+ All Categories
Home > Documents > Volatile Mediated Interactions Between Bacteria and Fungi in the Soil

Volatile Mediated Interactions Between Bacteria and Fungi in the Soil

Date post: 19-Aug-2016
Category:
Upload: birgit
View: 217 times
Download: 1 times
Share this document with a friend
39
REVIEW ARTICLE Volatile Mediated Interactions Between Bacteria and Fungi in the Soil Uta Effmert & Janine Kalderás & René Warnke & Birgit Piechulla Received: 8 February 2012 / Revised: 30 April 2012 / Accepted: 4 May 2012 / Published online: 1 June 2012 # Springer Science+Business Media, LLC 2012 Abstract Soil is one of the major habitats of bacteria and fungi. In this arena their interactions are part of a communi- cation network that keeps microhabitats in balance. Prominent mediator molecules of these inter- and intraorganismic rela- tionships are inorganic and organic microbial volatile com- pounds (mVOCs). In this review the state of the art regarding the wealth of mVOC emission is presented. To date, ca. 300 bacteria and fungi were described as VOC producers and approximately 800 mVOCs were compiled in DOVE-MO (database of volatiles emitted by microorganisms). Furthermore, this paper summarizes morphological and phe- notypical alterations and reactions that occur in the organisms due to the presence of mVOCs. These effects might provide clues for elucidating the biological and ecological significance of mVOC emissions and will help to unravel the entirety of belowgroundvolatile-wiredinteractions. Keywords Bacteria . Fungi . Soil . Volatiles . Volatile mediated interactions Introduction Inter- and intra-organismal communication strategies are sym- bolized by the three monkeys: the deaf, the mute, and the blind. Interestingly, one major communication path was not featured: the sense of smell. This is surprising since the sense of smell is well-established in many animals and plants. Vertebrates and invertebrates are able to detect minute amounts of volatiles even over very long distances; plants use volatiles to communicate with their pollinators as well as with plants of the same species or other plants (Baldwin et al., 2006; Dobson, 2006; Heil and Walters, 2009) (Fig. 1). The infochemicals used for these inter- and intra-organismal inter- actions are low molecular mass compounds with high vapor pressures, low boiling points, and a lipophilic character. All of these features facilitate evaporation. Consequently, these com- pounds disperse easily in the atmosphere and thus play essen- tial biological/ecological roles in aboveground habitats. It was only recently recognized that belowground organisms are also opulent volatile producers and emitters. Therefore, a new research area focuses on volatile-based interactions in the soil. Here, we first describe the habitat soil with its characteristic structural prerequisites in relation to volatile-based communi- cations. Then, we present a summary of volatile emissions of microbes (bacteria and fungi). In the final section, we discuss volatile-based bacterial and fungal interactions. The Habitat Soil The tremendous diversity of the bacterial and fungal kingdoms is paralleled by the heterogeneity of habitats these organisms are able to occupy. They appear ubiquitously around the world, successfully colonizing ecological niches and micro- habitats (Dighton, 2003; Hawksworth and Mueller, 2005; Gasch, 2007). One of the major habitats for fungi and bacteria is soil, where they occur as free living organisms on the soil surface, in the soil core, or in association with belowground parts of living plants or organic material derived from dead plants and animals (Forster, 1988). Soil itself is a complex blend of weathered minerals and organic material mixed with biota. Fungi and bacteria hereby play a substantial role in the U. Effmert : J. Kalderás : R. Warnke : B. Piechulla (*) Institute of Biological Sciences, University of Rostock, Albert-Einstein-Str. 3, 18059 Rostock, Germany e-mail: [email protected] J Chem Ecol (2012) 38:665703 DOI 10.1007/s10886-012-0135-5
Transcript
Page 1: Volatile Mediated Interactions Between Bacteria and Fungi in the Soil

REVIEWARTICLE

Volatile Mediated Interactions Between Bacteria and Fungiin the Soil

Uta Effmert & Janine Kalderás & René Warnke &

Birgit Piechulla

Received: 8 February 2012 /Revised: 30 April 2012 /Accepted: 4 May 2012 /Published online: 1 June 2012# Springer Science+Business Media, LLC 2012

Abstract Soil is one of the major habitats of bacteria andfungi. In this arena their interactions are part of a communi-cation network that keeps microhabitats in balance. Prominentmediator molecules of these inter- and intraorganismic rela-tionships are inorganic and organic microbial volatile com-pounds (mVOCs). In this review the state of the art regardingthe wealth of mVOC emission is presented. To date, ca. 300bacteria and fungi were described as VOC producers andapproximately 800 mVOCs were compiled in DOVE-MO(database of volatiles emitted by microorganisms).Furthermore, this paper summarizes morphological and phe-notypical alterations and reactions that occur in the organismsdue to the presence of mVOCs. These effects might provideclues for elucidating the biological and ecological significanceof mVOC emissions and will help to unravel the entirety ofbelowground‚ volatile-wired’ interactions.

Keywords Bacteria . Fungi . Soil . Volatiles . Volatilemediated interactions

Introduction

Inter- and intra-organismal communication strategies are sym-bolized by the three monkeys: the deaf, the mute, and theblind. Interestingly, one major communication path was notfeatured: the sense of smell. This is surprising since the senseof smell is well-established in many animals and plants.Vertebrates and invertebrates are able to detect minute

amounts of volatiles even over very long distances; plantsuse volatiles to communicate with their pollinators as well aswith plants of the same species or other plants (Baldwin et al.,2006; Dobson, 2006; Heil and Walters, 2009) (Fig. 1). Theinfochemicals used for these inter- and intra-organismal inter-actions are low molecular mass compounds with high vaporpressures, low boiling points, and a lipophilic character. All ofthese features facilitate evaporation. Consequently, these com-pounds disperse easily in the atmosphere and thus play essen-tial biological/ecological roles in aboveground habitats. It wasonly recently recognized that belowground organisms are alsoopulent volatile producers and emitters. Therefore, a newresearch area focuses on volatile-based interactions in the soil.Here, we first describe the habitat soil with its characteristicstructural prerequisites in relation to volatile-based communi-cations. Then, we present a summary of volatile emissions ofmicrobes (bacteria and fungi). In the final section, we discussvolatile-based bacterial and fungal interactions.

The Habitat Soil

The tremendous diversity of the bacterial and fungal kingdomsis paralleled by the heterogeneity of habitats these organismsare able to occupy. They appear ubiquitously around theworld, successfully colonizing ecological niches and micro-habitats (Dighton, 2003; Hawksworth and Mueller, 2005;Gasch, 2007). One of the major habitats for fungi and bacteriais soil, where they occur as free living organisms on the soilsurface, in the soil core, or in association with belowgroundparts of living plants or organic material derived from deadplants and animals (Forster, 1988). Soil itself is a complexblend of weathered minerals and organic material mixed withbiota. Fungi and bacteria hereby play a substantial role in the

U. Effmert : J. Kalderás :R. Warnke :B. Piechulla (*)Institute of Biological Sciences, University of Rostock,Albert-Einstein-Str. 3,18059 Rostock, Germanye-mail: [email protected]

J Chem Ecol (2012) 38:665–703DOI 10.1007/s10886-012-0135-5

Page 2: Volatile Mediated Interactions Between Bacteria and Fungi in the Soil

decomposition and breakdown of organic as well as inorganicmaterials, respectively (Dighton, 2003). These biomineraliza-tion processes contribute substantially to soil production, gen-erating a continuous flow of nutrients for plant primaryproduction. Therefore, functional soils should be regarded asa balanced complement of abiotic (mineral and organic) andbiotic components (Nakas and Klein, 1980; Dighton, 2003).As part of the microbiotic soil community, fungi and bacteriaform dynamic and enduring communities that are integratedinto even more complex microecosystems, or they arise astransient communities to secondarily colonize substrates aslong as degradable nutrients are available.

Soil Properties Influence MicroenvironmentsBelowground

Microbial colonization of soil is determined mainly by itsphysicochemical properties (Dequiedt et al., 2011). Theseproperties are influenced by texture, carbon content, andmicrostructure, which in turn affect the formation of macro-aggregates and subsequently soil parameters such as poros-ity or air and water content. Soil texture is determined by itsinorganic components and describes the proportional distri-bution of mineral particle sizes: sand (0.05–2 mm), silt (2–50 μm), and clay (<2 μm) (Cehnu and Stotzky, 2002;Brown, 2003; Conklin, 2005; Schafer, 2006). Texture, min-eral composition, and particle shape give rise to certainparticle arrangements (microaggregates) that determine soilmicrostructures (Cehnu and Stotzky, 2002; Alekseeva,2007). These microstructures and the presence of organicmatter contribute to the assembly and stabilization of macro-aggregates >0.25 mm in size (Forster, 1988; Ranjard and

Richaume, 2001). As a result, a complex network of voidspaces is formed in soil, i.e., soil pores that can account forup to 50 % of the total soil volume (Ranjard and Richaume,2001; Conklin, 2005; Standing and Killham, 2007). Theirability to retain water varies with their size and shape, sothey are filled with different amounts of water and air.Depending on the air and water content, the chemical com-position of aggregates, and the circulation within the porenetwork, numerous heterogenic microenvironments for mi-crobial life are created. These vary in nutrient supply, aera-tion, availability of water, ionic composition, minerals, pH,redox potential, and surface composition (Forster, 1988;Ranjard and Richaume, 2001; Nannipieri et al., 2003).

Microhabitats Belowground

Microorganisms congregate in soil pores that provide asuitable microenvironment. Bacteria rely on the presenceof organic and inorganic solutes in the aqueous phase ofpores and on particle surfaces. The heterogeneity of thesevarious microhabitats is probably the reason for the hugebacterial diversity in soil. Although the number of bacterialcells per gram of soil can easily exceed 1010 and estimates ofthe numbers of different species range from 103 to 105, onlya rather small proportion of soils is actually colonized bybacteria (Gans et al. 2005; Roesch et al. 2007; citations inHeuer and Smalla 2012). Bacteria may occur as free livingorganisms, but are usually attached to solid surfaces asscattered individual cells, microcolonies, or biofilms.Fungi inhabit the same locations but other pore sizes.Water saturated micropores (Ø<10 μm) are reserved forbacterial communities, where they escape predation andthe effects of fungal antibiotics. Because of their size, fungisettle in macropores (Ø>10 μm) found between and withinmacroaggregates. In addition, fungal hyphae can extendthrough aerated water-unsaturated pores to reach new poresand exploit new nutrient resources (Forster, 1988; Cehnuand Stotzky, 2002). The latter is especially important sincesoil in its entirety represents a nutrient-depleted habitat formicroorganisms. Consequently, microorganisms aggregatenear any suitable nutrient source, which creates colonizationhotspots. Therefore, bacteria and fungi have to compete forthe same resources and undergo interspecies interactions.On the macroscale, plant litter like dead leaves, stems, roots,wood, and bark as well as animal remains and fecal materialare important sources of biodegradable organic material,while on the microscale cell-wall remains, lipids, polysac-charides, proteins, DNA and RNA, and metabolites contrib-ute to temporary microhabitats (Forster, 1988; Nannipieri etal., 2003). The most lively and enduring microhabitat is theliving plant root, which releases a wide variety of soluble,insoluble, or volatile metabolites that attract an exceptionally

Fig. 1 Schematic presentation of organisms involved in volatile inter-actions above- and belowground (drawn by Marco Kai). 1 plant root, 2bacteria, 3 fungi, 4 ciliates, 5 amoeba, 6 nematodes, 7 moos, 8 wildboar, 9 plant leaves, 10 plant flowers, 11 insects

666 J Chem Ecol (2012) 38:665–703

Page 3: Volatile Mediated Interactions Between Bacteria and Fungi in the Soil

dense and diverse population of microbiota, including bacteriaand fungi (Koske and Gemma, 1992; Chen et al., 2004;Gregory, 2006; Brimecombe et al., 2007; Nannipieri et al.,2007; Hussain and Hasnain, 2011). Bacteria adhere to the rootsurface itself (rhizoplane) and colonize a narrow soil zonearound the plant root (rhizosphere) (Lenc et al., 2011). Theybenefit from a constant flow of organic substrates, but inreturn promote plant growth by providing soluble inorganicnutrients and producing growth-promoting factors(Brimecombe et al., 2007; Nannipieri et al., 2007; Compantet al., 2010). A special role is attributed to antagonistic bacte-ria, which are able to suppress the growth of various plantpathogenic fungi (Bhattacharyya and Jha, 2011). Mycorrhizalfungi (see Jung et al., 2012, this issue) also benefit fromnutrients supplied by the plant root. More than 95 % of shortroots of most terrestrial plants are colonized by symbioticfungi, and these mycorrhizal fungi are surrounded by complexmicrobial communities. So called mycorrhiza helper bacteria(MHB) support mycorrhiza formation (Frey-Klett et al., 2007;Bonfante and Anca, 2009; Rigamonte et al., 2010). In addi-tion, plant roots not only host beneficial but also attractdetrimental organisms such as phytopathogens, which mayharm plants and microbiota as well. Therefore, mycorrhizalfungi, their associated bacteria as well as rhizobacteria have todeal with a very complex and competitive rhizomicrobialmilieu (Anderson, 1992; Bianciotto et al., 1996; Miransari,2011). Bacteria and fungi closely intermingle in the mycor-rhizosphere and mutually influence survival and colonizationsuccess as well as pathogenesis and virulence (Wargo andHogan, 2006; Minerdi et al., 2008).

Volatiles as Medium for Interactions Belowground

Factors that regulate the dynamics and balance of symbiosis,cooperation, competition, and also coexistence in microbialcommunities have been investigated intensively. Phenomenalike quorum-sensing and quorum-quenching (see Hartmannand Schikora, 2012, this issue), the impact of rhizobacterialand fungal antibiotics, effector molecules, and excretedenzymes have been recognized as effective regulatory princi-ples (Walker et al., 2003, 2004; Chernin et al., 2011). Thepossible role of volatiles in bacterial-fungal interactions hasbeen neglected for many years despite earlier reports oneffective microbial volatiles (Stotzky and Schenk, 1976;Koske and Gemma, 1992). Prerequisite for volatile effective-ness is their release, emanation and distribution, and theirperception by a target organism. This is ensured by the phys-icochemical properties of volatiles (low molecular weight,high vapor pressure, low boiling point), which facilitate dis-tribution even over long distances (Farmer, 2001; Baldwin etal., 2006; Heil and Ton, 2008). However, does this also occurin soils? Yes, it does. Volatile distribution belowground takes

place by diffusion and advection (Minnich and Schumacher,1993). Volatiles can move through the network of soil poressince they are active in both gas and liquid phases and capableof revolatization after passing through water-saturated pores(Koske and Gemma, 1992; Aochi and Farmer, 2005; Asensioet al., 2008). However, due to their high vapor pressure,volatiles move primarily by vapor diffusion (Minnich andSchumacher, 1993). These processes are all influenced byinherent chemical properties of the volatile itself and physico-chemical properties of the surrounding soil, which affectadsorption, desorption, and degradation. Adsorption/desorp-tion depends on the polarity of the compound, the soil textureand spatial architecture, and the presence of water. On themicroscale, increasing humidity reduces the adsorption ofnonpolar volatiles to mineral surfaces; on the macroscale,nonpolar volatiles are increasingly sorbed by organic matterin moist or wet soils (Minnich and Schumacher, 1993; Ruiz etal., 1998; Aochi and Farmer, 2005; Insam and Seewald,2010). Volatile compounds also are amenable to biodegrada-tion. Owen et al. (2007) found rapid degradation of geraniol inthe rhizosphere of Populus tremula, an observation they at-tributed to the activity of soil microorganisms. However,compared to compounds solely soluble in water, volatilesare less likely to be quickly biodegraded (Koske andGemma, 1992). Mineral surfaces may serve as catalysts forchemical reactions that contribute to abiotic degradation.Highly specific clay surfaces react with volatiles that carrypolar functional groups. Furthermore, volatiles also may beexposed to free-radical oxidation (Minnich and Schumacher,1993; Insam and Seewald, 2010). Measurements of volatileexchange rates have revealed low volatile emission from soil,supporting the assumption that soil acts as a volatile sink(Stotzky and Schenck, 1976; Asensio et al., 2007).

Microbial Volatile Emission

A large number of bacterial species presently are known,and it is estimated that this number could reach a million(106). While many microorganisms have been isolated fromaboveground habitats (i.e., plants, human skin and intes-tines, animals, and refuse, sewage, and aquatic habitats), arich source of bacteria is the terrestrial and belowgroundbiotope. Metagenomic approaches have demonstrated thatthe microbial diversity is larger in soils than in marinesediments or aquatic habitats (Will et al., 2010; Daniel,2011). The capacity of bacteria and fungi to decompose,mineralize, and accumulate organic matter is extraordinaryand has a significant impact on the carbon, nitrogen, phos-phate and sulfur biogeochemical cycles (Naeem, 1997).Some of the metabolized compounds are emitted as volatileproducts that are readily utilized by other organisms of themicrobial food chain or released into the underground

J Chem Ecol (2012) 38:665–703 667

Page 4: Volatile Mediated Interactions Between Bacteria and Fungi in the Soil

Tab

le1

Produ

cers

andusersof

microbial

volatiles

Produ

cer/em

itters→

compo

und

→user/receiver

functio

n

Inorganic

Nomicroorganism

know

nCO

Carbo

xydo

trop

hicbacteria

(Hydrogeno

mon

ascarboxydovoran

s,Selberia

carboxyhydrogena

Olig

otroph

acarboxidovoran

sCarbo

xydo

thermus

hydrog

enoforman

s)

Electrondo

nor,carbon

source

Heterotroph

icmicrobes

CO2

Chemolith

o(hyd

rogen-,sulfur-,am

mon

ia-,nitrite-.

Fe2

+-oxidizing

)-andox

ygenic

(cyano

bacteria)and

anox

ygenic

(Rho

dospirillaceae,Chrom

atiaceae,

Chlorob

iaceae,Chloroflexaceae)ph

otoautotroph

icbacteria

Carbo

nsource

Methano

genicarchaea(M

etha

noba

cterium

ruminatium,

M.thermoa

utroph

icum

)andho

moacetogenicbacteria

(Clostridium

aceticum

,C.lju

ngda

hlii)

Electronacceptor

(methane

oracetateprod

uctio

n)

Facultativ

eandob

ligateanaerobicbacteria

(clostridia,

enterobacteria)

H2

Chemolith

o(hyd

rogen-ox

idizing)-andanox

ygenic

(Rho

dospirillaceae,Chrom

atiaceae,Chlorob

iaceae,

Chloroflexaceae)ph

otoautotroph

icbacteria

Electrondo

nor

Methano

genicarchaea(M

etha

noba

cterium

ruminatium,

M.thermoa

utroph

icum

)andho

moacetogenicbacteria

(Clostridium

aceticum

,C.lju

ngda

hlii)

Cyano

bacteria

(Synecho

coccus,Synechcystis)

O2

Aerob

icmicroorganism

sElectronacceptor

Proteolytic

clostridia

andsomeaerobic

chem

oorganotrophic

proteobacteria

(Serratia

odorifera

4Rx1

3,Serratia

plym

uthica

HRO

C48

,Pseud

omon

asflu

orescens

L13

-6-12,

Pseud

omon

astrivialis

3Re2-7,Stenotroph

omon

asrhizop

hila

P69

,Xan

thom

onas

campestrispv.

vesicatoria85

-10)

NH3(N

H4+)

Manymicroorganism

sNitrog

ensource,olfaction,

antib

iotic

resistance,toxiccompo

und,

electron

dono

rAmmon

ia-oxidizing

bacteria

(Nitrosom

onas,

Nitrosospira,Nitrosococcus)

Ammon

ia-oxidizing

bacteria

(Nitrosom

onas,

Nitrosospira,Nitrosococcus)

NO2-

Nitrite-oxidizing

bacteria

(Nitrob

acter,

Nitrospina,Nitrococcus)

Electrondo

nor,nitrog

ensource

Denitrifying

bacteria

(Alcaligenes

faecalis,Bacillus

licheniform

is,Paracoccusdenitrificans,

Pseud

omon

asstutzeri,Thiob

acillus

denitrificans)

N2

Nitrog

en-fixingbacteria

andarchaea(Rhizobium

,Bradyrhizob

ium,Azorhizob

ium,Frankia,Klebsiella

,Clostridium

,Metha

nosarcina,

Metha

nospirillum

)

Nitrog

ensource

Som

eproteobacteria

(Pseud

omon

asflu

orescens,

P.trivialis,Chrom

obacterium

,Rhizobium

)HCN

Defense

compo

und,

quorum

sensing

Sulfate-reducingbacteria

(Desulfovibrio,

Desulfomon

as,Desulfotomaculum

)H2S/S/SO32-

Chemolith

o(sulfur-ox

idizing)-andanox

ygenic

(Chrom

atiaceae,Chlorob

iaceae)ph

otoautotroph

icbacteria

Electrondo

nor,am

inoacid

biosyn

thesis,defensecompo

und

Organic

Methano

genicarchaea

CH4

Obligatemethy

lotrop

hicbacteria

Electrondo

nor,carbon

source

Manybacteria,seeTable

2Alkanes,alkenes

Aerob

icmicroorganism

sCarbo

nsource

Clostridium

spp.,Pseud

omon

asspp.,

Streptom

yces

spp.

ethy

lene

Yeast;severalbacteria,seeTable

2CH3OH

668 J Chem Ecol (2012) 38:665–703

Page 5: Volatile Mediated Interactions Between Bacteria and Fungi in the Soil

Tab

le1

(con

tinued)

Produ

cer/em

itters→

compo

und

→user/receiver

functio

n

Obligateandfaculativ

emethy

lotrop

hicbacteria

methano

genicarchaea

Electrondo

nor,carbon

source,

electron

acceptor

Yeast,facultativ

eandob

ligateanaerobicbacteria

(e.g.clostridia,enterobacteria,lactic

acid

bacteria);

severalbacteria

andfung

i,seeTables2and3

C2H5OH

Heterotroph

icbacteria

(acetic

acid

bacteria,

Clostridium

kluyveri)

Electrondo

nor,carbon

source

Clostridium

spp.,Bacillus

spp.,Lactoba

cillu

sspp.,

Salmon

ella

spp.,Sh

igella

spp.,Streptom

yces

spp.;

manyotherbacteria

andfung

i,seeTables2and3

Butanol

Heterotroph

icbacteria

Electrondo

nor,carbon

source

Manybacteria

andfung

i,seeTables2and3

Low

molecular

massalcoho

lsHeterotroph

icbacteria

Carbo

nsource

Enterob

acteria,bacilli,clostridia

Acetoin,2,3-bu

tanediol

Heterotroph

icbacteria

Electrondo

nor,carbon

source

CH2O

oblig

ateandfaculativ

emethy

lotrop

hicbacteria

electron

dono

r,carbon

source

Manybacteria

andfung

i,seeTables2and3

Low

molecular

mass

aldehy

desandketones

Heterotroph

icbacteria

Carbo

nsource

Clostridiaandotherbacteria,seeTable

2;fung

iseeTable

2Acetone

Heterotroph

icbacteria

Electrondo

nor,carbon

source

Facultativ

eandob

ligateanaerobicbacteria

(clostridia,

enterobacteria,lactic

acid

bacteria),

manybacteria

andfung

i,seeTables2and3

CHOOH,CH3COOH,CH3CH2COOH,

CH3CH2CH2COOH,low

molecular

massacids

Heterotroph

icbacteria

andfung

iElectrondo

nor,carbon

source

Alcaligenes

spp.,Bacillus

spp.,Pseud

omon

asspp.,

Stenotroph

omon

asspp.;manyotherbacteria

see

Table

2,few

fung

iseeTable

3

Methy

lamineandotheram

ines

Obligateandfaculativ

emethy

lotrop

hicbacteria

methano

genicarchaea

Electrondo

nor,carbon

source

Streptom

yces

spp.;seeTable

2Geosm

in

Alcaligenes

spp.,Cho

ndromyces

spp.,

Paeniba

cillu

sspp.,Serratia

spp.;manyother

bacteria

seeTable

2

Pyrazines

Enterob

acteria,Pseud

omon

asspp.

Indo

leSignalin

g(ind

irect?)

Streptom

yces

spp.,Bacillus

spp.,Pseud

omon

asspp.,

Tuberspp.;manyotherbacteria

andfung

i,seeTables2and3

Dim

ethy

ldisulfide,trim

ethy

ldisulfide

Marinesulfur-oxidizing

bacteria

(Thiob

acillus

thiopa

rus)

oblig

ateandfaculativ

emethy

lotrop

hic

bacteria

(Hypho

microbium

)

Carbo

nandenergy

source

Gram

negativ

ebacteria

(Pseud

omon

asflu

orescens,

Serratia

liquefaciens)

N-acyl-l-ho

moserinelacton

es(A

HL)

(e.g.C4-HSL,C6-HSL,C10

HSL)

Gram

negativ

ebacteria

(Pseud

omon

asaerugino

sa,

Agrob

acterium

tumefaciens

Quo

rum

sensingsign

al>

biofilm

form

ation

Gram

positiv

ebacteria

Streptom

yces

Gam

ma-bu

tyrolacton

esGram

positiv

ebacteria

Quo

rum

sensingsign

al

Con

drom

yces

spp.,Leucono

stoc

spp.,

Roseoba

cter

spp.,Lactoba

cillu

sspp.,

Serratia

spp.;manyotherbacteria,seeTable

2

ß-ph

enylethano

l

Aromatic

compo

unds

Aerob

icandanaerobicbacteria

Carbo

nsource

Serratia

odorifera

4Rx1

3,S.

plym

uthica

HRO-C48

Sod

orifen

The

tablepresentsexam

ples

ofmicroorganism

sthatsynthesize

oruseinorganicor

organicvolatilecompounds.S

ummarized

from

G.G

ottschalk,1986;F

uchs.2007;

andDOVE-M

O(K

alderas,2011)

J Chem Ecol (2012) 38:665–703 669

Page 6: Volatile Mediated Interactions Between Bacteria and Fungi in the Soil

habitat (Table 1). Soil microorganisms produce large quan-tities of highly diverse volatiles (Stotzky and Schenck, 1976;Linton and Wright, 1993; Leff and Fierer, 2008; Insam andSeewald, 2010 and citations therein). Volatile metabolites alsoare produced by the root system of plants, but in this reviewthese sources will not be considered. Instead, the focus lies onbacterial and fungal volatile emissions and uptakes(Kesselmeier and Staudt, 1999; Wenke et al., 2009). Thevolatile compounds can be of organic (volatile organic com-pounds, VOCs) or inorganic nature, both presumably impor-tant for this habitat and capable of influencing organismiccommunities (McNeal and Herbert, 2009). The functions ofthe volatiles are diverse, e.g., i) they play a role in the foodchain of the microbial loop because they are assimilated andincorporated into organic matter (bioconversion), ii) they in-fluence physiological processes (e.g., laccase activity, nitrifi-cation, nitrogen mineralization), iii) they function as electronacceptors or donors to support metabolic reactions, iv) theyplay a role in quorum sensing/quenching, v) they act asdefense compounds, vi) they are used as communicationsignals, or vii) their functions remain so far elusive (Table 1).

Volatiles Emitted from Bacteria

Inorganic Volatiles

Some producers and users of inorganic volatiles are summa-rized in Table 1, which is a brief extract from Gottschalk(1986) and Fuchs (2007). Carbon dioxide is a major inor-ganic volatile produced by all heterotrophic living organisms,and indeedmuch of the CO2 in the atmosphere originates fromthe huge microbial populations on earth, in both soil andaquatic habitats. Atmospheric CO2 is assimilated primarilyby plants and oxygenic and anoxygenic phototrophic bacteria(cyanobacteria, Rhodospirillaceae [purple nonsulfur bacte-ria], Chromatiaceae [purple sulfur bacteria], Chlorobiaceae[green sulfur bacteria], and Chloroflexaceae [green nonsulfurbacteria]). The characteristic Calvin reactions and enzymesalso are present in soil bacteria, such as Rhodospirillumrubrum, Thiobacillus intermedius, Ralstonia eutrophus,Pseudomonas facilis, to name a few. Chemolithotrophicmicroorganisms use ATP and the reducing power of inorganicsubstrates for the reduction of CO2. CO2 also is used bymethanogenic bacteria such as Methanobacterium rumina-tium and Methanobacterium thermoautrophicum for CH4

production (Gottschalk, 1986).Anthropogenically released carbon monoxide results

from incomplete reduction of wood and polymers of deadorganic material, while microbial CO production is unknown.Aerobically grown Hydrogenomonas carboxydovorans andSelberia carboxyhydrogena can live on CO by oxidizing itto CO2. Some bacteria (e.g.,Rhodospeudomonas sphaeroides,

Methylosinus, Methylocystis) use the serine-isocitrate lyasepathway to form oxaloacetate from phosphoenol pyruvate(PEP) and CO2 (PEP carboxylase). As a result of this pathway,acetyl-CoA and finally succinate are formed from CH2O andCO2. Chemolithotrophic and phototrophic bacteria have incommon the formation of cell material via CO2 reduction byusing the reducing power from inorganic compounds. Energysources can be H2, sulfide, ammonia, or nitrite.

Hydrogen is formed under anaerobic conditions duringthe fermentation of carbohydrates to short-chain fatty acidsby Clostridium spp., Enterobacteriaceae (e.g., Escherichia,Salmonella, Shigella) and others. A group of chemolitho-trophic bacteria (hydrogen-oxidizing bacteria), anoxygenicphototrophic bacteria, as well as methanogenic archaea uti-lize H2 as an electron donor.

Well-known volatile-dependent soil bacteria are the free-living and symbiotic nitrogen-fixing organisms. The latterare, for example, Rhizobium spp. and Frankia spp., and existin partnerships with plants. These bacteria form bacteroids,and consequently, root nodules develop. The product of thenitrogenase is ammonia, which is usually not released but isefficiently incorporated into organic compounds by glutamatedehydrogenase, glutamine synthetase, and glutamate syn-thase. Soil-living clostridia (Clostridium spp.) and other bac-teria (e.g., Peptococcus anaerobicus) ferment amino acids andnucleotides and live from these recycled carbon skeletons aswell as ammonia. Recently, it was shown that Serratia,Pseudomonas, Stenotrophomonas, and Xanthomonas, whengrown on complex media (NB or LB), emitted gaseous am-monia (or amines), which was detected in the headspace withNessler’s reagent (Kai et al., 2010; Weise et al., 2012, Weiseand Piechulla unpublished). Gaseous ammonia released frombacteria can modify, e.g., the antibiotic resistance of E. coli totetracycline (Bernier et al., 2011). Apparently, increased intra-cellular polyamine levels alter the membrane permeability toantibiotics as well as resistance to oxidative stress. Anotherrecent publication showed that ammonia could be sensed byBacillus licheniformis, which was considered to be a firstindication of bacterial olfaction (Nijland and Burgess, 2010).Although the nitrogen supply is usually a limiting factor insoil, it cannot be excluded that NH3 emission may occur innature under confined protein-rich growth conditions (e.g.,decomposition of carcasses, lysis of large microbial popula-tions or plant materials, or land spreading of whey in agricul-ture). The amounts as well as the ecological consequenceshave not been investigated.

Denitrifying bacteria release nitrogen during respirationand reduction of nitrate (in some cases N2O instead of N2 isreleased). The group of nitrogen-evolving bacteria is quitediverse, including Alcaligenes faecalis, Bacillus lichenifor-mis, Paracoccus denitrificans, and Pseudomonas stutzeri.

Most soil microorganisms use sulfate as their principalsulfur source, and the intrinsic enzyme system reduces

670 J Chem Ecol (2012) 38:665–703

Page 7: Volatile Mediated Interactions Between Bacteria and Fungi in the Soil

sulfate to sulfide (sulfate assimilation). However, in anaer-obic regions in the soil, sulfate is used by Desulfovibrio,Desulfomonas, Desulfuromonas, and Desulfotomaculum asa terminal electron acceptor, and consequently hydrogensulfide is formed and released (dissimilatory sulfate reduc-tion). The toxic end product H2S is used by chemolithotro-phic bacteria as electron acceptor, e.g., Thiobacilli, and H2Scan also be incorporated into O-acetylserine, an intermediateof amino acid biosynthesis. Furthermore, it also has beenshown that H2S production in soil is due to the presence ofcysteine (Morra and Dick, 1991). Only recently it wasdemonstrated that H2S production acts as a defense mecha-nism that protects bacteria from antibiotics (Shatalin et al.,2011).

The release of HCN from bacteria varies in differentspecies (Stotzky and Schenck, 1976). Pseudomonas spp.(e.g., CHA0), Chromobacterium and Rhizobium typicallyemit this toxic inorganic volatile, while defective mutants(e.g., CHA207) do not (Blumer and Haas, 2000; Pessi andHaas, 2000; Kai et al., 2010; Blom et al., 2011b). Hydrogencyanide inhibits several metal-containing enzymes, mostsignificantly the cytochrome c oxidase of the respiratorychain. Therefore, this volatile can be toxic for most aerobicorganisms living in the same habitat as Pseudomonades. Itwas reported that both the RHI/R- as well as the AHL-basedquorum sensing system regulate HCN biosynthesis (Winsonet al., 1995; Pessi and Haas, 2000). Consequently, bacterialpopulation densities can be controlled by HCN levels.

The distribution and appearance of inorganic gaseouscompounds in the soil determine the localization of othersoil organisms, e.g., the oxidizers (nitrification) of ammoni-um occur in the upper sediment layers, followed by nitrateand sulfide oxidizers. In the deeper anaerobic layers, meth-anogenic and acetogenic bacteria reside. Many of the gaseouscompounds are quickly recycled (e.g., H2) because producersand utilizers appear in nearby soil zones. Compounds emittedin excess are released into the atmosphere, for example, CO2,N2, and in some regions H2S.

Organic Volatiles (VOCs) (<120 D)

The smallest organic volatile compound ismethane, the mostreduced compound. Its formation is the terminal step in thefood chain of methanogenic archaea (Gottschalk, 1986). Theyutilize CO2, CH2O, HCOOH, or CH3OH and H2 to synthesizemethane. This soil-based methane production is of globalimportance; for example, tundra and rice fields contribute40 % of atmospheric methane. In the soil, CH4 is a goodsubstrate for obligate and facultative methylotrophs, whichare often anaerobic organisms that grow in deeper soil layers.Bacterial production of the C1 volatile methanol has beendescribed in Enterobacteriaceae such as Escherichia coli,Shigella flexneri, and Salmonella enterica (Bunge et al.,

2008) and in Xanthomonas campestris (Weise et al., 2012).Methanol can be metabolized by methylotrophic bacteriaincluding Hyphomicrobium species, some Pseudomonas spe-cies (P. oxalaticus), and Protaminobacter (Gottschalk, 1986).After an initial conversion into formaldehyde, a conden-sation with ribulose-5-phosphate forms dihydroxyacetonephosphate in the so–called ribulose-monophosphate cyclein Methylococcus and Methylomonas species. Yeasts,Zymomonas mobilis, lactic acid bacteria, and clostridia formethanol (Gottschalk, 1986). Ethanol together with acetate is agood substrate for Clostridium kluyveri. Butanol and acetoneare emitted e.g., by Clostridium acetobutylicum whenenzymes of this pathway are activated under low pH condi-tions (Lütke-Eversloh and Bahl, 2011). Butanol also is formedby various microorganisms, and is considered a volatile or-ganic compound (VOC). In the presence of butyrate and e.g.,during glucose depletion butanol is a preferred product ofbutyrate metabolism. Many clostridia reduce acetone to iso-propanol. Acetoin and 2,3-butanediol typically are producedduring incomplete oxidation by Bacillus spp. (Gottschalk,1986). Formed from pyruvate via α-acetolactate, both com-pounds are released under glucose abundance and taken upwhen glucose is depleted. Acetoin and 2,3-butanediol thencan serve as a source for ATP production needed during thesporulation process. Butanediol production also is carried outby Enterobacteriaceae e.g., Serratia, Enterobacter, andErwinia. Small molecular weight acids such as formate,acetate, propionate and butyrate are typical mixed acidfermentation products synthesized by Enterobacteriaceae,Clostridia, Propionibacteria, and e.g., Megasphaera elsdenii(Gottschalk, 1986). Small organic acids are utilized by manyheterotrophic soil microorganisms.

Volatile Organic Compounds (>120 D) Emittedfrom Bacteria and Fungi

It is well-known that bacteria emit small molecular weightorganic volatiles (<120 D, see above), but the frequent releaseof other compounds (120 to ca. 300 D) bymicroorganisms hasonly recently attracted attention. A literature search allowedthe compilation of around 800 VOCs emitted by bacteria andfungi. Most compounds are in the range from 130 to 210 D(Fig. 2). In the ‘database of volatiles emitted by microorgan-isms (DOVE-MO),’ all VOC emitting microorganisms werecompiled, including those in soil (literature search tillDecember 2010, Kalderas, 2011). Since the origin of themicrobes often was not well-documented, or it was difficultto assign microorganisms to a single habitat, we compiled allVOC emitting microorganims in DOVE-MO (Database ofvolatiles emitted by microorganisms) and present them inalphabetical order (bacteria: Table 2, fungi: Table 3). In total,671 different VOCs are emitted by 212 bacterial species, and

J Chem Ecol (2012) 38:665–703 671

Page 8: Volatile Mediated Interactions Between Bacteria and Fungi in the Soil

335 VOCs from 96 fungal species are known. It is expectedthat future investigations in this new and developing researcharea will rapidly add organisms and VOCs to this database.

The volatile spectra of the microbes can be simple (<10VOCs) as well as very complex (>50 VOCs) (e.g., Kai et al.,2007, 2010). Approximately 50 bacterial and ca. 30 fungalspecies presently are known that emit complex volatilemixtures. The number of detectable volatiles in a speciesblend increases when various techniques are applied (e.g.,dynamic headspace volatile capture in open and closedairflow systems, different trapping materials, solid phasemicroextraction (SPME), gas chromatography combinedwith mass spectrometry (GC/MS), proton transfer reaction/mass spectrometry (PTR-MS), selected ion flow tube/massspectrometry (SIFT-MS), secondary electron spray ionization/mass spectroscopy (SESI-MS), as well as analytical chemis-try) (summarized in Wenke et al., 2012). Furthermore, theeffects of growth media and conditions on the emission spec-tra have to be considered (Fiddaman and Rossall, 1994; Kai etal., 2010; Blom et al., 2011a).

The compiled information of volatile-producing micro-organisms and their emission profiles was used to search forcharacteristic VOCs emitted by certain bacterial or fungalgenera. The dominant classes of compounds emitted byfungi are alcohols (e.g., isomers of butanol, pentanol, octa-nol), hydrocarbons, ketones, terpenes, alkanes, and alkenes(Chiron and Michelot, 2005, Table 3). Prominantly emittedVOCs from bacteria are alcohols, alkanes, alkenes, andketones, followed by esters and pyrazines, lactones, andsulfides (Wenke et al., 2012, Table 2). Some examples aregiven. Streptomyces species are especially rich in sesquiter-penes (Citron et al. 2012) and preferentially emit methylatedshort-chain alcohols and acids, while Pseudomonas speciesrelease C9-C16 alkanes/alkenes (Table 2). The product

profiles of Bacteroides spp. and Lactobacillus spp. are richin various C4 to C16 methylated carboxylic acids, C4 toC14 carboxylic acids, and small methylated alcohols(Table 2). Short-chain and long-chain acids are well-known carbon sources for many microorganisms, but therole of low molecular mass ketones and alcohols in themetabolic food chain is less clear (Table 1). N-acyl-l-homo-serine lactones (AHL) are preferentially used as infochem-icals (Ryan and Dow, 2008; Dickschat, 2009). Methylamineand other amines serve as good electron donors and carbonsources for many methylotrophic bacteria and methanogenicbacteria. The emission of indole from enterobacteria is well-known, but its ecological relevance is still speculative; aneffect in indirect signaling has been indicated (Ryan andDow, 2008). The sulfur containing compounds dimethyldi-sulfide (DMDS) and dimethyltrisulfide (DMTS) are oftenemitted from bacteria and fungi (Tables 2 and 3). While theorganic sulfur compounds dimethylsulfide (DMS) anddimethylpropionate (DMSP) play central roles in the globalsulfur cycles. This is apparently not the case for DMDS andDMTS (Schäfer et al., 2010). A clear picture on the biolog-ical or ecological relevance of the latter compounds is stillmissing since contrasting results have been obtained.DMDS had inhibitory effects on Arabidopsis thaliana indual culture assays (IC50: 2.5 μmol) (Kai et al., 2010), whilein another study it was shown that it could protect plantsagainst fungal pathogens due to the induction of systemicresistance (Huang et al., 2012).

Prominent in bacterial emission profiles are pyrazinesand β-phenylethanol. However, their biological func-tions are presently elusive. Even less understood is thebiological and ecological relevance of the emission ofextraordinary structures such as the terpene geosmin andsodorifen (Gerber and Lechevalier, 1965; Dickschat et al.,

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300 350 400

nu

mb

ero

fvo

lati

les

emit

ted

by

bac

teri

a

molecular mass [D]

Fig. 2 Distribution ofmolecular masses of bacterialvolatile organic compounds(VOCs)

672 J Chem Ecol (2012) 38:665–703

Page 9: Volatile Mediated Interactions Between Bacteria and Fungi in the Soil

Tab

le2

Com

pilatio

nof

VOCprod

ucingbacteria

Species

Tax

ID(N

CBI)

Volatile

Syn

onym

References

Acinetoba

cter

calcoa

ceticus

471

Sulfoacetaldehy

deSchulzandDickschat,20

07

Actinob

acillus

actin

omycetem

comita

ns71

4Acetic

acid

Kurita-O

chiaiet

al.,19

95

Aerom

onas

veronii

654

Dim

ethy

lselenide,Dim

ethy

ldisulfide,Methaneseleno

l,Dim

ethy

lselenenylsulfide

SchulzandDickschat,20

07

Alcaligenes

faecalis

511

Acetamide,Benzaldehyd

e,Pheny

lacetaldehyd

e,Methanamine,Benzothiazole,Methy

lpyrazine,1-Butanam

ine,

Dod

ecane,Dim

ethy

ldisulfide,Non

adecane,1-Decene,2,5-Dim

ethy

lpyrazine

Zou

etal.,20

07

Methanethiol,Dim

ethy

lsulfide

SchulzandDickschat,20

07Alcaligenes

spp.

507

3-(M

ethy

lsulfany

l)prop

an-1-ol,Dim

ethy

ldisulfide,2-Methy

lmercaptoethanol

Alteromon

asspp.

226

Methy

liodide

Ana

baenaspp.

1163

Geosm

in

Arctic

seaiceassociated

bacterium

ARK10

141

1968

50Tridecan-2-on

e,Dim

ethy

ldisulfide,Dim

ethy

ltrisulfide,Trimethy

lpyrazine,Hexadecan-2-one,2,5-Dim

ethy

lpyrazine,

Pentadecan-2-on

e,Tetradecan-2-on

e,13

-Methy

ltetradecan-2-one,13

-Methy

ltetradecan-3-one

Dickschat

etal.,20

05c

Arctic

seaiceassociated

bacterium

ARK10

146

1968

52Benzaldehyd

e,Dim

ethy

ldisulfide,Dim

ethy

ltrisulfide,Trimethy

lpyrazine,2,5-Dim

ethy

lpyrazine,Pentadecan-2-on

e,Tetradecan-2-one,13

-Methy

ltetradecan-2-one,13

-Methy

ltetradecan-3-one

Arctic

seaiceba

cterium

ARK10

044

1968

44Tridecan-2-on

e,Hexadecyl

acetate,Trimethy

lpyrazine,Hexadecan-2-one,2,5-Dim

ethy

lpyrazine,Pentadecan-2-on

e,Tetradecan-2-one,13

-Methy

ltetradecan-2-one

Arctic

seaiceba

cterium

ARK10

063

1968

65Benzaldehyd

e,Menthol,Cam

phor,Clovene,para-M

enth-1-en-4-ol,alph

a-Terpineol,Trimethy

lpyrazine,Dihyd

roactin

i-diolide,2,5-Dim

ethy

lpyrazine,Pentadecan-2-on

e,Borneol,Isolon

gifolene,beta-Ion

one5,6-epox

ide,beta-Ion

one5,6-

epox

ide,beta-Caryo

phyllene,13

-Methy

ltetradecan-2-one

Arctic

seaiceba

cterium

ARK10

223

1968

54Benzaldehyd

e,Tridecan-2-on

e,Trimethy

lpyrazine,2,5-Dim

ethy

lpyrazine,Pentadecan-2-on

e,Tetradecan-2-on

e,13

-Methy

ltetradecan-2-one

Arctic

seaiceba

cterium

ARK10

267

1968

55Benzaldehyd

e,Benzylalcoho

l,Pheno

l,Cam

phor,2-Pheny

lethanol,Furfural,Acetoph

enon

e,Methy

lpyrazine,Clovene,

Calam

enene,para-M

enth-1-en-4-ol

Tridecan-2-on

e,Tetramethy

lpyrazine,alph

a-Terpineol,Dod

ecan-2-one,3-Ethyl-

2,5-dimethy

lpyrazine,2-Ethyl-3,5-dim

ethy

lpyrazine,Trimethy

lpyrazine,Ethyltrim

ethy

lpyrazine,Hexadecan-2-one,

2,5-Dim

ethy

lpyrazine,Tetradecan-2-on

e,Isolon

gifolene,C

adina-1(10

),6,8-triene,G

eranylaceton

e,beta-Caryo

phyllene,

2,5-Diethyl-3,6-dim

ethy

lpyrazine,13

-Methy

ltetradecan-2-one,11-M

ethy

ldod

ecan-2-one,2,6-Diethyl-3,5-dim

ethy

l-py

razine

Arthrob

acterglob

iform

is16

65Pheny

lacetaldehyd

e,2-Pheny

lethylam

ine

SchulzandDickschat,20

07

Arthrob

acter

nitrog

uajacolicus

211146

Acetamide,Benzaldehyd

e,Pheny

lacetaldehyd

e,Methanamine,Benzothiazole,Methy

lpyrazine,1-Butanam

ine,

Dod

ecane,Dim

ethy

ldisulfide

Non

adecane,1-Decene,2,5-Dim

ethy

lpyrazine

Zou

etal.,20

07

Azoarcusevan

sii

5940

6Pheny

lacetate

SchulzandDickschat,20

07

Bacillus

amyloliquefaciens

1390

Acetoin,2,3-Butanediol

Ryu

etal.,20

03;Farag

etal.,

2006

Acetone

Benzaldehyd

e,1-Butanol,2,3-Butanedione,Ethanol,Glyox

ylic

acid,Methanethiol,1-Pentano

l,Acetylene,

Isop

rene,2

-Methy

l-1-propano

l,2-Butanon

e,Diethylaceticacid,2

-Methy

lbutanal,C

yclohexane,D

odecane,2-Methy

l-1-bu

tano

l,Ethyl

acetate,3-Methy

lbutanoicacid,2-Methy

lfuran,Hexadecane,3-Methy

lbutanal,Dim

ethy

ldisulfide,1-

Und

ecene,Tetrahy

dro-2,5-dimethy

lfuran,Und

ecane,2-Ethylfuran,

Dim

ethy

ltrisulfide,2-Pentylfuran,3-Methy

l-1-bu

-tano

l,Acetic

acid

butylester,Butanol-3-m

ethy

lacetate,1-Metho

xy-3-m

ethy

lbutane,

2-Hyd

roxy

-3-pentano

ne,2,4-

Hexadienal

Farag

etal.,20

06

Bacillus

popilliae

7805

7N-3-M

ethy

lbutylidene-3-methy

lbutylam

ine,

N-Pheny

lmethy

lene-2-m

ethy

lpropy

lamine,

N-Pheny

lmethy

lene-3-

methy

lbutylam

ine

SchulzandDickschat,20

07

N-Isopentylideneisopentylam

ine

Dickschat

etal.,20

05b

Bacillus

pumilu

s14

08n-Hexadecanoicacid,Diethylph

thalate,3-Methy

l-1-bu

tano

l,oleicacid,8-Methy

l-1-decene,3,4-Dim

ethy

l-5-hexen-3-ol,

(E)-2-Octenal,2,4-Decadienal,(Z)-2-Heptenal

Wei-w

eiet

al.,20

08

J Chem Ecol (2012) 38:665–703 673

Page 10: Volatile Mediated Interactions Between Bacteria and Fungi in the Soil

Tab

le2

(con

tinued)

Species

Tax

ID(N

CBI)

Volatile

Syn

onym

References

Bacillus

simplex

1478

Propano

ne,B

enzaldehyd

e,Pheno

l,Benzenacetaldehyd

e,Propion

icacid,1

-Hexadecanol,P

heny

lethanon

e,Cyclohexene,

Benzene

ethano

l,Non

ane,2-Und

ecanon

e,Decanal,Dod

ecane,Hexadecane,Dim

ethy

ldisulfide,Tetradecane,2-

Non

anon

e,Terpineol,2-Octanol,Trimethy

lpyrazine

Guet

al.,20

07

Bacillus

spp.

1386

Acetic

acid,Acetoin,Isop

rene,3-(M

ethy

lsulfany

l)prop

an-1-ol,Dim

ethy

ldisulfide,2,3,5,6-Tetramethy

lpyrazine,2-

Methy

lmercaptoethanol,(2R,3R)-Butane-2,3-diol

SchulzandDickschat,20

07

Acetamide,Pheny

lacetaldehyd

e,Methaneam

ine,Benzothiazole,Methy

lpyrazine,1-Butanam

ine,Dod

ecane,Non

ade-

cane,1-Decene,2,5-Dim

ethy

lpyrazine

Zou

etal.,20

07

2,3-Butanediol,Acetoin

Ryu

etal.,20

03

Octanal,n-Hexadecanoicacid,Diethylph

thalate,Octadecanoicacid,Heptano

l,2-Pentylfuran,Non

anal,2-Methy

l-7-

oxabicyclo[2.2.1]heptane,Oleic

acid,(E)-2-Octenal,(E)-2-no

nenal,(E)-2-decenal,2,4-Decadienal,2-Und

ecenal,(Z)-

2-Heptenal

Wei-w

eiet

al.,20

08

Acetone,2,3-Butanedione,Ethanol,Glyox

ylic

acid,Methanethiol,1-Pentano

l,Acetylene,Isop

rene,2-Methy

l-1-prop

-anol,2-Butanon

e,Diethylacetic

acid,2-Methy

lbutanal,Benzaldehyd

e,1-Butanol,2,3-Butanediol,Acetoin,Cyclo-

hexene,Dod

ecane,2-Methy

l-1-bu

tano

l,Ethyl

acetate,3-Methy

lbutanoicacid,2-Methy

lfuran,Hexadecane,3-

Methy

lbutanal,Dim

ethy

ldisulfide,1-Und

ecene,Tetrahy

dro-2,5-dimethy

lfuran,Dim

ethy

ltrisulfide,2-Pentylfuran,3-

Methy

l-1-bu

tano

l,Acetic

acid

butylester,3-Methy

l-bu

tano

lacetate,2-Hyd

roxy

-3-pentano

ne,2,4-Hexadienal

Farag

etal.,20

06

Benzaldehyd

e,Propano

ne,Pheno

l,1-Hexadecanol,Benzenacetaldehyd

e,Propion

icacid,Benzeneethano

l,Pheny

letha-

none,Cyclohexene,Decanal,Dod

ecane,Hexadecane,Dim

ethy

ldisulfide,Tetradecane,Non

ane,2-Non

ananon

e,2-

Und

ecanon

e,Terpineol,2-Octanol,Trimethy

lpyrazine

Guet

al.,20

07

Bacillus

weihensteph

anensis

8666

2Propano

ne,Benzaldehyd

e,Pheno

l,Benzenacetaldehyd

e,Propion

icacid,1-Hexadecanol,Benzeneethano

l,Pheny

letha-

none,Cyclohexene,Non

ane,2-Und

ecanon

e,Decanal,Dod

ecane,Hexadecane,Dim

ethy

ldisulfide,Tetradecane,2-

Non

anon

e,Terpineol,2-Octanol,Trimethy

lpyrazine

Bacteroides

bivius

2812

5Acetic

acid

Wiggins

etal.,19

85Bacteroides

distason

is82

3Acetic

acid,Propion

icacid,Isob

utyric

acid,Isov

aleric

acid

Bacteroides

frag

ilis

817

Acetate,Succinate,Isob

utyrate,Isov

alerate

HintonandHum

e,19

95

Hexadecanoicacid,Tetradecano

icacid,12

-Methy

ltetradecanoicacid,13

-Methy

ltetradecanoicacid,3-Hyd

roxy

-15-

methy

lhexadecanoicacid,3-Hyd

roxy

hexadecano

icacid

Brond

zandOlsen,19

91

Bacteroides

gracilis

824

Hexadecanoicacid,Dod

ecanoicacid,Octadecanoicacid,Tetradecano

icacid,3-Hyd

roxy

tetradecanoicacid,3-

Hyd

roxy

hexadecano

icacid,Hexadecenoicacid

Bacteroides

ovatus

28116

Acetic

acid,Propion

icacid,Isov

aleric

acid

Wiggins

etal.,19

85Bacteroides

thetaiotao

micron

818

Acetic

acid,Propion

icacid,Isob

utyric

acid,Isov

aleric

acid

Bacteroides

ureolyticus

827

Hexadecanoicacid,Dod

ecanoicacid,Octadecanoicacid,Tetradecano

icacid,3-Hyd

roxy

tetradecanoicacid,3-

Hyd

roxy

hexadecano

icacid,Hexadecenoicacid

Brond

zandOlsen,19

91

Bacteroides

vulgatus

821

Acetic

acid,Propion

icacid,Isob

utyric

acid,Isov

aleric

acid

Wiggins

etal.,19

85

Breviba

cterium

linens

1703

Methanethiol,S-M

ethy

lthiobu

tyrate,S-M

ethy

lthio-2-m

ethy

lbu

tyrate,S-M

ethy

lthioacetate,S-M

ethy

lthiocaproate,S-

Methy

lthio-3-m

ethy

lbu

tyrate,S-M

ethy

lthioprop

ionate,S-M

ethy

lthio-2-m

ethy

lprop

ionate,S-M

ethy

lthiovalerate

SchulzandDickschat,20

07

Calothrix

parietina

3205

4Octanal,Decanal,6-Methy

l-5-hepten-2-one,beta-Cyclocitral,Heptadecane,Lim

onene,Heptadecene,Non

anal,2,6,6-

Trimethy

lcyclo-hex-2-en-1-on

e,8-Methy

lheptadecane,Dihyd

ro-beta-iono

ne,beta-Ion

one,beta-Ion

one-5,6-epox

ide

Höckelm

annandJüttn

er,20

04

Calothrix

spp.

1186

Cresol,Skatole,Sulcatone,beta-Cyclocitral,2,2,6-Trimethy

lcyclohexano

ne,Sulcatol,Dihyd

roactin

idiolid

e,2-Hyd

roxy

-2,6,6-trim

ethy

lcyclohexan-1-on

e,Dihyd

ro-beta-iono

ne,beta-Ion

one,(Z)-5-Heptadecene,Geosm

in,beta-Ion

one-5,6-

epox

ide

SchulzandDickschat,20

07

Octanal,Decanal,Heptadecane,Lim

onene,Non

anal,Geosm

in,beta-Ion

one-5,6-epox

ide

Höckelm

annandJüttn

er,20

04

Cam

pyloba

cter

fetus

196

Hexadecanoicacid,Dod

ecanoicacid,Octadecanoicacid,Tetradecano

icacid,3-Hyd

roxy

tetradecanoicacid,3-

Hyd

roxy

hexadecano

icacid,Hexadecenoicacid

Brond

zandOlsen,19

91

Cap

nocytoph

agaochracea

1018

Acetic

acid,Propion

icacid,Isov

aleric

acid

Kurita-O

chiaiet

al.,19

95

Carno

bacterium

divergens

2748

Ercoliniet

al.,20

09

674 J Chem Ecol (2012) 38:665–703

Page 11: Volatile Mediated Interactions Between Bacteria and Fungi in the Soil

Tab

le2

(con

tinued)

Species

Tax

ID(N

CBI)

Volatile

Syn

onym

References

Toluene,Menthol,Hexadecanol,Dibutylph

thalate,Hexanal,Carbo

ndisulfide,Isob

orny

lacetate,Linaloo

l,alph

a-Pinene,

2-Ethylph

enol,4

-Methy

lguaiacol,ortho-Dim

ethy

lbenzene,tert-Butylcycloh

exanol,2

-Ethyl-1-hexanol,E

thyloctano

ate,

para-D

imethy

lbenzene,4-Methy

lthioph

enol,1-Propanethiol,Decanal,1-Und

ecanol,1-Dod

ecanol,Citron

ellylacetate,

1-Hexadecene,Metho

xybenzenethiol,2-Non

anon

e,1-Tetradecene,Decane,delta-N

onalactone,1-Octen-3-ol,2-Butyl-

1-octano

l,2-Pentylth

ioph

ene,Lim

onene,2-Ethylhexy

l-2-ethy

lhexano

ate,2-Dod

ecanol,2-Ethylhexanal,Ethylhexa-

noate,Non

anal,Tetradecanal,Butylhy

drox

ytoluene,Isotridecano

l,Terbu

tylcyclohexy

lacetate,Decenyl

acetate,2-

Methy

l-1-do

decano

l,Hexyl

form

ate,Ethenyl

decano

ate,Und

ecanthiol,2-Methy

l-1-un

decano

l,1-Non

en-3-ol,Lim

o-neneox

ide,9,12

-Tetradecadien-1-olacetate,3-Hyd

roxy

dodecano

icacid,2-Hexyl-1-decanol,4-Metho

xybenzhy

drol,

Tetradecen-1-ol,5-Und

ecene,5-Methy

l-1,5-hexadien-3-ol,Dod

ecyl

hexano

ate,5-Butyl-4-non

ene,2-Methy

l-2-decene,

6-Methy

l-1-octano

l,Tetradecen-1-ol

acetate,4-Methy

lund

ecene,8-Methy

l-1-un

decene,2,3-Epo

xygerany

lacetate,2-

Hexyl-1-octanol,2-Ethyldo

decano

l,2-Methy

l-2-do

decene,2-Buten-1-ol,Dod

ecenal,2-Octen-1-ol,5-Octadecene,9-

Octadecene,Tetradeceno

icacid,

Carno

bacterium

maltaromaticum

2751

2-Ethyl-1-hexanol,2-Non

anon

e,2-Ethylhexanal,2-Hexyl-1-octanol,2-Buten-1-ol

Cho

ndromyces

crocatus

52Benzylalcoh

ol,2-Pheny

lethanol,endo

-Borny

lacetate,Benzothiazol,1,4-Dim

etho

xybenzol,,2,5-Dim

ethy

lpyrazine,2-

Metho

xy-3-(2-methy

lpropy

l)py

razine,2-Metho

xy-3-(1-methy

lethyl)pyrazine,

(1-M

ethy

lethyl)pyrazine,beta-Cop

aene,

2-Metho

xy-3-(1-methy

lpropy

l)py

razine,alph

a-Elemene,Dim

ethy

l-(1-m

ethy

lethyl)pyrazine,

2-(1-H

ydroxy

-2-m

ethy

l-prop

yl)-3-metho

xypy

razine,Eremop

hilene,1,4-Cadinadiene,Zon

arene,Bicycloelem

ene,2,5-bis-(1-M

ethy

lethyl)pyr-

azine,2-(1-M

ethy

lethenyl)-5-(1-m

ethy

lethyl)pyrazine,

2,5-Bis(2-m

ethy

lpropy

l)py

razine,(1R,6S,10S

)-6,10

-Dim

ethy

lbicyclo[4.4.0]decan-3-one,2,6-bis-(1-M

ethy

lethyl)pyrazine,

beta-Y

lang

ene,Methy

lsalicylate,1-

Pheny

lethanol,Anisol,2-Aminoacetoph

enon

e,Methy

l2-metho

xybenzoate,2-(M

etho

xymethy

l)furan,

alph

a-Muu

rolene,(-)-Germacrene

D,(6S,10S

)-6,10

-Dim

ethy

lbicyclo[4.4.0]dec-1-en-3-on

e,(1R,6R,10R

)-6,10

-Dim

ethy

lbi-

cyclo[4.4.0]decan-3-on

e,(1(10)E,5E)-Germacradien-11-ol,Methy

lanthranilate,Non

anal,2-Methy

l-3-metho

xypy

ra-

zine,2-Methy

l-5-(1-m

ethy

lethyl)pyrazine,

Cub

enol,3-Metho

xy-2,5-dim

ethy

lpyrazine,

3-Metho

xy-2,6-

dimethy

lpyrazine,2-Methy

l-6-(1-m

ethy

lethyl)pyrazine,

6,10

-Dim

ethy

lbicyclo[4.4.0]decan-3-ol,Geosm

in

Schulzet

al.,20

04

Methy

lsalicylate,1-Pheny

lethanol,Anisol,2-Aminoacetoph

enon

e,Methy

l2-metho

xybenzoate,2-(M

etho

xymethy

l)furan,

alph

a-Muu

rolene,(-)-Germacrene

D,(6S,10S

)-6,10

-Dim

ethy

lbicyclo[4.4.0]dec-1-en-3-on

e,(1R,6R,10R

)-6,10

-Dim

ethy

lbicyclo[4.4.0]decan-3-one,(1(10)E,5E)-Germacradien-11-ol,Geosm

in,4-Metho

xyacetop

heno

ne,Methy

l4-

metho

xybenzoate,Furfuryl3-methy

lbu

tano

ate,2-Aminob

enzaldehyd

e,Methy

lanthranilate,Non

anal,1,4-Dim

e-thox

ybenzene,4-Pheny

lbutanon

e,Isop

ropy

lpyrazine,2-Methy

l-5-isop

ropy

lpyrazine,alph

a-Eud

esmol,2-Metho

xy-3-

(1-hyd

roxy

-2-m

ethy

lpropy

l)py

razine,2,5-Diisop

ropy

lpyrazine,2-Isop

ropy

l-5-isop

ropeny

lpyrazine,

2-Isop

ropy

l-5-

buten-2-yl-pyrazine,Eremop

hilene,2,5-Diisob

utylpy

razine,(1S,6R,10R

)-6,10

-Dim

ethy

lbicyclo[4.4.0]decan-3-one,

2-Methy

l-6-isop

ropy

lpyrazine,2,6-Diisop

ropy

lpyrazine

SchulzandDickschat,20

07

4-Pheny

l-2-bu

tano

ne,2-Metho

xy-3-m

ethy

lpyrazine,

1-epi-Cub

enol,alph

a-Eud

esmol,5-Methy

l-2-(1-m

ethy

lethyl)pyra-

zine,3-Metho

xy-2,5-bis(1-m

ethy

lpropy

l)py

razine,Metho

xydi-(1-methy

lethyl)pyrazine,

3-Metho

xy-2-(1-methy

l-prop

yl)-5-(2-m

ethy

lpropy

l)py

razine,2-Butan-2-yl-5-prop

an-2-yl-py

razine,3-Metho

xy-5-(2-methy

lpropy

l)-2-propan-

2-yl-pyrazine,3-Metho

xy-2,5-bis(2-m

ethy

lpropy

l)py

razine,5

-Butan-2-yl-3-metho

xy-2-propan-2-yl-pyrazine,5-Butan-

2-yl-3-m

etho

xy-2-m

ethy

l-py

razine,3-Metho

xy-2-m

ethy

l-5-(2-m

ethy

lpropy

l)py

razine,6-Methy

l-2-(1-m

ethy

lethyl)pyr-

azine,(1S,6S,10S

)-6,10

-Dim

ethy

lbicyclo[4.4.0]decan-3-one,Methy

lsalicylate,1-Pheny

lethanol,Anisol,2-

Aminoacetoph

enon

e,Methy

l2-metho

xybenzoate,2-(M

etho

xymethy

l)furan,

alph

a-Muu

rolene,(-)-Germacrene

D,

(6S,10S

)-6,10

-Dim

ethy

lbicyclo[4.4.0]dec-1-en-3-on

e,(1R,6R,10R

)-6,10

-Dim

ethy

lbicyclo[4.4.0]decan-3-one,(1(10)

E,5E)-Germacradien-11-ol,4-Metho

xyacetop

heno

ne,Methy

l4-metho

xybenzoate,Furfuryl3-methy

lbu

tano

ate,2-

Aminob

enzaldehyd

e,Benzylalcoh

ol,2

-Pheny

lethanol,end

o-Borny

lacetate,Benzothiazol,1,4-Dim

etho

xybenzol,,2,5-

Dim

ethy

lpyrazine,2-Metho

xy-3-(2-methy

lpropy

l)py

razine,2-Metho

xy-3-(1-methy

lethyl)pyrazine,

(1-M

ethy

lethyl)

pyrazine,beta-Cop

aene,2-Metho

xy-3-(1-methy

lpropy

l)py

razine,alph

a-Elemene,Dim

ethy

l-(1-m

ethy

lethyl)pyrazine,

2-(1-H

ydroxy

-2-m

ethy

lpropy

l)-3-m

etho

xypy

razine,Eremop

hilene,1,4-Cadinadiene,Zon

arene,Bicycloelem

ene,2,5-

bis-(1-M

ethy

lethyl)pyrazine,

2-(1-M

ethy

lethenyl)-5-(1-m

ethy

lethyl)pyrazine,

2,5-Bis(2-m

ethy

lpropy

l)py

razine,

(1R,6S,10S

)-6,10

-Dim

ethy

lbicyclo[4.4.0]decan-3-one,2,6-bis-(1-M

ethy

lethyl)pyrazine,

beta-Y

lang

ene,Geosm

in

Dickschat

etal.,20

05e

Alpha-M

uurolene,Cadina-1,4-diene,Geosm

inDickschat

etal.,20

05d

J Chem Ecol (2012) 38:665–703 675

Page 12: Volatile Mediated Interactions Between Bacteria and Fungi in the Soil

Tab

le2

(con

tinued)

Species

Tax

ID(N

CBI)

Volatile

Syn

onym

References

Citrob

acterfreund

ii54

6Methanethiol,Pheno

l,Dim

ethy

lselenenylsulfide

SchulzandDickschat,20

07Citrob

acterspp.

544

2-Pheny

lethanol,3-M

ethy

lbutyl

prop

ionate,3-(Methy

lsulfany

l)prop

an-1-ol,Dim

ethy

ldisulfide,3-M

ethy

lbutyl

acetate,2-

Methy

lmercaptoethanol

Clostridium

biferm

entans

1490

Acetic

acid,Propion

icacid,Isov

aleric

acid,Isocaproic

acid

Wiggins

etal.,19

85Clostridium

butyricum

1492

Acetic

acid,Butyric

acid

Clostridium

cada

veris

1529

Acetic

acid,Butyric

acid,Propion

icacid

Clostridium

colla

geno

vorans

2935

7Dim

ethy

lselenium,Dim

ethy

ldiselenium,Dim

ethy

ltellu

rium

,Trimethy

lbismuth,

Trimethy

lstib

ine,Trimethy

larsine

Michalkeet

al.,20

00

Trimethy

lbismuth,

Trimethy

lstib

ine,Trimethy

larsine

SchulzandDickschat,20

07

Clostridium

falla

x15

33Acetic

acid,Butyric

acid

Wiggins

etal.,19

85Clostridium

histolyticum

1498

Acetic

acid

Clostridium

sporog

enes

1509

Acetic

acid,Butyric

acid,Propion

icacid,Isob

utyric

acid,Valeric

acid,Isov

aleric

acid,Isocaproic

acid

Clostridium

spp.

1485

Acetic

Acid,

Acetoin,2,3-Butanediol,Butyric

acid,Formic

acid,Ethanol,Methano

l,Propion

icAcid,

Dim

ethy

lsulfide,

Ethylene,Isob

utanol,Acrylic

acid,Isob

utyric

acid,Valeric

acid,Caproic

acid,Isov

aleric

acid,Isocaproic

acid,

Isop

entano

l,Crotonicacid,

Stotzky

andSchenck,19

76

Clostridium

tertium

1559

Acetic

acid,Butyric

acid

Wiggins

etal.,19

85

Cytop

haga

spp.

978

3,3,7,7-Tetramethy

l-1,2,5-trith

iepane,3,3,6,6-Tetramethy

l-1,2,5-trith

iepane,4,4-Dim

ethy

ltrith

iolane,4,4,6,6-

Tetram

ethy

l-1,2,5-trith

iepane,3,3,8,8-Tetramethy

l-1,2,5,6-tetrathiocane,

2-Methy

lpropane-1,2-dith

iol,3,3,7,7-Tetra-

methy

l-1,2,5,6-tetrathiocane,5,5-Dim

ethy

ltetrathiane,

Sob

iket

al.,20

07

Desulfovibrio

acrylicus

4179

1Methanethiol,Dim

ethy

lsulfide

SchulzandDickschat,20

07

Desulfovibrio

giga

s87

9Dim

ethy

lselenium,Dim

ethy

ldiselenium,Dim

ethy

ltellu

rium

,Trimethy

larsine

Michalkeet

al.,20

00

Trimethy

larsine

SchulzandDickschat,20

07

Desulfovibrio

vulgaris

881

Dim

ethy

lselenium,Dim

ethy

ldiselenium,Trimethy

lstib

ine,Trimethy

larsine

Michalkeet

al.,20

00

Trimethy

lstib

ine,Trimethy

larsine

SchulzandDickschat,20

07

Dinoroseoba

cter

shibae

2158

132-Ph

enylethanol,4-Octanolide,4-Nonanolide,4-Undecanolide,4-Heptanolid

e,Undecanal,D

odecanal,B

utyl

benzoate,

Benzylcyanide,1-N

onanol,6-M

ethyl-5-hepten-2-one,4-H

exanolide,4-Decanolide,Tetram

ethylpyrazine,4-Dodecanolide,

S-Methylm

ethanethiosulfonate,5-Nonanolide,Dim

ethyltrisulfide,2-M

ethyl-4-pentanolide,4-Methylquinazolin

e,3-

Methyl-4-pentanolide,2-Butyl-3,6-dim

ethylpyrazine,3-Butyl-2,5-dim

ethylpyrazine,Geranylacetone

Dickschat

etal.,20

05f

S-M

ethy

lmethanethiosulfon

ate,

S-M

ethy

lmethanethiosulfinate

SchulzandDickschat,20

07

2-Ethyl-5-m

ethy

lpyrazine,

2-Ethyl-3,6-dim

ethy

lpyrazine,3-Ethyl-2,5-dim

ethy

lpyrazine,

5-Methy

l-2-(1-m

ethy

lethyl)

pyrazine,Methy

lmethy

lthiomethy

ldisulfide

Dickschat

etal.,20

05e

Dinoroseoba

cter

spp.

3095

124-Butanolide,Octan-4-olid

e,Non

an-4-olid

e,Und

ecan-4-olid

e,Heptan-4-olide,4-Pentano

lide,Butyl

benzoate,H

exan-4-

olide,Decan-4-olid

e,Dod

ecan-4-olid

e,2-Methy

lpentan-4-olide,Tetradecan-4-olide,3-Methy

lpentan-4-olide

SchulzandDickschat,20

07

Enterob

acterag

glom

eran

s54

91-(2-Pyridinyl)ethanon

eEnterob

actercloa

cae

550

Dim

ethy

lselenide

Enterob

acterspp.

547

Acetoin,Indole,2-Phenylethanol,Hydroxypropanone,3-(M

ethylsulfanyl)propan-1-ol,Dimethyldisulfid

e,2-

Methylmercaptoethanol

Escherichia

coli

562

Acetic

acid,Methano

l,Acetaldehyd

e,Acetone,1-Butanol,Methanethiol,2-Methy

l-1-bu

tano

l,Ethanol,Indo

leBun

geet

al.,20

08

Acetoin,2,3-Butanediol,2,3-Butanedione,Glyox

ylic

acid,Acetylene,Isop

rene,1-Propano

l-2-methy

l,2-Butanon

e,Diethylacetic

acid,Dod

ecane,Ethyl

acetate,3-Methy

lbutanoicacid,2-Methy

lfuran,Hexadecane,3-Methy

lbutanal,

Dim

ethy

ldisulfide,1-Und

ecene,Tetrahy

dro-2,5-dimethy

lfuran,1-Und

ecane,Dim

ethy

ltrisulfide,2-Pentylfuran,3-

Methy

l-1-bu

tano

l,Acetic

acid

butylester,3-Methy

lbutyl

acetate,2-Hyd

roxy

-3-pentano

ne,2,4-Hexadienal,Acetone,

1-Butanol,Methanethiol,2-Methy

l-1-bu

tano

l,Ethanol

Farag

etal.,20

06

Ethanol,Indo

le,Acetonitrile

Zhu

etal.,20

10

676 J Chem Ecol (2012) 38:665–703

Page 13: Volatile Mediated Interactions Between Bacteria and Fungi in the Soil

Tab

le2

(con

tinued)

Species

Tax

ID(N

CBI)

Volatile

Syn

onym

References

Indo

leSchulzandDickschat,20

07;

RyanandDow

,20

08

Escherichia

spp.

561

2-Pheny

lethanol,Ethyl

octano

ate,1-Decene

SchulzandDickschat,20

07

Flavoba

cterium

spp.

237

Ethanol,Dim

ethy

ldisulfide

Freem

anet

al.,19

76

Fossombron

iapu

silla

3416

1Geosm

inDickschat

etal.,20

05a

Fusob

acterium

nucleatum

851

Acetic

acid,Butyric

acid,Propion

icacid,Valeric

acid,Isov

aleric

acid

Kurita-O

chiaiet

al.,19

95

Methanethiol,L-M

ethion

ine

SchulzandDickschat,20

07Geoba

cillu

sstearothermop

hilus

1422

Dim

ethy

lselenide,Dim

ethy

ldiselenide,Dim

ethy

ltellu

ride,Dim

ethy

lditellu

ride,Methanetellu

rol

Halom

onas

venu

sta

4493

5(S)-2-Metho

xy-3-(1-methy

lpropy

l)py

razine

Jann

aschia

helgolan

densis

1889

065-Methy

l-2-(1-m

ethy

lethyl)pyrazine

Dickschat

etal.,20

05e

Klebsiella

oxytoca

571

Dim

ethy

ldisulfide,Dim

ethy

ltrisulfide

SchulzandDickschat,20

07Klebsiella

pneumon

iae

573

Pheno

l,2-Methy

l-5-isop

ropy

lpyrazine

Klebsiella

spp.

570

Acetoin,Indo

le,2-Pheny

lethanol,2-(H

ydroxy

methy

l)furan,

1-Pheny

lpropan-2-on

e,Ethyl

butano

ate,3-Methy

lbutyl

butano

ate,Methy

lpropy

lacetate,3-(M

ethy

lsulfany

l)prop

an-1-ol,Pentylbu

tano

ate,Hexan-2-one,2-Methy

lbutyl

acetate,Dim

ethy

ldisulfide,3-Methy

lbutyl

acetate,2-Methy

lmercaptoethanol

Lactoba

cillu

sbrevis

1580

3-Methy

lthioprop

ionate,Methanethiol,3-(M

ethy

lsulfany

l)prop

an-1-ol,Dim

ethy

ldisulfide,Methion

al

Lactoba

cillu

scasei

1582

Acetic

acid,A

cetoin,B

enzaldehyd

e,Benzenemethano

l,Butanoicacid,O

ctanoicacid,D

ecanoicacid,D

odecanoicacid,2-

Pheny

lethanol,Isobu

tano

l,Ethyl-2-hyd

roxy

prop

ionate,P

entano

icacid,H

eptano

icacid,N

onanoicacid,H

exanoicacid,

3-(M

ethy

lthio)-1-prop

anol,Tetradecano

icacid,3-Methy

l-2-bu

tano

l,alph

a,alph

a-Dim

ethy

lbenzenemethano

l,Isoamy-

lalcoh

ol

TraceyandBritz,19

89

Lactoba

cillu

sferm

entum

1613

L-Cystathionine

SchulzandDickschat,20

07Lactoba

cillu

shilgardii

1588

3-Methy

lthioprop

ionate,Methanethiol,3-(M

ethy

lsulfany

l)prop

an-1-ol,Dim

ethy

ldisulfide

Lactoba

cillu

slactis

2939

7alph

a-keto-gam

ma-methy

lthiobu

tyricacid,Methanethiol,Methion

al,Methy

lmercaptoacetaldehyd

e

Lactoba

cillu

splan

tarum

1590

Acetic

acid,A

cetoin,B

enzenemethano

l,Butanoicacid,O

ctanoicacid,D

ecanoicacid,D

odecanoicacid,2-Pheny

lethanol,

Isob

utanol,Ethyl-2-hyd

roxy

prop

ionate,Pentano

icacid,Heptano

icacid,Hexanoicacid,3-(M

ethy

lthio)-1-prop

anol,

Tetradecanoicacid,3-Methy

l-2-bu

tano

l,alph

a,alph

a-Dim

ethy

lbenzenemethano

l,Isoamylalcoho

l,Benzaldehyd

e

TraceyandBritz,19

89

3-Methy

lthioprop

ionate,Methanethiol,Pheny

lpyruv

ate,L-Pheny

lalanine,3-(M

ethy

lsulfany

l)prop

an-1-ol,Dim

ethy

ldi-

sulfide,Benzaldehyd

eSchulzandDickschat,20

07

Lactoba

cillu

sspp.

1578

Methanethiol,Dim

ethy

lsulfide,Dim

ethy

ldisulfide,Dim

ethy

ltrisulfide

Lactococcus

lactis

1358

Acetic

acid,A

cetoin,B

enzaldehyd

e,Benzenemethano

l,Butanoicacid,O

ctanoicacid,D

ecanoicacid,D

odecanoicacid,2-

Pheny

lethanol,Isobu

tano

l,Ethyl-2-hyd

roxy

prop

ionate,P

entano

icacid,H

eptano

icacid,N

onanoicacid,H

exanoicacid,

3-(M

ethy

lthio)-1-prop

anol,Tetradecano

icacid,3-Methy

l-2-bu

tano

l,alph

a,alph

a-Dim

ethy

lbenzenemethano

l,Isoamy-

lalcoh

ol

TraceyandBritz,19

89

L-Cystathionine,S-M

ethy

lthiobu

tyrate,S-M

ethy

lthio-2-m

ethy

lbu

tyrate,S-M

ethy

lthioacetate,S-M

ethy

lthiocaproate,

S-M

ethy

lthio-3-m

ethy

lbu

tyrate,S-M

ethy

lthioprop

ionate,S-M

ethy

lthio-2-m

ethy

lprop

ionate,S-M

ethy

lthiovalerate

SchulzandDickschat,20

07

Lactococcus

spp.

1357

Methanethiol,Pheny

lpy

ruvate,Pheny

lacetaldehyd

e,Dim

ethy

lsulfide,L-Pheny

lalanine,Dim

ethy

ldisulfide,Dim

ethy

l-trisulfide

Leucono

stoc

crem

oris

3396

5Acetic

acid,A

cetoin,B

enzaldehyd

e,Benzenemethano

l,Butanoicacid,O

ctanoicacid,D

ecanoicacid,D

odecanoicacid,2-

Pheny

lethanol,Isobu

tano

l,Ethyl-2-hyd

roxy

prop

ionate,P

entano

icacid,H

eptano

icacid,N

onanoicacid,H

exanoicacid,

3-(M

ethy

lthio)-1-prop

anol,Tetradecano

icacid,3-Methy

l-2-bu

tano

l,alph

a,alph

a-Dim

ethy

lbenzenemethano

l,Isoamy-

lalcoh

ol

TraceyandBritz,19

89

Leucono

stoc

dextranicum

3396

6Acetic

acid,A

cetoin,B

enzaldehyde,Benzenemethanol,Butanoicacid,O

ctanoicacid,D

ecanoicacid,D

odecanoicacid,2-

Phenylethanol,Isobutanol,E

thyl-2-hydroxy

propionate,P

entanoicacid,H

eptanoicacid,N

onanoicacid,H

exanoicacid,3-

(Methylth

io)-1-propanol,T

etradecanoicacid,3-M

ethyl-2-butanol,alpha,alpha-Dim

ethylbenzenemethanol,Isoamylalcohol

J Chem Ecol (2012) 38:665–703 677

Page 14: Volatile Mediated Interactions Between Bacteria and Fungi in the Soil

Tab

le2

(con

tinued)

Species

Tax

ID(N

CBI)

Volatile

Syn

onym

References

Leucono

stoc

mesenteroides

1245

Acetoin,Benzaldehyd

e,Benzenemethano

l,Butanoicacid,Octanoicacid,Decanoicacid,Dod

ecanoicacid,2-

Pheny

lethanol,Isobu

tano

l,Ethyl-2-hyd

roxy

prop

ionate,P

entano

icacid,H

eptano

icacid,N

onanoicacid,H

exanoicacid,

3-(M

ethy

lthio)-1-prop

anol,Tetradecano

icacid,3-Methy

l-2-bu

tano

l,alph

a,alph

a-Dim

ethy

lbenzenemethano

l,Isoamylalcoho

l

Leucono

stoc

oeno

s12

47Acetic

acid,A

cetoin,B

enzaldehyd

e,Benzenemethano

l,Butanoicacid,O

ctanoicacid,D

ecanoicacid,D

odecanoicacid,2-

Pheny

lethanol,Isobu

tano

l,Ethyl-2-hyd

roxy

prop

ionate,P

entano

icacid,H

eptano

icacid,N

onanoicacid,H

exanoicacid,

3-(M

ethy

lthio)-1-prop

anol,Tetradecano

icacid,3-Methy

l-2-bu

tano

l,alph

a,alph

a-Dim

ethy

lbenzenemethano

l,Isoamylalcoho

l

Leucono

stoc

paramesenteroides

1249

Acetoin,Benzaldehyd

e,Benzenemethano

l,Butanoicacid,Octanoicacid,Decanoicacid,Dod

ecanoicacid,2-

Pheny

lethanol,Isob

utanol,Pentano

icacid,Heptano

icacid,Non

anoicacid,H

exanoicacid,3-(M

ethy

lthio)-1-prop

anol,

Tetradecanoicacid,3-Methy

l-2-bu

tano

l,alph

a,alph

a-Dim

ethy

lbenzenemethano

l,Isoamylalcoho

l

Loktanella

hong

kong

ensis

2781

32Tetramethy

lpyrazine,2-Ethyl-5-m

ethy

lpyrazine,

3-Ethyl-2,5-dim

ethy

lpyrazine,

5-Methy

l-2-(1-m

ethy

lethyl)pyrazine,

2,5-Dim

ethy

l-3-(3-m

ethy

lbutyl)pyrazine,

3-Butyl-2,5-dim

ethy

lpyrazine

Dickschat

etal.,20

05e

Loktanella

spp.

2451

86Indo

le,4-Butanolide,Octan-4-olid

e,Non

an-4-olid

e,Und

ecan-4-olid

e,Heptan-4-olide,4-Pentano

lide,S-M

ethy

lmeth-

anethiosulfonate,4-(M

ethy

lsulfany

l)bu

tan-2-on

e,S-M

ethy

lmethanethiosulfinate,Tetradecan-4-olide,Tropo

ne,Methy

l2-furancarbo

xylate,1-Pheny

lpropan-1,2-dion

e,Hexan-4-olid

e,Decan-4-olid

e,Dod

ecan-4-olid

e,3-Methy

lbutan-4-

olide,S-M

ethy

lthioprop

ionate

SchulzandDickschat,20

07

Indo

le,2

-Pheny

lethanol,4

-Non

anolide,4-Pentano

lide,Und

ecanal,1

-Tetradecano

l,Benzycyanide,6-Methy

l-5-hepten-2-

one,Dim

ethy

ltrisulfide,2

-Ethyl-3,6-dim

ethy

lpyrazine,4-Methy

lthio-2-butanon

e,Methy

lmethy

lthiomethy

ldisulfide,4

-Methy

lquinazolin

e,2-Isop

entyl-3,6-dimethy

lpyrazine,

2-Butyl-3,6-dim

ethy

lpyrazine,

Tetramethy

lpyrazine,Geranyla-

cetone,1-Pheny

lpropan-1,2-dion

e,Hexan-4-olid

e,Decan-4-olid

e,Dod

ecan-4-olid

e,3-Methy

lbutan-4-olid

e,S-M

ethy

lthioprop

ionate

Dickschat

etal.,20

05f

Lyng

byaspp.

2807

3Geosm

inSchulzandDickschat,20

07

Lysoba

cter

gummosus

2623

24Acetamide,Benzaldehyd

e,Pheny

lacetaldehyd

e,Methanamine,Benzothiazole,Methy

lpyrazine,1-Butanam

ine,Dod

ec-

ane,Dim

ethy

ldisulfide,Non

adecane,1-Decene,2,5-Dim

ethy

lpyrazine

Zou

etal.,20

07

Metha

noba

cterium

form

icicum

2162

Stib

ine,Dim

ethy

lselenium,Trimethy

lbismuth,

Trimethy

lstib

ine,

Dim

ethy

ldiselenium,Dim

ethy

ltellu

rium

,Trimethy

larsines,Dim

ethy

lstib

ine,Mon

omethy

lstib

ine,Mon

omethy

larsine,Dim

ethy

larsine

Michalkeet

al.,20

00

Trimethy

lbismuth,

Mon

omethy

larsine,Dim

ethy

larsine

SchulzandDickschat,20

07

Metha

noba

cterium

spp.

2160

Trimethy

larsine,Dim

ethy

larsine

Stotzky

andSchenck,19

76

Metha

noba

cterium

thermoa

utotroph

icum

1452

62Trimethy

lstib

ine

Michalkeet

al.,20

00

Metha

nosarcinaba

rkeri

2208

Dim

ethy

lselenium,Trimethy

lstib

ine,

Dim

ethy

ldiselenium

Methyloba

cterium

spp.

407

Methy

liodide

SchulzandDickschat,20

07

Microba

cterium

oxydan

s82

380

Propano

ne,Benzaldehyd

e,Pheno

l,Benzenacetaldehyd

e,Propion

icacid,1-Hexadecanol,Benzeneethano

l,Pheny

letha-

none,Cyclohexene,Non

ane,2-Und

ecanon

e,Decanal,Dod

ecane,Hexadecane,Dim

ethy

ldisulfide,Tetradecane,2-

Non

anon

e,Terpineol,2-Octanol,Trimethy

lpyrazine

Guet

al.,20

07

Microba

cterium

thermosph

actum

2756

Ethanol,Methano

lFreem

anet

al.,19

76

Myxococcusspp.

325-Methy

lhexan-3-ol,7-Methy

loctan-3-one,5-Methy

l-4-hexen-3-on

eSchulzandDickschat,20

07

Myxococcusxanthu

s34

2-Pheny

lethanol,Benzothiazole,Benzylcyanide,6-Methy

l-5-hepten-2-one,Butyl

prop

ionate,5-Methy

lhexan-3-ol,5-

Methy

lhexan-3-one,T

ridecane,2-A

cetylfuran,D

imethy

ltrisulfide,B

utyl

acetate,7-Methy

loctan-3-one,5-M

ethy

lhex-4-

en-3-one,Cyano

isoq

uino

line,(3S)-Decan-3-ol,4-Methy

lquino

line,

2-Aminoacetoph

enon

e,Decan-3-one,Non

an-3-

one,Und

ecan-3-one,D

imethy

ltetrasulfide,O

ctan-3-one,G

eranylaceton

e,Geosm

in,(-)-G

ermacrene

D,9-M

ethy

ldecan-

3-on

e,(1(10)E,5E)-Germacradien-11-ol

Dickschat

etal.,20

04

Sulcatone,Und

ecan-3-ol,(S)-Decan-3-ol,Isolepidozene,Octalinhy

drocarbo

n,4-Methy

lquino

line,2-

Aminoacetoph

enon

e,Decan-3-one,N

onan-3-one,U

ndecan-3-one,D

imethy

ltetrasulfide,O

ctan-3-one,G

eranylaceton

e,Geosm

in,(-)-Germacrene

D,9-Methy

ldecan-3-one,(1(10)E,5E)-Germacradien-11-ol

SchulzandDickschat,20

07

678 J Chem Ecol (2012) 38:665–703

Page 15: Volatile Mediated Interactions Between Bacteria and Fungi in the Soil

Tab

le2

(con

tinued)

Species

Tax

ID(N

CBI)

Volatile

Syn

onym

References

Geosm

inDickschat

etal.,20

05d

(-)-Germacrene

D,9-Methy

ldecan-3-one,(1(10)E,5E)-Germacradien-11-ol

Dickschat

etal.,20

05a

8,10

-Dim

ethy

l-1-octalin

,(1(10)E,5E)-Germacradien-11-ol,Geosm

inNaw

rath

etal.,20

08

Nan

nocystisexedens

54Benzylalcoh

ol,Hexadecan-1-ol,2-Pheny

lethanol,Isob

orny

lacetate,Benzothiazole,Ethyl

2-methy

lprop

ionate,Heptan-

4-olide,2-Butyl

acetate,4-Pentano

lide,Ethyl-3-m

ethy

lbutyrate,Dod

ecan-1-ol,Tetradecan-1-ol,Benzylnitrile,P

inanol,

2-Aminoacetoph

enon

e,Methy

l-2-furancarbox

ylate,Hexan-4-olid

e,(-)-2-Methy

lisob

orneol,L

imon

ene,Ethyl-2-m

ethy

lbu

tyrate,Diethyl

succinate,Borneol,1-Pheny

ldecan-1-one,2-Methy

lenebo

rnane,

2-Methy

l-2-bo

rnene,2,5-Dim

ethy

l-3-(1-m

ethy

lethyl)pyrazine,Germacrene

D,(6S,10S

)-6,10

-Dim

ethy

lbicyclo[4.4.0]dec-1-en-3-on

e,2,5-Di-(1-m

ethy

l-ethy

l)py

razine,2-(1-M

ethy

lethenyl)-5-(1-m

ethy

lethyl)pyrazine,

2,5-Di-(1-m

ethy

lpropy

l)py

razine,5-(1-M

ethy

lethyl)-

2-(1-m

ethy

lpropy

l)py

razine,(1(10)E,5E)-Germacradien-11-ol,beta-Y

lang

ene,Geosm

in

Dickschat

etal.,20

07

2-Furanmethano

l,Geosm

inSchulzandDickschat,20

07

Geosm

inSchulzet

al.,20

04;

Dickschat

etal.,2

005a,d

8,10

-Dim

ethy

l-1-octalin

Naw

rath

etal.,20

08

Nan

nocystisexedenssubsp.

cinn

abarina

542-Pheny

lethanol

Dickschat

etal.,20

07

Ocean

ibulbu

sindo

lifex

2254

222-Ethyl-5-m

ethy

lpyrazine,

3-Ethyl-2,5-dim

ethy

lpyrazine,5-Methy

l-2-(1-m

ethy

lethyl)pyrazine

Dickschat

etal.,20

05e

Octad

ecab

acterspp.

5394

5Benzaldehyd

e,2-Acetylfuran,2,5-Dim

ethy

lpyrazine,4-(M

ethy

lsulfany

l)bu

tan-2-on

eDickschat

etal.,20

05a

4-(M

ethy

lsulfany

l)bu

tan-2-on

e,(R)-4-(M

ethy

lsulfany

l)bu

tan-2-ol

SchulzandDickschat,20

07Oenococcusoeni

1247

3-Methy

lthioprop

ionate,Methanethiol,3-(M

ethy

lsulfany

l)prop

an-1-ol,Dim

ethy

ldisulfide,Methion

al

Oscillatoria

chalybea

4131

32-Methy

lisob

orneol

Oscillatoria

spp.

1158

2-Methy

lisob

orneol,Geosm

in

Paeniba

cillu

spo

lymyxa

1406

n-Hexadecanoicacid,Octadecanoicacid,Diethylph

thalate,Hexadecanoicacid

methy

lester,Octadecanoicacid

methy

lester,Azulene,Di-2-prop

enyltrisulfide,,Dially

ldisulfide,Tetradecanal,1,3-Dith

iole-2-thion

e,Oleic

acid,(Z)-9-Hexa-

deceno

icacid

methy

lester,2,4-Decadienal,2-Und

ecenal

Wei-w

eiet

al.,20

08

Isop

ropy

lpyrazine,2-(2-M

ethy

lpropy

l)py

razine,2-Methy

l-5-isop

ropy

lpyrazine,2,6-Diisob

utylpy

razine,2,5-Diisop

ro-

pylpyrazine,2-Isop

ropy

l-5-bu

ten-2-yl-pyrazine,

2,5-Diisob

utylpy

razine,2-Methy

l-5-isob

utylpy

razine,2-Methy

l-6-

isop

ropy

lpyrazine,2,6-Diisop

ropy

lpyrazine

SchulzandDickschat,20

07

2,5-Dim

ethy

l-3-(2-m

ethy

lpropy

l)py

razine

Dickschat

etal.,20

05e

Paraspo

roba

cterium

paucivoran

s1155

44Methanethiol,Dim

ethy

lsulfide

SchulzandDickschat,20

07

Pediococcus

damno

sus

5166

3Acetic

acid,A

cetoin,B

enzaldehyd

e,Benzenemethano

l,Butanoicacid,O

ctanoicacid,D

ecanoicacid,D

odecanoicacid,2-

Pheny

lethanol,Isobu

tano

l,Ethyl-2-hyd

roxy

prop

ionate,P

entano

icacid,H

eptano

icacid,N

onanoicacid,H

exanoicacid,

3-(M

ethy

lthio)-1-prop

anol,Tetradecano

icacid,3-Methy

l-2-bu

tano

l,alph

a,alph

a-Dim

ethy

lbenzenemethano

l,Isoamy-

lalcoh

ol

TraceyandBritz,19

89

Pho

rmidium

spp.

1198

Octanal,alph

a-Pinene,2-Heptano

ne,Decanal,6-Methy

l-5-hepten-2-one,beta-Cyclocitral,2-Tridecano

ne,Heptadecane,

2-Decanon

e,6-Methy

lheptan-2-on

e,Lim

onene,Heptadecene,7-Methy

lheptadecane,Non

anal,1-Octen-3-one,2,6,6-

Trimethy

lcyclo-hex-2-en-1-on

e,8-Methy

lheptadecane,2-Decenal,Geosm

in,Dihyd

ro-beta-iono

ne,beta-Ion

one,beta-

Iono

ne-5,6-epo

xide

Höckelm

annet

al.,20

04

Sulcatone,D

ihyd

roactin

idiolid

e,2-Hyd

roxy

-2,6,6-trimethy

lcyclohexan-1-on

e,Tetrahy

droion

one,Dihyd

ro-beta-iono

l,4-

Oxo

dihy

dro-beta-ion

one,Geosm

in,Dihyd

ro-beta-iono

ne,beta-Ion

one,beta-Ion

one-5,6-epox

ide

SchulzandDickschat,20

07

Pho

toba

cterium

spp.

657

Methy

liodide

Plantibacterspp.

1903

23Methy

liodide

Plecton

emaspp.

1183

J Chem Ecol (2012) 38:665–703 679

Page 16: Volatile Mediated Interactions Between Bacteria and Fungi in the Soil

Tab

le2

(con

tinued)

Species

Tax

ID(N

CBI)

Volatile

Syn

onym

References

Octanal,Decanal,6-Methy

l-5-hepten-2-one,Heptadecane,Lim

onene,7-Methy

lheptadecane,Non

anal,2,6,6-

Trimethy

lcyclo-hex-2-en-1-on

e,8-Methy

lheptadecane,Beta-Cyclocitral,Dihyd

ro-beta-iono

ne,beta-Ion

one,

beta-Ion

one-5,6-epox

ide

Höckelm

annand

Jüttn

er,20

04

Sulcatone,Beta-Cyclocitral,Dihyd

ro-beta-iono

ne,beta-Ion

one,beta-Ion

one-5,6-epox

ide,2,2,6-Trimethy

lcyclohexa-

none,Sulcatol,Dihyd

roactin

idiolid

e,2-Hyd

roxy

-2,6,6-trimethy

lcyclohexan-1-on

e,beta-Cyclogeraniol,

Dihyd

ro-beta-iono

l

SchulzandDickschat,20

07

Porph

yrom

onas

endo

dontalis

2812

4Hexadecanoicacid,Tetradecano

icacid,12

-Methy

ltetradecanoicacid,11-M

ethy

ldod

ecanoicacid,13

-Methy

ltetradecanoicacid,3-Hyd

roxy

-15-Methy

lhexadecanoicacid,3-Hyd

roxy

pentadecanoicacid,3-

Hyd

roxy

hexadecano

icacid

Brond

zandOlsen,19

91

Porph

yrom

onas

ging

ivalis

837

Acetic

acid,Butyric

acid,Propion

icacid,Isob

utyric

acid,Valeric

acid,Isov

aleric

acid

Kurita-O

chiaiet

al.,19

95

Methanethiol

SchulzandDickschat,20

07

Prevotella

buccae

2812

6Hexadecanoicacid,Tetradecano

icacid,12

-Methy

ltridecanoicacid,12

-Methy

ltetradecanoicacid,14

-Methy

lhexadecanoicacid,11-M

ethy

ldod

ecanoicacid,14

-Methy

lpentadecano

icacid,13

-Methy

ltetradecanoicacid,3-

Hyd

roxy

-15-Methy

lhexadecanoicacid,15

-Methy

lhexadecanoicacid,3-Hyd

roxy

pentadecanoicacid,3-

Hyd

roxy

hexadecano

icacid,10

-Methy

ldod

ecanoicacid

Brond

zandOlsen,19

91

Prevotella

disiens

2813

0Hexadecanoicacid,Tetradecano

icacid,12

-Methy

ltridecanoicacid,12

-Methy

ltetradecanoicacid,14

-Methy

lhexadecanoicacid,11-M

ethy

ldod

ecanoicacid,14

-Methy

lpentadecano

icacid,13

-Methy

ltetradecanoicacid,3-

Hyd

roxy

-15-Methy

lhexadecanoicacid,15

-Methy

lhexadecanoicacid,3-Hyd

roxy

pentadecanoicacid,3-

Hyd

roxy

hexadecano

icacid,10

-Methy

ldod

ecanoicacid

Prevotella

hepa

rino

lyticus

28113

Hexadecanoicacid,Tetradecano

icacid,12

-Methy

ltetradecanoicacid,11-M

ethy

ldod

ecanoicacid,13

-Methy

ltetradecanoicacid,3-Hyd

roxy

-15-Methy

lhexadecanoicacid,15

-Methy

lhexadecanoicacid,3-

Hyd

roxy

pentadecanoicacid,3-Hyd

roxy

hexadecano

icacid,10

-Methy

ldod

ecanoicacid

Prevotella

interm

edia

2813

1Acetic

acid,Butyric

acid,Isob

utyric

acid,Isov

aleric

acid

Kurita-O

chiaiet

al.,19

95Prevotella

loescheii

840

Acetic

acid,Butyric

acid,Propion

icacid,Isob

utyric

acid,Valeric

acid,Isov

aleric

acid

Prevotella

oralis

2813

4Hexadecanoicacid,Tetradecano

icacid,12

-Methy

ltridecanoicacid,12

-Methy

ltetradecanoicacid,14

-Methy

lhexadecanoicacid,11-M

ethy

ldod

ecanoicacid,14

-Methy

lpentadecano

icacid,13

-Methy

ltetradecanoicacid,3-

Hyd

roxy

-15-Methy

lhexadecanoicacid,15

-Methy

lhexadecanoicacid,3-Hyd

roxy

pentadecanoicacid,3-

Hyd

roxy

hexadecano

icacid

Brond

zandOlsen,19

91

Prevotella

oris

2813

5Hexadecanoicacid,Tetradecano

icacid,12

-Methy

ltridecanoicacid,12

-Methy

ltetradecanoicacid,14

-Methy

lhexadecanoicacid,11-M

ethy

ldod

ecanoicacid,14

-Methy

lpentadecano

icacid,13

-Methy

ltetradecanoicacid,3-

Hyd

roxy

-15-Methy

lhexadecanoicacid,15

-Methy

lhexadecanoicacid,3-Hyd

roxy

pentadecanoicacid,3-

Hyd

roxy

hexadecano

icacid,10

-Methy

ldod

ecanoicacid

Prevotella

spp.

838

11-M

ethy

ldod

ecanoicacid,13

-Methy

ltetradecanoicacid

Prevotella

veroralis

2813

7Hexadecanoicacid,Tetradecano

icacid,12

-Methy

ltridecanoicacid,12

-Methy

ltetradecanoicacid,11-M

ethy

ldod

ecanoic

acid,14

-Methy

lpentadecano

icacid,13

-Methy

ltetradecanoicacid,3-Hyd

roxy

-15-Methy

lhexadecanoicacid,3-

Hyd

roxy

hexadecano

icacid,10

-Methy

ldod

ecanoicacid

Pseud

oalteromon

asspp.

5324

6Methy

liodide

SchulzandDickschat,20

07

Pseud

omon

asaerugino

sa28

7Ethyleneglycol,Acetic

acid,Acetone,Ethanol,Indo

le,4-Methy

lpheno

l,Acetonitrile,2-Pentano

ne,2-

Aminoacetoph

enon

eZhu

etal.,20

10

Butanol,2-Und

ecanon

e,Dim

ethy

ldisulfide,2-Non

anon

e,Dim

ethy

ltrisulfide,Isop

entano

l,Und

ecene,2-

Aminoacetoph

enon

eLabow

set

al.,19

80

Pseud

omon

asau

rantiaca

8619

2Benzaldehyd

e,Benzothiazole,2-Ethyl-1-hexanol,Pheny

lenediam

ine,Cyclohexano

l,2-Methy

lpyrazine,Non

ane,2-

Und

ecanon

e,Decanol,Dod

ecane,Pyrazine,2-Tridecano

ne,Tetradecane,Pentadecane,Non

adecane,1-Und

ecene,

Und

ecane,1-Heptadecano

l,Decane,4-Octylbenzoicacid,Dim

ethy

ltrisulfide,Non

anal,Hexadecane

Fernand

oet

al.,20

05

Pseud

omon

ascepa

cia

292

Dim

ethy

ldisulfide,Dim

ethy

ltrisulfide

Labow

set

al.,19

80

Pseud

omon

aschlororaph

is58

7753

Fernand

oet

al.,20

05

680 J Chem Ecol (2012) 38:665–703

Page 17: Volatile Mediated Interactions Between Bacteria and Fungi in the Soil

Tab

le2

(con

tinued)

Species

Tax

ID(N

CBI)

Volatile

Syn

onym

References

Benzaldehyd

e,Benzothiazole,2-Ethyl-1-hexanol,Pheny

lenediam

ine,Cyclohexano

l,2-Methy

lpyrazine,Non

ane,2-

Und

ecanon

e,Decanol,Dod

ecane,Pyrazine,2-Tridecano

ne,Tetradecane,Pentadecane,Non

adecane,1-Und

ecene,

Und

ecane,1-Heptadecano

l,Decane,4-Octylbenzoicacid,Dim

ethy

ltrisulfide,Non

anal,Hexadecane

Benzothiazole

SchulzandDickschat,20

07

Pseud

omon

ascorrug

ata

4787

9Benzaldehyd

e,Benzothiazole,2-Ethyl-1-hexanol,Pheny

lenediam

ine,Cyclohexano

l,2-Methy

lpyrazine,Non

ane,2-

Und

ecanon

e,Decanol,Dod

ecane,Pyrazine,2-Tridecano

ne,Tetradecane,Pentadecane,Non

adecane,1-Und

ecene,

Und

ecane,1-Heptadecano

l,Decane,4-Octylbenzoicacid,Dim

ethy

ltrisulfide,Non

anal,Hexadecane

Fernand

oet

al.,20

05

Pseud

omon

asdo

udoroffii

8415

8Methanethiol,Dim

ethy

lsulfide

SchulzandDickschat,20

07

Pseud

omon

asflu

orescens

294

Acetoin

Lee

etal.,19

79;Pittardet

al.,1

982

Benzaldehyd

eLee

etal.,19

79;

Fernand

oet

al.,20

05

2,3-Butanediol,1-Butanol,2,3-Butanedione,Glyox

ylic

acid,1-Pentano

l,Acetylene,Isop

rene,2-Methy

l-1-prop

anol,

Diethylacetic

acid,2-Methy

lbutanal,Cyclohexane,2-Methy

l-1-bu

tano

l,2-Methy

lfuran,Hexadecane,Tetrahy

dro-2,5-

dimethy

lfuran,3-Methy

l-1-bu

tano

l,Butanol-3-m

ethy

lacetate,2-Hyd

roxy

-3-pentano

ne,2,4-Hexadienal,Benzalde-

hyde,Acetoin,Ethanol,Methanethiol,2-Butanon

e,Dod

ecane,Und

ecane,Methy

lbutanal,Dim

ethy

ldisulfide,1-

Und

ecene,Dim

ethy

ltrisulfide

Farag

etal.,20

06

Butanol,Isop

entano

l,Dim

ethy

ltrisulfide

Labow

set

al.,19

80

Ethanol,Methano

l,Methy

lprop

ionate,Dim

ethy

lsulfide,Dim

ethy

ldisulfide,Methy

lthiolacetate

Freem

anet

al.,19

76

Methanethiol,2-Butanon

e,Dim

ethy

lsulfide,T

oluene,2

-Non

anon

e,4-Methy

l-2,6-di-tert-bu

tylpheno

l,Dim

ethy

ldisulfide,

1-Und

ecene,Dim

ethy

ltrisulfide,Non

anal,Methy

lthiolacetate,2-Butanol,3-Octanon

e,Dim

ethy

lbenzenes,Ethylme-

thyldisulfide,2-Octanol,1-Non

ene,Cycloheptene,4-Octanon

e,2-Pentano

ne,2-Heptano

ne,Trimethy

lbenzene,3-

Pentano

ne

Pittardet

al.,19

82

Toluene,2-Non

anon

e,4-Methy

l-2,6-di-tert-bu

tylpheno

l,Methy

lprop

ionate,Methy

lisothiocyanate,Methy

l-2-methy

lbu

tyrate,M

ethy

lpent-2-enoate,M

ethy

lbutanal,D

imethy

ldisulfide,1

-Und

ecene,Dim

ethy

ltrisulfide,M

ethy

lthiolacetate

Lee

etal.,19

79

Benzothiazole,2-Ethyl-1-hexanol,Pheny

lenediam

ine,Cyclohexano

l,2-Methy

lpyrazine,Non

ane,2-Und

ecanon

e,Dec-

anol,Tetradecane,Pentadecane,Non

adecane,1-Heptadecano

l,Decane,4-Octylbenzoicacid,Hexadecane,2-

Tridecano

ne,Pyrazine,Dod

ecane,Und

ecane,1-Und

ecene,Dim

ethy

ltrisulfide,Non

anal

Fernand

oet

al.,20

05

Dim

ethy

ltellu

ride

SchulzandDickschat,20

07

Und

ecene

Kai

etal.,20

07

Pseud

omon

asfrag

i29

6Acetaldehyd

e,Ethylalcoho

l,Methy

lmercaptan,Butanon

e,Ethyl

butyrate,Ethyl

hexano

ate,Dim

ethy

lsulfide,Ethyl

acetate,Dim

ethy

ldisulfide

Miller

etal.,19

73

Ethanol,Methano

l,Methy

lacetate,Dim

ethy

lsulfide,Ethyl

acetate,Dim

ethy

ldisulfide

Freem

anet

al.,19

76

Toluene,Menthol,Dibutylph

thalate,Hexanal,Carbo

ndisulfide,Linaloo

l,alph

a-Pinene,2-Ethylph

enol,4-

Methy

lguaiacol,2-Ethyl-1,3-hexandiol,ortho-Dim

ethy

lbenzene,para-D

imethy

lbenzene,1-Butene,2,4,4-Trimethy

l-1-

pentene,Decanal,Dod

ecene,10

-Und

ecenal,1-Dod

ecanol,4(1,1,3,3-Tetram

ethy

lbutyl)pheno

l,1-Non

anol,Citron

ellyl

acetate,1-Hexadecene,2-Und

ecanol,alph

a-Terpineol,1-Octen-3-ol,2-Butyl-1-octanol,1,9-Non

anediol,2-

Pentylth

ioph

ene,Lim

onene,2-Ethylhexy

l-2-ethy

lhexanoate,2-D

odecanol,T

ridecanal,Non

anal,B

utylhy

drox

ytoluene,

Decenyl

acetate,2-Methy

l-1-do

decano

l,Hexadecanediol,2-Methy

l-1-decano

l,1-Non

en-3-ol,1,2-Dod

ecanediol,3-

Hyd

roxy

dodecano

icacid,2-Methy

l-3-bu

ten-1-ol,2-Hexyl-1-decanol,4-Metho

xybenzhy

drol,2-Pentadecano

l,Tetradecen-1-ol,Dod

ecyl

hexano

ate,5-Butyl-4-non

ene,2-Methy

l-2-decene,5-Methy

lund

ecene,2,3-Epo

xygerany

lacetate,2-Ethyldo

decano

l,2-Ethyl-1-decanol,2-Methy

l-2-do

decene,Dod

ecenal,3-Tetradecene,3-Decen-2-one,

Und

ecene,6-Dod

ecenol,2,5-Octanedione,2-Methy

lund

ecanthiol,2-Butyloctenal

Ercoliniet

al.,20

09

Pseud

omon

asmaltoph

ilia

4032

4Butanol,2-Und

ecanon

e,Dim

ethy

ldisulfide,Dim

ethy

ltrisulfide,Isop

entano

lLabow

set

al.,19

80

Pseud

omon

aspu

tida

303

Lee

etal.,19

79

J Chem Ecol (2012) 38:665–703 681

Page 18: Volatile Mediated Interactions Between Bacteria and Fungi in the Soil

Tab

le2

(con

tinued)

Species

Tax

ID(N

CBI)

Volatile

Syn

onym

References

Acetone,4-Methy

l-2,6-di-tert-bu

tylpheno

l,Methy

lthiolacetate,2-Non

anon

e,2-Butanon

e,Toluene,Benzaldehyd

e,Methy

lbenzoate,Methy

lisothiocyanate,Methy

lbu

tanal,Methy

lpent-2-enoate,1-Und

ecene,Dim

ethy

ldisulfide,

Dim

ethy

ltrisulfide

Butanol,Isop

entano

l,2-Und

ecanon

e,Dim

ethy

ldisulfide,Dim

ethy

ltrisulfide

Labow

set

al.,19

80

Ethanol,Heptadiene,Methano

l,Dim

ethy

ldisulfide

Freem

anet

al.,19

76

Methanethiol,3-Pentano

ne,2-Pentano

ne,2-Heptano

ne,Trimethy

lbenzene,4-Octanon

e,n-Non

anal,Ethylmethy

ldisul-

fide,3-Octanon

e,Dim

ethy

lbenzenes,Acetone,4-Methy

l-2,6-di-tert-bu

tylpheno

l,Methy

lthiolacetate,2-Non

anon

e,2-

Butanon

e,Toluene,Carbo

ndisulfide,Dim

ethy

ldisulfide,Dim

ethy

ltrisulfide

Pittardet

al.,19

82

Pheny

lacetate,Carbo

ndisulfide

SchulzandDickschat,20

07

Pseud

omon

aspu

trefaciens

24Butanol,Dim

ethy

ltrisulfide,Isop

entano

l,Dim

ethy

ldisulfide

Labow

set

al.,19

80

Ethanol,Methy

lmercaptan,Methano

l,Dim

ethy

ldisulfide

Freem

anet

al.,19

76

Pseud

omon

assolana

cearum

305

Ethylene

Stotzky

andSchenk,

1976

Pseud

omon

asspp.

286

Methy

lmercaptan,Methy

lacetate,Ethylbenzene,Ethyl

acetate,Dim

ethy

ldisulfide,Xylene,Dim

ethy

lsulfide

Freem

anet

al.,19

76

Methy

liodide,1-Und

ecene,Dim

ethy

lselenenylsulfide

SchulzandDickschat,20

07

Methy

lthioln-bu

tyrate

Pittardet

al.,19

82

6-Methy

l-1-octano

l,Tetradecen-1-ol

acetate,4-Methy

lund

ecene

Ercoliniet

al.,20

09

Pseud

omon

astaetrolens

4788

42-Metho

xy-3-(1-methy

lethyl)pyrazine

SchulzandDickschat,20

07

Pseud

omon

astrivialis

2004

50Und

ecadiene,Benzyloxy

benzon

itrile,Und

ecene

Kai

etal.,20

07

Pseud

onocardiaspp.

1847

Isop

rene

SchulzandDickschat,20

07Rhizobium

spp.

379

Methy

liodide

Rho

doba

cter

spha

eroides

1063

Dim

ethy

lselenide

Rho

dococcus

spp.

1827

Methy

liodide

Rho

docyclus

tenu

is10

66Dim

ethy

lselenide,Dim

ethy

ltellu

ride

Rho

dospirillum

rubrum

1085

Rivularia

spp.

3739

842-Heptano

ne,6-Methy

l-5-hepten-2-one,beta-Cyclocitral,2-Tridecano

ne,2

-Decanon

e,Lim

onene,2,6,6-Trimethy

lcyclo-

hex-2-en-1-one,8-Methy

lheptadecane,beta-Ion

one-5,6-epox

ide,Geosm

inHöckelm

annet

al.,20

04

Sulcatone,Geosm

inSchulzandDickschat,20

07

Roseoba

cter

galla

eciensis

6089

02-Ethyl-5-m

ethy

lpyrazine,

3-Ethyl-2,5-dim

ethy

lpyrazine,5-Methy

l-2-(1-m

ethy

lethyl)pyrazine

Dickschat

etal.,20

05a

Roseoba

cter

spp.

2433

Methanethiol,Dim

ethy

lsulfide,2-Pheny

lethanol

SchulzandDickschat,20

07Roseovarius

spp.

7403

0Methy

liodide,Diio

domethane,Triiodo

methane,Chloroiod

omethane

Saccha

romon

ospo

raspp.

1851

Isop

rene

Salmon

ella

enterica

2890

1Acetic

acid,Acetaldehyd

e,1-Butanol,Ethanol,Methanethiol,Methano

l,2-Butanon

e,2-Methy

l-1-bu

tano

lBun

geet

al.,20

08

Salmon

ella

enterica

serovar

typh

imurium

9037

1Ethyleneglycol,Acetic

acid,A

cetone,B

utanol,E

thanol,Ind

ole,4-Methy

lpheno

l,Acetonitrile,2

-Pentano

ne,P

yrim

idine,

2-Non

anon

e,Isop

entano

lZhu

etal.,20

10

Serratia

marcescens

615

Propano

ne,Benzaldehyd

e,Pheno

l,Benzenacetaldehyd

e,Propion

icacid,1-Hexadecanol,Benzeneethano

l,Pheny

letha-

none,Cyclohexene,Non

ane,2-Und

ecanon

e,Decanal,Dod

ecane,Hexadecane,Dim

ethy

ldisulfide,Tetradecane,2-

Non

anon

e,Terpineol,2-Octanol,Trimethy

lpyrazine

Guet

al.,20

07

Serratia

odorifera

4Rx1

361

8Beta-Pheny

lethanol,Dim

ethy

ldisulfide,Dim

ethy

ltrisulfide,Methantiol,‚Sod

orifen’

Kai

etal.,20

07and20

10

Serratia

plym

uthica

HROC48

8299

6Beta-Pheny

lethanol,Benzylnitrile,trans-9-Hexadecene-1-ol

Kai

etal.,20

07

Serratia

proteamaculan

s28

151

Toluene,Menthol,Hexanal,Carbo

ndisulfide,Linaloo

l,alph

a-Pinene,2-Ethylph

enol,4-Methy

lguaiacol,ortho-

Dim

ethy

lbenzene,Ethyl

octano

ate,para-D

imethy

lbenzene,1-Propanethiol,Ethyl

decano

ate,Citron

ellylacetate,1-

Ercoliniet

al.,20

09

682 J Chem Ecol (2012) 38:665–703

Page 19: Volatile Mediated Interactions Between Bacteria and Fungi in the Soil

Tab

le2

(con

tinued)

Species

Tax

ID(N

CBI)

Volatile

Syn

onym

References

Methy

l-2,1-methy

lethylbenzene,Methy

lethylsulfide,1-Hexadecene,2-Hexen-1-ol,alph

a-Terpineol,1-Octen-3-ol,2-

Pentylth

ioph

ene,Lim

onene,2-Ethylhexy

l-2-ethy

lhexano

ate,2-Dod

ecanol,Ethyl

nonano

ate,3-Methy

l-1-bu

tano

l,Ethylhexano

ate,Isoamyl

acetate,Butylhy

drox

ytoluene,D

ecenylacetate,2-Hexen-1-olp

ropano

ate,Linalylprop

anoate,

Borneol,1-Non

en-3-ol,3-Hyd

roxy

dodecano

icacid,4-Metho

xybenzhy

drol,Tetradecen-1-ol,Dod

ecyl

hexano

ate,3-

Octanon

e,5-Butyl-4-non

ene,6-Methy

l-1-octano

l,Tetradecen-1-ol

acetate,4-Methy

lund

ecene,2,3-Epo

xygerany

lace-

tate,4-Hyd

roxy

-3-m

ethy

lbutanal,Dod

ecenal,trans-2-Hexen-1-ol,2-Octen-1-ol,2-Non

en-1-ol

Serratia

spp.

613

Acetic

acid,3-Hyd

roxy

-2-butanon

e,2-Propano

ne,Ethanol,1,2-Benzenedicarbox

ylic

acid,2-Propano

l,2-Methy

l-1-

prop

anol,2-Butanon

e,2-Methy

l-prop

anoicacid,1,2-Dim

ethy

lbenzene,2-Ethyl-1-hexanol,2-Pentano

ne,Acetic

acid

etheny

lester,2-Heptano

ne,2-Und

ecanon

e,2-Methy

l-bu

tano

icacid,Ethyl

acetate,3-Methy

l-bu

tano

icacid,2-

Non

anon

e,Und

ecane,2-Dod

ecanon

e,2,5-Dim

ethy

lpyrazine,Lim

onene,Dim

ethy

ldisulfide,Dim

ethy

ltrisulfide

Bruce

etal.,20

04

Acetoin,Und

ecan-2-one,Non

an-2-one,Dod

ecan-2-one,Dim

ethy

ldisulfide,Dim

ethy

ltrisulfide

SchulzandDickschat,20

07Sh

ewan

ella

spp.

22Methy

liodide,1-Und

ecene

Shigella

flexneri

623

Acetic

acid,Acetaldehyd

e,Acetone,1-Butanol,Ethanol,Indo

le,Methanethiol,Methano

l,2-Methy

l-1-bu

tano

lBun

geet

al.,20

08

Sphing

omon

asspp.

1368

7Methy

liodide

SchulzandDickschat,20

07Sp

irulinaplatensis

1185

62beta-Ion

one-5,6-epox

ide

Sporosarcina

ginsengisoli

3638

55Acetamide,Benzaldehyd

e,Pheny

lacetaldehyd

e,Methanamine,Benzothiazole,Methy

lpyrazine,1-Butanam

ine,Dod

ec-

ane,Dim

ethy

ldisulfide,Non

adecane,1-Decene,2,5-Dim

ethy

lpyrazine

Zou

etal.,20

07

Stap

hylococcus

aureus

1280

Ethyleneglycol,Acetic

acid,Acetone,Butanol,Ethanol,4-Methy

lpheno

l,2-Aminoacetoph

enon

e,2-Pentano

ne,Pyrim

i-dine,2-Non

anon

e,Isop

entano

lZhu

etal.,20

10

Stap

hylococcus

epidermidis

1282

Beta-Pheny

lethanol,Dod

ecanal

Kai

etal.,20

07

Stap

hylococcus

spp.

1279

Acetic

acid,A

cetoin,B

utanoicacid,B

utanedione,P

ropano

icacid,2-M

ethy

lpropanal,2-Methy

lbutanal,3-M

ethy

lbutanal,

Pentane-2,3-dione

SchulzandDickschat,20

07

Stap

hylococcus

xylosus

1288

Acetic

acid,Acetaldehyd

e,2-Hyd

roxy

-3-butanon

e,Acetone,Benzaldehyd

e,Butanoicacid,3-(M

ethy

lthio)-prop

anoic

acid,L

actic

acid,2

,3-Butanedione,E

thanol,B

enzeneacetaldehy

de,B

enzeneaceticacid,P

ropano

icacid,2

-Propano

l,2-

Pheny

lethanol,2-Methy

lpropano

l,2-Methy

lpropanal,2-Butanon

e,2-Methy

lpropano

icacid,2-Methy

lbutanal,Aceto-

phenon

e,2-Pheny

lethyl

acetate,2-Methy

lbutanol,3-Methy

lbutanal,2,3-Pentanedion

e,Dim

ethy

ldisulfide,3-(M

ethy

l-thio)-prop

anal,2,5-Dim

ethy

lpyrazine,3-Methy

lbutanol,3-Methy

l-1-bu

tylacetate,2-Methy

lbutanoicacid,3-

Methy

lbutanoicacid,,3-Methy

lbut-2-en-1-ol,,3-Methy

lbut-3-en-1-ol,,2-Methy

ltetrahyd

rothioph

en-3-one

Becket

al.,20

02

3-Methy

lmercaptoprop

ionate,Pheny

lacetaldehyd

e,Pheny

lacetate,2-Pheny

lethanol,Methy

lpropano

icacid,2-

Methy

lbutanoicacid,3-Methy

lbutanoicacid,,3-Methy

lbut-2-en-1-ol,,3-Methy

lbut-3-en-1-ol,,2-

Methy

ltetrahyd

rothioph

en-3-one

SchulzandDickschat,20

07

Stap

piamarina

2812

52Tetramethy

lpyrazine,2-Ethyl-5-m

ethy

lpyrazine,

5-Methy

l-2-(1-m

ethy

lethyl)pyrazine

Dickschat

etal.,20

05e

Stenotroph

omon

asmaltoph

ilia

4032

4Acetamide,Benzaldehyd

e,Pheny

lacetaldehyd

e,Methanamine,Benzothiazole,Methy

lpyrazine,1-Butanam

ine,Non

-adecane,1-Decene,2,5-Dim

ethy

lpyrazine

Zou

etal.,20

07

Propano

ne,Benzaldehyd

e,Pheno

l,Benzenacetaldehyd

e,Propion

icacid,1-Hexadecanol,Benzeneethano

l,Pheny

letha-

none,Cyclohexene,Non

ane,2-Und

ecanon

e,Decanal,Hexadecane,Tetradecane,2-Non

anon

e,Terpineol,2-Octanol,

Trimethy

lpyrazine

Guet

al.,20

07

Dod

ecane,Dim

ethy

ldisulfide

Zou

etal.,20

07;G

uetal.,20

07

Stenotroph

omon

asrhizop

hila

2167

78beta-Pheny

lethanol

Kai

etal.,20

07Dod

ecanal

Stigmatella

aurantiaca

41Benzaldehyd

e,Benzylalcoh

ol,Butyl

acetate,Dim

ethy

ltrisulfide,Menthol,Hexadecan-1-ol,2-Pheny

lethanol,2-

Metho

xy-1,1’-biph

enyl,Methy

lbenzoate,4-Butanolide,Acetoph

enon

e,4-Pentano

lide,Und

ecan-2-one,Tetradecan-1-

ol,2-Methy

lbutyric

acid,6-Methy

lhept-5-en-2-one,3-Methy

lbutyric

acid,para-M

enth-1-en-3-ol,Butyl

prop

ionate,

Pent-2-en-4-olid

e,Pentadecan-1-ol,Methy

l3-methy

lcroton

ate,2-Acetylfuran,Und

ecan-2-ol,beta-Cop

aene,Guaiox-

ide,13

-Methy

ltetradecan-1-ol,Tetradecan-4-olide,N-Isopentylacetam

ide,

N-Isopentylideneisopentylam

ine,

6,10

-Dim

ethy

lbicyclo[4.4.0]dec-1-ene,N-Isopentylform

amide,(E,E)-Farnesol,N-(2-Pheny

lethylidene)isop

entylamine,

Geranylaceton

e,Methy

l-2-methy

lcroton

ate,2-Methy

ltetradecan-4-one,beta-Y

lang

ene,Methy

lsalicylate,4-

Dickschat

etal.,20

05b

J Chem Ecol (2012) 38:665–703 683

Page 20: Volatile Mediated Interactions Between Bacteria and Fungi in the Soil

Tab

le2

(con

tinued)

Species

Tax

ID(N

CBI)

Volatile

Syn

onym

References

Methy

lquino

line,Hexahyd

rofarnesylaceton

e,Non

adecan-10-on

e,5-Methy

lhexan-3-one,Dod

ecan-3-one,alph

a-Terpineol,S-M

ethy

lmethanethiosulfon

ate,Dihyd

roactin

idiolid

e,1-Pheny

lund

ecan-1-one,1-Pheny

lnon

an-1-one,1-

Pheny

ldecan-1-one,beta-Eud

esmol,6,10

-Dim

ethy

lund

eca-5,9-dien-2-ol,Dod

ecan-3-ol,Methy

l-5-methy

lhexano

ate,

Nerolidol,Germacrene

D,Valeriano

l,Geosm

in,(1(10)E,5E)-Germacradien-11-ol

Methy

lsalicylate,4-Methy

lquino

line,Hexahyd

rofarnesylaceton

e,Non

adecan-10-on

e,5-Methy

lhexan-3-one,Dod

ecan-

3-on

e,alph

a-Terpineol,S

-Methy

lmethanethiosulfon

ate,Dihyd

roactin

idiolid

e,1-Pheny

lund

ecan-1-one,1

-Pheny

lnon

an-

1-on

e,1-Pheny

ldecan-1-one,beta-Eud

esmol,6,10

-Dim

ethy

lund

eca-5,9-dien-2-ol,Dod

ecan-3-ol,Methy

l-5-methy

lhexano

ate,Nerolidol,Germacrene

D,Valeriano

l,Menthol,2-Methy

lisob

orneol,S-M

ethy

lmethanethiosulfinate,

N-(3-

Methy

lbutyl)acetamide,N-3-M

ethy

lbutylidene-3-methy

lbutylam

ine,

N-(3-Methy

lbutyl)formam

ide,Farnesol,N-(2-

Pheny

lethylidene)-3-m

ethy

lbutylam

ine,

p-Meth-1-en-4-ol,Rosifoliol,Isolepidozene,Octalinhy

drocarbo

n,Geosm

in,

Stig

molon

e,(1(10)E,5E)-Germacradien-11-ol

SchulzandDickschat,20

07

Geosm

inDickschat

etal.,20

05c

Stig

molon

eSchulzet

al.,20

04;

Dickschat

etal.,20

07

(1(10)E,5E)-Germacradien-11-ol,Geosm

inDickschat

etal.,20

05d

Stigmatella

spp.

40Methy

lbenzoate,4-Butanolide,Octan-4-olid

e,Non

an-4-olid

e,Und

ecan-4-olid

e,Heptan-4-olide,4-Pentano

lide,Hexan-

4-olide,Decan-4-olid

e,Methy

l3-methy

lbut-2-eno

ate,Dod

ecan-4-olid

e,Methy

l2-methy

lbut-2-eno

ate,Tetradecan-4-

olide

SchulzandDickschat,20

07

Streptom

yces

albido

flavus

1886

Acetone,1-Butanol,2-Pheny

lethanol,Isop

rene,2-Methy

l-1-prop

anol,Cyclopentanon

e,2-Methy

l-1-bu

tano

l,Dim

ethy

l-disulfide,3-Methy

l-3-bu

ten-1-ol,Dim

ethy

ltrisulfide,3-Methy

l-1-bu

tano

l,Ethanethioicacid

S-m

ethy

lester,Geosm

inSchölleret

al.,20

02

Geosm

in,S-M

ethy

lthiobu

tyrate,S-M

ethy

lthioacetate,S-M

ethy

lthio-3-m

ethy

lbutyrate,S-M

ethy

lthioprop

ionate,

Albaflaveno

neSchulzandDickschat,20

07

Streptom

yces

albu

s18

88Acetone,1-Butanol,Cyclopentanon

e,2-Methy

l-1-bu

tano

l,2-Methy

lpropano

icacid

methy

lester,Dim

ethy

ldisulfide,3-

Methy

l-3-bu

ten-1-ol,2

-Methy

lbutanoicacid

methy

lester,D

imethy

ltrisulfide,3

-Methy

l-1-bu

tano

l,Ethanethioicacid

S-

methy

lester,Geosm

in

Schölleret

al.,20

02

Cam

phor,3-Methy

lbut-3-en-1-ol,Geosm

inSchulzandDickschat,20

07

Streptom

yces

antib

ioticus

1890

Acetone,1-Butanol,2-Pheny

lethanol,Isop

rene,2-Methy

l-1-prop

anol,Cyclopentanon

e,2-Methy

l-1-bu

tano

l,2-

Methy

lpropano

icacid

methy

lester,3-M

ethy

lbutanoicacid

methy

lester,M

ethy

lbutyrate,Dim

ethy

ldisulfide,3-M

ethy

l-3-bu

ten-1-ol,2-Methy

lbutanoicacid

methy

lester,Dim

ethy

ltrisulfide,3-Methy

l-1-bu

tano

l,Geosm

in

Schölleret

al.,20

02

Geosm

inSchulzandDickschat,20

07

Streptom

yces

aureofaciens

1894

Acetone,1-Butanol,Isop

rene,2-Methy

l-1-prop

anol,Cyclopentanon

e,2-Methy

l-1-bu

tano

l,2-Methy

lpropano

icacid

methy

lester,3-Methy

lbutanoicacid

methy

lester,Methy

lbu

tyrate,Dim

ethy

ldisulfide,2-Methy

lbutanoicacid

methy

lester,2-Methy

lisob

orneol,Dim

ethy

ltrisulfide,Geosm

in,3-Methy

l-1-bu

tano

l

Schölleret

al.,20

02

Streptom

yces

caviscab

ies

9007

9Linaloo

l,4-Methy

lquino

line,

2-Aminoacetoph

enon

e,3-Methy

lbut-2-en-1-ol,3-Methy

lbut-3-en-1-ol,6-Methy

lheptan-2-

one,gamma-Muu

rolene,5-Methy

lheptan-2-on

e,Dim

ethy

ltetrasulfide,S-M

ethy

lthiobenzoate,Dim

ethy

lpentasulfide,

alph

a-Muu

rolene,(E)-4,8-Dim

ethy

lnon

a-1,3,7-triene,2-Methy

l-2-bo

rnene,Isothu

jone,delta-Cadinene,Geraniol,

Cadina-1,4-diene,cis-Calam

enene,Kelsoene,alph

a-Gurjunene,(1(10)E,5E)-Germacradien-11-ol,10

-Methy

lund

ecan-

5-olide,10

-Methy

lund

ecan-4-olid

e,10

-Methy

ldod

ecan-4-olid

e,10

-Methy

ldod

ecan-5-olid

e,10

-Methy

lund

ec-2-en-4-

olide,10

-Methy

ldod

ec-2-en-4-olide,

10-M

ethy

lund

ec-3-en-4-olide,

10-M

ethy

ldod

ec-3-en-4-olide,beta-M

uurolene

SchulzandDickschat,20

07

Streptom

yces

citreus

6728

84-Methy

lpent-3-en-2-one,3

-Methy

lpentan-2-ol,3

-Methy

lbutan-2-ol,2-Acetylfuran,L

imon

ene,Geosm

in,b

eta-Myrcene,

delta-Elemene,delta-Cadinene,Geraniol,Bicyclogerm

acrene,Germacrene

D,beta-G

urjunene,beta-Elemene,Dihy-

droagarofuran,

(1(10)E,5E)-Germacradien-11-ol

Streptom

yces

coelicolor

1902

Acetone,1-Butanol,Isop

rene,2-Methy

l-1-prop

anol,Cyclopentanon

e,2-Methy

l-1-bu

tano

l,2-Methy

lpropano

icacid

methy

lester,Methy

lbu

tyrate,Dim

ethy

ldisulfide,3-Methy

l-3-bu

ten-1-ol,2-Methy

lbutanoicacid

methy

lester,Dim

e-thyltrisulfide,3-Methy

l-1-bu

tano

l,Ethanethioicacid

S-m

ethy

lester,Dim

ethy

ltetrasulfide,Geosm

in

Schölleret

al.,20

02

Geosm

inDickschat

etal.,20

05a

(1(10)E,5E)-Germacradien-11-ol

SchulzandDickschat,20

07

684 J Chem Ecol (2012) 38:665–703

Page 21: Volatile Mediated Interactions Between Bacteria and Fungi in the Soil

Tab

le2

(con

tinued)

Species

Tax

ID(N

CBI)

Volatile

Syn

onym

References

Streptom

yces

diastatochromog

enes

4223

6Acetone,1-Butanol,2-Pheny

lethanol,Isop

rene,2-Methy

l-1-prop

anol,Cyclopentanon

e,2-Methy

l-1-bu

tano

l,Dim

ethy

l-disulfide,3-Methy

l-3-bu

ten-1-ol,2-Methy

lisob

orneol,Dim

ethy

ltrisulfide,Geosm

in,3-Methy

l-1-bu

tano

lSchölleret

al.,20

02

Streptom

yces

griseus

1911

Acetone,1-Butanol,2-Pheny

lethanol,Isop

rene,2-Methy

l-1-prop

anol,Cyclopentanon

e,2-Methy

l-1-bu

tano

l,Dim

ethy

l-disulfide,3-Methy

l-3-bu

ten-1-ol,2-Methy

lbutanoicacid

methy

lester,2-Methy

lisob

orneol,Dim

ethy

ltrisulfide,3-

Methy

l-1-bu

tano

l,Ethanethioicacid

S-m

ethy

lester,Geosm

in,Dim

ethy

ltetrasulfide

Alpha-Pinene,Beta-Pinene,S-M

ethy

lthiobu

tyrate,Dim

ethy

ltetrasulfide

SchulzandDickschat,20

07

Geosm

inDickschat

etal.,20

05a;

Naw

rath

etal.,20

08

beta-G

urjunene

Dickschat

etal.,20

05d

Streptom

yces

hirsutus

3562

0Acetone,1-Butanol,2-Pheny

lethanol,Isop

rene,2-Methy

l-1-prop

anol,Cyclopentanon

e,2-Methy

l-1-bu

tano

l,3-

Methy

lbutanoicacid

methy

lester,Methy

lbu

tyrate,Dim

ethy

ldisulfide,3-Methy

l-3-bu

ten-1-ol,Dim

ethy

ltrisulfide,

Geosm

in,3-Methy

l-1-bu

tano

l,Ethanethioicacid

S-m

ethy

lester,Dim

ethy

ltetrasulfide

Schölleret

al.,20

02

Streptom

yces

hygroscopicus

1912

Acetone,1-Butanol,2-Pheny

lethanol,Isop

rene,Cyclopentanon

e,2-Methy

l-1-bu

tano

l,2-Methy

lpropano

icacid

methy

lester,3-Methy

lbutanoicacid

methy

lester,Methy

lbu

tyrate,D

imethy

ldisulfide,2-Methy

lbutanoicacid

methy

lester,2-

Methy

lisob

orneol,Dim

ethy

ltrisulfide,Geosm

in,3-Methy

l-1-bu

tano

l,Dim

ethy

ltetrasulfide

Streptom

yces

lateritiu

s67

313

Propano

ne,Benzaldehyd

e,Pheno

l,Benzenacetaldehyd

e,Propion

icacid,1-Hexadecanol,Benzeneethano

l,Pheny

letha-

none,Cyclohexene,Non

ane,2-Und

ecanon

e,Decanal,Dod

ecane,Hexadecane,Dim

ethy

ldisulfide,Tetradecane,2-

Non

anon

e,Terpineol,2-Octanol,Trimethy

lpyrazine

Guet

al.,20

07

Streptom

yces

lavend

ulae

1914

(-)-2-Methy

lisob

orneol

Dickschat

etal.,20

07

Streptom

yces

murinus

3390

0Acetone,1-Butanol,2-Pheny

lethanol,Isop

rene,2-Methy

l-1-prop

anol,Cyclopentanon

e,2-Methy

l-1-bu

tano

l,2-

Methy

lpropano

icacid

methy

lester,M

ethy

lbutyrate,Dim

ethy

ldisulfide,3

-Methy

l-3-bu

ten-1-ol,2

-Methy

lbutanoicacid

methy

lester,2-Methy

lisob

orneol,Geosm

in,3-Methy

l-1-bu

tano

l

Schölleret

al.,20

02

Streptom

yces

olivaceus

4771

6Acetone,1-Butanol,2-Pheny

lethanol,2-Methy

l-1-prop

anol,2-Methy

l-1-bu

tano

l,2-Methy

lpropano

icacid

methy

lester,

Dim

ethy

ldisulfide,3-Methy

l-3-bu

ten-1-ol,2-Methy

lisob

orneol,Dim

ethy

ltrisulfide,Geosm

in,3-Methy

l-1-bu

tano

l

Streptom

yces

platensis

5834

6Butanoicacid

2-methylester,1a,2,3,3a,4,5,6,7b-Octahydro-1,1,3a,7-tetram

ethyl-1H

-cyclopropa[a]naphthalene,trans-1,10-

Dim

ethyl-trans-9-decalol,5-Methoxy-1,3-dim

ethyl-1H

-pyrazole,1,1,4,4-Tetram

ethyl-2,5-dimethylene-cyclohexane,

3,3,7,11-Tetramethyltricyclo

[5.4.0.0(4,11)]undecan-1-ol,2-(2,4-Dim

ethoxybenzylidenehydrazino)-N-ethyl-2-oxo-

acetam

ide,

Wan

etal.,20

08

Streptom

yces

rishiriensis

6826

4Acetone,1

-Butanol,Isoprene,2-Methy

l-1-prop

anol,C

yclopentanon

e,2-Methy

l-1-bu

tano

l,Dim

ethy

ldisulfide,3

-Methy

l-3-bu

ten-1-ol,Dim

ethy

ltrisulfide,Geosm

in,3-Methy

l-1-bu

tano

lSchölleret

al.,20

02

Streptom

yces

spp.

1883

Acetoin,B

utane-2,3-diol,Isoprene,Methy

lbenzoate,2-(H

ydroxy

methy

l)furan,

Hexanoicacid,3

-Methy

lfuran,S

-Methy

lthioacetate,Pentalenene,Germacrene

A,Protoillud

ene,Benzylalcoh

ol,Benzothiazole,2-Pheny

lethyl

acetate,1-

Pheny

lpropan-2-on

e,Benzylacetate,4-Methy

lquino

line,3-Methy

lbut-2-en-1-ol,2-Pheny

lpropan-2-ol,Dim

ethy

ldisul-

fide,3-Methy

lbut-3-en-1-ol,Dod

ecan-4-olid

e,Butylph

enyl

acetate,Dim

ethy

ltetrasulfide,4-Methy

lhexan-1-ol,4-

Methy

lquinazolin

e,2-Pheny

lethanol,2-Methy

lisob

orneol,Dim

ethy

ltrisulfide,Geosm

in

SchulzandDickschat,20

07

Acetone,1-Butanol,Isop

rene,Cyclopentanon

e,2-Methy

l-1-bu

tano

l,3-Methy

l-1-bu

tano

l,2-Pheny

lethanol,2-

Methy

lisob

orneol,Dim

ethy

ltrisulfide,Geosm

inSchölleret

al.,20

02

Vinylgu

aiacol,Hexadecanoicacid,Octadecanoicacid,Methy

l-4-hy

drox

ybenzoate,Heptadecano

icacid,Tetradecano

icacid,Pentadecano

icacid,12

-Methy

ltetradecanoicacid,14

-Methy

lhexadecanoicacid,14

-Methy

lpentadecano

icacid,

13-M

ethy

ltetradecanoicacid,15

-Methy

lhexadecanoicacid,12

-Methy

ltridecanoicacid,Pentadeceno

icacid,9-

Octadecenoicacid,Squ

alene,9-Hexadecenoicacid,(R)-10

-methy

l-6-un

decano

lide,(6R,10S

)-10

-methy

l-6-do

decano

-lid

e,2-Pheny

lethanol,Geosm

in

Stritzke

etal.,20

04

Benzoph

enon

e,Isob

orny

lacetate,Linaloo

l,Ethyl-2-m

ethy

lprop

ionate,Methy

lpyrazine,Heptan-2-on

e,Hexan-1-ol,

Benzylcyanide,6-Methy

lhept-5-en-2-one,2-Aminoacetoph

enon

e,6-Methy

lheptan-2-on

e,2-Acetylfuran,gamma-

Muu

rolene,Heptane-2,5-dione,Geranylaceton

e,5-Methy

lheptan-2-on

e,Butyl

acetate,Cyclooctasulfur,S-M

ethy

lthiobenzoate,Dim

ethy

lpentasulfide,Guaioxide,Methy

lmethy

lthiomethy

ldisulfide,alph

a-Muu

rolene,Isolon

gifolene,

Citron

ellylacetone,(E)-4,8-Dim

ethy

lnon

a-1,3,7-triene,2-Methy

l-2-bo

rnene,Isothu

jone,delta-Cadinene,1-epi-

Dickschat

etal.,20

05d

J Chem Ecol (2012) 38:665–703 685

Page 22: Volatile Mediated Interactions Between Bacteria and Fungi in the Soil

Tab

le2

(con

tinued)

Species

Tax

ID(N

CBI)

Volatile

Syn

onym

References

Cub

enol,2-Metho

xy-3-(1-methy

lpropy

l)py

razine,Geraniol,Cadina-1,4-diene,cis-Calam

enene,beta-G

urjunene,

Kelsoene,alph

a-Gurjunene,10

-Methy

lund

ecan-5-olid

e,10

-Methy

lund

ecan-4-olid

e,10

-Methy

ldod

ecan-4-olid

e,10

-Methy

ldod

ecan-5-olid

e,10

-Methy

lund

ec-2-en-4-olide,

10-M

ethy

ldod

ec-2-en-4-olide,

10-M

ethy

lund

ec-3-en-4-olide,

10-M

ethy

ldod

ec-3-en-4-olide,beta-M

uurolene,B

enzylalcoh

ol,B

enzothiazole,2

-Pheny

lethyl

acetate,1-Pheny

lpropan-

2-on

e,Benzylacetate,4-Methy

lquino

line,

3-Methy

lbut-2-en-1-ol,2-Pheny

lpropan-2-ol,Dim

ethy

ldisulfide,3-

Methy

lbut-3-en-1-ol,Dod

ecan-4-olid

e,Butylph

enyl

acetate,Dim

ethy

ltetrasulfide,4-Methy

lhexan-1-ol,4-

Methy

lquinazolin

e,2-Pheny

lethanol,2-Methy

lisob

orneol,Dim

ethy

ltrisulfide,(1(10)E,5E)-Germacradien-11-ol,

Geosm

inEthylene

Stotzky

andSchenk,

1976

Butyrolactone

RyanandDow

JM,20

08

Geosm

inDickschat

etal.,20

07

(1(10)E,5E)-Germacradien-11-ol,8,10

-Dim

ethy

l-1-octalin

Naw

rath

etal.,20

08

Streptom

yces

sulphu

reus

4775

8Geosm

inSchulzandDickschat,20

07

Streptom

yces

thermoviolaceus

1952

Acetone,1-Butanol,2-Pheny

lethanol,Isop

rene,2-Methy

l-1-prop

anol,Cyclopentanon

e,2-Methy

l-1-bu

tano

l,2-

Methy

lpropano

icacid

methy

lester,Methy

lbutyrate,Dim

ethy

ldisulfide,3-Methy

l-3-bu

ten-1-ol,2

-Methy

lbutanoicacid

methy

lester,Dim

ethy

ltrisulfide,Geosm

in,3-Methy

l-1-bu

tano

l,Ethanethioicacid

S-m

ethy

lester

Schölleret

al.,20

02

Sulfitoba

cter

dubius

2186

73Tetram

ethylpyrazine,3-Ethyl-2,5-dim

ethylpyrazine,2,5-Dim

ethyl-3-(3-m

ethylbutyl)pyrazine,3-Butyl-2,5-dim

ethylpyrazine

Dickschat

etal.,20

05e

Sulfitoba

cter

pontiacus

6013

7Tetramethy

lpyrazine,2-Ethyl-5-m

ethy

lpyrazine,

3-Ethyl-2,5-dim

ethy

lpyrazine,

Ethyltrim

ethy

lpyrazine,5-Methy

l-2-(1-

methy

lethyl)pyrazine,2,5-Dim

ethy

l-3-(3-m

ethy

lbutyl)pyrazine,

2,5-Dim

ethy

l-3-(2-m

ethy

lpropy

l)py

razine,3-Butyl-

2,5-dimethy

lpyrazine,2,5-Dim

ethy

l-3-methy

lsulfany

lpyrazine

2,5-Dim

ethy

l-3-methy

lsulfany

lpyrazine

SchulzandDickschat,20

07

Sulfitoba

cter

spp.

6013

62-Ethyl-5-m

ethy

lpyrazine,

3-Ethyl-2,5-dim

ethy

lpyrazine,5-Methy

l-2-(1-m

ethy

lethyl)pyrazine

Dickschat

etal.,20

05e

2-(3-M

ethy

lbutyl)-3,6-dimethy

lpyrazine,

2-Isob

utyl-3,6-dim

ethy

lpyrazine,2-Butyl-3,6-dim

ethy

lpyrazine,

2-(2-M

ethy

l-bu

tyl)-3,6-dim

ethy

lpyrazine,2,5-Dim

ethy

l-3-methy

lsulfany

lpyrazine

SchulzandDickschat,20

07

Therm

oactinom

yces

spp.

2023

Isop

rene,2-Methy

lfuran

Therm

omon

ospo

rafusca

2021

5-Methy

lhexan-3-one,S-M

ethy

lthiobu

tyrate

Therm

omon

ospo

raspp.

2019

Isop

rene

Tolypo

thrixdistorta

1195

34Octanal,alph

a-Pinene,2-Heptano

ne,Decanal,6-Methy

l-5-hepten-2-one,beta-Cyclocitral,2-Tridecano

ne,Heptadecane,

2-Decanon

e,6-Methy

lheptan-2-on

e,Lim

onene,Heptadecene,Geosm

in,7-Methy

lheptadecane,Non

anal,1-Octen-3-

one,8-Methy

lheptadecane,beta-Ion

one,2-Decenal,beta-Ion

one-5,6-epox

ide

Höckelm

annet

al.,20

04

Tolypo

thrixspp.

1117

82Sulcatone

SchulzandDickschat,20

07Trepon

emadenticola

158

Methanethiol,L-M

ethion

ine

Variovorax

spp.

3407

2Methy

liodide

Veillon

ella

spp.

2946

5Acetate,Succinate,Isob

utyrate,Isov

alerate

HintonandHum

e,19

95

Vibrio

spp.

662

Methy

liodide

SchulzandDickschat,20

07

Wolinella

curva

200

Hexadecanoicacid,Dod

ecanoicacid,Octadecanoicacid,Tetradecano

icacid,3-Hyd

roxy

tetradecanoicacid,3-

Hyd

roxy

hexadecano

icacid,Hexadecenoicacid

Brond

zandOlsen,19

91

Wolinella

recta

203

Hexadecanoicacid,Dod

ecanoicacid,Octadecanoicacid,Tetradecano

icacid,3-Hyd

roxy

tetradecanoicacid,3-

Hyd

roxy

hexadecano

icacid,Hexadecenoicacid

Wolinella

succinog

enes

844

Hexadecanoicacid,Dod

ecanoicacid,Octadecanoicacid,Tetradecano

icacid,3-Hyd

roxy

tetradecanoicacid,3-

Hyd

roxy

hexadecano

icacid,Hexadecenoicacid

Xan

thom

onas

campestrispv.

campestris

340

Butyrolactone,cis-11-M

ethy

l-2-do

deceno

icacid

RyanandDow

JM,20

08

3162

73Weise

etal.,20

12

686 J Chem Ecol (2012) 38:665–703

Page 23: Volatile Mediated Interactions Between Bacteria and Fungi in the Soil

2005a; von Reuss et al., 2010). It is, for example, not knownwhether these volatiles act as communication signals or areused as carbon sources. Important future tasks are,therefore, elucidation of the plethora of bacterial andfungal VOCs and determination of their chemical structuresand biological and ecological roles.

Volatile Mediated Bacterial-Fungal Interactions

Bacterial and fungal volatiles may play multiple roles inmicrobial communities belowground. Although volatilescan serve as nutrient sources, under highly competitive butsymbiotic conditions they are particularly important forantibiosis and signaling, and may serve as regulative prin-ciples in any ecosystem. Subsequently, interactions betweenbacteria and fungi can be beneficial or detrimental. In thelatter situation, the term microbiostasis is used to describethe inability of bacteria and/or fungi to multiply in naturalsoils (Ho and Ko, 1982). Although nutrient depletion orsuboptimal environmental conditions also may account forthis effect, the involvement of microbial biogenic inhibitors,including volatiles, in microbiosis is widely accepted (Horaand Baker, 1972; Griffin et al., 1975; Stotzky and Schenck,1976 and citations therein; Chuankun et al., 2004; Zou et al.,2007; Garbeva et al., 2011). The role of volatiles in signal-ing events within microbial communities has not yet beenwell-studied. Wheatley (2002) described volatiles as info-chemicals that could mediate bacterial and fungal interac-tions. This was also proposed by Bending et al. (2006) forthe mycorrhizal community. Fungi and plants produce vol-atile signal molecules that bacteria in the mycorrhizhosperemay also synthesize, thereby affecting mycorrhiza forma-tion. A similar situation has been described for the rhizo-bacterial community (Chernin et al., 2011). Volatiles ofPseudomonas fluorescens and Serratia plymuthica inhibitedquorum-sensing in various other bacteria such asAgrobacterium, Chromobacterium, Pectobacterium, andPseudomonas due to suppression of the transcription of N-acyl-homoserine lactone synthase genes.

Effects of Bacterial Volatiles on Fungi

Influence of Bacterial Volatiles on Germinationand Mycelial Growth

The phenomenon of fungistasis was first described byDobbs and Hinson (1953), which can be due to the negativeinfluence of bacterial volatiles on germination and growth ofsoil-borne fungi. McCain (1966) showed that volatiles pro-duced by Streptomyces griseus induced early sclerotia for-mation in Sclerotium cepivorum and Rhizoctonia solani, andT

able

2(con

tinued)

Species

Tax

ID(N

CBI)

Volatile

Syn

onym

References

Xan

thom

onas

campestrispv.

vesicatoria85

-10

Hexan-2-one,2-Methy

lpropy

lacetate,n-Octane,5-Methy

lhexan-2-one,2-Methy

lbutyl

acetate,3-Methy

lbutyl

acetate,

Heptan-2-on

e,2,5-Dim

ethy

lpyrazine,2-Methy

lpropy

lprop

ionate,n-Non

ane,6-Methy

lheptan-2-on

e,5-Methy

lheptan-

2-on

e,2-Methy

lbutyl

prop

ionate,3-Methy

lbutyl

prop

ionate,Octan-2-one,2,3,5-Trimethy

lpyrazine,Hexyl

acetate,

Benzylalcoh

ol,3

-Methy

lbutyl

3-methy

lbutyrate,Acetoph

enon

e,7-Methy

loctan-2-one,N

onan-2-one,2

-Pheny

lethanol,

8-Methy

lnon

an-2-one,7-Methy

lnon

an-2-one,8-Methy

lnon

an-2-ol,7-Methy

lnon

an-2-ol,Decan-2-one,2-Pheny

lethyl

acetate,9-Methy

ldecan-2-one,Und

ecan-2-one,Und

ecan-2-ol,3,6-Dim

ethy

l-2-(3-m

ethy

lbutyl)pyrazine,

10-

Methy

lund

ecan-2-one,9-Methy

lund

ecan-2-one,10

-Methy

lund

ecan-2-ol,9-Methy

lund

ecan-2-ol,Dod

ecan-2-one,Ger-

anylaceton

e,11-M

ethy

ldod

ecan-2-one,T

ridecan-2-on

e,Tridecan-2-ol,1

2-Methy

ltridecan-2-one,11-M

ethy

ltridecan-2-

one,12

-Methy

ltridecan-2-ol,11-M

ethy

ltridecan-2-ol,Tetradecan-2-ol,13

-Methy

ltetradecan-2-one,Pentadecen-2-on

e,Pentadecan-2-on

e,14

-Methy

lpentadecan-2-on

e,13

-Methy

lpentadecan-2-on

eZoo

gloeaspp.

349

Methy

liodide

SchulzandDickschat,20

07

The

nameof

thevo

latileprod

ucingspeciescorrespo

ndsto

ataxo

nomyID

(http

://www.ncbi.n

lm.nih.gov

/taxo

nomy)

J Chem Ecol (2012) 38:665–703 687

Page 24: Volatile Mediated Interactions Between Bacteria and Fungi in the Soil

Tab

le3

Com

pilatio

nof

VOCprod

ucingfung

i

Species

Tax

ID(N

CBI)

VOCSyn

onym

References

Acrem

onium

obclavatum

132114

Acetone,Benzene,Ethanol,2-Butanon

e,2-Ethylhexano

l,Pentane,Cyclohexane,Lim

onene,Arsenou

sacid,Cyclotrisilo

xane

Ezeon

uet

al.,19

94

Aga

ricusbisporus

5341

Isov

aleric

acid

Stotzky

andSchenk,

1976

Aga

ricuscampestris

5615

72,3-Dim

ethy

l-1-pentene

Alternaria

alternata

5599

2-Methy

lpropano

l,2-Ethylhexano

l,2-Methy

lbutanol,1-Octen-3-ol,3-Methy

lbutanol,Methy

l-2-ethy

lhexano

ate,3-Octanon

evanLancker

etal.,20

08

Alternaria

spp.

5598

1-Octen-3-ol,3-Methy

lbutanol,3-Octanon

e,2-Octen-1-ol

Kam

inskiet

al.,19

74

Ethylbenzene,1-Penten-3-ol,2-Methy

l-1-prop

anol,2-Methy

l-1-bu

tano

l,3-Methy

lfuran,Thu

jopsene,

Dim

ethy

lbenzene

Börjesson

etal.,19

92

Metho

xybenzene,1-Ethyl-2-m

ethy

lbenzene,1-Octen-3-ol,3-Methy

l-1-heptene,2-Methy

l-1-prop

anol,

2-Methy

l-1-bu

tano

l,3-Methy

l-1-bu

tano

l,Hexanoicacid

ethy

lester,3-Cyclohepten-1-one,3-Octanon

e,2,3,5-Trimethy

lfuran,1,3,6-Octatriene

Fischer

etal.,19

99

Aspergillu

sclavatus

5057

Ethylene

Stotzky

andSchenk,

1976

Aspergillu

sfla

vus

5059

1-Octanol,3-Octanol,1-Octen-3-ol,3-Methy

lbutanol,3-Octanon

e

Nitrom

ethane,2

-Methy

l-1-prop

anol,E

thylbenzene,1-Penten-3-ol,3

-Methy

lfuran,L

imon

ene,Thu

jopsene,

1,3-Octadiene,Dim

ethy

lbenzene

Börjesson

etal.,19

92

Aspergillu

sfumigatus

7461

282-Methy

l-1-prop

anol,Cam

phene,Alpha-Pinene,2-Methy

l-1-bu

tano

l,3-Methy

l-1-bu

tano

l,Citron

ellol,

Lim

onene,alph

a-Farnesene,trans-beta-Farnesene

Fischer

etal.,19

99

Methy

lbenzoate,2-Ethyl-1-hexanol,2-Pentano

ne,2-Heptano

ne,Butox

yethox

yethanol,3-Octanol,2-

Non

anon

e,1-Octen-3-ol,2-Pentano

l,3-Octanon

e,2-Non

en-1-ol,3-Methy

l-1-bu

tano

lMatysikaet

al.,20

08

Aspergillu

sglau

cus

4037

91-Octen-3-ol,2,4-Pentadion

e,3-Octanon

eMenetrezandFoarde,20

02

Aspergillu

sniger

5061

2-Methy

l-1-prop

anol,S

tyrene,2

-Pentano

ne,E

thylacetate,1,3-Pentadiene,2-Pentano

l,3-Methy

l-1-bu

tano

lNieminen

etal.,20

08

2-Methy

l-1-prop

anol,2-Pentano

ne,2-Heptano

ne,3-Octanol,3-Octanon

e,3-Methy

lfuran,1-Octen-3-ol,

Pentadecene,Ethyltig

late,1,3-Non

adiene,iso-Amyltig

late,2-Pentano

l,3-Methy

l-1-bu

tano

lMatysikaet

al.,20

08

3-Octanol,1-Octen-3-ol,3-Methy

lbutanol,2-Octen-1-ol,3-Octanon

eKam

inskiet

al.,19

74

Aspergillu

sochraceus

4038

01-Octanol,3-Octanol,1-Octen-3-ol,3-Methy

lbutanol,3-Octanon

e,2-Octen-1-ol

Kam

inskiet

al.,19

74Aspergillu

soryzae

5062

Aspergillu

spa

rasiticus

5067

Aspergillu

sspp.

5052

Dim

ethy

lselenide

Stotzky

andSchenk,

1976

Aspergillu

sversicolor

4647

2Benzene,Ethanol,Methy

lbenzene,Cyclotetrasilo

xane,Xylene,Cyclotrisilo

xane,2-Ethylhexano

l,1,3-Dim

etho

xybenzene,Lim

onene

Ezeon

uet

al.,19

94

Ethylbenzene,1-Penten-3-ol,Thu

jopsene,Dim

ethy

lbenzene,3-Methy

lfuran,Lim

onene,2-Methy

l-1-prop

anol,3-Methy

l-1-bu

tano

l,1,3-Octadiene

Börjesson

etal.,19

92

Anisole,1-Octene,3-Metho

xyanisole,3-Methy

l-2-bu

tano

ne,3-Methy

l-2-pentanon

e,Dim

ethy

ldisulfide,

3-Methy

l-3-bu

ten-1-ol,1,3-Pentadiene,4-Methy

l-3-hexano

ne,3-Octanon

e,3-Methy

lfuran,2-

Ethylhexano

l,3-Octanol,1-Octen-3-ol,2-Methy

l-1-prop

anol,5-Ethyl-4-m

ethy

l-3-heptanon

e

Sun

essonet

al.,19

95

2-Ethyl-1-hexanol,2-Pentano

ne,2-Heptano

ne,2,6-di-tert-Butyl-p-benzoqu

inon

e,2-Non

anon

e,2-

Pentano

l,3-Octanon

e,1,3-Dim

etho

xybenzene,3-Octanol,1-Octen-3-ol,1,3-Octadiene,5-Ethyl-4-

methy

l-3-heptanon

e

Matysikaet

al.,20

08

2-Methy

l-1-bu

tano

l,6-Methy

l-2-heptanon

e,alph

a-Muu

rolene,γ-

Curcumene,1-Octen-3-olLim

onene,

3-Methy

l-1-bu

tano

lFischer

etal.,19

99

688 J Chem Ecol (2012) 38:665–703

Page 25: Volatile Mediated Interactions Between Bacteria and Fungi in the Soil

Tab

le3

(con

tinued)

Species

Tax

ID(N

CBI)

VOCSyn

onym

References

2-Methy

lbutanol,3-Methy

lbutanol,Methy

l-2-ethy

lhexano

ate,2-Ethylhexano

l,1-Octen-3-ol,1,3-Octa-

diene

vanLancker

etal.,20

08

1,3-Dim

etho

xybenzene,3-Octanol,1-Octen-3-ol

MenetrezandFoarde,20

02

2-Methy

l-1-prop

anol

Wilk

inset

al.,20

00

Aureoba

sidium

pullu

lans

5580

Ethanol

Stotzky

andSchenk,

1976

Bjerkan

dera

adusta

5331

Pheny

lpy

ruvate,2-Hyd

roxy

-3-pheny

lpropion

icacid,Cinnamic

acid,

SchulzandDickschat,20

07

Blastom

yces

derm

atitidis

5039

Ethylene

Stotzky

andSchenk,

1976

Boletus

variegatus

4859

2Acetoin,Ethanol,Isob

utanol,Isob

utyric

acid,3-Methy

lbutanol

Can

dida

humicola

1093

87Dim

ethy

lselenide,Trimethy

larsine,

Dim

ethy

larsine

Can

dida

trop

icalis

5482

Acetic

acid,Acetaldehyd

e,Acetone,1-Butanol,E

thanol,M

ethanethiol,Methano

l,2-Butanon

e,2-Methy

l-1-bu

tano

lBun

geet

al.,20

08

Cepha

losporium

spp.

8109

73-Octanol,1-Octen-3-ol,3-Methy

lbutanol,3-Octanon

e,2-Octen-1-ol

Kam

inskiet

al.,19

74

Ceratocystis

faga

cearum

7202

9Acetaldehyd

e,Ethyl

prop

ionate,Propy

lacetate,Isob

utyl

acetate,Methy

lisov

alerate,Methy

lbu

tyrate,

Butyl

acetate

Lin

andPhelan,

1992

Ceratocystis

fimbriata

5158

Ethylene

Stotzky

andSchenk,

1976

Ceratocystis

spp.

5157

Acetone,Ethanol,Formaldehy

de,2-Methy

lpropanal,2-Methy

lbutanal,Furfural,2-Heptano

ne,Ethyl

ace-

tate,2-Hexenal

Clado

sporium

clad

ospo

roides

2991

7Pheny

lethylalcoho

l,1-Pentano

l,2-Pentano

ne,2-Heptano

ne,1-Octene,3-Octanol,3-Methy

l-3-bu

ten-1-ol,

1-Octen-3-ol,2-Pentano

l,Pentadecene,3-Methy

l-1-bu

tano

l,3-Octanon

e,1,3-Non

adiene,Tetradecene

Matysikaet

al.,20

08

3-Pentano

ne,1-Octene,3-Methy

lfuran

Sun

essonet

al.,19

95

Clado

sporium

spha

erosperm

um92

950

Alpha-H

umulene,Tetram

ethy

ltetrahyd

rofuran

MenetrezandFoarde,20

02

Clado

sporium

spp.

5498

2-Pentano

neNieminen

etal.,20

08

Daeda

leajuniperina

2392

01Anisaldehyd

eStotzky

andSchenk,

1976

Dipod

ascusag

gregatus

4407

5Ethyl

prop

ionate,Ethyl

acetate

Emericella

nidu

lans

1624

252-Methy

l-1-prop

anol,2-Methy

l-1-bu

tano

l,alph

a-Terpino

lene,1-Octen-3-ol,Lim

onene,3-Methy

l-1-bu

ta-

nol,2,3-Dim

ethy

l-bu

tano

icacid

methy

lester,Cyclooctene

Fischer

etal.,19

99

Emericella

spp.

5071

Styrene,2-Pentano

ne,2-Heptano

ne,2-Pentano

l,3-Methy

l-1-bu

tano

l,1,3-Pentadiene

Nieminen

etal.,20

08

Fistulin

ahepa

tica(Schaeffer:

Fr.)

4045

7Benzaldehyd

e,1-Butanol,Butanoicacid,Octanal,1-Octanol,Hexadecanoicacid,Pheny

lacetaldehyd

e,Pheny

lacetic

acid,1,8-Cineole,Decanoicacid,Hexanal,Linaloo

l,2-Methy

l-1-prop

anol,2-Methy

l-prop

anoicacid,Benzoic

acid

methy

lester,2-Methy

l-pentanoicacid,2-Ethyl-1-hexanol,Citron

ellal,

Pentano

icacid,N

onanoicacid,1

-Dod

ecanol,Methy

lstearate,Hexanoicacid,6

-Methy

l-5-hepten-2-one,

Sabinene,1-Octen-3-ol,Lim

onene,Isop

ropy

ldo

decano

ate,4-Hyd

roxy

-4-m

ethy

l-2-pentanon

e,Isoamy-

lalcoh

ol,1-Octen-3-one,(+)-Cup

arene,Bisabololox

ideB,(E)-2-Methy

l-2-bu

teno

icacid,3-Octanon

e,Cinnamicaldehy

de,(Z)-2-Methy

l-2-bu

teno

icacid,(E)-2-Heptenal,(E)-2-Octenal,(E)-Nerolidol

Wuet

al.,20

05

Fom

esan

nosus

1356

3Hexa-1,3,5-triene

Stotzky

andSchenk,

1976

Fom

espo

maceus

1239

02Methy

lbromides

Fom

esspp.

4044

1Ethanol,Methy

lbromides,Methy

lchloride,Isob

utanol

Fusarium

sambu

cinu

m51

28Beta-Santalene,beta-H

imachalene,beta-Chamigrene,alph

a-Bergamotene,Acoradiene,Ar-Curcumene,

Elix

ene,Trichod

iene,Lon

gifolene,beta-Bisabolene,beta-Selinene,Di-epi-alph

a-Cedrene,alph

a-Farnesene,b

eta-Farnesene

Jelenet

al.,19

95

J Chem Ecol (2012) 38:665–703 689

Page 26: Volatile Mediated Interactions Between Bacteria and Fungi in the Soil

Tab

le3

(con

tinued)

Species

Tax

ID(N

CBI)

VOCSyn

onym

References

Fusarium

spp.

5506

1-Octen-3-ol,3-Methy

lbutanol,3-Octanon

eKam

inskiet

al.,19

74

Mucor

hiem

alis

6449

3Ethylene

Stotzky

andSchenk,

1976

Mucor

plum

beus

9709

82-Methy

l-1-prop

anol,2-Pentano

ne,Ethyl

acetate,Ethyl-2-m

ethy

lbu

tyrate,3-Methy

l-1-bu

tano

lNieminen

etal.,20

08

Muscodo

ralbu

s15

2623

Acetone,Pheny

lethylalcoho

l,2-Methy

l-1-prop

anol,,2-Butanon

e,Acetic

acid,methy

lester,2-Methy

l-prop

anoicacid,T

etrahy

drofuran,,Acetic

acid

ethy

lester,2

-Methy

lfuran,2

-Methy

lpropano

icacid

methy

lester,3-Methy

l-1-bu

tano

lacetate,4-Non

anon

e,Aciph

yllene,Caryo

phyllene

Atm

osuk

arto

etal.,20

05

Muscodo

rfeng

yang

ensis

9103

23Pheny

lethylalcoho

l,2-Methy

l-prop

anoicacid,3-Methy

l-6-(1-m

ethy

lethyl)-2-cycloh

exen-1-one,alph

a-Phelland

rene,A

cetic

acid

2-ph

enylethy

lester,A

cetic

acid

2-methy

lpropy

lester,1

-Ethenyl-1-m

ethy

l-2,4-

bis(1-methy

lethenyl)-,[1S

-(1-alph

a,2-beta.,4

-beta)]-cycloh

exane,2-Methy

lpropano

icacid

methy

lester,

beta-Phelland

rene,Caryo

phylleneox

ide,3-Methy

l-1-bu

tano

l,3-Methy

l-1-bu

tano

lacetate,3,5-Dim

e-thox

ytoluene,2-Cyclohexen-1-ol,cis-3-Methy

l-6-(1-m

ethy

lethyl)-2-Cyclohexen-1-ol,trans-3-methy

l-6-

(1-m

ethy

lethyl)-2-Cyclohexen-1-ol,2,6-Dim

ethy

l-6-(4-m

ethy

l-3-pentenyl)-bicyclo[3.1.1]hept-2-ene,

2,6-Dim

ethy

l-6-(4-m

ethy

l-3-pentenyl)-bicyclo[3.1.1]hept-2-ene,1-Methy

l-4-[5-m

ethy

l-1-methy

lene-4-

hexeny

l)-[S]-cycloh

exene,cis-1-Methy

l-4-(1-m

ethy

lethyl)-2-cycloh

exen-1-ol,Isoaromadendrene

epox

ide,Diepicedrene-1-ox

ide,

2-Methy

lene-4,8,8-trimethy

l-4-viny

l-bicyclo[5.2.0]no

nane,3,3,7,11-

Tetramethy

l-tricyclo[6.3.0.0(2,4)]un

dec-8-ene,Caryo

phyllene,cis-alpha-Bisabolene,Caryo

phyllene-[I1]

Zhang

etal.,20

10

Paecilomyces

variotii

4599

6Acetone,2-Pentano

ne,Propy

lacetate,2-Heptano

ne,1-Hexanol,3-Methy

l-2-pentanon

e,2-Hexanon

e,1-

(1,1-D

imethy

lethyl)-4-ethy

lbenzene,2-Methy

l-1-prop

anol,3-Methy

l-1-bu

tano

l,2,5-Dim

ethy

lfuran,3-

Methy

lfuran,2,3,5-Trimethy

lfuran

Sun

essonet

al.,19

96

Octane,2-Propano

l,2-Butanon

e,Methy

lacetate,Furan,Trimethy

lbenzene,2-Methy

lpropy

lform

ate,2,4-

Dim

ethy

lfuran,1-Methy

lpropy

lformate,alph

a-Curcumene,2-Methy

l-1,3-pentadiene,2-Methy

l-1-prop

-anol,3-Methy

l-1-bu

tano

l,2-Methy

l-1-bu

tano

l,2,5-Dim

ethy

lfuran,3-Methy

lfuran,Xylene

Sun

essonet

al.,19

95

alph

a-Phelland

rene,alph

a-Terpinene,beta-Phelland

rene,γ-Cadinene,Myrcene,Germacrene

B,neo-allo-

Ocimene,Megastig

ma-4,6(e),8(Z)-triene,+alph

a-Lon

gipinene,2-Methy

l-1-prop

anol,3-Methy

l-1-bu

ta-

nol,2-Methy

l-1-bu

tano

l,2,3,5-Trimethy

lfuran

Fischer

etal.,19

99

Penicillium

aurantiogriseum

3665

5Acetic

acid,E

thanol,1

-Propano

l,2-Methy

l-1-prop

anol,3

-Methy

lfuran,1

-Octen-3-ol,3-Methy

l-1-bu

tano

l,3-Octen-2-ol

Börjesson

etal.,19

90

Penicillium

brevicom

pactum

5074

Acetone,2

-Propano

l,2-Butanon

e,3-Pentano

ne,3

-Methy

lfuran,2

-Methy

l-1-prop

anol,2

-Methy

l-1-bu

tano

lBörjesson

etal.,19

92

Styrene,1-Octen-3-ol,Lim

onene,3-Methy

l-1-bu

tano

l,2-Methy

l-1-prop

anol,2-Methy

l-1-bu

tano

lFischer

etal.,19

99

Penicillium

chrysogenu

m50

76Acetic

acid,E

thanol,2

-Propano

l,Isop

rene,2

-Methy

l-1-prop

anol,2

-Butanol,2

-Butanon

e,alph

a-Pinene,3-

Pentano

ne,1-Pentene,2-Octanon

e,1-Dod

ecene,2-Methy

l-1-bu

tano

l,2-Heptano

l,3-Pentano

l,2-

Hexanon

e,1-Hexene,Dim

ethy

ldisulfide,2

-Hexanol,2

-Non

anol,1

-Und

ecene,Methy

l-2-methy

lbutyrate,

beta-Pinene,1-Tridecene,2-Octanol,Non

adiene,2-Pentano

ne,3-Methy

l-1-bu

tano

l2-Heptano

ne,1-

Octene,1-Heptene,2-Non

anon

e,1-Pentadecene,1-Non

ene,1-Octen-3-ol,1,3-Octadiene

Wilk

inset

al.,20

00

1-Octanol,2-Octen-1-ol,3-Octanol,1-Octen-3-ol,3-Methy

l-1-bu

tano

l,3-Octanon

eKam

inskiet

al.,19

74

3-Methy

lanisole,1,3-Dim

etho

xybenzene,

Hexadecane,2-Pentano

l,Geosm

in,1,4-Dim

etho

xy-2-m

ethy

l-benzene,Ethyltig

late,1

,3-N

onadiene,iso-A

myltig

late,2

-Pentano

ne,2

-Heptano

ne,1

-Octene,1-Heptene,

2-Non

anon

e,1-Pentadecene,1-Non

ene,2-Methy

lbutanol,3-Octanol,1-Octen-3-ol,3-Methy

l-1-bu

tano

l,3-Octanon

e,1,3-Octadiene,Tetradecene

Matysikaet

al.,20

08

2-Ethylhexano

l,2-Methy

lbutanol,3-Octanol,1-Octen-3-ol,3-Methy

l-1-bu

tano

l,1,3-Octadiene

vanLancker

etal.,20

08

1-Octen-3-ol,3-Octanon

e,Tetradecene

MenetrezandFoarde,20

02

Penicillium

citrinum

5077

1-Octanol,3-Octanol,1-Octen-3-ol,3-Methy

lbutanol,3-Octanon

e,2-Octen-1-ol

Kam

inskiet

al.,19

74

690 J Chem Ecol (2012) 38:665–703

Page 27: Volatile Mediated Interactions Between Bacteria and Fungi in the Soil

Tab

le3

(con

tinued)

Species

Tax

ID(N

CBI)

VOCSyn

onym

References

Penicillium

clavigerum

2984

12-Methy

l-1-prop

anol,alph

a-Terpinene,Styrene,2-Methy

l-1-bu

tano

l,Dim

ethy

ldisulfide,Lim

onene,Myr-

cene,3-Methy

l-1-bu

tano

l,Bicyclo-(3.2.1)-octan-2-one,beta-Caryo

phyllene,beta-Elemene

Fischer

etal.,19

99

Penicillium

commun

e36

653

Acetone,Dim

ethy

lsulfide,Cresol,Cam

phene,alph

a-Pinene,Ethyl

prop

anoate,Ethyl

butano

ate,Propy

lacetate,2-Methy

lpropy

lacetate,Cyclopentanon

e,2-Methy

l-1-bu

tano

l,Ethyl

acetate,Heptane,3-

Methy

lfuran,beta-Pinene,Lim

onene,Ethyl-2-m

ethy

lbu

tano

ate,3-Methy

lbutylacetate,Methy

l-(1-m

eth-

yletheny

l)benzene,alph

a-Curcumene,Ethanthioic

acid-S-(2-methy

l)bu

tylester

Sun

essonet

al.,19

95

2-Ethyl-1-hexanol,2-Pentano

ne,2-Heptano

ne,1-Hexanol,2-Methy

l-1-bu

tano

l,1-Octen-3-ol,Dim

ethy

l-trisulfide,Geosm

in,1-Metho

xy-4-(1-methy

lethyl)benzene,1-Metho

xy-3-m

ethy

lbutane,3-Octanon

eSun

essonet

al.,19

96

2-Methy

l-1-prop

anol,2-Butanon

e,Methy

lacetate,3-Methy

lanisole,Dim

ethy

ldisulfide,2,5-Dim

ethy

l-furan,

3-Methy

l-1-bu

tano

lSun

essonet

al.,19

95,19

96

Penicillium

crustosum

3665

62-Methy

l-1-prop

anol,Styrene,Dod

ecane,2,5-Dim

ethy

lfuran,2-Ethylfuran,

Lim

onene,3-Methy

l-1-bu

ta-

nol,2,3,5-Trimethy

lfuran

Fischer

etal.,19

99

Penicillium

cyclop

ium

6016

72-Methy

l-1-prop

anol,2,5-Dim

ethy

lfuran,γ-Cadinene,2-Methy

lenebo

rnane,

2-Methy

l-2-bo

rnene,2,3,5-

Trimethy

lfuran,Cyclooctene,Germacrene

A

Penicillium

digitatum

3665

1Ethane,Ethylene,Acetylene,Propane,Propy

lene

Stotzky

andSchenk,

1976

Penicillium

expa

nsum

2733

41-Pentano

l,2-Methy

l-1-prop

anol,3-Methy

lanisole,2-Ethyl-1-hexanol,2-Pentano

ne,2-Heptano

ne,2-

Methy

l-1-bu

tano

l,3-Octanol,D

imethy

ldisulfide,alpha-Terpineol,1

-Octen-3-ol,2-Pentano

l,3-Octanon

e,1,3-Octadiene

Matysikaet

al.,20

08

Styrene,1-Metho

xy-3-m

ethy

lbenzene,Aromadendrene,Elemol,Germacrene

B,γCurcumene,Bicycloe-

lemene

Fischer

etal.,19

99

Geosm

inMattheisandRob

erts,19

92

Penicillium

funiculosum

2857

21-Octen-3-ol,3-Methy

lbutanol,3-Octanon

e,2-Octen-1-ol

Kam

inskiet

al.,19

74

Penicillium

glab

rum

6977

32-Methy

l-1-prop

anol,2-Butanon

e,3-Pentano

ne,2-Methy

l-1-bu

tano

l,3-Methy

lfuran,1-Octen-3-ol,3-

Octanon

e,1,3-Octadiene,Dim

ethy

lbenzene,Lim

onene

Börjesson

etal.,19

92

Styrene,2-Methy

l-1-bu

tano

l,3-Methy

l-1-bu

tano

l,Lim

onene

Fischer

etal.,19

99

Penicillium

italicum

4029

6Methy

lbutenon

e,Cedrol,Cedrene

MenetrezandFoarde,20

02

Penicillium

raistrickii

6978

31-Octen-3-ol,3-Methy

lbutanol,3-Octanon

e,2-Octen-1-ol

Kam

inskiet

al.,19

74

Penicillium

roqu

eforti

5082

Toluene,2-Methy

lpropano

icacid,Acetic

acid

2-methy

lpropy

lester,Heptane,3-Methy

l-1-bu

tano

l,Iso-

amylacetate,1,3-Octadiene,Xylene

Jelenet

al.,19

95

2-Methy

l-1-prop

anol,2

-Methy

l-1-bu

tano

l,3-Methy

lfuran,D

imethy

lbenzene,L

imon

ene,3-Octanon

e,1,3-

Octadiene

Börjesson

etal.,19

92

Alpha-Phelland

rene,Styrene,3-Octanol,Und

ecane,beta-H

imachalene,1-Octene-3-ol,3-Carene,beta-

Myrcene,(+)-2-carene,beta-Patchou

lene,Aristolochene,Di-epi-alph

a-cedrene,

beta-Elemene,beta-

Bisabolene,Lim

onene,3-Octanon

e

Jelen20

03

Penicillium

spp.

5073

2-Methy

l-1-prop

anol,Styrene,2-Pentano

ne,Ethylacetate,2-Pentano

l,Ethyl-2-m

ethy

lbutyrate,

3-Methy

l-1-bu

tano

l,1,3-Pentadiene,2-Heptano

neNieminen

etal.,20

08

4-Ally

lanisole,2-Heptano

neBjurm

anet

al.,19

97

Dim

ethy

lselenide

Stotzky

andSchenk,

1976

Penicillium

variab

ile28

576

2-Ethylhexano

l,2-Heptano

ne,2

-Ethylhexano

icacid,2-M

ethy

lbutanol,T

erpino

lene,3

-Octanol,1-O

cten-3-

ol,3-Methy

lbutanol,Methy

l-2-ethy

lhexano

ate,3-Octanon

e,1,3-Octadiene

vanLancker

etal.,20

08

Penicillium

viridicatum

6013

41-Octanol,3-Octanol,3-Octanon

e,2-Octen-1-ol,1-Octen-3-ol,3-Methy

lbutanol

Kam

inskiet

al.,19

74

J Chem Ecol (2012) 38:665–703 691

Page 28: Volatile Mediated Interactions Between Bacteria and Fungi in the Soil

Tab

le3

(con

tinued)

Species

Tax

ID(N

CBI)

VOCSyn

onym

References

2-Ethylhexano

l,2-Methy

lbutanol,2-Ethylfuran,

2-Pentylfuran,1,3-Octadiene,1-Octen-3-ol,

3-Methy

lbutanol

vanLancker

etal.,20

08

Phellinu

sspp.

4047

0Benzylalcoh

ol,Methy

lsalicylate,Pheny

lethylalcoho

l,Methy

lbenzoate,Ethyl

benzoate

Stotzky

andSchenk,

1976

Phialop

hora

fastigiata

9193

5Acetone,2-Butanon

e,Methy

lbenzoate,Cyclopentanon

e,Methy

l-3-methy

lbu

tano

ate,Dim

ethy

ldisulfide,

1-Octen-3-ol,3-Methy

l-1-bu

tano

l,3-Octanon

e,Caryo

phyllene

Sun

essonet

al.,19

95

Pucciniagram

inisvar.tritici

5297

Acetaldehyd

e,Furfural,Trimethy

lethylene,n-Non

anal,Methy

lferulate

Stotzky

andSchenk,

1976

Rho

dotorula

glutinis

5535

Pheny

lethylalcoho

l,2-Methy

l-1-prop

anol,3-Methy

l-2-bu

tano

lMenetrezandFoarde,20

02

Saccha

romyces

cerevisiae

4932

Acetic

acid,2-Propano

ne,1,2-Benzenedicarbox

ylic

acid,2-Propano

l,Pheny

lethylalcoho

l,2-Methy

l-1-

prop

anol,2

-Butanon

e,2-Methy

l-prop

anoicacid,1

,2-D

imethy

lbenzene,2

-Ethyl-1-hexanol,2

-Pentano

ne,

Acetic

acid

etheny

lester,2-Methy

l-bu

tano

icacid,Pyrazine,3-Methy

l-bu

tano

icacid,Dim

ethy

ldisulfide,

Und

ecane,Lim

onene,2,5-Dim

ethy

lpyrazine,Ethanol,Ethylacetate

Bruce

etal.,20

04

Acetaldehyd

e,n-Propano

l,Isob

utanol,Ethanol,Ethylacetate

Stotzky

andSchenk,

1976

Schizoph

yllum

commun

e53

34Methy

lmercaptan,Dim

ethy

lselenide

Stotzky

andSchenk,

1976

Scop

ulariopsisbrevicau

lis40

375

Dim

ethy

lselenide,Trimethy

larsine,

Dim

ethy

larsine

Stachybo

trys

chartarum

7472

21-Butanol,2-Propano

l,Isop

rene,2-Methy

l-1-prop

anol,2-Butanol,Methy

lbenzoate,Anisole,m-

Methy

lanisole,Methy

l-2-methy

lprop

ionate,Dim

ethy

ldisulfide,3-Methy

lfuran,o-Methy

lanisole,

Dim

ethy

lhexadiene

Wilk

inset

al.,20

00

Stap

hylococcus

xylosus

1288

Pyridine

Matysikaet

al.,20

08

Thielaviopsisba

sicola

1240

36Acetone,Ethanol,Formaldehy

de,2-Methy

lpropanal,2-Methy

lbutanal,Furfural,2-Heptano

ne,Ethyl

ace-

tate,2-Hexenal

Stotzky

andSchenk,

1976

Tilletia

caries

1329

0Trimethy

lamine

Stotzky

andSchenk,

1976

Tilletia

controversa

1329

1Trimethy

lamine

Tilletia

foetida

1571

83Trimethy

lamine

Tricho

derm

aatroviride

6357

7Pheny

lethylalcoho

l,α-Phelland

rene,γ-Terpinene,α-Terpinene,2-Heptano

ne,2-Und

ecanon

e,β-

Phelland

rene,α-Terpino

lene,3-Octanol,2-Non

anon

e,1-Octen-3-ol,2-Pentylfuran,2-n-Heptylfuran,6-

Pentyl-α-py

rone,α-Bergamotene,α-Zingiberene,3-Octanon

e,β-Bisabolene,α-Curcumene,p-Menth-2-

en-7-ol,α-Farnesene,β-Farnesene,Nerolidol,γ-Curcumene,β-Sesqu

iphelland

rene

Stopp

acheret

al.,20

10

Tricho

derm

aau

reoviride

6450

2Acetaldehyd

e,Acetone,B

enzylalcoh

ol,C

hloroform,Isobu

tane,2

-Methy

l-1-prop

anol,2

-Ethyl-4-m

ethy

l-1-

pentanol,Heptano

ne,Non

ane,Heptane,Decane,2,4-Dim

ethy

lheptane,3-Methy

l-2-hexano

l,7-Octen-4-

ol,5-Methy

l-5-hexen-3-ol,1,3-Hexadien-5-yn

e

Bruce

etal.,20

00

Tricho

derm

apseudo

koning

ii31

7029

2-Propano

ne,Butanal,1-Butanol,Octane,1-Propano

l,Hexanal,1-Pentano

l,Acetonitrile,2-Methy

l-1-

prop

anol,2-Butanon

e,p-Xylene,2-Methy

lpentane,M

ethy

l-cycloh

exane,Hexane,n-hexane,2-O

ctanon

e,1-Hexanol,Heptanal,Formic

acid

heptyl

ester,Decanal,2-Methy

l-bu

tano

l,Acetic

acid

ethy

lester,

Heptane,Lim

onene,3-Methy

l-1-bu

tano

l,2-Propy

l-1-pentanol,2-Octen-1-ol,2,2,4,6,6,-Pentamethy

l-3-

heptene,2-Propeny

lidene-cyclob

utene

Wheatleyet

al.,19

97

Tricho

derm

aspp.

5543

Acetaldehyd

e,Acetone,Ethanol

Stotzky

andSchenck,19

76

Styrene,2-Pentano

ne,3-Methy

l-1-bu

tano

l,1,3-Pentadiene

Nieminen

etal.,20

08

Tricho

derm

aviride

5547

2-Propano

ne,Benzaldehyd

e,Butanal,1-Butanol,Octane,Propanal,1-Propano

l,Isop

ropy

l-alcoho

l,Hexa-

nal,Acetonitrile,2-Butanon

e,Benzothiazole,p-Xylene,Methy

l-cycloh

exane,2-Heptano

ne,Hexane,2-

Octanon

e,Heptanal,Decanal,2-Methy

l-1-bu

tano

l,Acetic

acid

2-ethy

lester,Heptane,6-Methy

l-5-

hepten-2-one,3-Methy

lhexane,4-Penten-2-ol,Pentadecane,3-Methy

l-1-bu

tano

l,Non

anal,2-Propy

l-1-

pentanol,2,4,6-Trimethy

l-1-no

nene,Caryo

phyllene,2-Methy

l-1-prop

anol

Wheatleyet

al.,19

97

692 J Chem Ecol (2012) 38:665–703

Page 29: Volatile Mediated Interactions Between Bacteria and Fungi in the Soil

Tab

le3

(con

tinued)

Species

Tax

ID(N

CBI)

VOCSyn

onym

References

2-Propano

l,1-Pentano

l,2-Hexanon

e,3-Methy

lfuran,2-Methy

l-1-prop

anol

Wilk

inset

al.,20

00

Tuberaestivum

5955

7Acetaldehyd

e,Acetone

(2-Propano

ne),1-Butanol,Ethanol,1-Propano

l,Dim

ethy

lsulfide,2-Methy

l-1-

prop

anol,2-Butanol,2-Butanon

e,Acetic

acid

methy

lester,Propano

icacid

ethy

lester,Propano

icacid

prop

ylester,2-Methy

l-1-bu

tano

l,Acetic

acid

ethy

lester,Butanoicacid

methy

lester,Acetic

acid

2-methy

lbutyl

ester,4-Hyd

roxy

-3-m

ethy

l-2-bu

tano

ne,2-Methy

l-ethy

l-bu

tano

icacid

March

etal.,20

06

Tuberbrum

ale

6045

8Acetaldehyd

e,Acetone

(2-Propano

ne),1-Butanol,Ethanol,Isop

ropy

lalcoh

ol,2-Methy

l-1-prop

anol,2-

Butanol,2

-Butanon

e,Acetic

acid

methy

lester,1-Metho

xy-3-m

ethy

lbenzene,P

ropano

icacid

ethy

lester,

Butanoicacid

ethy

lester,Butanoicacid

prop

ylester,Propano

icacid

prop

ylester,2-Methy

l-1-bu

tano

l,Acetic

acid

ethy

lester,Butanoicacid

methy

lester,Butanoicacid-1-m

ethy

lpropy

lester,4-Hyd

roxy

-3-

methy

l-2-bu

tano

ne,Butanoicacid

2-methy

l-ethy

lester

March

etal.,20

06

Tubermelan

ospo

rum

3941

6Acetaldehyd

e,Acetone

(2-Propano

ne),1-Butanol,1-Propano

l,Isop

ropy

lalcoh

ol,2-Methy

l-1-prop

anol,

Acetic

acid

methy

lester,Propano

icacid

ethy

lester,Butanoicacid

prop

ylester,Propano

icacid

prop

ylester,Acetic

acid-1-m

ethy

lethyl

ester,2-Methy

l-1-bu

tano

l,Acetic

acid

ethy

lester,Butanoicacid

methy

lester,Butanoicacid

2-methy

l-methy

lester,4-Hyd

roxy

-3-m

ethy

l-2-bu

tano

ne,Butanoicacid

2-methy

l-ethy

lester,Pentano

icacid

4-methy

l-ethy

lester,2-Methy

l-3-ethy

l-2-pentene,

Ethanol,Dim

ethy

lsulfide,

2-Butanol

March

etal.,20

06

2-Butanon

e,3-Octanol,bis(Methy

lthio)m

ethane,1-Octen-3-ol,1-Octen-3-one,3-Octanon

e,Ethanol,

Dim

ethy

lsulfide,2-Butanol

Pelusio

etal.,19

95

Tubermesentericum

9290

4Acetaldehyd

e,Acetone

(2-Propano

ne),1-Butanol,Ethanol,1-Propano

l,Dim

ethy

lsulfide,2-Methy

l-1-

prop

anol,2

-Butanol,2

-Butanon

e,Acetic

acid

methy

lester,1

-metho

xy-3-m

ethy

lbenzene,P

ropano

icacid

ethy

lester,B

utanoicacid

prop

ylester,Propano

icacid

prop

ylester,2-Methy

lbutan-1-ol,Acetic

acid

ethy

lester,3-Methy

l-bu

tanal,Butanoicacid

methy

lester,2-Methy

lbutyric

acid

methy

lester,2-Methy

lbutyric

acid

ethy

lester,2-Methy

l-3-ethy

l-2-pentene

March

etal.,20

06

Tuberrufum

1192

33Acetaldehyd

e,Acetone

(2-Propano

ne),1-Butanol,E

thanol,D

imethy

lsulfide,Isop

ropy

lalcoh

ol,2

-Butanol,

2-Butanon

e,Acetic

acid

methy

lester,P

ropano

icacid

ethy

lester,B

utanoicacid

ethy

lester,B

utanoicacid

prop

ylester,Propano

icacid

prop

ylester,2-Propy

lacetate,Acetic

acid

prop

ylester,2-Methy

l-1-bu

tano

l,Acetic

acid

ethy

lester,Propano

icacid

methy

lester,Butanoicacid

methy

lester,2-Methy

lbutyric

acid

methy

lester,4-Hyd

roxy

-3-m

ethy

lbutan-2-one,2-Methy

lbutyric

acid

ethy

lester,Acetic

acid

butylester,

N-m

ethy

lene-ethenam

ine

March

etal.,20

06

Uloclad

ium

chartarum

1199

572-Methy

lpropano

l,2-Pentano

ne,2-Heptano

ne,2-Ethylhexano

icacid,2-Methy

lbutanol,2-Hexanon

e,Dim

ethy

ldisulfide,2-Non

anon

e,6-Methy

l-2-heptanon

e,5-Methy

l-2-heptanon

e,3-Methy

lbutanol,

Methy

l2-ethy

lhexano

ate

vanLancker

etal.,20

08

The

nameof

thevo

latileprod

ucingspeciescorrespo

ndsto

ataxo

nomyID

(http

://www.ncbi.n

lm.nih.gov

/taxo

nomy)

J Chem Ecol (2012) 38:665–703 693

Page 30: Volatile Mediated Interactions Between Bacteria and Fungi in the Soil

reduced sporulation in Gloeosporium aridum. A strong in-hibition of spore germination of Cladosporium cladospor-ioides was caused by but-3-en-2-one produced byStreptomyces griseoruber (Herrington et al., 1987). Zou etal. (2007) screened 1080 bacterial isolates for fungistaticactivity. A total of 328 isolates belonging to the familyof Rhizobiaceae, Xanthomonadaceae, Micrococcaceae,Alcaligenaceae, and to the order of Bacillales were identi-fied as decreasing germination and mycelial growth ofPaecilomyces lilacinus and Pochonia chlamydosporia. Thespore germination of both fungi also was strongly inhibitedby soil direct fungistasis and soil volatile fungistasis. Botheffects correlated closely with impaired spore germinationand disappeared after autoclaving. Several volatiles wereidentified, and trimethylamine, benzaldehyde, and N,N-dimethyloctylamine showed strong antifungal activity(Chuankun et al., 2004).

In order to identify bacterial isolates specifically antago-nistic to plant pathogens, many in vitro experiments havebeen done. The experimental setup had to ensure thatonly volatile metabolites would influence fungal growth.Split Petri dishes (Fernando et al., 2005; Kai et al., 2007;Vespermann et al., 2007), separated agar patches (Alharbiet al., 2011), or the inversion of one bottom plate overa second one (Bruce et al., 2000) assured the exchangeof volatiles solely in the headspace. Vespermann et al.(2007) and Kai et al. (2007 and 2008) conducted a compre-hensive investigation using Bacillus subtilis, Pseudomonasfluorescens, Pseudomonas trivialis, Burkholderia cepacia,Staphylococcus epidermidis, Stenotrophomonas maltophilia,Stenotrophomonas rhizophila, Serratia odorifera, andSerratia plymuthica against pathogenic fungi, includingAspergillus niger, Fusarium culmorum, Fusarium solani,Microdochium bolleyi, Paecilomyces carneus, Penicilliumwaksmanii, Phoma betae, Phoma eupyrena, Rhizoctonia sol-ani, Sclerotinia sclerotiorum, Trichoderma strictipile, andVerticillium dahliae. All rhizobacteria inhibited the mycelialgrowth of most fungi. The extent of inhibition depended onthe individual bacteria-fungus combination. Noticeably,Fusarium solani turned out to be resistant against the bacterialvolatiles. The spectra of bacterial volatiles produced includedmany unknown components; however, 2-phenylethanol, 1-undecene, dodecanal, dimethyl disulfide (DMDS), and di-methyl trisulfide (DMTS) could be identified (Kai et al.,2007). DMDS and 1-undecene indeed inhibited the growthof F. culmorum when applied as individual compounds indual-culture tests (Kai et al., 2009). Several other reports alsoconfirmed the antifungal action of volatiles produced by an-tagonistic rhizobacteria. Pseudomonas fluorescens andPseudomonas pumila inhibited most effectively the growthofGaeumannomyces graminis var tritici, the cause of take-alldisease in wheat (Babaeipoor et al., 2011).Gluconacetobacterdiazotrophicus decreased the growth of Fusarium oxysporum

(Logeshwarn et al., 2011), Bacillus pumilus, Bacillus subtilis,and Bacillus cereus hindered growth of Botrytis mali(Jamalizadeh et al., 2010), and volatiles produced byBacillus subtilis showed antifungal activity towardsRhizoctonia solani and Pythium ultimum (Fiddaman andRossall, 1993) and Aspergillus alternate, Cladosporium oxy-sporum, Fusarium oxysporum, Paecilomyces lilacinus,Paecilomyces variotii, and Pythium afertile (Chaurasia et al.,2005). Bacillus spp. impaired the growth of Phytophthorasojae, which causes the soybean damping-off disease(Tehrani et al., 2002). Interestingly, the dual applicationof Bacillus pumilus and the mycorrhizal fungus Glomusmosseae improved the growth of mandarin plants, di-rectly attributed in part to growth inhibition of fungalpathogens by rhizobacterial volatiles (Chakraborty et al.,2011). The volatiles 1-octen-3-ol, benzothiazol, and cit-ronellol produced by Paenibacillus polymyxa stronglyinhibited mycelial growth and impaired germination ofeight fungal pathogens, including Botrytis cinerea (Zhaoet al., 2011). Wan et al. (2008) investigated the effect ofheadspace volatiles of Streptomyces plantesis on phytopatho-genic fungi. Two antifungal components were identified: 2-phenylethanol and a phellandrene derivative were responsiblefor the suppression of mycelial growth of Rhizoctonia solani,Sclerotinia sclerotiorum, and Botrytis cinerea. Ascospore ger-mination was suppressed up to 90 % by volatiles released byPseudomonas sp., which were isolated from canola and soy-bean plants (Fernando et al., 2005). Staphylococcus pasteurishowed a significant antifungal activity in vitro against Tuberborchii and inhibited ectomycorrhizal formation (Barbieriet al., 2005).

Many Pseudomonas species are known to produce HCNas an effective antifungal component (Voisard et al., 1989;Haas and Défago, 2005). Although HCN production couldbe correlated to fungistasis, its antifungal effect often couldonly be verified in vitro. Rhizobacterial isolates werescreened for HCN production and diffusible antifungalmetabolites, and tested against Verticilium dahliae andRhizoctonia solani in dual-culture tests (Tehrani et al.,2001; Afsharmanesh et al., 2006), and subsequently usedin greenhouse experiments. Interestingly, HCN producersshowed the highest efficiency when applied to the soil,whereas non-producers were more efficient when appliedto seeds. Antifungal properties also have been attributed togaseous ammonia. Schippers et al. (1982) showed that am-monia release from soil as well as from an ammoniumsulfate solution inhibited conidia germination of Botrytiscinerea and Penicillium nigricans. However, some fungisuch as Fusarium culmorum and Verticillium nigrescenswere not affected by ammonia. Furthermore, other volatilesreleased from the soil decreased conidia germination andtube growth of these two fungi. Similarly, Howell et al.(1988) identified ammonia to be the antifungal component

694 J Chem Ecol (2012) 38:665–703

Page 31: Volatile Mediated Interactions Between Bacteria and Fungi in the Soil

in dual-culture tests using Enterobacter cloacae, Rhizoctoniasolani, and Pythium ultimum.

Fungal growth promotion by bacterial volatiles has hard-ly ever been reported. Mackie and Wheatley (1999) andWheatley (2002) selected four fungi as representative of arange of several habitats and challenged them in vitro withheadspace volatiles of a variety of randomly selected soilbacteria. The response was unique for each fungal-bacterialcombination, and revealed positive, negative, as well asneutral effects on radial growth of Trichoderma viride,Phanaerochaete magnoliae, Phytophthora cryptogea, andGaeumannomyces graminis var tritici. Only P. cryptogeaexhibited a significant increase in growth upon exposure tovolatiles of certain bacterial isolates.

Impact of Bacterial Volatiles on Fungal Morphology

Several reports also have focused on morphological changesin fungi following bacterial volatile treatment. Fiddaman andRosall (1993) observed abnormal hyphae with deformationand enhanced vacuolation in Rhizoctonia solani and Pythiumultimum exposed to volatiles produced by Bacillus subtilis.The same bacterial species caused hyphal and conidial defor-mations in Aspergillus alternaria, Cladosporium oxysporum,Fusarium osysporum, Paecilomyces lilacinus, Paecilomycesvariotii, and Pythium afertile. Transverse and longitudinalseptae completely disappeared in Aspergillus alternaria, andconidia became thick-walled and irregular in shape. Conidiaformation was sometimes arrested, and in Cladosporium oxy-sporum, conidiophores became vegetative and stunted.Swelling of hyphae, vacuolization, and granulation leadfinally to lysis of fungal mycelium in Fusarium oxysporum,Paecilomyces lilacinus, and Paecilomyces variotii (Chaurasiaet al., 2005). Swollen terminal cells and bulging intercalarycells also were described for Tuber borchii upon exposure tovolatiles emitted by Staphylococcus pasteuri and, finally,fungal mycelium showed swollen and contorted patternswhen treated with 1-octen-3-ol (Barbieri et al., 2005).Benzothiazol caused a more frequent branching of the myce-lium and increased conidia production, whereas citronellolonly induced a slight hyphal contortion. All three compoundswere components of the volatile mix produced byPaenibacilluspolymyxa (Zhao et al., 2011).

Influence of Bacterial Volatiles on Mycorrhizal Fungi

Mycorrhiza is a complex symbiotic community includingplant roots, mycorrhizal fungi, and associated bacteria (seeJung et al., 2012, this issue). Not only their physicalcontact but also the release of bioactive molecules, includ-ing volatiles, apparently play a regulatory role in a mycorrhi-zal network establishment (Bonfante and Anca, 2009).Associated bacteria comprise primarily the mycorrhiza

helper bacteria (MHB) as well as rhizobacteria with bene-ficial or deleterious functions (Bonfante and Anca, 2009;Miransari, 2011). In 1991, Tylka et al. demonstrated that theMHB Streptomyces orientalis stimulated spore germination inGigaspora margarita and Glomus mossae. Garbaye andDuponnois (1992) proposed that MHB directly stimulatethe growth of Laccaria laccata by releasing volatile sub-stances. Volatiles emitted by a bacterial isolate originallyassociated with Gigaspora margarita also promoted in vitrohost fungus growth (Horii and Ishii, 2006), and volatile anddiffusible compounds produced by MHB strains obtainedfrom Glomus clarum spores stimulated or arrested sporegermination, dependent on the bacterial species. Completeinhibition of spore germination, however, was only re-lated to the volatiles (Xavier and Germida, 2003). Aspray etal. (2006) revealed that stimulation of mycorrhiza for-mation of Lactarius rufus required close proximity or con-tact. Volatiles of the MHB Paenibacillus sp. alone hadsignificant negative effects on mycorrhiza formation.Furthermore, volatiles of the MHB Streptomyces spp.,which actually promoted growth of the ectomycorrhizal fun-gus Amanita muscaria, did not affect mycelial extension rates(Schrey et al., 2005). The antagonist Bacillus subtilis JAinhibited significantly the spore germination and hyphalgrowth of a monoxenic strain of Glomus etunicatum in dual-culture experiments (Xiao et al., 2008), whereas volatilesproduced by Klebsiella pneumonia promoted hyphae exten-sion distantly located from the germinated spores of Glomusdeserticola. Both organisms were indigenous to the roots ofsea oats (Will and Sylvia, 1990).

Impact of Bacterial Volatiles on Fungal Enzyme Activitiesand Gene Expression

Mackie and Wheatley (1999) and Wheatley (2002) investi-gated the effect of bacterial volatiles on physiological prop-erties of fungi by monitoring laccase and tyrosinase activityof Phanaerochaete magnoliae and Trichoderma viride uponexposure to volatiles of three selected soil bacteria isolates(A, B, C). Laccase activity completely ceased in P. magnoliain the presence of isolates A, B, C, whereas tyrosinaseactivity was inhibited only by the presence of isolate B.Isolate B was the only one to affect laccase activity in T.viride. The observed decrease in fungal growth correlatedwith decreased enzyme synthesis rather than inhibition ofenzyme activity (Wheatley, 2002). Laccase activity inRhizoctonia solani was induced after co-cultivation withPseudomonas fluorescens. Due to the experimental setup,it was not possible to distinguish between effects of diffusibleand volatile metabolites (Crowe and Olsson, 2001). Inhibitionof enzyme activities may also be involved in the complete lossof pigmentation after treatment of Fusarium oxysporum withcitronellol, a compound emitted by Paenibacillus polymyxa

J Chem Ecol (2012) 38:665–703 695

Page 32: Volatile Mediated Interactions Between Bacteria and Fungi in the Soil

(Zhao et al., 2011). In contrast, Kai et al. (2009) observed adark discoloration of the agar when fungi were exposed torhizobacterial volatiles.

At present there are few reports that bacterial volatilecomponents may affect gene expression. Minerdi et al.(2008, 2009) demonstrated an indirect volatile mediatedeffect of bacteria on fungal gene expression. The antagonis-tic wild type (WT) strain Fusarium oxysporumMSA35 livesin symbiosis with associated bacteria of the genera Serratia,Achromobacter, Bacillus, and Stenotrophomonas. Volatilesproduced by the WT repressed the expression of two puta-tive virulence genes of a pathogenic Fusarium oxysporumlactucae strain. When cured of the bacterial symbionts, theWT turned pathogenic and the sesquiterpene caryophyllenewas no longer in the headspace of the cured WT. It also wasnot found in the headspace of the ectosymbionts, so thisvolatile seems to mediate a mechanism for the antagonisticproperties of the Fusarium oxysporum WT. However, car-yophyllene is only produced by the WT in the presence ofthe bacterial symbionts.

Possible Mechanisms of Actions of Volatiles

Presently, little is known about mechanisms of action anddetoxification of bacterial volatiles in fungi. It is knownthat the cyanide ions from HCN are potent inhibitors ofmany metal-containing enzymes, in particular of copper-containing cytochrome c oxidases (Haas and Défago,2005). However, it remains unclear how most volatilesdevelop their activity. One scenario relates to the productionof melanin (Kai et al., 2009; Zhao et al., 2011). Melanins areknown to reinforce the cell wall or accumulate on the cellsurface where they develop antioxidative properties andscavenge free radicals. In fungi, melanins are synthesizedvia the polyketide synthase pathway (Jacobson, 2000), butphenol oxidizing enzymes such as laccases and tyrosinasesmay also be involved (Williamson, 1997). Intracellular lac-cases account for detoxification of chemicals (Champagneand Ramsay, 2010). In this regard, the increase of laccaseactivities reported by Crowe and Olsson (2001) might resultfrom the presence of eligible volatile substrates, whereas thedecrease in laccase and tyrosinase activity reported byMackie and Wheatley (1999) might be a sign of impairedcell homeostasis. This again demonstrates that a deleteriousbacterial volatile can be considered a toxin. Fungal cellsrespond to it as to any other biotic or abiotic stress factors.Whole-genome expression studies conducted in fungalmodel organisms including Saccharomyces cerevisiae,Candida albicans, and Schizosaccharomyces pombe haverevealed that each species responded to environmental stresswith an individual change in gene expression. Some speciesalso expressed a common set of genes, referred to as envi-ronmental stress response (ESR) (Gasch, 2007). This can

include the response to cell wall stress and/or oxidative andosmotic stress. Compounds like gaseous ammonia could beconsidered a stress factor, impairing cell homeostasis andtriggering ESR. On the other hand, sub-inhibitory concen-trations of ammonia might play a part in signaling.Ammonia released from bacterial strains has been shownto stimulate Bacillus licheniformis to form biofilms andpigmentation (Nijland and Burgess, 2010) and to increasethe antibiotic resistance of various gram-positive and gram-negative bacteria (Bernier et al., 2011). Therefore, the eco-logical role of microbial volatiles may be intrinsically toserve as a signal molecule within and between species. Theymay also function as chemical ‘manipulators’ to alter centralmetabolic pathways, contribute to nutrient scavenging, andparticipate in developmental processes (Hibbing et al.,2010). Interestingly, ammonia also has been identified as along-distance signal in Candida albicans, warning the col-ony of approaching starvation (Palková and Váhová, 2003).In this sense, the mode of actions of microbial volatilesshould be assessed in more detail.

Effects of Fungal Volatiles on Bacteria

Bacteriostasis, similar to fungistasis, is the inability of bac-teria to multiply in soil (Ho and Ko, 1982). Bacteriostasis isinfluenced by environmental factors such as nutrient supplyand habitat conditions, but active volatile inhibitors alsomay be involved (Davis, 1976). It is known to date thatbacteria produce volatiles that inhibit bacterial growth(Brown, 1973; Ko and Chow, 1977; Acea et al., 1988), andthat volatiles produced by fungi also affect fungi (Stotzkyand Schenck, 1976; Calvet et al., 1992; McAllister et al.,1996; Bruce et al., 2000; Martinez et al., 2004), but fungalvolatiles acting on bacteria has not been reported (to the bestof our knowledge).

Ecological Significance of Volatile MediatedBacterial-Fungal Interactions

Suitable microenvironments in soils attract macro- andmicrobiota that colonize and form microhabitats, therebycreating dynamic microecosystems. Consequently, at leastin densely and diversely populated habitats, bacteria andfungi are involved in a ‘networking’ community character-ized by mutualism, commensalism, cooperation, antago-nism, competition, and coexistence (Pal and McSpaddenGardener, 2006). Interactions between organisms can bespecific or non-specific, but they are mostly multitrophic,thus keeping the microecosystem in balance. This is espe-cially true for the mycorrhizosphere, where rhizobacteria,including plant growth promoting rhizobacteria, mingle

696 J Chem Ecol (2012) 38:665–703

Page 33: Volatile Mediated Interactions Between Bacteria and Fungi in the Soil

with mycorrhizal fungi and their associated bacteria, freeliving bacteria and fungi, protozoa (amoeba) or metazoa(nematodes), including many phytopathogenic organisms.In this arena, interactions between bacteria and fungi couldhave a positive or a negative impact on third parties, whichis useful if the weakened party is a pathogen and thestrengthened party is a valuable member of the community.It is likely that volatile compounds are involved in thesephenomena, since many bacterial volatiles affect phytopath-ogenic fungi directly or indirectly, i.e., as a result ofbacterial-fungal interactions, pathogens are affected. In anycase, the plant would benefit. An elucidation of this plant-fungus-bacterium network of interactions opens the way forbiological control of plant diseases. An impressive examplewas given by Cao et al. (2011). They showed in vitro andin vivo that a GFP-tagged Bacillus subtilis strain, orig-inally isolated from the rhizosphere of a non-infestedcucumber plant, was able to successfully suppress thegrowth of Fusarium oxysporum f. sp. cucumerinum bycolonizing the root and persisting on the rhizoplane, which iscritical for an effective biocontrol in this case of cucumberwilt. Although not explicitly investigated, the authors pro-posed antibiosis caused by diffusible agents to be at leastone mode of action. This, however, does not exclude volatileagents. Other experiments with a B. subtilis strain isolatedfrom the rhizosphere of wheat and soybean showed thatbacterial volatiles were involved in the biocontrol of Botrytismali and Phytophthera sojae, respectively (Tehrani et al.,2002; Jamalizadeh et al., 2010). However, when using rhizo-bacteria as biocontrol agents, it is apparently important that thebiocontrol strain is indigenous to the treated plant species inorder to prevent damage of indigenous beneficial fungi (Willand Sylvia, 1990; Xiao et al., 2008).

Volatiles also might be involved in tritrophic interactionscomprising bacteria, fungi, and nematodes. Paenibacilluspolymyxa and P. lentimorbus exhibited strong antifungalactivities, thereby interfering with the nematode-fungus in-teraction Meloidogyne incognita - Fusarium oxysporum,which significantly reduced nematode infestation of tomatoplants (Son et al., 2009). In addition, soil bacteria, includingone rhizobacterial strain, enhanced the nematophagous ac-tivity of the nematode-trapping fungus Arthrobotrys oligo-spora by increasing trap formation and predaceous activity(Duponnois et al., 1998). Volatile signaling cannot be excludedfor either experiment.

In their entirety, the emission patterns of volatile metabo-lites of a belowground microecosystem reflect the dynamicsof the community (McNeal and Herbert, 2009). Variationscould be related to changes in the microenvironment such aspH, humidity, temperature, nutrient supply, and resultingchanges in metabolic activities of micro- and macrobiota.In this respect, in vitro studies of volatile-mediated interac-tions between bacteria and fungi provide only limited

access to the overall picture. Artificial test conditionsmight produce results that cannot be postulated uncriti-cally for natural conditions. This especially applies toartificial growth media and nutrient supplies that influ-ence metabolic activities as well as to “out of range”concentrations of the volatile mediators emitted (Nannipieriet al., 2003; Blom et al., 2011a). The crucial question is: arethese concentrations found in the habitat? Since meas-urements of volatile concentrations in microhabitats arepresently not available, in vitro testing is a useful toolto reveal substantial relationships between certain part-ners that might come into contact in a microecosystem.The consideration of environmental conditions and the verifi-cation of in vitro derived results in in situ/in natura experi-ments will give an overall picture regarding the role ofvolatiles in bacterial-fungal interactions and the implicationsof these interactions in community networks.

Conclusion and Perspectives

Volatiles are only a small proportion of the total number ofmetabolites produced by living organisms. However, be-cause of their unique properties they are predestined to actas infochemicals in intra- and interspecies communicationsin the atmosphere as well as in the soil. This paper describesthe wealth of microbial volatile emissions. The number ofmicrobial volatiles (presently comprising around 800 com-pounds) and presumably of those with novel structures willincrease significantly as this new research field expands.Just consider i) the large number of bacteria and fungiwhose volatile profiles have yet not been obtained, ii) thevarious growth conditions that determine and alter the VOCprofiles, and iii) the huge number of not yet identified orisolated microbes (106!!). This foreshadows the potentialthis research area has and where it may develop in thefuture. It seems very likely that only the “tip of the iceberg”of possible ‘volatile-wired’ interactions between under-ground bacteria and fungi (and elsewhere) has been seen.It will be a central task in the future to elucidate the plethoraof bacterial and fungal VOCs and determine their biologicaland ecological roles in the soil. It also is quite likely that thenaturally produced VOCs can be used as potent non-invasive indicators to study soil microbial ecosystems, in-cluding far-reaching spatiotemporal dynamics and environ-mental perturbations. Ultimately, these microbial volatiles –individually or in mixtures, chemically synthesized or bio-logically emitted - with their positive and/or negative effectson other organisms may develop into useful agriculturaltools.

Acknowledgments The authors thank Prof. Hubert Bahl reading andcorrecting of Table 1 and the related chapter in the paper, Dr. Marco

J Chem Ecol (2012) 38:665–703 697

Page 34: Volatile Mediated Interactions Between Bacteria and Fungi in the Soil

Kai for critical reading of the manuscript and for drawing Fig. 1, andRobert Penthin, who helped to develop the DOVE-MO database. Weare grateful for the funding by the DFG (to BP153/26 and/28).

References

ACEA, M. J., MOORE, C. R., and ALEXANDER, M. 1988. Survival andgrowth of bacteria introduced into soil. Soil Biol. Biochem.20:509–515.

AFSHARMANESH, H., AHMADZADEH, M., and SHARIFI-TEHRANI, A.2006. Biocontrol of Rhizoctonia solani, the causal agent of beandamping-off by fluorescent pseudomonads. Commun. Agric.Appl. Biol. Sci. 71:1021–1029.

ALEKSEEVA, T. V. 2007. Soil microstructures and factors of its forma-tion. Eurasian Soil Sci. 40:649–659.

ALHARBI, S. A., AL-HARBI, N. A., HAJOMER, S., WAINWRIGHT, M.,and ALJOHNY, B. O. 2011. Study on the effect of bacterial andchemical volatiles on the growth of the fungus Aureobasidiumpullulans. Afr. J. Microbiol. Res. 5:5245–5249.

ANDERSON, A. J. 1992. The influence of the plant root on mycorrhizalformation, pp. 37–64, in M. J. Allen (ed.), Mycorrhizal Function-ing. Chapman & Hall, New York, NY.

AOCHI, Y. O. and FARMER, W. J. 2005. Impact of soil microstructure onthe molecular transport dynamics of 1,2-dichlorethane. Geoderma127:137–153.

ASENSIO, D., PENUELAS, J., FILELLA, I., and LLUSIA, J. 2007. On-linescreening of soil VOCs exchange responses to moisture, temper-ature and root presence. Plant Soil 291:249–261.

ASENSIO, D., OWEN, S. M., LLUSIA, J., and PENUELAS, J. 2008. Thedistribution of volatile isoprenoids in the soil horizons aroundPinus halepensis trees. Soil Biol. Biochem. 40:2937–2947.

ASPRAY, T. J., EIRIAN JONES, E., WHIPPS, J. M., and BENDING, G. D.2006. Importance of mycorrhization helper bacteria cell densityand metabolite localization for the Pinus sylvestris–Lactariusrufus symbiosis. FEMS Microbiol. Ecol. 56:25–33.

ATMOSUKARTO, I., CASTILLO, U., HESS, W. M., SEARS, J., and STRO-BEL, G. 2005. Isolation and characterization of Muscodor albus I-41.3 s, a volatile antibiotic producing fungus. Plant Sci. 169:854–861.

BABAEIPOOR, E., MIRZAEI, S., DANESH, Y. R., ARJMandIAN, A., andCHAICHI, M. 2011. Evaluation of some antagonistic bacteria inbiological control of Gaeumannomyces graminis var tritici causalagent of wheat take-all disease in Iran. Afr. J. Microbiol. Res. 5:5165–5173.

BALDWIN, I. T., HALITSCHKE, R., PASCHOLD, A., VON DAHL, C. C., andPRESTON, C. A. 2006. Volatile signaling in plant plant interactions:‘Talking-Trees’ in the genomics era. Science 311:812–815.

BARBIERI, E., GIOACCHINI, A. M., ZAMBONELLI, A., BERTINI, L., andSTOCCHI, V. 2005. Determination of microbial volatile organiccompounds from Staphylococcus pasteuri against Tuber borchiiusing solid-phase microextraction and gas chromatography/iontrap mass spectrometry. Rapid Commun. Mass Sp. 19:3411–3415.

BECK, H. C., HANSEN, A. M., and LAURITSEN, F. R. 2002. Metaboliteproduction and kinetics of branched-chain aldehyde oxidation inStaphylococcus xylosus. Enzyme Microb. Tech. 31:94–101.

BENDING, G. D., ASPRAY, T. J., and WHIPPS, J. M. 2006. Significanceof microbial interactions in the mycorrhizosphere. Adv. Appl.Microbiol. 60:97–132.

BERNIER, S. P., LETOFFE, S., DELEPIERRE, M., and GHIGO, J. M. 2011.Biogenic ammonia modifies antibiotic resistance at a distance inphysically separated bacteria. Mol. Microbiol. 81:705–716.

BHATTACHARYYA, P. N. and JHA, D. K. 2011. Plant growth-promotingrhizobacteria (PGPR): Emergence in agriculture.World J. Microb.Biot.. doi:10.1007/s11274-011-0979-9.

BIANCIOTTO, V., MINERDI, D., PEROTTO, S., and BONFANTE, P. 1996.Cellular interactions between arbuscular mycorrhizal fungi andrhizosphere bacteria. Protoplasma 193:123–131.

BJURMAN, J., NORDSTR and, E., AND KRISTENSSON, J. 1997. Growth-phase-related production of potential volatile-organic tracer com-pounds by moulds on wood. Indoor Air 7:2–7.

BLOM, D., FABBRI, C., CONNOR, E. C., SCHIESTL, F. P., KLAUSER, D.R., BOLLE, R. T., EBERL, L., and WEISSKOPF, L. 2011a. Produc-tion of plant growth modulating volatiles is widespread amongrhizosphere bacteria and strongly depends on culture conditions.Environ. Microbiol. 13:3047–3058.

BLOM, D., FABBRI, C., EBERL, L., and WEISSKOPF, L. 2011b. Volatile-mediated killing of Arabidopsis thaliana by bacteria is mainlymediated due to hydrogen cyanide. Appl. Environ. Microbiol. 77:1000–1008.

BLUMER, C. and HAAS, D. 2000. Mechanism, regulation and ecolog-ical role of bacterial cyanide biosynthesis. Arch. Microbiol. 173:170–177.

BONFANTE, P. and ANCA, I. A. 2009. Plants, mycorrhizal fungi, andbacteria: a network of interactions. Annu. Rev. Microbiol. 63:363–383.

BÖRJESSON, T., STÖLLMAN, U., and SCHNÜRER, J. 1990. Volatilemetabolites and other indicators of Penicillium aurantiogriseumgrowth on different substrates. Appl. Environ. Microbiol. 56:3705–3710.

BÖRJESSON, T., STÖLLMAN, U., and SCHNÜRER, J. 1992. Volatilemetabolites produced by six fungal species compared with otherindicators of fungal growth on cereal grains. Appl. Environ. Micro-biol. 58:2599–2605.

BRIMECOMBE, M. J., DE LEIJ, F. A. A. M., and LYNCH, J. M. 2007.Rhizodeposition and microbial populations, pp. 73–110, in R.Pinton, Z. Varanini, and P. Nannipieri (eds.), The Rhizosphere:Biochemistry and Organic Substances at the Soil-plant Interface.Taylor & Francis, Boca Raton, Florida.

BRONDZ, I. and OLSEN, I. 1991. Multivariate analyses of cellular fattyacids in Bacteroides, Prevotella, Porphyromonas, Wolinella, andCampylobacter spp. J. Clin. Microbiol. 29:183–189.

BROWN, M. E. 1973. Soil bacteriostasis limitation in growth of soil andrhizosphere bacteria. Can. J. Microbiol. 19:195–199.

BROWN, R. B. 2003. Soil texture, pp. 1-7, in Fact Sheet SL-29. Soiland Water Science Department, Florida Cooperative ExtensionService, Institute of Food and Agriculture Sciences, University ofFlorida.

BRUCE, A., WHEATLEY, R. E., HUMPHRIS, S. N., HACKETT, C. A., andFLORENCE, M. E. J. 2000. Production of volatile organic com-pounds by Trichoderma in media containing different amino acidsand their effect on selected wood decay fungi. Holzforschung54:481–486.

BRUCE, A., VERRALL, S., HACKETT, C., and WHEATLEY, R. E. 2004.Identification of volatile organic compounds (VOCs) from bacte-ria and yeast causing growth inhibition of sapstain fungi. Holz-forschung 58:193–198.

BUNGE, M., ARAGHIPOUR, N., MIKOVINY, T., DUNKL, J.,SCHNITZHOFER, R., HANSEL, A., SCHINNER, F., WISTHALER, A.,MARGESIN, R., and MARK, T. D. 2008. On-line monitoring ofmicrobial volatile metabolites by proton transfer reaction-massspectrometry. Appl. Environ. Microbiol. 74:2179–2186.

CALVET, C., BAREA, J. M., and PERA, J. 1992. In vitro interactionsbetween the vesicular-arbuscular mycorrhizal fungus Glomusmosseae and some saprophytic fungi isolated from organic sub-strates. Soil Biol. Biochem. 24:775–780.

CAO, Y., ZHANG, Z., LING, N., YUAN, Y., ZHENG, X., SHEN, B., andSHEN, Q. 2011. Bacillus subtilis SQR 9 can controlFusariumwilt incucumber by colonizing plant roots. Biol. Fertil. Soils 47:495–506.

CEHNU, C. and STOTZKY, G. 2002. Interaction between microorgan-isms and soil particles: An overview, pp. 3–28, in P. M. Huang, J.

698 J Chem Ecol (2012) 38:665–703

Page 35: Volatile Mediated Interactions Between Bacteria and Fungi in the Soil

M. Bollag, and N. Senesi (eds.), Interactions between soil par-ticles and microorganisms. John Wiley & Sons, Hoboken, NewYork.

CHAKRABORTY, U., CHAKRABORTY, B. N., ALLAY, S., DE, U., andCHAKRABORTY, A. P. 2011. Dual application of Bacillus pumilusand Glomus mosseae for improvement of health status of manda-rin plants. Acta Hortic. 892:215–230.

CHAMPAGNE, P. P. and RAMSAY, J. A. 2010. Dye decolorization anddetoxification by laccase immobilized on porous glass beads.Bioresour. Technol. 101:2230–2235.

CHAURASIA, B., PandEY, A., PALNI, L. M. S., TRIVEDI, P., KUMAR, B.,and COLVIN, N. 2005. Diffusible and volatile compounds producedby an antagonistic Bacillus subtilis strain cause structural deforma-tions in pathogenic fungi in vitro. Microbiol. Res. 160:75–81.

CHEN, F., RO, D. K., PETRI, J., GERSHENZON, J., BOHLMANN, J.,PICHERSKY, E., and THOLL, D. 2004. Characterization of a root-specific Arabidopsis terpene synthase responsible for the forma-tion of the volatile monoterpene 1,8-cineole. Plant Physiol. 135:1956–1966.

CHERNIN, L., TOKLIKISHVILI, N., OVADIS, M., KIM, S., BEN-ARI, J.,KHMEL, I., and VAINSTEIN, A. 2011. Quorum-sensing quenchingby rhizobacterial volatiles. Environ. Microbiol. Rep. 3:698–704.

CHIRON, N. and MICHELOT, D. 2005. Mushrooms odors, chemistry androle in the biotic interactions – a review. Cryptogr. Mycol. 26:299–365.

CHUANKUN, X., MINGHE, M., LEMING, Z., and KEQIN, Z. 2004. Soilvolatile fungistasis and volatile fungistatic compounds. Soil Biol.Biochem. 36:1997–2004.

CITRON, C. A., GLEITZMANN, J., LAURENZANO, G., PUKALL, R., andDICKSCHAT, J. S. 2012. Terpenoids are widespread in actinomy-cetes: a correlation of secondary metabolism and genome data.Chem. Bio. Chem. 13:202–214.

COMPANT, S., CLÉMENT, C., and SESSITSCH, A. 2010. Plant growth-promoting bacteria in the rhizo- and endosphere of plants: Theirrole, colonization, mechanisms involved and prospects for utili-zation. Soil Biol. Biochem. 42:669–678.

CONKLIN, A. R. 2005. Introduction to soil chemistry. John Wiley &Sons, Hoboken, New York.

CROWE, J. D. and OLSSON, S. 2001. Induction of laccase activity inRhizoctonia solani by antagonistic Pseudomonas fluorescensstrains and a range of chemical treatments. Appl. Environ. Micro-biol. 67:2088–2094.

DANIEL, R. 2011. Soil-based metagenomics, pp. 83-92, in F. J. deBruijn (ed.). Handbook of Molecular Microbial Mycology II:Metagenomics in Different Habitats. John Wiley & Sons, Inc.

DAVIS, R. D. 1976. Soil bacteriostasis: relation to bacterial nutritionand active soil inhibition. Soil Biol. Biochem. 8:429–433.

DEQUIEDT, S., SABY, N. P. A., LELIEVRE, M., JOLIVET, C., THIOULOUSE,J., TOUTAIN, B., ARROUAYS, D., BISPO, A., LEMANCEAU, P.,and RANJARD, L. 2011. BIOGEOGRAPHICAL PATTERNS OF SOIL

MOLECULAR MICROBIAL BIOMASS AS INFLUENCED BY SOIL CHAR-

ACTERISTICS AND MANAGEMENT. GLOBAL ECOL. BIOGEOGR.20:641–652.

DICKSCHAT, J. S. 2009. Quorum sensing and bacterial biofilms. Nat.Prod. Rep. 27:343–369.

DICKSCHAT, J. S., BODE, H. B., MAHMUD, T., MÜLLER, R., and SCHULZ,S. 2005a. A novel type of geosmin biosynthesis in myxobacteria. J.Org. Chem. 70:5174–5182.

DICKSCHAT, J. S., BODE, H. B., WENZEL, S. C., MÜLLER, R., andSCHULZ, S. 2005b. Biosynthesis and identification of volatilesreleased by the myxobacterium Stigmatella aurantiaca. Chem.Biol. Chem. 6:2023–2033.

DICKSCHAT, J. S., HELMKE, E., and SCHULZ, S. 2005c. Volatile organiccompounds from arctic bacteria of the cytophaga-flavobacterium-bacteroides-group: A retrobiosynthetic approach in chemotaxo-nomic investigations. Chem. Biodivers. 2:318–353.

DICKSCHAT, J. S., MARTENS, T., BRINKHOFF, T., SIMON, M., andSCHULZ, S. 2005d. Volatiles released by a Streptomyces spe-cies isolated from the North Sea. Chem. Biodivers. 2:837–865.

DICKSCHAT, J. S., NAWRATH, T., THIEL, V., KUNZE, B., MÜLLER, R.,and SCHULZ, S. 2007. Biosynthese des Duftstoffes 2-Methyliso-borneol durch das Myxobakterium Nannocystis exedens. Angew.Chem. - Ger. Edit. 119:8436–8439.

DICKSCHAT, J. S., REICHENBACH, H., WAGNER-DOBLER, I., andSCHULZ, S. 2005e. Novel pyrazines from the myxobacteriumChondromyces crocatus and marine bacteria. Eur. J. Org. Chem.19:4141–4153.

DICKSCHAT, J. S., WAGNER-DOBLER, I., and SCHULZ, S. 2005f. Thechafer pheromone buibuilactone and ant pyrazines are also pro-duced by marine bacteria. J. Chem. Ecol. 31:925–947.

DICKSCHAT, J. S., WENZEL, S. C., BODE, H. B., MÜLLER, R., andSCHULZ, S. 2004. Biosynthesis of volatiles by the myxobacteriumMyxococcus xanthus. Chem. Biol. Chem. 5:778–787.

DIGHTON, J. 2003. Fungi in ecosystem processes. Marcel Dekker, NewYork, NY.

DOBBS, C. G. and HINSON, W. H. 1953. A widespread fungistasis insoils. Nature 172:197–199.

DOBSON, H. E. M. 2006. Relationship between floral fragrance com-position and type of pollinator, pp. 147–198, in E. Pichersky andN. Dudareva (eds.), Biology of floral scents. Taylor & FrancisGroup, Boca Raton.

DUPONNOIS, R., BA, A. M., and MATEILLE, T. 1998. Effect of somerhizosphere bacteria for the biocontrol of nematodes of the genusMeloidogyne with Arthrobotrys oligospora. Fundam. Appl. Nema-tol. 21:157–163.

ERCOLINI, D., RUSSO, F., NASI, A., FERRANTI, P., and VILLANI, F.2009. Mesophilic and psychrotrophic bacteria from meat and theirspoilage potential in vitro and in beef. Appl. Environ. Microbiol.75:1990–2001.

EZEONU, I. M., PRICE, D. L., SIMMONS, R. B., CROW, S. A., andAHEARN, D. G. 1994. Fungal production of volatiles duringgrowth on fiberglass. Appl. Environ. Microbiol. 60:4172–4173.

FARAG, M. A., RYU, C. M., SUMMER, L. W., and PARE, P. W. 2006.GC-MS SPME profiling of rhizobacterial volatiles reveals pro-spective inducers of growth promotion and induced systemicresistance in plants. Phytochemistry 67:2262–2268.

FARMER, E. E. 2001. Surface-to-air signals. Nature 411:854–856.FERNANDO, W. G. D., RAMARATHNAM, R., KRISHNAMOORTHY, A. S.,

and SAVCHUK, S. C. 2005. Identification and use of potentialbacterial organic antifungal volatiles in biocontrol. Soil Biol. Bio-chem. 37:955–964.

FIDDAMAN, P. J. and ROSSALL, S. 1993. The production of antifungalvolatiles by Bacillus subtilis. J. Appl. Bacteriol. 74:119–126.

FIDDAMAN, P. J. and ROSSALL, S. 1994. Effect of substrate on theproduction of antifungal volatiles from Bacillus subtilis. J. Appl.Bacteriol. 76:395–405.

FISCHER, G., SCHWALBE, R., MÖLLER, M., and OSTROWSKI, R. 1999.Species-spezific production on microbial volatile organic com-pounds (MVOC) by airborne fungi from a compost facility. Che-mosphere 39:795–810.

FORSTER, R. C. 1988. Microenvironments of soil microorganisms.Biol. Fertil. Soils 6:189–203.

FREEMAN, L. R., SILVERMAN, G. J., ANGELINI, P., MERRITT JR., C.,and ESSELEN, W. B. 1976. Volatiles produced by microorganismsisolated from refrigerated chicken at spoilage. Appl. Environ.Microbiol. 32:222–231.

FREY-KLETT, P., GARBAYE, J., and TARKKA, M. 2007. The mycorrhizahelper bacteria revisited. New Phytol. 176:22–36.

FUCHS, G. 2007. Allgemeine Hikrobiologie, 8th edn. http://www.kluweronline.com/issn/0098-0331.

J Chem Ecol (2012) 38:665–703 699

Page 36: Volatile Mediated Interactions Between Bacteria and Fungi in the Soil

GANS, J., WOLINSKY, M., and DUNBAR J. 2005. Computationalimprovements reveal great bacterial diversity and high metaltoxicity in soil. Science. 26;309(5739):1387–1390.

GARBAYE, J. and DUPONNOIS, R. 1992. Specificity and function ofmycorrhization helper bacteria (MHB) associated with the Pseudot-suga menziesii – Laccaria laccata symbiosis. Symbiosis 14:335–344.

GARBEVA, P., HOL, W. H. G., TERMORSHUIZEN, A. J., KOWALCHUK, G.A., and DE BOER, W. 2011. Fungistasis and general soil biostasis -A new synthesis. Soil Biol. Biochem. 43:469–477.

GASCH, A. P. 2007. Comparative genomics of the environmental stressresponse in ascomycete fungi. Yeast 24:961–976.

GERBER, N. N. and LECHEVALIER, H. A. 1965. Geosmin, an earthy-smelling substance isolated from actinomycetes. Appl. Microbiol.13:935–938.

GOTTSCHALK, G. 1986. Bacterial metabolism. Springer Verlag,Heidelberg.

GREGORY, P. J. 2006. Roots, rhizosphere and soil: the route to a betterunderstanding of soil science? Eur. J. Soil Sci. 57:2–12.

GRIFFIN, G. J., HORA, T. S., and BAKER, R. 1975. Soil fungistasis:elevation of the exogenous carbon and nitrogen requirements forspore germination by fungistatic volatiles in soil. Can. J. Micro-biol. 21:1468–1475.

GU, Y. Q., MO, M. H., ZHOU, J. P., ZOU, C. S., and ZHANG, K. Q. 2007.Evaluation and identification of potential organic nematicidal vol-atiles from soil bacteria. Soil Biol. Biochem. 39:2567–2575.

HAAS, D. and DÉFAGO, G. 2005. Biological control of soil-bornepathogens by fluorescent pseudomonads. Nat. Rev. Microbiol.3:307–319.

HARTMANN, A., and SCHIKORA, A. 2012. Quorum sensing of bacteriaand trans-kingdom interactions of N-acyl homoserine lactoneswith eukaryotes. J. Chem. Ecol., this issue.

HAWKSWORTH, D. L. and MUELLER, G. M. 2005. Fungal communities:their diversity and distribution, pp. 27–37, in J. Dighton, J. F.White, and P. Oudemans (eds.), The fungal community. Taylor &Francis, Boca Raton, Florida.

HEIL, M. and TON, J. 2008. Long-distance signalling in plant defence.Trends Plant Sci. 13:264–272.

HEIL, M. and WALTERS, D. R. 2009. Ecological consequences of plantdefence signalling. Adv. Bot. Res. 51:667–716.

HERRINGTON, P. R., CRAIG, J. T., and SHERIDAN, J. E. 1987. Methylvinyl ketone: a volatile fungistatic inhibitor from Streptomycesgriseoruber. Soil Biol. Biochem. 19:509–512.

HEUER, H. and SMALLA, K. 2012. Plasmids foster diversification andadaptation of bacterial populations in soil. FEMS Microbiol. Rev.doi:10.1111/j.1574-6976.2012.00337.x

HIBBING, M. E., FUQUA, C., PARSEK, M. R., and PETERSON, S. B.2010. Bacterial competition: surviving and thriving in the micro-bial jungle. Nat. Rev. Microbiol. 8:15–25.

HINTON, A. and HUME, M. E. 1995. Antibacterial activity of themetabolic by-products of a Veillonella species and Bacteroidesfragilis. Anaerobe 1:121–127.

HO, W. C. and KO, W. H. 1982. Characteristics of soil microbiostasis.Soil Biol. Biochem. 14:589–593.

HÖCKELMANN, C. and JÜTTNER, F. 2004. Volatile organic compound(VOC) analysis and sources of limonene, cyclohexanone andstraight chain aldehydes in axenic cultures of Calothrix and Plec-tonema. Water Sci. Technol. 49:47–54.

HÖCKELMANN, C., MOENS, T., and FRIEDRICH, J. 2004. Odor compoundsfrom cyanobacterial biofilms acting as attractants and repellentsfor free-living nematodes. Limnol. Oceanogr. 49:1809–1819.

HORA, T. S. and BAKER, R. 1972. Soil fungistasis: microflora produc-ing a volatile inhibitor. Trans. Br. Mycol. Soc. 59:491–500.

HORII, S. and ISHII, T. 2006. Identification and function of Gigasporamargarita growth-promoting microorganisms. Symbiosis 41:135–141.

HOWELL, C. R., BEIER, R. C., and STIPANOVIC, R. D. 1988.Production of ammonia by Enterobacter cloacae and itspossible role in the biological control of Pythium preemer-gence damping-off by the bacterium. Ecol. Epidemiol. 78:1075–1078.

HUANG, C-J., TSAY, J-F., CHANG, S-Y., YANG, H-P., WU, W-S., andCHEN, C-Y. 2012. Dimethyl disulfide is an induced systemicresistance-elicitor produced by Bacillus cereus C1L. Soc. Chem.Ind.; doi:10.1002/ps.3301

HUSSAIN, A. and HASNAIN, S. 2011. Interactions of bacterial cytoki-nins and IAA in the rhizosphere may alter phytostimulatoryefficiency of rhizobacteria. World J. Microbiol. Biotechnol.27:2645–2654.

INSAM, H. and SEEWALD, M. S. A. 2010. Volatile organic compounds(VOCs) in soils. Biol. Fertil. Soils 46:199–213.

JACOBSON, E. S. 2000. Pathogenic roles for fungal melanins. Clin.Microbiol. Rev. 13:708–717.

JAMALIZADEH, M., ETEBARIAN, H. R., AMINIAN, H., and ALIZADEH,A. 2010. Biological control of Botrytis mali on apple fruit by useof Bacillus bacteria, isolated from the rhizosphere of wheat. Arch.Phytopathol. Pl. 43:1836–1845.

JELEN, H. H. 2003. Use of solid phase microextraction (SPME) forprofiling fungal volatile metabolites. Lett. Appl. Microbiol.36:263–267.

JELEN, H. H., MIROCHA, C. J., WASOWICZ, E., AND KAMINSKI, E.1995. Production of volatile sesquiterpenes by Fusarium sambu-cinum strains with different abilities to synthesize trichothecenes.Appl. Environ. Microbiol. 61:3815–3820.

JUNG, S. C., MARTINEZ-MEDINA, A., LOPEZ-RAEZ, J. A., and POZO,M. J. 2012. Mycorrhiza-induced resistance and priming of plantdefenses. J. Chem. Ecol., this issue.

KAI, M., EFFMERT, U., BERG, G., and PIECHULLA, B. 2007.Volatiles of bacterial antagonists inhibit mycelial growth ofthe plant pathogen Rhizoctonia solani. Arch. Microbiol. 187:351–360.

KAI, M., VESPERMANN, A., and PIECHULLA, B. 2008. The growth offungi and Arabidopsis thaliana is influenced by bacterial vola-tiles. Plant Signal. Behav. 3:1–3.

KAI, M., HAUSTEIN, M., MOLINA, F., PETRI, A., SCHOLZ, B., andPIECHULLA, B. 2009. Bacterial volatiles and their action potential.Appl. Microbiol. Biotechnol. 81:1001–1013.

KAI, M., CRESPO, E., CRISTESCU, S. M., HARREN, F. J. M., andPIECHULLA, B. 2010. Serratia odorifera: analysis of volatileemission and biological impact of volatile compounds onArabidopsis thaliana. Appl. Microbiol. Biotechnol. 88:965–976.

KALDERAS, J. 2011. Erfassung, Analyse und Datenbank – Integrationflüchtiger Metabolite von Pilzen und anderen Mikroorganismen.Diploma Thesis, University of Rostock

KAMINSKI, E., STAWICKI, S., and WASOWICZ, E. 1974. Volatile flavorcompounds produced by molds of Aspergillus, Penicillum andfungi imperfecti. Appl. Microbiol. 27:1001–1004.

KESSELMEIER, J. and STAUDT, M. 1999. Biogenic volatile organic com-pounds VOC - an overview on emission, physiology and ecology. J.Atmos. Chem. 33:23–88.

KO, W. H. and CHOW, F. K. 1977. Characteristics of bacteriostasis innatural soils. J. Gen. Microbiol. 102:295–298.

KOSKE, R. E. and GEMMA, J. N. 1992. Fungal reactions to plants priorto mycorrhizal formation, pp. 3–36, in M. J. Allen (ed.), Mycor-rhizal functioning. Chapman & Hall, New York, NY.

KURITA-OCHIAI, T., FUKUSHIMA, K., and OCHIAI, K. 1995. Volatilefatty acids, metabolic by-products of periodontopathic bacteria,inhibit lymphocyte proliferation and cytokine production. J. Dent.Res. 74:1367–1373.

LABOWS, J. N., MCGINLEY, K. J., WEBSTER, G. F., and LEYDEN, J. J.1980. Headspace analysis of volatile metabolites of Pseudomonas

700 J Chem Ecol (2012) 38:665–703

Page 37: Volatile Mediated Interactions Between Bacteria and Fungi in the Soil

aeruginosa and related species by gas chromatography-massspectrometry. J. Clin. Microbiol. 2:521–526.

LEE, M. L., SMITH, D. L., and FREEMAN, L. R. 1979. High resolutiongas chromatographic profiles of volatile organic compounds pro-duced by microorganisms at refrigerated temperatures. Appl. En-viron. Microbiol. 37:85–90.

LEFF, J. W. and FIERER, N. 2008. Volatile organic compound (VOC)emissions from soil and litter samples. Soil Biol. Biochem. 40:1629–1636.

LENC, L., KWAŚNA, H., and SADOWSKI, C. 2011. Dynamics of the root/soil pathogens and antagonists in organic and integrated produc-tion of potato. Eur. J. Plant Pathol. 131:603–620.

LIN, H. C. and PHELAN, P. L. 1992. Comparisons of volatiles frombeetle-transmitted Ceratocystis fagacearum and four non-insect-dependent fungi. J. Chem. Ecol. 18:1623–1632.

LINTON, C. W. and WRIGHT, S. J. L. 1993. Volatile organic com-pounds: microbial aspects and some technical implications. J.Appl. Bacteriol. 75:1–12.

LOGESHWARN, P., THANGARAJU, M., and RAJASUNDARI, K. 2011.Antagonistic potential of Gluconacetobacter diazotrophicusagainst Fusarium oxysporum in sweet potato (Ipomea batatus).Arch. Phytopathol. Pl. 44:216–223.

LÜTKE-EVERSLOH, T. and BAHL, H. 2011. Metabolic engineering ofClostridium acetobutylicum: recent advances to improve butanolproduction. Curr. Opin. Biotechn. 22:634–647.

MACKIE, A. E. and WHEATLEY, R. E. 1999. Effects and incidence ofvolatile organic compound interactions between soil bacterial andfungal isolates. Soil Biol. Biochem. 31:375–385.

MARCH, R. E., RICHARD, D. S., and RYAN, R. W. 2006. Volatilecompounds from six species of truffle – head-space analysis andvapor analysis at high mass resolution. Int. J. Mass Spectrom.249–250:60–67.

MARTINEZ, A., OBERTELLO, M., PARDO, A., OCAMPO, J., and GODEAS,A. 2004. Interactions between Trichoderma pseudokoningiistrains and the arbuscular mycorrhizal fungi Glomus mosseaeand Gigaspora rosea. Mycorrhiza 14:79–84.

MATTHEIS, J. P. and ROBERTS, R. G. 1992. Identification of geosmin asa volatile metabolite of Penicillium expansum. Appl. Environ.Microbiol. 58:3170–3172.

MATYSIKA, S., HERBARTH, O., and MUELLER, A. 2008. Determinationof volatile metabolites originating from mould growth on wallpaper and synthetic media. J. Microbiol. Methods 75:182–187.

MCALLISTER, C. B., GARCIA-GARRIDO, J. M., GARCIA-ROMERA, I.,GODEAS, A., and OCAMPO, J. A. 1996. In vitro interactionsbetween Alternaria alternata, Fusarium equiseti and Glomus mos-seae. Symbiosis 20:163–174.

MCCAIN, A. H. 1966. A volatile antibiotic by Streptomyces griseus.Phytopathology 56:150.

MCNEAL, K. S. and HERBERT, B. E. 2009. Volatile organic metabolitesas indicators of soil microbial activity and community composi-tion shifts. Soil Sci. Soc. Am. J. 73:579–588.

MENETREZ, M. Y. and FOARDE, K. K. 2002. Microbial volatile organiccompound emission rates and exposure model. Indoor Built Envi-ron. 11:208–213.

MICHALKE, K., WICKENHEISER, E. B., MEHRING, M., HIRNER, A. V.,and HENSEL, R. 2000. Production of volatile derivatives of metal(loid)s by microflora involved in anaerobic digestion of sewagesludge. Appl. Environ. Microbiol. 66:2791–2796.

MILLER, A., SCANLAN, R. A., LEE, J. S., and LIBBEY, L. M. 1973.Identification of the volatile compounds produced in sterile fishmuscle (Sebastes melanops) by Pseudomonas fragi. Appl. Micro-biol. 25:952–955.

MINERDI, D., MORETTI, M., GILARDI, G., BARBERIO, C., GULLINO, M.L., and GARIBALDI, A. 2008. Bacterial ectosymbionts and viru-lence silencing in a Fusarium oxysporum strain. Environ. Micro-biol. 10:1725–1741.

MINERDI, D., BOSSI, S., GULLINO, M. L., and GARIBALDI, A. 2009.Volatile organic compounds: a potential direct long-distancemechanism for antagonistic action of Fusarium oxysporum strainMSA35. Environ. Microbiol. 11:844–854.

MINNICH, M. and SCHUMACHER, B. 1993. Behavior and determinationof volatile organic compounds in soil: A literature review. USEnvironmental Protection Agency. EPA 600/R-93/140:1–104.

MIRANSARI, M. 2011. Interactions between arbuscular mycorrhi-zal fungi and soil bacteria. Appl. Microbiol. Biotech. 89:917–930.

MORRA, M. J. and DICK, W. A. 1991. Mechanisms of H2S produc-tion from cysteine and cystine by microorganisms isolatedfrom soil by selective enrichment. Appl. Environ. Microbiol. 57:1413–1417.

NAEEM, S. 1997. Species redundancy and ecosystem reliability. Con-serv. Biol. 12:39–45.

NAKAS, J. P. and KLEIN, D. A. 1980. Mineralization capacity ofbacteria and fungi from the rhizosphere-rhizoplane of a semiaridgrassland. Appl. Environ. Microbiol. 39:113–117.

NANNIPIERI, P., ASCHER, J., CECCHERINI,M. T., LandI, L., PIETRAMELLARA,G., AND RENELLA, G. 2003. Microbial diversity and soil functions.Eur. J. Soil Sci. 54:655–670.

NANNIPIERI, P., ASCHER, J., CECCHERINI,M. T., LandI, L., PIETRAMELLARA,G., RENELLA, G., AND VALORI, F. 2007. Microbial diversity andmicrobial activity in the rhizosphere. Ciencia del suelo (ARGENTINA)25:89–97.

NAWRATH, T., DICKSCHAT, J. S., MÜLLER, R., JIANG, J., CANE, D. E.,and SCHULZ, S. 2008. Identification of (8S, 9S, 10S)-8, 10-dimethyl-1-octalin, a key intermediate in the biosynthesis of geo-smin in bacteria. J. Am. Chem. Soc. 130:430–431.

NIEMINEN, T., NEUBAUER, P., SIVELA, S., VATAMO, S., SILFVERBERG,P., and SALKINOJA-SALONEN, M. 2008. Volatile compounds pro-duced by fungi grown in strawberry jam. LWT- Food Sci. Technol.41:2051–2056.

NIJLAND, R. and BURGESS, J. G. 2010. Bacterial olfaction. Biotechnol.J. 5:1–4.

OWEN, S. M., CLARK, S., POMPE, M., and SEMPLE, K. T. 2007.Biogenic volatile organic compounds as potential carbon sourcesfor microbial communities in soil from the rhizosphere of Populustremula. FEMS Microbiol. Lett. 268:34–39.

PAL, K. K. and MCSPADDEN GARDENER, B. 2006. Biological controlof Plant Pathogens. The Plant Health Instructor doi:10.1094/PHI-A-2006-1117-02 http://www.apsnet.org/edcenter/advanced/topics/Pages/BiologicalControl.aspx.

PALKOVÁ, Z. and VÁHOVÁ, L. 2003. Ammonia signaling in yeastcolony formation. Int. Rev. Cytol. 225:229–272.

PELUSIO, F., NILSSON, T., MONTANARELLA, L., TILIO, R., LARSEN, B.,FACCHETTI, S., andMADSEN, J. 1995. Headspace solid-phasemicro-extraction analysis of volatile organic sulfur compounds in blackand white truffle aroma. J. Agric. Food Chem. 43:2138–2143.

PESSI, G. and HAAS, D. 2000. Transcriptional control of the hydrogencyanide biosynthetic genes hcnABC by the anaerobic regulatorANR and the quorum sensing regulators LasR and RhlR inPseudomonas aeruginosa. J. Bacteriol. 182:6940–6949.

PITTARD, B. T., FREEMAN, L. R., LATER, D. W., and LEE, M. L. 1982.Identification of volatile organic compounds produced by fluo-rescent pseudomonads on chicken breast muscle. Appl. Environ.Microbiol. 43:1504–1506.

RANJARD, L. and RICHAUME, A. 2001. Quantitative and qualitativemicroscale distribution of bacteria in soil. Res. Microbiol. 152:707–716.

RIGAMONTE, T. A., PYLRO, V. S., and DUARTE G. F. 2010. The role ofmycorrhization helper bacteria in the establishment and action ofectomycorrhizae associations. Braz. J. Microbiol. 41:832–840.

ROESCH, L. F., FULTHORPE, R. R., RIVA, A., CASELLA, G., HADWIN, A.K., KENT, A. D., DAROUB, S. H., CAMARGO, F. A., FARMERIE, W.

J Chem Ecol (2012) 38:665–703 701

Page 38: Volatile Mediated Interactions Between Bacteria and Fungi in the Soil

G., and TRIPLETT, E.W. 2007. Pyrosequencing enumerates andcontrasts soil microbial diversity. ISME J. 1:283–290.

RUIZ, R., BILBAO, R., and MURILLO, M. B. 1998. Adsorption ofdifferent VOC onto soil minerals from gas phase; Influence ofmineral, type of VOC, and air humidity. Environ. Sci. Technol.32:1079–1864.

RYAN, R. P. and DOW, J. M. 2008. Diffusible signals and interspeciescommunication in bacteria. Microbiol. 154:1845–1858.

RYU, C. M., FARAG, M. A., HU, C. H., REDDY, M. S., WIE, H. X.,PARE, P. W., and KLOEPPER, J. W. 2003. Bacterial volatiles pro-mote growth in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 100:4927–4932.

SCHAFER, B. M. 2006. Particle shape, pp. 1249–1250, in W. Chesworth(ed.), Encyclopedia of soil science. Taylor & Francis, Boca Raton,Florida.

SCHÄFER, H., MYRONOVA, N., and BODEN, R. 2010. Microbial degra-dation of dimethyldisulphide and related C1-sulphur compounds:organisms and pathways controlling fluxes of sulphur in thebiosphere. J. Exp. Bot. 61:315–334.

SCHIPPERS, B., MEIJER, J. W., and LIEM, J. I. 1982. Effect of ammoniaand other soil volatiles on germination and growth of soil fungi.Trans. Br. Mycol. Soc. 79:253–259.

SCHÖLLER, E. G., GÜRTLER, H., PEDERSEN, R., MOLIN, S., andWILKINS,K. 2002. Volatile metabolites from actinomycetes. J. Agric. FoodChem. 50:2615–2621.

SCHREY, S. D., SCHELLHAMMER, M., ECKE, M., HAMPP, R., andTARKKA, M. T. 2005. Mycorrhiza helper bacterium StreptomycesAcH 505 induces differential gene expression in the ectomycor-rhizal fungus Amanita muscaria. New Phytol. 168:205–216.

SCHULZ, S. and DICKSCHAT, J. S. 2007. Bacterial volatiles: the smell ofsmall organisms. Nat. Prod. Rep. 24:814–842.

SCHULZ, S., FUHLENDORFF, J., and REICHENBACH, H. 2004. Identifi-cation and synthesis of volatiles released by the myxobacteriumChondromyces crocatus. Tetrahedron 60:3863–3872.

SHATALIN, K., SHATALINA, E., MIRONOV, A., and NUDLER, E. 2011.H2S: a universal defense against antibiotics in bacteria. Science.334:986–990.

SOBIK, P., GRUNENBERG, J., BOÖROÖCZKY, J., LAATSCH, H., WAGNER-DOÖBLER, I., and SCHULZ, S. 2007. Identification, synthesis, andconformation of tri- and tetrathiacycloalkanes from marine bacte-ria. J. Org. Chem. 72:3776–3782.

SON, S. H., KHAN, Z., KIM, S. G., and KIM, Y. H. 2009. Plant growth-promoting rhizobacteria, Paenibacillus polymyxa and Paenibacil-lus lentimorbus suppress disease complex caused by root-knotnematode and Fusarium wilt fungus. J. Appl. Microbiol.107:524–532.

STANDING, D. and KILLHAM, K. 2007. The soil environment, pp.1–22, in J. D. van Elsas, J. K. Jansson, and J. T. Trevors(eds.), Modern soil microbiology. Taylor & Francis, Boca Raton,Florida.

STOPPACHER, N., KLUGER, B., ZEILINGER, S., KRSKA, R., andSCHUHMACHER, R. 2010. Identification and profiling of vol-atile metabolites of the biocontrol fungus Trichoderma atro-viride by HS-SPME-GC-MS. J. Microbiol. Methods 81:187–193.

STOTZKY, G. and SCHENCK, S. 1976. Volatile organic compounds andmicroorganisms. CRC Crit. Rev. Microbiol. 4:333–382.

STRITZKE, K., SCHULZ, S., LAATSCH, H., HELMKE, E., and BEIL, W.2004. Novel caprolactones from a marine streptomycete. J. Nat.Prod. 67:395–401.

SUNESSON, A. L., VAES, W. H. J., NILSSON, C. A., BLOMQUIST, G.,andERSSON, B., and CARLSON, R. 1995. Identification of volatilemetabolites from five fungal species cultivated on two media.Appl. Environ. Microbiol. 61:2911–2918.

SUNESSON, A. L., NILSSON, C. A., ANDERSSON, B., and BLOMQUIST,G. 1996. Volatile metabolites produced by two fungal species

cultivated on building materials. Ann. Occup. Hyg. 40:397–410.

TEHRANI, A. S., DISFANI, F. A., HEDJAROUD, G. A., and MOHAMMADI,M. 2001. Antagonistic effects of several bacteria on Verticilliumdahliae the causal agent of cotton wilt. Meded. Rijksuniv. GentFak. Landbouwkd. Toegep. Biol. Wet. 66:95–101.

TEHRANI, A. S., ZEBARJAD, A., HEDJAROUD, G. A., and MOHAMMADI,M. 2002. Biological control of soybean damping-off by antago-nistic rhizobacteria. Meded. Rijksuniv. Gent Fak. Landbouwkd.Toegep. Biol. Wet. 67:377–380.

TRACEY, R. P. and BRITZ, T. J. 1989. Freon 11 extraction of volatilemetabolites formed by certain lactic acid bacteria. Appl. Environ.Microbiol. 55:1617–1623.

TYLKA, G. L., HUSSEY, R. S., and RONCADORI, R. W. 1991. Axenicgermination of vesicular-arbuscular mycorrhizal fungi: effect ofselected Streptomyces species. Phytopathology 81:754–759.

VAN LANCKER, F., ADAMS, A., DEMULLE, B., DE SAEGER, S., MORETTI,A., VAN PETHEGHEM, C., and DEKIMPE, N. 2008. Use of headspaceSPME-GC-MS for the analysis of the volatiles produced by indoormolds grown on different substrates. J. Environ. Monit. 10:1127–1133.

VESPERMANN, A., KAI, M., and PIECHULLA, B. 2007. Rhizobacterialvolatiles affect the growth of fungi and Arabidopsis thaliana.Appl. Environ. Microbiol. 73:5639–5641.

VOISARD, C., KEEL, C., HAAS, D., and DÉFAGO, G. 1989. Cyanideproduction by Pseudomonas fluorescens helps to suppress blackroot of tobacco under gnotobiotic conditions. EMBO J. 8:351–358.

VON REUSS, S., KAI, M., PIECHULLA, B., and FRANCKE, W. 2010.Octamethylbicyclo(3.2.1)octadienes from Serratia odorifera.Angew. Chem. Int. Ed. 49:2009–2010.

WALKER, T. S., BAIS, H. P., GROTEWOLD, E., and VIVANCO, J. M. 2003.Root exudation and rhizosphere biology. Plant Physiol. 132:44–51.

WALKER, T. S., BAIS, H. P., DEZIEL, E., SCHWEITZER, H. P., RAHME, L.G., FALL, R., and VIVANCO, J. M. 2004. Pseudomonas aerugi-nosa-plant root interactions. Pathogenicity, biofilm formations,and root exudation. Plant Physiol. 134:3210–3331.

WAN, M., LI, G., ZHANG, J., JIANG, D., and HUANG, H. C. 2008. Effectof volatile substances of Streptomyces platensis F-1 on control ofplant fungal diseases. Biol. Control 46:552–559.

WARGO, M. J. and HOGAN, D. A. 2006. Fungal-bacterial interactions: amixed bag ofminglingmicrobes.Curr. Opin.Microbiol. 9:359–364.

WEISE, T., KAI, M., GUMMESSON, A., TROEGER, A., VON REUß, S.,PIEPENBORN, S., KOSTERKA, F., SKLORZ, M., ZIMMERMANN, R.,FRANCKE, W., and PIECHULLA, B. 2012. Volatile organic com-pounds produced by the phytopathogenic bacterium Xanthomonascampestris pv. vesicatoria 85–10. Beilstein J. Org. Chem. 8:579–596.

WEI-WEI, L., WIE, M., BING-YU, Z., YOU-CHEN, D., and FENG, L.2008. Antagonistic activities of volatiles from four strains ofBacillus spp. and Paenibacillus spp. against soil-borne plant patho-gens. Agr. Sci. China 7:1104–1114.

WENKE, K., KAI, M., and PIECHULLA, B. 2009. Belowground volatilesfacilitate interactions between plant roots and soil organisms. Planta231:499–506.

WENKE, K., WEISE, T., WARNKE, R., VALVERDE, C., WANKE, D., KAI,M., and PIECHULLA, B. 2012. Bactertial volatiles mediating infor-mation between bacteria and plants, pp. 327–348, in G. Witzany(ed.), Biocommunication, signaling and communication in plants.Springer Verlag, Berlin, Heidelberg.

WHEATLEY, R. E. 2002. The consequences of volatile organic com-pound mediated bacterial and fungal interactions. Antonie VanLeeuwenhoek 81:357–364.

WHEATLEY, R., HACKETT, C., BRUCE, A., and KUNDZEWICZD, A.1997. Effect of substrate composition on production of volatileorganic compounds from Trichoderma spp. inhibitory to wooddecay fungi. Int. Biodeterior Biodegradation 39:199–205.

702 J Chem Ecol (2012) 38:665–703

Page 39: Volatile Mediated Interactions Between Bacteria and Fungi in the Soil

WIGGINS, R. J., WILKS, M., and TABAQCHALI, S. 1985. Analysis by gasliquid chromatography of production of volatile fatty acids by anaer-obic bacteria grown on solid medium. J. Clin. Pathol. 38:933–936.

WILKINS, K., LARSEN, K., AND SIMKUS, M. 2000. Volatile metabolitesfrom mold growth on building materials and synthetic media.Chemosphere 41:437–446.

WILL, M. E. and SYLVIA, D. M. 1990. Interaction of rhizospherebacteria, fertilizer, and vesicular-arbuscular mycorrhizal fungiwith sea oats. Appl. Environ. Microbiol. 56:2073–2079.

WILL, C., NACKE, H., THÜRMER, A., and DANIEL, R. 2010. SchlaglichtBiodiversität/Charakterisierung und Nutzung der bakteriellenDiversität in Bodenmetagenomen. Genomxpress 1.10:9–11.

WILLIAMSON, P. R. 1997. Laccase and melanin in the pathogenesis ofCryptococcus neoformans. Front. Biosci. 2:e99–e107.

WINSON, M. K., CAMARA, M., LATIFI, A., FOGLINO, M., CHHABRA, S.R., DAYKIN, M., BALLY, M., CHAPON, V., SALMOND, G. P.,BYCROFT, B. W., et al. 1995. Multiple N-acyl-L-homoserinelactone signal molecules regulate production of virulence deter-minants and secondary metabolites in Pseudomonas aeruginosa.Proc. Natl. Acad. Sci. U.S.A. 92:9427–9431.

WU, S., KRINGS, U., ZORN, H., and BERGER, R. G. 2005. Volatilecompounds from the fruiting bodies of beefsteak fungus Fistulinahepatica (Schaeffer: Fr.) Fr. Food Chem. 92:221–226.

XAVIER, L. J. C. and GERMIDA, J. J. 2003. Bacteria associated withGlomus clarum spores influence mycorrhizal activity. Soil Biol.Biochem. 35:471–478.

XIAO, X., CHEN, H., CHEN, H., WANG, J., REN, C., and WU, L. 2008.Impact of Bacillus subtilis JA, a biocontrol strain of fungal plantpathogens, on arbuscular mycorrhiza formation in Zea mays.WorldJ. Microbiol. Biotechnol. 24:1133–1137.

ZHANG, C. L., WANG, G. P., MAO, L. J., KOMONZELAZOWSKA, M.,YUAN, Z. L., FU-CHENG LIN, F. C., DRUZHINIA, I. S., andKUBICK, C. P. 2010.Muscodor fengyangensis sp. nov. from south-east China: morphology, physiology and production of volatilecompounds. Fungal Biol. 114:797–808.

ZHAO, L. J., YANG, X. N., LI, X. Y., MU, W., and LIU, F. 2011.Antifungal, insecticidal and herbicidal properties of volatile com-ponents from Paenibacillus polymyxa Strain BMP-11. Agr. Sci.China 10:728–736.

ZHU, J., BEAN, H. D., KUO, Y. M., and HILL, J. E. 2010. Fast detectionof volatile organic compounds from bacterial cultures by second-ary electrospray ionization-mass spectrometry. Clin. Microbiol.48:4426–4431.

ZOU, C. S., MO, M. H., GU, Y. Q., ZHOU, J. P., and ZHANG, K. Q. 2007.Possible contribution of volatile-producing bacteria in soil fungi-stasis. Soil Biol. Biochem. 39:2371–2379.

J Chem Ecol (2012) 38:665–703 703


Recommended