  Station  2  had  the  main  concentration  of  zooplankton  below  200m  while  Station  1  had  most  zooplankton  distributed  above  200m.  The  average  WMD  among  species  confirmed  this  concentration  shift  with   little  more  than  a  hundred  meters  differences  between  the  stations  from  124m  at  Station  1   to  227m  at  Station  2.  Station  2   is   located   in   the  deepest  part  of   the  Skagerrak,  thus  offering  zooplankton  the  option  to  seek  deeper  and  gain  greater  safety  with  depth   (Bollens  and  Frost  1989a)  and  also  an     energetic  profit  of   lower   temperatures   (Falk-­‐Petersen  et  al.  2009).  Melle  et  al.  (2014)  found  a  correlation  between  abundance  distribution  with   depth   and   temperature.   Their   finding   supports   the   idea   that   maximum   abundance   is  found   in   the   deeper   colder   basins,   or   close   to   them.   Gaard   et   al.   (2008)   also   finds   that   the  depth   range  may  be  associated  with  geographical  gradients   in   temperature.   Several   species  were   observed   to   change   their   vertical   distributions   along   the   studied   transects,   having  deeper   position   over   deep   basins.   However,   our   temperature   profiles   show   very   little  temperature  difference  between  100  and  250  meters  at  both  stations,  thus,  it  is  unlikely  that  temperature   is   the   determining   factor   for   this   depth   distribution   difference   in   our   study.  Gaard  et  al.  (2008)  also  suggests  that  the  depth  position  following  the  seabed  contour  could  create   opportunity   for   interaction   between   mesopelagic-­‐   and   bathypelagic   species   and  environments.   One   possibility   could   also   be   the   simple   relationship   that   increasing   depth  allows  a  greater  distribution  range,  thereby  allowing  individuals  to  seek  deeper.  Having  only  studied  two  stations,  we  cannot  rule  out  the  possibility  that  the  observation  is  the  result  of  a  general  heterogeneity  in  density  distributions.    

  46  

Size,  lipid  and  copepodite  stage  distribution  of  C.  finmarchicus  The   positive   correlation   of   size   and   lipid   content   with   depth,   and   the   difference   of   depth  distribution  between  copepods  stages,  could  indicate  that  the  deepest  part  of  the  population  was  at  the  onset  of  dormancy,  due  to  their  deployment  stage  and  lipid  content,  in  agreement  with   Jónasdóttir   (1999),  Miller   et   al.   (2000)   and   Pasternak   (2001).   It   is   generally   accepted  that  lipid  accumulation  triggers  the  onset  of  dormancy  (Rey-­‐Rassat  et  al.  2002,  Irigoien  2004).  However,   we   did   not   examine   for   indications   of   diapause   behaviour   (i.e.   lack   of   motility)  during  field  collection.  (Båmstedt  2000,  Head  et  al.  2003,  Heath  et  al.  2004,  Pepin  and  Head  2009,   Jonasdottir  and  Koski   2011)   all   showed   equivalent   distribution   patterns,   were   C.   finmarchicus   follow   the  scheme  of  a  more  shallow  distribution  of  younger  stages,  and  a  deeper  resting  phase  of   late  copepodite  stages  during   the  overwintering  period.  The   late  copepodite  stages   in  our  study  could  simply  have  accumulated  sufficient  storage  of  lipid  prior  to  their  dormancy,  while  lipid  content   of   the   smaller   copepodite   stages   were   still   insufficient.   According   to   Clark   et   al.  (2012),  C.  finmarchicus  will  remain  active  if  the  threshold  of  stored  lipid  is  not  sufficient,  and  molt  to  adulthood  before  descending  to  overwintering  depth.  Båmstedt  (2000)  demonstrated  that  the  population  of  C.  finmarchicus  can  be  characterised  as  having  active  periods  of  feeding,  reproduction  and  growth  in  the  period  from  February  to  July  in  the  area  of  Skagerrak,  with  a  following  6  to  7  months  of  dormancy  in  the  deep  waters.  Studies  of  (Fiksen  and  Giske  1995,  Fiksen  and  Carlotti  1998,  Pepin  and  Head  2009,  Kvile  et  al.  2014,  Melle  et  al.  2014)  also  show  that   the   season  of   the  vertical  distribution  has   a  high  degree  of  plasticity,   both   in   time  and  space,  due  to  variability  in  the  composition  of  the  causal  factors  such  as  feeding,  competition  and  to  some  degree  of  ontogenetic  constraints  within  each  individual.  Therefore,  even  though  we   observed   diel   vertical   migration   in   C.   finmarchicus,   which   means   a   continuous   daily  activity   for   a   larger   part   of   the   population,   is   it   still   possible   that   a   proportion   of   the  population  already  had  migrated  down  as  an  onset  of  dormancy,  while  the  less  developed  still  were   active   and   influential   in   terms   of   DVM.   To   test   this,   we   would   have   to   compare   the  movements   of   each   individual   developmental   stage,   to   measure   stage   dependent   DVM,  however,   we   did   not   do   that.   Nevertheless,   our   observations   show   consistency   with   the  concept  of  Rey-­‐Rassat  et  al.    (2002).  They  proposed  that  a  threshold  amount  of  lipid  is  needed  in   order   to   supply   individuals   with   the   energy   required   for   dormancy,  moulting   and   early  gonad   development.   Accumulation   of   energy   stores   above   this   threshold   would   trigger   a  physiological  response,  probably  hormonally  mediated  (Irigoien  2004),  to  descend  to  deeper  waters  and  enter  dormancy.  For  this  to  be  realistic  there  should  be  a  clear  separation  in  the  relative  lipid  content  among  the  depth  strata  that  would  represent  the  dormancy  candidates.  Our  findings  of  a  significant  separation  among  lipid  levels  between  two  consecutive  strata  at  both  stations,  could  confirm  this  concept  to  be  realistic  in  our  observation.  Pepin  and  Head’s  (2009)  observations  of  variation   in  size  and   lipid  content  of  C.  finmarchicus,  also  concluded,  independent  of  Rey-­‐Rassat  et  al.’s  (2002)  concept,  that  lipid  weight  of  C.  finmarchicus  was  the  best  measure  associated  with  the  onset  of  dormancy.  It   is  therefore  not  implausible  that  the  deepest  located  individuals  were  at  onset  of  dormancy  in  our  samples  due  their  significantly  

  47  

higher  lipid  content,  and  the  distribution  of  the  size  and  late  copepodite  stages  could  further  contribute  to  support  this,  e.g.  (Heath  et  al.  2004).  

Our   finding   that   lipid   content  was   significantly   greater   at  midday   than   at  midnight   is  difficult   to  explain.  Under   the  assumption  of  normal  DVM  behaviour   the  opposite  would  be  expected   since   lipid   content   increase   with   depth.   This   suggested   that   there   has   been   an  energetic   costs   during   the   night,   indicating   an   eventual   diurnal   cycle   of   energy   intake   and  expenditure.  However,  the  difference  seems  too  great  for  individuals  to  be  able  to  build  up  so  great  lipid  in  the  period  of  a  few  hours.  Additionally,  such  behaviour  would  include  that  they  should  have  a  diurnal  rhythm  between  active  and  inactive  periods.  However,  this  behaviour  has  not  been  documented  by  any  other   similar   studies.  Another  possibility   could  be  due   to  migration   of   lipid   rich   individuals   towards   the   surface   during   day.   However   the   observed  normal  DVM  pattern  for  C.  finmarchicus,  invalidate  this  possibility.  Therefore,  it  has  not  been  possible  to   find  similar  observations  on  these  trends,   thus  providing  a  qualified  explanation  for   the  observations.  However,  due  to  the  consequences  that  our  study  only  took  offset   in  a  small  randomly  selected  sample  size  of  C.  finmarchicus  from  each  sample  strata,  estimation  of  copepodite   stages,   lipid  and  size  distribution,  might   therefore  not  necessarily   represent   the  true   population,   but   should   be   seen   as   an   approximations   in   the   effort   of   describing   the  vertical  picture  of  the  ecological  distribution  of  C.  finmarchicus.    

Isotopic  distribution  between  depth  strata  of  C.  finmarchicus  Stable   carbon   and   nitrogen   isotope   analyses   are   commonly   used   to   describe   food   web  structure   and   interactions.   The   method   facilitate   easy   estimates   of   energy   and   mass   flow  through  ecological  communities  (Post  2002),  and  provides  a  time-­‐integrated  estimation  of  an  organism’s  trophic  position,  and  offers  an  overview  of  the  carbon  flow  to  consumers  in  food  webs  (Hansen  et  al.  2012).  Mean  fractionation  in  δ15N  between  each  trophic  level  is  estimated  at  3  to  4‰  and  can  therefore  be  used  to  estimate  the  organism  trophic  position  (Deniro  and  Epstein   1981,   Peterson   and   Fry   1987,   Post   2002).   However,   it   is   important   to   realize,   that  findings  vary  greatly  among  studies.  Conversely,   the  δ13C  usually  changes   little  with   trophic  level   (0   to   1‰)   (Peterson   and   Fry   (1987).   This   small   or   no   fractionation   of   δ13C   between  trophic  levels  makes  δ13C  a  useful  indicator  of  carbon  source  and  of  migration  patterns,  in  the  case  where   there   is   spatial   variation   in   the   carbon   composition  of   the   sources   (Post  2002).  The   significant   differences   in   δ13C   values   in   our   study   of   C.   finmarchicus   could   therefore  indicate  different  origins  of  carbon  sources  at  the  different  strata,  or  considerable  microbial  transformation   of   carbon   sources   as   they   sink   through   the  water   column.     The   differences  further   corroborate   that   there   is  no  major  vertical   feeding  migration   in  C.   finmarchicus   and  that  the  individuals  are  foraging  in  the  same  strata  in  which  they  are  found,  although  analysis  of  their  food  sources  would  be  required  to  prove  this.    The   deepest   located   individuals   exhibit   relatively   high   variation   in   δ13C,   and   some  of   these  match   the   δ13C   values   of   the   individuals   found   in   the   upper   strata.   This   may   point   to   the  possibility  that  these  individuals  were  last  foraging  in  shallow  layers  before  migrating  deeper.  This  could  further  back  the  suspicion  of  onset  of  dormancy  in  some  of  these  individuals.  The  

  48  

high   δ13C   variations  might   therefore   disclose   the   possibility   of   the   presence   of   both   active-­‐  and  overwintering  stages  in  the  deepest  stratum.  

The  δ15N  values  of  C.  finmarchicus  in  our  study  were  relatively  high  compared  with  some  studies  (Petursdottir  et  al.  2008,  Søreide  et  al.  2008,  Petursdottir  et  al.  2010),  but  agree  well  with   others   (Laakmann   et   al.   2009,   Hansen   et   al.   2012).   Values   of   δ15N   in   Søreide   et   al.  (2008)  and  Petursdottir  et  al.  (2010)  suggested  that  C.  finmarchicus  was  pure  herbivore,  even  during   times   with   low   algal   biomass.   Although   we   do   not   have   isotopic   signatures   of  autotrophs  in  our  study,  but  the  higher  values   indicate,   in   line  with  Laakmann  et  al.  (2009),  that  their  diet   is  not  purely  autotrophic.  It   is  often  assumed  that  C.  finmarchicus   feed  almost  entirely  on  phytoplankton  organisms  (Lee  et  al.  2006),  which   is  often  reflected   in   their   life-­‐history  traits  of  seasonal  migration  and  lipid  deposition  in  relation  with  foraging  in  periods  of  algal   blooms   (Falk-­‐Petersen   et   al.   2009).   However,   studies   also   suggest   that   ciliates   and  heterotrophic   dinoflagellates   are   just   as   important   food   sources   in   periods   of   deeper  distribution  and  post-­‐bloom,  when  algal  food  is  scarce  (Ohman  and  Runge  1994,  Levinsen  et  al.  2000).  In  periods,  prior  to  spring  bloom,  when  chlorophyll-­‐a  concentrations  are  extremely  low,   additional   studies   of   local   effect   of   food   type   availability   also   showed   female   C.  finmarchicus  to  feed  omnivorously  (Runge  and  DeLafontaine  1996,  Ohman  and  Hirche  2001).    The  fact  that  there  were  no  significant  differences  in  δ15N  between  depth  strata  suggest  that  C.  finmarchicus  in  Skagerrak  feed  omnivorously  at  the  same  trophic  level  throughout  the  water  column  in  August.                                              

  49  

References      Aksnes,  D.  L.,  and  J.  Blindheim.  1996.  Circulation  patterns   in  the  North  Atlantic  and  possible  

impact  on  population  dynamics  of  Calanus  finmarchicus.  Ophelia  44:7-­‐28.  Bergstad,  O.  A.,  A.  D.  Wik,  and  O.  Hildre.  2003.  Predator-­‐prey  relationships  and  food  sources  of  

the   Skagerrak   deep-­‐water   fish   assemblage.   Journal   of   Northwest   Atlantic   Fishery  Science  31:165-­‐180.  

Bohrer,  R.  1980.  Experimental  studies  on  diel  vertical  migration.  In  Ecology  and  Evolution  of  Zooplankton   Communities   (ed.   W.C.   Kerfoot)   University   Press   of   New   England,  Hanover,  New  Hampshire:111-­‐121.  

Bollens,  S.  M.,  and  B.  W.  Frost.  1989a.  Predator-­‐induced  diel  vertical  migration  in  a  planktonic  copepod.  J  Plankton  Res  11:1047-­‐1065.  

Bollens,   S.   M.,   and   B.   W.   Frost.   1989b.   Zooplanktivorous   fish   and   vanable   diel   vertical  migration   in   the   marine   planktonic   copepod   Calanus   pacificus.   Limnol.Oceanogr.  34:1072-­‐1083.  

Bollens,   S.   M.,   B.  W.   Frost,   D.   S.   Thoreson,   and   S.   J.  Watts.   1992.   Diel   vertical   migration   in  zooplankton:   field   evidence   in   support   of   the   predator   avoidance   hypothesis.  Hydrobiologia  234:33-­‐39.  

Broms,  C.,  and  W.  Melle.  2007.  Seasonal  development  of  Calanus   finmarchicus   in  relation   to  phytoplankton   bloom   dynamics   in   the   Norwegian   Sea.   Deep-­‐Sea   Research   Part   Ii-­‐Topical  Studies  in  Oceanography  54:2760-­‐2775.  

Båmstedt,   U.   2000.   Life   cycle,   seasonal   vertical   distribution   and   feeding   of   Calanus  finmarchicus  in  Skagerrak  coastal  water.  Marine  Biology  137:279-­‐289.  

Clark,   K.   A.   J.,   A.   S.   Brierley,   and   D.  W.   Pond.   2012.   Composition   of  wax   esters   is   linked   to  diapause  behavior  of  Calanus  finmarchicus  in  a  sea  loch  environment.  Limnology  and  Oceanography  57:65-­‐75.  

Cohen,   J.   H.,   and   R.   B.   Forward.   2009.   Zooplankton   diel   vertical   migration   -­‐   a   review   of  proximate  control.  Pages  77-­‐109  in  R.  N.  Gibson,  R.  J.  A.  Atkinson,  and  J.  D.  M.  Gordon,  editors.   Oceanography   and   Marine   Biology:   An   Annual   Review,   Vol   47.   Crc   Press-­‐Taylor  &  Francis  Group,  Boca  Raton.  

Conway,   D.   V.   P.   2006.   Identification   of   the   copepodite   developmental   stages   of   twenty-­‐six  North   Atlantic   copepods.   Marine   Biological   Association   of   the   United   Kingdom,  Occasional  Publications.  

Deniro,  M.  J.,  and  S.  Epstein.  1981.  Influence  of  Diet  on  the  Distribution  of  Nitrogen  Isotopes  in  Animals.  Geochimica  Et  Cosmochimica  Acta  45:341-­‐351.  

Falk-­‐Petersen,  S.,  P.  Mayzaud,  G.  Kattner,  and  J.  Sargent.  2009.  Lipids  and  life  strategy  of  Arctic  Calanus.  Marine  Biology  Research  5:18-­‐39.  

Falkenhaug,  T.,  K.  S.  Tande,  and  T.  Semenova.  1997.  Diel,  seasonal  and  ontogenetic  variations  in  the  vertical  distributions  of   four  marine  copepods.  Marine  Ecology  Progress  Series  149:105-­‐119.  

Fiksen,  O.,  and  F.  Carlotti.  1998.  A  model  of  optimal  life  history  and  Diel  vertical  migration  in  Calanus  finmarchicus.  Sarsia  83:129-­‐147.  

Fiksen,  O.,  and   J.  Giske.  1995.  Vertical-­‐distribution  and  population-­‐dynamics  of  copepods  by  dynamic  optimization.  Ices  Journal  of  Marine  Science  52:483-­‐503.  

Fransz,  H.  G.,  J.  M.  Colebrook,  J.  C.  Gamble,  and  K.  M.  1991.  The  zooplankton  of  the  North  Sea.  Neth  Jsea  Res  28(1/2)::1-­‐52.  

  50  

Giske,  J.,  D.  L.  Aksnes,  B.  M.  Balino,  S.  Kaartvedt,  U.  Lie,   J.  T.  Nordeide,  A.  G.  V.  Salvanes,  S.  M.  Wakili,   and   A.   Aadnesen.   1990.   Vertical   distribution   and   trophic   interactions   of  zooplankton  and  fish  in  Masfjorden,  Norway.  Sarsia  75:65-­‐81.  

Gaard,   E.,   A.   Gislason,   T.   Falkenhaug,   H.   Soiland,   E.   Musaeva,   A.   Vereshchaka,   and   G.  Vinogradov.  2008.  Horizontal  and  vertical  copepod  distribution  and  abundance  on  the  Mid-­‐Atlantic   Ridge   in   June   2004.   Deep-­‐Sea   Research   Part   Ii-­‐Topical   Studies   in  Oceanography  55:59-­‐71.  

Hansen,   J.   H.,   R.   B.  Hedeholm,  K.   Sunksen,   J.   T.   Christensen,   and  P.   Gronkjaer.   2012.   Spatial  variability  of  carbon  (delta  C-­‐13)  and  nitrogen  (delta  N-­‐15)  stable  isotope  ratios  in  an  Arctic  marine  food  web.  Marine  Ecology  Progress  Series  467:47-­‐59.  

Hansson,   S.,   J.   E.  Hobbie,   R.   Elmgren,  U.   Larsson,  B.   Fry,   and   S.   Johansson.   1997.   The   stable  nitrogen  isotope  ratio  as  a  marker  of  food-­‐web  interactions  and  fish  migration.  Ecology  78:2249-­‐2257.  

Hays,   G.   C.   1995.   Ontogenetic   and   seasonal   variation   in   the   diel   vertical   migration   of   the  copepods  Metridia  lucens  and  Metridia  longa.  Limnol.  Oceanogr  40:1461-­‐1465.  

Hays,  G.  C.,  H.  Kennedy,  and  B.  W.  Frost.  2001.  Individual  variability  in  diel  vertical  migration  of   a   marine   copepod:  Why   some   individuals   remain   at   depth   when   others   migrate.  Limnology  and  Oceanography  46:2050-­‐2054.  

Hays,  G.  C.,  C.  A.  Proctor,  A.  W.  G.  John,  and  A.  J.  Warner.  1994.  Interspecific  differences  in  diel  vertical   migration   of   marine   copepods:   the   implications   of   size,   colour   and  morphology.  Limnology  and  Oceanography  39:1621-­‐1629.  

Head,   E.   J.   H.,   L.   R.   Harris,   and   I.   Yashayaev.   2003.   Distributions   of   Calanus   spp.   and   other  mesozooplankton   in   the   Labrador   Sea   in   relation   to   hydrography   in   spring   and  summer  (1995-­‐2000).  Progress  in  Oceanography  59:1-­‐30.  

Heath,  M.   R.,   P.   R.   Boyle,   A.   Gislason,  W.   S.   C.   Gurney,   S.   J.   Hay,   E.   J.   H.   Head,   S.   Holmes,   A.  Ingvarsdottir,  S.  H.  Jonasdottir,  P.  Lindeque,  R.  T.  Pollard,  J.  Rasmussen,  K.  Richards,  K.  Richardson,  G.   Smerdon,   and  D.   Speirs.  2004.  Comparative  ecology  of  over-­‐wintering  Calanus   finmarchicus   in   the   northern   North   Atlantic,   and   implications   for   life-­‐cycle  patterns.  Ices  Journal  of  Marine  Science  61:698-­‐708.  

Hind,  A.,  W.  S.  C.  Gurney,  M.  Heath,  and  A.  D.  Bryant.  2000.  Overwintering  strategies  in  Calanus  finmarchicus.  Marine  Ecology  Progress  Series  193:95-­‐107.  

Hirche,  H.  J.  1996.  Diapause  in  the  marine  copepod,  Calanus  finmarchicus  -­‐  A  review.  Ophelia  44:129-­‐143.  

Hobson,   K.   A.,   A.   Fisk,   N.   Karnovsky,  M.   Holst,   J.   M.   Gagnon,   and  M.   Fortier.   2002.   A   stable  isotope  (delta  C-­‐13,  delta  N-­‐15)  model  for  the  North  Water  food  web:  implications  for  evaluating   trophodynamics   and   the   flow   of   energy   and   contaminants.   Deep-­‐Sea  Research  Part  Ii-­‐Topical  Studies  in  Oceanography  49:5131-­‐5150.  

Huntley,   M.,   and   E.   R.   Brooks.   1982.   Effects   of   Age   and   Food   Availability   on   Diel   Vertical  Migration  of  Calanus  pacificus.  Marine  Biology  71:23-­‐31.  

Irigoien,  X.  2004.  Some  ideas  about  the  role  of  lipids  in  the  life  cycle  of  Calanus  finmarchicus.  J  Plankton  Res  26:259-­‐263.  

Jónasdóttir,   S.   H.   1999.   Lipid   content   of   Calanus   finmarchicus   during   overwintering   in   the  Faroe-­‐Shetland  Channel.  Fisheries  Oceanography  8:62-­‐72.  

Jonasdottir,   S.  H.,   and  M.  Koski.   2011.  Biological   processes   in   the  North   Sea:   comparison   of  Calanus  helgolandicus  and  Calanus  finmarchicus  vertical  distribution  and  production.  J  Plankton  Res  33:85-­‐103.  

  51  

Kurten,   B.,   S.   J.   Painting,   U.   Struck,   N.   V.   C.   Polunin,   and   J.   J.   Middelburg.   2013.   Tracking  seasonal   changes   in   North   Sea   zooplankton   trophic   dynamics   using   stable   isotopes.  Biogeochemistry  113:167-­‐187.  

Kvile,  K.  O.,  P.  Dalpadado,  E.  Orlova,  N.  C.  Stenseth,  and  L.  C.  Stige.  2014.  Temperature  effects  on   Calanus   finmarchicus   vary   in   space,   time   and   between   developmental   stages.  Marine  Ecology  Progress  Series  517:85-­‐104.  

Kaartvedt,  S.  1996.  Habitat  preference  during  overwintering  and   timing  of   seasonal  vertical  migration  of  Calanus  finmarchicus.  Ophelia  44:145-­‐156.  

Lagergren,  R.,  K.  Leberfinger,  and  J.  A.  E.  Stenson.  2008.  Seasonal  and  ontogenetic  variation  in  diel   vertical   migration   of   Chaoborus   flavicans   and   its   effect   on   depth-­‐selection  behavior  of  other  zooplankton.  Limnology  and  Oceanography  53:1083-­‐1092.  

Lampert,   W.   1989.   The   adaptive   significance   of   diel   vertical   migration   of   zooplankton.  Functional  Ecology  3:21-­‐27.  

Lee,   R.   F.,   W.   Hagen,   and   G.   Kattner.   2006.   Lipid   storage   in   marine   zooplankton.   Marine  Ecology  Progress  Series  307:273-­‐306.  

Levinsen,   H.,   J.   T.   Turner,   T.   G.   Nielsen,   and   B.   W.   Hansen.   2000.   On   the   trophic   coupling  between  protists  and  copepods  in  arctic  marine  ecosystems.  Marine  Ecology  Progress  Series  204:65-­‐77.  

Lund-­‐Hansen,  L.  C.,  C.  Christiansen,  C.  Jügensen,  K.  Richardson,  and  P.  Skyum.  1994.  Basisbog  i  fysisk-­‐biologisk  Oceanografi.  G.E.C  Gads  forlag,  København.  

Laakmann,  S.,  M.  Kochzius,  and  H.  Auel.  2009.  Ecological  niches  of  Arctic  deep-­‐sea  copepods:  Vertical  partitioning,  dietary  preferences  and  different   trophic   levels  minimize   inter-­‐specific   competition.   Deep-­‐Sea   Research   Part   I-­‐Oceanographic   Research   Papers  56:741-­‐756.  

Marshall,   S.   M.,   and   A.   P.   Orr.   1955.   The   biology   of   marine   copepod   Calanus   finmarchicus  (Gunners).  Oliver  and  Boyd,  Edinburgh.  

Melle,  W.,   J.  Runge,  E.  Head,  S.  Plourde,  C.  Castellani,  P.  Licandro,   J.  Pierson,  S.   Jonasdottir,  C.  Johnson,  C.  Broms,  H.  Debes,  T.  Falkenhaug,  E.  Gaard,  A.  Gislason,  M.  Heath,  B.  Niehoff,  T.  G.  Nielsen,  P.  Pepin,  E.  K.  Stenevik,  and  G.  Chust.  2014.  The  North  Atlantic  Ocean  as  habitat   for   Calanus   finmarchicus:   Environmental   factors   and   life   history   traits.  Progress  in  Oceanography  129:244-­‐284.  

Miller,  C.  B.,  J.  A.  Crain,  and  C.  A.  Morgan.  2000.  Oil  storage  variability  in  Calanus  finmarchicus.  Ices  Journal  of  Marine  Science  57:1786-­‐1799.  

Maar,   M.,   T.   G.   Nielsen,   K.   Richardson,   U.   Christaki,   O.   S.   Hansen,   S.   Zervoudaki,   and   E.   D.  Christou.   2002.   Spatial   and   temporal   variability   of   food   web   structure   during   the  spring  bloom  in  the  Skagerrak.  Marine  Ecology  Progress  Series  239:11-­‐29.  

Neill,  W.   E.   1990.   Induced   vertical  migration   in   copepods   as   a   defence   against   invertebrate  predation.  Nature  345:524-­‐526.  

Ohman,  M.  D.,  B.  W.  Frost,  and  E.  B.  Cohen.  1983.  Reverse  diel  vertical  migration  -­‐  an  escape  from  invertebrate  predators.  Science  220:1404-­‐1407.  

Ohman,   M.   D.,   and   H.   J.   Hirche.   2001.   Density-­‐dependent   mortality   in   an   oceanic   copepod  population.  Nature  412:638-­‐641.  

Ohman,  M.  D.,  and  J.  A.  Runge.  1994.  Sustained  fecundity  when  phytoplankton  resources  are  in  short   supply—omnivory   by   Calanus   finmarchicus   in   the   Gulf   of   St-­‐Lawrence.  Limnology  and  Oceanography  39:21-­‐36.  

  52  

Pasternak,  A.,  E.  Arashkevich,  K.  Tande,  and  T.  Falkenhaug.  2001.  Seasonal  changes  in  feeding,  gonad  development  and  lipid  stores  in  Calanus  finmarchicus  and  C-­‐hyperboreus  from  Malangen,  northern  Norway.  Marine  Biology  138:1141-­‐1152.  

Pepin,   P.,   and  E.   J.  H.  Head.   2009.   Seasonal   and  depth-­‐dependent   variations   in   the   size   and  lipid   contents   of   stage   5   copepodites   of   Calanus   finmarchicus   in   the   waters   of   the  Newfoundland   Shelf   and   the   Labrador   Sea.   Deep-­‐Sea   Research   Part   I-­‐Oceanographic  Research  Papers  56:989-­‐1002.  

Peterson,   B.   J.,   and   B.   Fry.   1987.   Stable   isotopes   in   ecosystem   studies.   Annual   Review   of  Ecology  and  Systematics  18:293-­‐320.  

Petursdottir,  H.,   S.  Falk-­‐Petersen,  H.  Hop,  and  A.  Gislason.  2010.  Calanus   finmarchicus  along  the  northern  Mid-­‐Atlantic  Ridge:  variation  in  fatty  acid  and  alcohol  profiles  and  stable  isotope  values,  delta  N-­‐15  and  delta  C-­‐13.  J  Plankton  Res  32:1067-­‐1077.  

Petursdottir,   H.,   A.   Gislason,   S.   Falk-­‐Petersen,   H.   Hop,   and   J.   Svavarsson.   2008.   Trophic  interactions  of   the  pelagic  ecosystem  over   the  Reykjanes  Ridge  as  evaluated  by   fatty  acid   and   stable   isotope   analyses.   Deep-­‐Sea   Research   Part   Ii-­‐Topical   Studies   in  Oceanography  55:83-­‐93.  

Planque,   B.,   and   S.   D.   Batten.   2000.   Calanus   finmarchicus   in   the  North  Atlantic:   the   year   of  Calanus  in  the  context  of  interdecadal  change.  Ices  Journal  of  Marine  Science  57:1528-­‐1535.  

Post,   D.  M.   2002.   Using   stable   isotopes   to   estimate   trophic   position:  Models,  methods,   and  assumptions.  Ecology  83:703-­‐718.  

Rey-­‐Rassat,   C.,   X.   Irigoien,   R.   Harris,   and   F.   Carlotti.   2002.   Energetic   cost   of   gonad  development   in  Calanus   finmarchicus   and  C.   helgolandicus.  Marine  Ecology  Progress  Series  238:301-­‐306.  

Rodhe,   J.   1987.   The   large   scale   circulation   in   the   Skagerrak:   interpretation   of   some  observations.  Tellus  39:245-­‐253.  

Runge,   J.  A.,  and  Y.  DeLafontaine.  1996.  Characterization  of   the  pelagic  ecosystem  in  surface  waters  of  the  northern  Gulf  of  St  Lawrence  in  early  summer:  The  larval  redfish  Calanus  microplankton  interaction.  Fisheries  Oceanography  5:21-­‐37.  

Sato,   M.,   H.   Sasaki,   and   M.   Fukuchi.   2002.   Stable   isotopic   compositions   of   overwintering  copepods   in   the   arctic   and   subarctic  waters   and   implications   to   the   feeding   history.  Journal  of  Marine  Systems  38:165-­‐174.  

Stahl,  H.,  A.  Tengberg,  J.  Brunnegard,  E.  Bjornbom,  T.  L.  Forbes,  A.  B.  Josefson,  H.  G.  Kaberi,  I.  M.  K.   Hassellov,   F.   Olsgard,   P.   Roos,   and   P.   O.   J.   Hall.   2004.   Factors   influencing   organic  carbon   recycling   and   burial   in   Skagerrak   sediments.   Journal   of   Marine   Research  62:867-­‐907.  

Svansson,  A.   1975.  Physical   and   chemical   oceanography  of   the   Skagerrak   and   the  Kattegat.,  Inst  Mar  Res  (GENERIC),  Lysekil.  

Søreide,   J.   E.,   S.   Falk-­‐Petersen,   E.   N.   Hegseth,   H.   Hop,   M.   L.   Carroll,   K.   A.   Hobson,   and   K.  Blachowiak-­‐Samolyk.   2008.   Seasonal   feeding   strategies   of   Calanus   in   the   high-­‐Arctic  Svalbard  region.  Deep-­‐Sea  Research  Part  Ii-­‐Topical  Studies  in  Oceanography  55:2225-­‐2244.  

Søreide,  J.  E.,  T.  Tamelander,  H.  Hop,  K.  A.  Hobson,  and  I.  Johansen.  2006.  Sample  preparation  effects   on   stable   C   and  N   isotope   values:   a   comparison   of  methods   in   Arctic  marine  food  web  studies.  Marine  Ecology  Progress  Series  328:17-­‐28.  

  53  

Williams,   R.   1985.   Vertical   distribution   of   Calanus   finmarchicus   and   C.   helgolandicus   in  relation   to   the   development   of   the   seasonal   thermocline   in   the   Celtic   Sea.   Marine  Biology  86:145-­‐149.  

Worthington,   E.   1931.   Vertical   movements   of   freshwater   macroplankton.   Int.   Rev.   Gesam.  Hydrobiol  25:394-­‐436.  

   


Recommended