+ All Categories
Home > Documents > Waitt Institute Re-Navigation Rpt

Waitt Institute Re-Navigation Rpt

Date post: 17-Nov-2014
Category:
Upload: waitt-institute
View: 783 times
Download: 0 times
Share this document with a friend
100
Nutter and Associates, LLC ReNavigation Research Christopher G Nutter September 09
Transcript
Page 1: Waitt Institute Re-Navigation Rpt

 

 

 

 

Nutter  and  Associates,  LLC      

Re-­‐Navigation  Research  

Christopher  G  Nutter  

September  09  

Page 2: Waitt Institute Re-Navigation Rpt

Nutter  and  Associates  Consulting  

 2009  Waitt  Institute  for  Discovery   2  

 

Waitt  Institute  for  Discovery  

Re-­‐Navigation  Report  

 

Nutter  and  Associates,  LLC  Research  by  Christopher  G.  Nutter  and  Michael  F.  DiBello    

Page 3: Waitt Institute Re-Navigation Rpt

Nutter  and  Associates  Consulting  

 2009  Waitt  Institute  for  Discovery   3  

Acknowledgements  

 

The  authors  and  principal  researchers,  Christopher  G.  Nutter  and  Michael  F.  DiBello,  gratefully  thank  the  

Waitt  Institute  for  Discovery  for  their  exceptionally  professional  guidance,  assistance  and  total  support  

for  this  research.  Without  their  commitment  and  encouragement  this  project  would  likely  have  not  been  

completed.  

 

We  want  to  thank,  and  extend  our  professional  respect,  to  all  of  our  published  colleagues  before  us,  who  

researched  and  investigated  this  accident  for  decades,  and  who  contributed  an  important  body  of  

knowledge  and  understanding  to  this  circumstance  of  a  historical  missing  aircraft.  The  dedication  and  

tireless  efforts  from  these  authors  and  researchers  set  a  very  high  standard.  

 

Finally  we’d  like  to  appreciate  and  recognize  the  sacrifices  made  by  our  families  as  we  embarked  on  this  

enormous  task  to  review  more  than  71  years  worth  of  research  and  evidence.  The  challenge  was  worthy  

of  our  full  commitment.  The  support  from  our  families  and  our  Research  Team  at  the  Waitt  Institute  for  

Discovery  was  critically  important  to  sustain  the  effort.  

Page 4: Waitt Institute Re-Navigation Rpt

Nutter  and  Associates  Consulting  

 2009  Waitt  Institute  for  Discovery   4  

 

Table  of  Contents  

Acknowledgements ......................................................................................................................................1

Acknowledgements ......................................................................................................................................3

Part  I.  Executive  Summary,  Work  Scope  and  Background  Information ........................................................7

Executive  Summary ......................................................................................................................................7

Scope  of  Work.............................................................................................................................................10

Data  Sources...............................................................................................................................................11

Multi-­‐Source  Integration  (MSI)  Technique..................................................................................................11

Research  Reviews .......................................................................................................................................11

Definitions...................................................................................................................................................13

Historical  Perspective .................................................................................................................................13

Time  Reference ...........................................................................................................................................15

Radio  Call  Log .............................................................................................................................................17

Part  II.    Navigation  Paths  -­‐  Lae  to  Howland  Island .....................................................................................19

General  Flight  Path  Reconstruction ............................................................................................................19

Methodology.......................................................................................................................................... 19 Overview  -­‐  Flight  Paths  A,  B,  and  C.............................................................................................................20

End-of-Navigation Point ........................................................................................................................ 22 EON Locations ...................................................................................................................................... 23 Path Depictions ..................................................................................................................................... 23 Path C – Initial Discussion..................................................................................................................... 24

Detailed  Fuel  Consumption  Analysis...........................................................................................................27

The Cambridge Fuel Analyzer............................................................................................................... 28 Sperry Gyro Horizon.............................................................................................................................. 34 Appendix 1 Excerpt – Review and Summary ........................................................................................ 35 Fuel  Consumption  and  Time  Remaining  From  All  Analyses ..................................................35 Fuel  Remaining  Implications.................................................................................................36

Part  III.  Detailed  Flight  Analysis ..................................................................................................................37

Validated  Statistical  Data ...........................................................................................................................37

Winds .................................................................................................................................................... 37 Speeds – Aircraft and AE Performance ................................................................................................ 38 Flight  Modeling  –  Lae  to  Howland  Island .............................................................................43

Improved Accuracy................................................................................................................................ 46 Performance  Specification  Challenges........................................................................................................46

Page 5: Waitt Institute Re-Navigation Rpt

Nutter  and  Associates  Consulting  

 2009  Waitt  Institute  for  Discovery   5  

“Speed 140 knots…” ............................................................................................................................. 47 Flight  Data  -­‐  AE  Natal  to  Dakar ..................................................................................................................49

Position and Time.................................................................................................................................. 49 En route Weather – Overcast or Undercast .......................................................................................... 50 Aircraft Fuel Load .................................................................................................................................. 51 In-Flight Speed and Performance ......................................................................................................... 52 Comparing Natal-Dakar (St. Louis) and Lae-Howland .......................................................................... 52

Part  IV.    Detailed  Flight  Path  Navigation  and  Position  Reporting ..............................................................53

Howland  Island  Coordinates.......................................................................................................................53

For  an  arrival  short  of  Howland,  this  only  adds  to  the  challenge  of  visual  acquisition.  Geodetic  Datums .54

Specific  Flight  Path  Navigation  Summary  –  Lae  to  Howland  Island ...........................................................54

Lateral Navigation – Lae to Howland Island.......................................................................................... 54 North  of  Howland  Island.............................................................................................................................55

Position  Reporting ......................................................................................................................................56

The 0418 GMT In-flight position report.................................................................................................. 56 The 0519 GMT In-flight position report anomaly ................................................................................... 56 Coordinate  Transposed.........................................................................................................56 Time  Error .............................................................................................................................56

The 0718 GMT In-flight position report.................................................................................................. 57 The 1030 GMT Visual Sighting of Nauru Island Lights ......................................................................... 57 “A  Ship  in  Sight  Ahead” ........................................................................................................57

The 1745 GMT In-flight position report.................................................................................................. 59 The 1815 GMT In-flight position report.................................................................................................. 59 Aircraft  Position  –  Report  Correlation ..................................................................................59

Fatigue  and  Human  Factors .......................................................................................................................60

Celestial  Navigation....................................................................................................................................61

Position Report Time and Corresponding Celestial Opportunities ........................................................ 62 A  Line  of  Position  Approach  Unlikely ..........................................................................................................65

Sun  Rise  and  the  LOP ..................................................................................................................................65

Part  V.    The  Final  Search  Grid .....................................................................................................................66

Search  Grid  Orientation ..............................................................................................................................66

Final  Search  Grid.........................................................................................................................................67

Standard Grid ........................................................................................................................................ 67 Bathymetric Grid.................................................................................................................................... 68

Search  Strategy  Considerations ..................................................................................................................69

Debris Field ........................................................................................................................................... 69 In Situ Documentation ........................................................................................................................... 69

Aircraft  Views  and  Dimensions ...................................................................................................................69

Dimensional Data .................................................................................................................................. 69 Exemplars ............................................................................................................................................. 72

Page 6: Waitt Institute Re-Navigation Rpt

Nutter  and  Associates  Consulting  

 2009  Waitt  Institute  for  Discovery   6  

Prior  Work  Review ......................................................................................................................................73

Long, Elgen M. and Marie K.................................................................................................................. 73 Swenson, G., Culick, F.E.C. .................................................................................................................. 74 Safford, Laurance.................................................................................................................................. 75 Nesbit, Roy............................................................................................................................................ 76 Pellegreno, Ann Holtgren ...................................................................................................................... 78 Finch, Linda........................................................................................................................................... 79 Strippel, Dick ......................................................................................................................................... 79 Gillespie, Ric ......................................................................................................................................... 79 CDR Thompson, Commanding Officer, Itasca ...................................................................................... 80 Hewlett Schlereth .................................................................................................................................. 81 Earhart, Amelia...................................................................................................................................... 81 Signal Strength and Distance................................................................................................................ 81

APPENDIX ...................................................................................................................................................83

Abbreviations..............................................................................................................................................83

Search  Grid  and  Scenarios ..........................................................................................................................83

Reference  Grids...........................................................................................................................................84

Fuel  Remaining ...........................................................................................................................................85

Fuel  Consumption .......................................................................................................................................85

Aircraft  Gross  Weight .................................................................................................................................87

Fuel  Consumption  and  Time  Remaining  From  All  Analyses ........................................................................88

“…Gas  is  Running  Low…” ............................................................................................................................89

Engine  Specific  Fuel  Consumption  (SFC)  Detail ...........................................................................................89

MSI  Analysis  (Multi-­‐Source  Integration) .....................................................................................................93

Conclusions  for  Fuel  Consumption..............................................................................................................93

Possible  Impact  Areas.................................................................................................................................94

Search  Considerations ................................................................................................................................96

Effects of Significant Lateral Deviation North of Path C ........................................................................ 96 Conclusion............................................................................................................................................. 96

Appendix  2 ..................................................................................................................................................97

Search Grids and Grid Coordinates ...................................................................................................... 97  

Page 7: Waitt Institute Re-Navigation Rpt

Nutter  and  Associates  Consulting  

 2009  Waitt  Institute  for  Discovery   7  

 

Part  I.  Executive  Summary,  Work  Scope  and  Background  Information  

 

Executive  Summary  

 

This  research  was  designed  to  conduct  a  detailed  assessment  of  the  body  of  foregoing  World  Flight  

research,  critically  review  evidence  in  prior  related  works,  validate  or  critique  those  works,  and  localize  

future  search  options.  A  reduction  in  the  planned  search  area  would  enhance  the  project  by  reducing  

search  time  on  station.  

Approaching  this  task  as  a  location  of  a  lost  aircraft,  and  definition  of  a  probable  search  area,  required  

understanding,  to  the  fullest  extent  possible,  the  exact  possible  flight  paths,  profiles,  speeds,  flight  times,  

fuel  consumption,  and  pilot  behaviors.  Specifically  in  this  case,  these  factors  would  determine  flight  time  

endurance  remaining  upon  arrival  in  the  Howland  area  –  directly  related  to  where  the  aircraft  could  be  

located.  With  little  direct  information  on  any  of  these  factors,  and  the  importance  of  accurate  

assessment,  this  information  had  to  be  created  from  widely  disparate  sources,  research,  and  analysis.  

A  detailed  review  was  conducted  of  at  least  ten  authors  writing  directly  about  the  World  Flight,  more  

than  a  dozen  reports,  and  more  than  8,000  pages  of  data  associated  with  the  World  Flight  attempt.    

Other  documents  examined  included  the  entire  Amelia  Earhart  Papers  of  the  George  Palmer  Putnam  

Collection  of  2,221  images  from  the  Purdue  University  e-­‐archives;  Lockheed  Electra  and  period  aircraft  

operating  manuals;  meteorological  and  oceanographic  data  including  the  Lae-­‐Howland  geographical  

climatology;  the  effects  of  the  Northern  Equatorial  Current,  and  Northern  Equatorial  Counter  Current  in  

the  Howland  area;  and  other  authors/pieces  with  various  theories  about  the  disappearance  of  Amelia  

Earhart  and  Fred  Noonan.  

Aerodynamic  engineering  data  and  aircraft  performance  were  examined  in  great  detail,  from  many  

sources  and  authoritative  records.  Aircraft  performance  is  a  major,  critically  important  variable  in  this  

analysis,  and  largely  determines  the  vertical  and  lateral  flight  profile  from  Lae  to  Howland  Island.  

Amelia  Earhart’s  collection  of  flight  notes,  biography,  life  events,  and  her  career  in  aviation  were  closely  

studied  to  gain  insight  into  her  motivations  and  beliefs.  Perhaps  most  important,  we  wanted  to  

understand  Amelia’s  behaviors  -­‐-­‐  how  she  planned  missions,  flew  aircraft,  thought  about  flying  them,  

and  how  she  actually  conducted  her  flights  throughout  her  career  in  the  air.  

Recreating  the  Lae-­‐Howland  flight  segment,  using  as  much  hard  data  and  facts  as  were  available,  was  

critical  to  meeting  research  objectives.  A  faithful  re-­‐creation  based  on  fact  was  the  primary  objective,  

and  offered  the  best  chance  to  accurately  locate  the  aircraft.  

Page 8: Waitt Institute Re-Navigation Rpt

Nutter  and  Associates  Consulting  

 2009  Waitt  Institute  for  Discovery   8  

Three  possible  flight  paths  were  defined  and  evaluated,  each  terminating  in  a  high  confidence,  End-­‐of-­‐

Navigation  point.  Among  the  three  paths,  one  path  appears  most  likely  (Path  C),  with  a  very  high  

confidence  End-­‐of-­‐Navigation  point;  one  path  is  unlikely  (Path  A);  and  one  is  possible  but  with  a  lower  

confidence  that  it  was  executed  (Path  B).  

The  highest  confidence  Path  C  results  from  a  rigorous  path  recalculation,  aerodynamic  performance  and  

fuel  consumption  assessments,  with  significant  cross-­‐validation  of  results  and  conclusions.  Error  

sensitivity  analyses  were  performed  on  results  for  variable  wind  velocities,  wind  directions,  and  fuel  

consumption.  

A  Search  Grid  was  constructed  around  this  Path  C  End-­‐of-­‐Navigation  point  to  accommodate  terminal  

area  maneuvering  that  was  inferred  from  aviation  experience,  and  application  of  the  most  likely  

behavior  for  Amelia  Earhart  and  Fred  Noonan,  on  July  2,  1937.  

The  search  grid  was  initially  oriented,  and  modified,  as  shown  in  Appendix  2,  further  refining  

Autonomous  Underwater  Vehicle  search  strategies.  Several  iterations  of  the  grid  with  the  Search  Team  

resulted  in  the  final  search  grid  included  in  this  report.  

Previous  estimates  of  position  for  Amelia  Earhart  and  Fred  Noonan’s  Electra  include  

• Northwest  of  Howland  Island  at  375nm  +/-­‐100nm  (Safford)  

• 425sm  southeast  of  Howland  at  Gardner  Island  (Gillespie)  

• North  of  Howland  Island  at  52nm  (Long)  

• On  islands  of  New  Britain,  Mili  Atoll  (Marshall  Islands),  Saipan  (Various)  

• Northwest  of  Howland  Island  within  30  miles  (Nesbit)  

The  following  are  among  higher  confidence  data  that  support  analyses  

• The  fuel  load  of  the  Electra  leaving  Lae  was  likely  between  1080-­‐1100  US  gallons.  

o Chater  reports  the  fuel  load  at  1100  gallons.  

o Collopy  reports  the  fuel  load  at  1100  gallons.  

o Swenson  and  Culick  calculate  the  fuel  load  at  1080  gallons.  

• Thunderstorms  were  forecast  in  at  least  two  weather  reports  from  Hawaii,  at  250-­‐300  miles  east  

of  Lae,  and  Amelia  received  one  of  these  reports  before  leaving  Lae.  The  second  report  was  

broadcast  from  Lae,  to  AE,  during  the  first  7  hours  of  the  mission.  

• The  Electra  departed  Lae  at  0000  GMT.  

• Of  thirteen  position  reports  made  by  Amelia  Earhart  from  Lae-­‐Howland,  only  two  included  a  

latitude  and  longitude  position,  and  one  of  those  is  potentially  in  error  in  time  and/or  location.  

o This  is  unusual  given  Fred  Noonan’s  experience  with  making  detailed  position  reports  on  

South  Pacific  proving  flights  with  Pan  Am  in  1935.  

o Before  joining  the  World  Flight,  Fred  wrote  about  the  importance  of  complete  position  

reports,  including  latitude  and  longitude,  air  and  ground  speeds,  wind  direction  and  

speed,  and  outside  air  temperature,  in  a  post-­‐flight  report  following  one  of  these  trips.  

Page 9: Waitt Institute Re-Navigation Rpt

Nutter  and  Associates  Consulting  

 2009  Waitt  Institute  for  Discovery   9  

• The  Lae-­‐Howland  reporting  history  is  also  unusual  and  unlike  that  accomplished  on  the  Oakland  

to  Honolulu,  first  leg  attempt.  

o On  this  initial  attempt,  Amelia  made  9  position  reports,  4  with  position  

latitude/longitude  data,  and  on  which  Fred’s  log  shows  approximately  35  celestial  

and/or  navigation  fix  computations  taken  en  route.  

o “…In  all  cases  [Oakland-­‐Honolulu  initial  World  Flight  Attempt]  Earhart  provided  dead  

reckoning  positions.  Of  the  four  documented  positions,  three  were  provided  with  times,  

but  the  wording  provided  by  the  USCG  Hawaiian  Sector  leads  to  some  ambiguity  as  to  

when  Earhart  stated  these  positions.  Interestingly,  all  four  messages  indicate  that  the  

positions  provided  were  well  prior  to  the  actual  broadcast  times.  [The  aircraft  is  beyond  

the  waypoint  reported].  Based  upon  this  analysis,  one  can  easily  speculate  that  Noonan's  

method  was  to  project  future  positions  via  dead  reckoning,  and  provide  that  information  

to  the  pilot  sometime  prior  to  the  radio  broadcasts.  In  no  instance  does  Earhart  provide  

timely  information,  nor  does  she  provide  an  actual  navigational/celestial  fix  and  time  of  

the  fix  to  help  constrain  exactly  where  the  plane  was.”1  

o “In  summary  [Oakland-­‐Honolulu  initial  World  Flight  Attempt]  Noonan  made  use  of  seven  

radio  bearings,  14  star/planet  LOPs  (of  which  nine  were  used  for  navigational  fixes),  and  

the  plane  made  only  four  course  corrections.  Analysis  of  the  flight  path  versus  weather  

maps  produced  after  this  date  show  major  concurrence  with  the  winds  aloft  patterns.  It  

is  clear  that  the  navigator’s  major  responsibility  was  to  monitor  the  progress  of  the  

flight,  and  to  suggest  course  corrections  only  when  deviations  from  desired  flight  path  

became  too  extreme.  Use  of  projected,  future  DR  positions  allowed  Noonan  to  check  his  

forecasts  vs.  later  navigational  fixes  to  update  his  speed  and  direction  over  the  ground,  

and  to  offer  approximate  positions,  when  necessary.”2  

• Fred  Noonan  may  have  used  this  technique,  if  only  partially  reported  by  Amelia  Earhart,  on  the  

Lae-­‐Howland  segment.  There  is  no  evidence  to  support  that  Fred  functioned  differently  on  this,  

his  most  difficult  segment,  than  on  prior  segments.  The  lack  of  reporting  integrity  and  

consistency  may  be  understandable  in  that  throughout  the  World  Flight,  position  reporting  was  

infrequent,  and  accomplished  mostly  on  the  Lae  to  Howland  segment.  

• From  AE’s  aircraft  performance  and  re-­‐calculated  time  of  arrival  at  waypoints,  compared  with  

the  time  AE  reported  those  waypoints,  there  is  behavioral  consistency  in  the  technique  outlined  

above.  

o This  helps  to  characterize  the  reasonableness  of  these  comparisons,  understand  the  

probability  associated  with  each  path,  and  assess  the  accuracy  of  navigation.  

• Of  note  is  that  at  1745  GMT,  AE  reported  “about  200  miles  out.”  This  was  a  position  likely  

provided  by  FN  using  celestial  fixes  throughout  the  night  of  good  visibility,  made  from  excellent  

celestial  bodies  available,  and  therefore,  an  accurate  position.  

                                                                                                                         

1  Randall  S.  Jacobson,  Ph.  D.,  The  World  Flight,  First  Attempt,  Oakland  to  Honolulu  (TIGHAR.ORG,  2006).  2  Ibid.  

Page 10: Waitt Institute Re-Navigation Rpt

Nutter  and  Associates  Consulting  

 2009  Waitt  Institute  for  Discovery   10  

o The  aircraft’s  distance  from  the  1937  Howland  Island  coordinates  at  the  time  of  this  

report  is  204  nautical  miles,  according  to  the  Path  C  re-­‐calculations.  

o The  report  and  the  position  occur  at  AE’s  typical  reporting  time  of  15  and  45  minutes  

past  the  hour.  

o This  appears  that  at  1745,  the  Electra  was  on  track  and  on  course  to  Howland,  and  FN  

calculated  their  position  with  good  accuracy  for  1937  equipment  and  methods.  

This  level  of  accuracy,  while  not  routine  in  that  period,  was  certainly  possible.  

o This  creates  the  possibility  that  something  happened  in  the  last  200  nautical  miles  

distance  to  Howland  Island.  

• After  0718  GMT,  position  reports  were  made  in  the  blind.  

o Amelia  had  no  pre-­‐arranged  communications  between  Lae  and  Itasca.  

o There  were  no  arrangements  for  communicating  with  Ontario.  

o There  were  no  arrangements  for  communicating  with  Nauru  Island.  

• Aircraft  aerodynamic  performance  was  established  with  a  high  degree  of  confidence  through  

data  integration  from  many  sources,  and  with  consideration  for  pilot  behavioral  performance.  

• While  radio  strength  is  not  entirely  related  to  distance,  strengths  associated  with  the  final  few  

reports  are  the  only  indication  of  possible  relative  terminal  area  position.  

Our  research  concludes  for  Path  C,  the  most  likely  path,  an  End-­‐of-­‐Navigation  point  35-­‐28nm  southwest  

of  Howland  Island,  bearing  067  degrees  to  the  1937  position  of  Howland  Island.  A  water  entry  area  is  

shown  for  three  fuel  exhaustion  scenarios  (Swenson  and  Culick,  Nutter,  and  Kelly  Johnson)  which  plot  

theoretical  points  of  fuel  exhaustion  following  AE’s  arrival  at  the  End-­‐of-­‐Navigation  point,  as  a  function  

of  fuel  remaining  at  the  End-­‐of-­‐Navigation  point.  These  comprise  theoretical  position  boundary  limits,  

assuming  AE  conducted  the  search  pattern  depicted,  throughout  terminal  maneuvering  in  search  of  

Howland  and  Itasca.  A  high  confidence  water  entry  area  is  shown  for  the  time  2013  GMT  until  2100  

GMT,  likely  from  either  fuel  exhaustion,  or  from  controlled  flight  into  terrain,  resulting  from  loss  of  

situational  awareness,  fatigue,  or  abnormal  mechanical  circumstances.  The  maximum  fuel  remaining  at  

1912  GMT  is  computed  at  123  gallons,  and  with  a  failure  of  the  Cambridge  Fuel  Analyzer  (discussed  later  

in  this  report),  the  fuel  remaining  may  have  been  63  gallons,  enough  for  approximately  90  minutes  flying  

time.  

Fuel  consumption  is  discussed  extensively  later  in  this  report.  It  is  very  likely  that  fuel  exhaustion  occurred  

between  2013  GMT  and  2100  GMT.  

Scope  of  Work  

Tasking  for  this  report  was  to  conduct  an  internal  audit  of  prior  research  and  provide  assessments  on  the  

validity  of  theories,  methodologies,  assumptions,  and  historical  conclusions  regarding  the  search  for  a  

major  historical  artifact  as  disclosed  by  WID;  critically  examine  previous  studies;  document  

considerations  regarding  planned  search  strategies  and  if  possible  attempt  to  refine  a  location  for  The  

Project,  or  narrow  the  area  of  interest.  

Page 11: Waitt Institute Re-Navigation Rpt

Nutter  and  Associates  Consulting  

 2009  Waitt  Institute  for  Discovery   11  

Collaborate  with  Project  researchers.  

Conduct  research,  audits,  and  review  of  other  previous  work  and  assessments.  

Investigate  the  “accident”  Project,  in  terms  of  standard  accident  investigation  methodologies,  and  

conduct  new  research  to  achieve  acceptable  location  assessments,  narrow  the  area  of  interest,  and/or  

validate  planned  search  strategies.  

Data  Sources  

Direct  evidence  consists  of  actual  aircraft  performance,  AE  reports  and  flight  logs,  operating  manual  

data,  and  reference  publication  information  such  as  the  Lockheed  Electra  Flight  Operating  Manual,  the  

celestial  Almanac  Pub  249  used  for  celestial  navigation,  and  data  from  the  engine’s  manufacturer,  Pratt-­‐

Whitney.  

All  other  data  is  considered  supplemental,  useful  and  important,  but  subject  to  less  accuracy  than  

validated,  direct  evidence.  

Multi-­Source  Integration  (MSI)  Technique  

This  research  employed  an  MSI  approach  to  re-­‐constructing  relevant  facts  concerning  the  last  leg  of  the  

World  Flight  attempt.  With  MSI,  facts  and  other  data  are  evaluated  in  a  manner  similar  to  Linear  

Programming,  except  that  most  relationships  among  parameters  are  not  strictly  numerically  defined,  but  

rather,  qualitatively  related.  Many  of  the  links  between  data  elements  must  be  created,  and  created  in  

ways  that  have  not  been  done  before.  

MSI  is  a  forensic  and  creative  approach  to  a  data  fusion  process,  integrating  information  from  multiple  

sources.  MSI  can  sometimes  corroborate  a  finding  as  fact,  refute  assertions  made  as  fact,  and  provide  

boundary  limits  on  the  most  likely  conditions  and  conclusions.  

Research  Reviews  

This  research  methodology  included  an  integrated  study  and  analysis  of  the  following  publications.  

Amelia  Earhart,  Dick  Strippel,  Exposition  Press,  Inc.,  1972  

Amelia  Earhart,  The  Mystery  Solved,  Elgen  M.  and  Marie  K.  Long,  Simon  and  Schuster,  1999  

Analysis  of  Amelia  Earhart’s  Final  Flight  July  2,  1937,  G.  Swenson  and  F.E.C.  Culick,  JPL,  CIT  

Cruise  Report  24  July,  1937  CDR  Warner  Thompson,  Commanding  Officer,  Itasca  (Gillespie  disk)  

Earhart’s  Flight  Into  Yesterday,  Captain  Laurance  Safford  (USN-­‐R)  with  Cameron  Warren  and  Robert  

Payne,  Paladwr  Press,  2003  

Page 12: Waitt Institute Re-Navigation Rpt

Nutter  and  Associates  Consulting  

 2009  Waitt  Institute  for  Discovery   12  

Finding  Amelia,  Ric  Gillespie,  Naval  Institute  Press,  2006  

Itasca  Radio  Logs  

Kelley  Johnson  Telegrams    -­‐  Electra  test  flight  data  and  World  Flight  performance  recommendations  

Last  Flight,  Amelia  Earhart,  Quinn  &  Boden  Company,  1937  

Lockheed  Report  487  -­‐  June  1936  by  Clarence  L.  “Kelly”  Johnson  and  W.C.  Nelson  

Missing,  Believed  Killed,  Roy  Conyers  Nesbit,  Sutton  Publishing  LTD  (UK),  2002  

No  Limits,  Linda  Finch  with  Donald  Smith,  World  Flight,  Inc.,  1996  

Radio  Press  News  –  USS  Colorado  

The  Black  Report  –  Richard  Black,  U.S.  Department  of  Interior  

The  Chater  Report  –  Eric  Chater,  Guinea  Airways  Limited  

The  Cooper  Report  -­‐  Daniel  Cooper,  Army  Corps  on  Itasca  

The  Dowell  Report  –  Commander,  Lexington  Group  

The  Friedell  Report  –  Captain  Friedell,  USS  Colorado  

Weather  Reports  from  accounts  by  Collopy,  Chater,  Itasca  logs  and  historical  meteorological  data  

World  Flight,  Ann  Pellegreno,  Iowa  State  University  Press,  1971  

Page 13: Waitt Institute Re-Navigation Rpt

Nutter  and  Associates  Consulting  

 2009  Waitt  Institute  for  Discovery   13  

 

Definitions  

AE   –   Amelia  Earhart  

CFA   –   Cambridge  Fuel  Analyzer  

EON   –   End-­‐of-­‐Navigation  point  

FN   –   Fred  Noonan  

GS   –   Ground  Speed  

IAS   –   Indicated  Air  Speed  

L487   –   Lockheed  Report  487  

MSI   –   Multi-­‐Source  Integration  

SFC   –   Specific  Fuel  Consumption  (lb/BHP/hr)  

TAS   –     True  Air  Speed  

Historical  Perspective  

The  World  Flight  attempt  commenced  at  1630  on  March  17,  1937  with  a  departure  from  Oakland,  CA  for  

Honolulu,  HI.  The  flight  departed  with  947  gallons  of  fuel,  at  a  gross  weight  of  14,000  lbs.  Takeoff  power  

was  set  at  1100  Brake  Horsepower  (engines  were  rated  at  600  HP  per  engine  with  takeoff  power  time  

limited)  and  shortly  after  becoming  airborne,  AE  reduced  the  power  in  keeping  with  her  characteristic  

“kind”  treatment  of  engines.3  

It  is  relevant  that  AE  frequently  gave  human  qualities  to  her  machinery,  particularly  to  engines,  and  

referred  to  them  in  humanistic  terms.  AE  seemed  to  always  endeavor  to  treat  her  equipment  with  

kindness,  not  demand  “too  much”  from  faithful  engines,  or  push  the  airframe  “too  hard”  in  speed,  

turbulence  or  during  landings.  She  wrote,  “Once  aloft  [from  Oakland],  I  throttled  down.  Engines  have  

human  attributes  –  they  usually  respond  to  kindly  treatment.  With  a  long  grind  before  them  I  wished  to  

give  mine  the  least  possible  punishment.”4  

This  behavior  is  reflected,  and  to  some  extent,  governs,  AE’s  aircraft  performance  throughout  her  World  

Flight  segments,  which  can  be  generally  considered  “consistently  conservative.”  

                                                                                                                         

3  Elgen  M.  and  Marie  K.  Long,  Amelia  Earhart  -­‐-­‐  The  Mystery  Solved  (New  York:  Simon  and  Schuster,  1999)  56.  4  Amelia  Earhart,  Last  Flight  (Rahway,  N.J:  Harcourt,  Brace  and  Company,  1937)  58.  

Page 14: Waitt Institute Re-Navigation Rpt

Nutter  and  Associates  Consulting  

 2009  Waitt  Institute  for  Discovery   14  

En  route  to  Honolulu,  high  tailwinds  pushed  ground  speed  at  one  point  to  180  mph,  and  AE  slowed  to  

120  mph  indicated  airspeed  at  10,000  feet  so  as  not  to  arrive  before  sunrise,  burning  slightly  less  than  20  

gallons  per  hour  (GPH).  It  was  not  specified  if  this  was  20  GPH  total,  or  per  engine,  but  it  is  likely  a  per  

engine  consumption  rate,  for  40  gallons  per  hour  total.  This  conforms  to  Pratt-­‐Whitney  engine  data.  

(This  data  point  is  useful  for  consideration  of  maximum  endurance  speed,  and  fuel  consumption  rate,  

during  terminal  area  maneuvering  in  the  vicinity  of  Howland  Island.  In  this  environment,  fuel  

consumption  rate  for  analysis  was  defined  in  this  research  as  40  GPH  at  120  mph  indicated  airspeed.  

Indicated  air  speed  is  roughly  equivalent  to  ground  speed  at  low  altitudes,  and  construction  of  the  search  

grid  used  a  120  mph  ground  speed.)  

FN  instructed  AE  to  begin  a  descent  at  80  miles  from  Makapu.  This  was  approximately  in  line  with  

recommendations  made  by  Lockheed  and  Kelly  Johnson5,  to  commence  descents  at  100-­‐150  statute  

miles  at  200-­‐300  feet  per  minute  descent  rate,  using  slightly  less  than  cruise  power,  and  approximately  

maintaining  cruise  speed.6  

This  guidance  is  also  consistent  with  the  Electra  Operating  manual  from  an  airline  company,  for  the  

Lockheed  10A  Electra  aircraft.  

FN  likely  worked  in  nautical  miles,  and  80  nautical  miles  is  92  statute  miles,  within  9%  of  the  

recommended  minimum  descent  distance.  

The  flight  time  of  15  hours  47  minutes,  over  the  2410  statute  miles,  resulted  in  an  average  ground  speed  

of  152.7  mph.  This  was  a  higher  speed  than  normally  flown  for  long  mission  distances,  a  result  of  the  

higher-­‐than-­‐anticipated  tail  wind  conditions.  

On  the  subsequent  flight  segment  from  Hawaii,  a  takeoff  mishap  resulted  in  aircraft  damage  requiring  

repairs  to  the  Electra,  made  at  Lockheed  in  Burbank,  CA.  The  aircraft  was  shipped  to  Lockheed  via  

surface  vessel.  This  accident  resulted  in  canceling  the  first  World  Flight  attempt,  and  delayed  the  second  

World  Flight  attempt  while  repairs  were  made  to  AE’s  damaged  aircraft.  During  these  repairs  at  

Lockheed,  apparently,  one  of  the  original  two  starboard  side  fuselage  windows  was  replaced  with  

aircraft  skin  sheet  metal,  at  approximately  amidships.  Comparative  photographs  reveal  this  alteration,  

not  considered  significant  to  either  navigation  or  the  mission.  This  alteration  has  not  been  addressed  in  

previous  research.  Three  aft  windows  remained,  two  on  the  left  side  at  the  entrance  door  and  just  

forward  of  the  door  at  the  navigator  station,  and  one  on  the  right  side  of  the  fuselage,  for  FN  navigation.  

                                                                                                                         

5  Clarence  L.  “Kelly”  Johnson  and  W.C.  Nelson,  Lockheed  Report  487  Range  Study  of  Lockheed  Electra  Bimotor  Airplane  (California,  Lockheed  Aircraft  Company  -­‐  June  1936).  6  Kelley  Johnson,  Telegrams    -­‐  Electra  flight  test  data  and  World  Flight  performance  recommendations  (Western  Union  11  March  1937).  

Page 15: Waitt Institute Re-Navigation Rpt

Nutter  and  Associates  Consulting  

 2009  Waitt  Institute  for  Discovery   15  

An  aircraft  and  contents  pre-­‐shipping  inventory,  made  by  military  personnel  at  Luke  Field7,  revealed  two  

important  items.  One  was  a  collection  of  11  insect  collection  tubes,  also  described  by  AE  as  about  1  

meter  in  length  with  the  circumference  of  a  broom  handle.  These  were  used  to  collect  air  samples,  and  

specimens,  en  route  at  various  places  around  the  world,  in  conjunction  with  government  and  university  

research8.  These  may  be  identifiable  in  a  debris  field.  Second,  the  inclusion  of  6x30  binoculars  was  an  

indication  that  binoculars  may  have  been  used  in  the  final  terminal  area  search  for  Howland.  

While  life  vests  were  noted,  a  life  raft  was  not  noted  in  this  inventory.  

Following  repairs  completed  on  May  19,  1937,  NR16020  was  flown  to  Oakland,  CA  on  May  21,  1937,  

then  to  Tucson,  AZ;  El  Paso,  TX;  New  Orleans,  LA;  and  to  Miami,  FL,  arriving  the  afternoon  of  May  23,  

1937  for  a  week  of  final  World  Flight  preparations.  

On  June  1,  1937  at  0556  local  time  (1056  GMT)  in  Miami,  NR16020  departed  for  Oakland,  CA  via  an  

eastbound  equatorial  route  around  the  world.  Aboard  were  AE  and  FN.  

Their  first  stop  was  San  Juan,  Puerto  Rico.  Amelia  and  Fred’s  plan  called  for  a  flight  time  of  7  hours  40  

minutes  on  this  leg.  AE  indicates  they  arrived  at  approximately  1310  local  time,  at  1810  GMT,  with  an  

approximate  actual  flight  time  for  1153  statute  miles  of  7  hours  18  minutes,  and  an  average  ground  

speed  of  157.9  mph.  

References  to  aircraft  and  mission  performance  throughout  the  World  Flight  provide  an  audit  trail  of  

characteristic  and  historical  data  concerning  speeds,  engine  power  settings,  fuel  consumption,  flight  

behaviors,  human  factors,  fatigue  management,  navigation,  and  progress  toward  achieving  World  Flight  

mission  objectives.  

This  data  provides  a  statistical  basis  to  compare  with  re-­‐calculated  navigation  and  aircraft  performance,  

providing  a  quality  assurance  function  that  methodology  is  reasonable,  reliable,  and  affords  improved  

accuracy.  

Additional  flight  segments  are  discussed  in  following  sections.  

Time  Reference  

Additional  central  factors  involved  in  this  research  were  Time  and  Radio  Schedules  (transmit  and  receive  

plans  among  various  parties).  These  issues  are  well  documented  by  Long,  Safford,  and  Itasca  logs.  These  

complexities  are  important  to  establishing  an  accurate  timeline,  which  is  necessary  to  document  the  

flight  profile  and  likely  end  point  of  the  mission.  Resolving  all  time  issues  was  critical  to  accurate  re-­‐

construction.  

                                                                                                                         

7  Ric  Gillespie,  Finding  Amelia:  Luke  Field  Inventory,  CD-­‐ROM  (Maryland:  Naval  Institute  Press,  2006).  8  Fred  C.  Meier,  Department  of  Agriculture.  

Page 16: Waitt Institute Re-Navigation Rpt

Nutter  and  Associates  Consulting  

 2009  Waitt  Institute  for  Discovery   16  

Perhaps  Long  said  it  best9,  “At  that  point,  Howland  Island,  and  the  three  ships  [USS  Ontario,  USS  Swan,  

and  Itasca]  were  operating  with  their  individual  clocks  set  in  five  different  time  zones  and  their  calendars  

on  two  different  days  and  dates.  Two  were  set  in  zones  where  the  whole  hour  came  at  the  same  time  as  

the  Greenwich  whole  hour;  two  had  their  clocks  set  a  half  hour  different  from  Greenwich  time;  the  fifth,  

Earhart’s,  was  variable  and  changed  with  her  movements.  With  the  International  Date  Line  in  the  middle  

of  the  assembled  ships  and  stations,  the  system  was  all  but  incomprehensible.  Any  requirement  that  an  

action  be  timed  to  occur  on  the  hour  as  supposed  to  on  the  half  hour,  at  a  quarter  before  the  hour  as  

opposed  to  a  quarter  after  the  hour,  or  at  any  specific  number  of  minutes  before  or  after  the  hour,  was  

wide  open  to  misinterpretation….”  

Further,  Long  states,  “…Howland  Island  was  using  the  10+30  hour  time  zone  –the  same  as  Hawaii  

standard  time  –  while  the  Itasca  was  using  the  11+30  hour  time  zone;  the  two  were  one-­‐half  mile  apart,  

but  one  hour  different  in  time.  

The  research  methodology  for  The  Project  baselined  all  calculations  to  Greenwich  Time,  also  known  as  

Greenwich  Mean  Time  (GMT)  or  Universal  Coordinated  Time  (UCT).  

                                                                                                                         

9  Elgen  M.  and  Marie  K.  Long,  Amelia  Earhart  -­‐-­‐  The  Mystery  Solved  (New  York:  Simon  and  Schuster,  1999)  165.  

Page 17: Waitt Institute Re-Navigation Rpt

Nutter  and  Associates  Consulting  

 2009  Waitt  Institute  for  Discovery   17  

 

Radio  Call  Log  

Below  is  a  summary  of  relevant  radio  reports.  

Report Local / GMT Time Originator Description

1 July WX 2330 GMT Itasca SFC NE 14 mph. At 9000 feet E-NE 31 mph. LONG p206. Takeoff Lae on 2 July

1000 Lae 0000 GMT Lae 1080-1150 gallons aboard.

2 July WX 0000 GMT Fleet Base Pearl Harbor CB 300 miles east. Winds E-SE 25 knots (29 mph) to ONTARIO then E-ENE 20 knots (23 mph) to Howland. CHATER Report – Large Notebook. CHATER p7-8.

WX 0000 GMT

Baro 29.89 Temp 83 deg F winds E 3. Cloudy CI CI STR CU CUMI moving from E. Sea smooth…NARU 8 AM (not clear local or GMT but assume local taken before takeoff but not received by AE since it arrived Lae at 1000 local, at takeoff), Upper Air Observation 2000 feet 90 degrees 14 mph; 4000 feet 90 degrees 12 mph; 7500 feet 90 degrees 24 mph. CHATER.

Position 1418 Lae Local 0418 GMT AE Height 7000 feet. Speed 140 knots. Everything OK. Received

by Lae. CHATER. (Speed not specified as to type).

Position 1519 Lae Local 0519 GMT AE Height10000 feet. Position 150.7 east 7.3 south; cumulous

clouds; everything OK. [Problematic report.] CHATER.

Position 1718 Lae Local 0718 GMT AE

CHATER reports this as 4.33 South 159.7 East; Height 8000 feet over cumulous clouds. Wind 23 knots. SAFFORD reports this as LAT 4 deg 33 min. LONG 159 deg 06 min. SAFFORD (p30) states “on course” at 750-795 miles. SAFFORD concludes this is at 7 minutes before sunset, 10 miles west of the Nukumanu Islands. If same course and speed held, ETA Howland should be 2100-2145 GMT. Unfortunately, SAFFORD reports Itasca did not receive this position report until after AE was overdue and missing. SAFFORD (p30.) ComHawSec reports this in post accident summary reports and message logs to ITASCA that “LAE, NEW GUINEA REPORTS LAST CONTACT WITH EARHART PLANE BY LAE RADIO WAS AT 1720 [LAE LOCAL] FRIDAY GAVE HER POSITION AS 4.33 SOUTH 159.6 EAST WHICH IS ABOUT 795 MILES DIRECTLY ON HER ROUTE TO HOWLAND 0030. (Pink tab in large notebook)

Progress Author Briand

Says he plotted this giving him 750 miles and ground speed 103 knots (118 mph). Says Lexington’s plot gave 785 miles and 111 knots (128 mph). HAWSEC reports 795 miles on course to Howland. SAFFORD.

2 July MSG from Lae via Naval Radio Tutuila to Itasca (Black) received Itasca

AE left Lae 1000 local due Howland 18 hours. LONG p207.

Clarence Williams Purdue and Harvard

Collections Flight Plan Lae-Howland 2556 miles 17 hours 1 minute.

Position 1030 GMT AE 1100-1200 GMT Nauru Island - Mr. Cude, Director of Police reported receiving radio from AE “Ship in Sight..” SAFFORD p31.

Position 1030 GMT USS ONTARIO

Mid-point plane guard [SAFFORD p 30 states this is at 1030 GMT, but in the ONTARIO LOG, it gives an “8 PM” position. If Ontario used the same local time as Lae, this equates to being on station at 10 hours mission elapsed time. If Ontario used a one-hour time zone change, they’d be on station at 9 hours mission elapsed time. ONTARIO position logged with precision as S 2 deg 59 min 30 sec / E 165 deg 20 min 00 sec. Included WX. Wind- east 15 knots. Blue sky cumulous moving from East. Amount 40%. (It was night, so Blue sky

Page 18: Waitt Institute Re-Navigation Rpt

Nutter  and  Associates  Consulting  

 2009  Waitt  Institute  for  Discovery   18  

refers to clear skies.) Visibility 40 miles. Ceiling unlimited. Conclusion – Noonan nav is dead on. SAFFORD.

SS Myrtlebank SAFFORD p 32 explains why he concludes the ship sighted was ONTARIO and not the Myrtlebank. Likely incorrect.

Position 1415 GMT Itasca

ITASCA logs “Heard Earhart plane on 3105 but unreadable through static. Chief Bellarts caught Earhart’s voice and it came in through loud speaker, very low monotone “cloudy and overcast.” (Large notebook logs)

Radio Log 1318-1325 GMT Itasca MSG from ITASCA to Com SF Div that they “heard Earhart plane at 0248 0235.”

Position 1415 GMT AE Cloudy and Overcast. S1. LONG p208.

Position 1445 GMT AE Overcast will listen on hour and half hour 3105. S2. Ibid.

Position 1623 GMT AE Partly Cloudy. S1. Ibid.

ITASCA 1625 GMT AE ITASCA “Earhart broke in on phone – unreadable.” (Large notebook Itasca logs)

Position 1744 GMT AE “About 200 miles out” request DF Steer. S3. Ibid. Large notebook Itasca logs indicate this logged at 0615 IST

Sunrise 0715 Howland 1745 GMT Sunrise at Howland (USNO data) GMT 10+30 time zone.

Position 1815 GMT AE

“About 100 miles out” request DF Steer. S4. Ibid. Large notebook Itasca logs have this as “PLEASE TAKE BEARINGS ON US AND REPORT IN HALF HOUR I WILL MAKE NOISE IN MICROPHONE – ABOUT 100 MILES OUT (EARHART SIGNAL STRENGTH -4 BUT ON AIR SO BRIEFLY BEARINGS IMPOSSIBLE.)

Position 1912 GMT AE

We must be on you. Gas is running low. S5. Ibid. This is 1+27 after sunrise. Large notebook Itasca logs have this as “KHAQQ CALLING ITASCA WE MIUST BE ON YOU BUT CANNOT SEE YOU BUT GAS IS RUNNING LOW BEEN UNABLE REACH YOU BY RADIO WE ARE FLYING AT ALTITUDE 1000 FEET. Other Itasca logs record that “Earhart is on now says running out of gas only ½ hour left…” The signal strength of this AE report is noted as “5.”

Position 1928 GMT AE

“We are circling” request DF Steer. [Controversial log record as to what was exactly said by AE]. S5+. Ibid. Large notebook Itasca log has this as “KHAQQ CALLING ITASCA WE ARE CIRCLING BUT CANNOT HEAR YOU GO AHEAD ON 7500 EITHER NOW OR ON THE SCHEDULE TIME ON HALF HOUR.” Itasca logs this as signal strength 5 on radiotelephone. Some references log as 5+.

Verbiage Doubt

Radioman Galten on Itasca logged this call from AE as “we are drifting but cannot hear you.” To CDR Thompson this didn’t make sense so he allegedly erased “drifting” and substituted “circling,” which then didn’t make sense, so CDR Thompson changed the whole thing to “We are circling but cannot see island.” SAFFORD. Itasca log says “we are circling but cannot hear you” so SAFFORD thinks perhaps CDR Thompson changed the verbiage in his final report.

Position 1930 GMT

Large notebook Itasca logs have this as “KHAQQ CALLING ITASCA WE RECEIVED YOUR SIGNALS BUT UNABLE TO GET A MINIMUM PLEASE TAKE BEARING ON US AND ANSWER 3105 WITH VOICE (sent long dashes for 5 seconds or so.)

Position 2013 GMT AE

On LOP 157-337. S5. LONG. This is 61 minutes after first “We must be on you gas is running low” report. Large notebook Itasca log has this at 2014 GMT as “WE ARE ON THE LINE OF POSITION 157-337, WILL REPEAT THIS MESSAGE. WE WILL REPEAT THIS MESSAGE ON 6210 KCS. WAIT LISTENING ON 6210 KCS. WE ARE RUNNING NORTH AND SOUTH.” Itasca logged this as signal strength 5. This is the last AE transmission in the large notebook logs which are CDR Thompson’s message logs from Itasca.

The next three audio messages are not mentioned in either LONG or GILLESPIE but only in SAFFORD, however, they are not referenced and the origin of these “documented”

Page 19: Waitt Institute Re-Navigation Rpt

Nutter  and  Associates  Consulting  

 2009  Waitt  Institute  for  Discovery   19  

messages is not known.

Radio Call 0801 GMT Next day UNK Message garbled on 6210. Received at Nauru. SAFFORD

p36 Unsubstantiated anywhere else.

Radio Call 0811 GMT Next day UNK Message garbled on 6210. Received at Nauru. ibid.

Radio Call 0822 GMT Next day UNK Message garbled on 6210. Received at Nauru. ibid.

Gillespie Bearing Analysis

From Gillespie on p 164 – If bearings from three stations (Guam, Wake, Makapu) are adjusted plus or minus azimuth values of just 5 degrees in the most likely directions, they intersect and form a centroid at about 100-200 miles SW of Howland, through which a 337-157 LOP only passes if it is displaced west of Howland by about an hour flight time (100-150 sm). Bearing variances in easterly directions intersect in areas well beyond the range of the Electra, and are therefore discounted by me. If “post crash” radio transmissions were actually made by AE in the most likely area according to the station bearings on these signals, it would mean AE was about 150sm short, flew an LOP 200 sm south of Howland and Baker Islands, and could transmit radio signals after a water ditching. All three are considered unlikely.

 

 

Part  II.    Navigation  Paths  -­  Lae  to  Howland  Island  

 

General  Flight  Path  Reconstruction  

Research  requirements  demanded  an  extensive  effort.  

A  fundamental  research  strategy  was  centered  in  an  attempt  to  recreate  the  aerodynamic  and  

environmental  aircraft  performance  on  the  final  flight,  from  well-­‐established  fact,  well-­‐founded  

inference,  logical  and  experienced-­‐based  assumptions,  and  a  critical  application  of  statistical  analysis  of  

historical  flight  parameters,  human  factors  and  behaviors.  

An  area  of  inescapable  uncertainty  in  the  true  location  of  this  aircraft  will  always  exist  until  a  discovery  is  

made.  This  research  resulted  in  improvements  in  understanding  the  associated  flight  path,  mission  

elapsed  and  endurance  times,  fuel  consumption,  and  the  probability  for  artifact  detection.  

Methodology  

Our  research  methodology  included  a  new  approach  to  the  navigation  of  the  flight  profile.  Previous  

works  generally  used  averages  of  total  distance,  divided  by  mission  time,  to  ascertain  location.  

This  research  took  a  different  approach  by  modeling  the  Electra  with  the  following  references  

• Flight  performance  data  from  the  Lockheed  487  Report  (L487)  

• Kelly  Johnson  telegrams  of  calculated  and  actual  aircraft  performance,  and  in-­‐flight  test  data  

Page 20: Waitt Institute Re-Navigation Rpt

Nutter  and  Associates  Consulting  

 2009  Waitt  Institute  for  Discovery   20  

• Corroborated  Lockheed  10A  operating  data,  with  virtually  the  same  horsepower  per  pound  of  

aircraft  weight  as  the  Lockheed  10E,  slightly  less  frontal  area  due  to  smaller  engine  cowlings,  

and  a  Cambridge  Fuel  Analyzer  of  the  type  used  by  AE  

• Data  from  AE  Electra  flights  prior  to  the  World  Flight  

• Historical  statistical  speed  data  from  AE’s  prior  World  Flight  segments  

• Validated  data  from  Long’s  wind  assessments  

• Swenson  and  Culick’s  aircraft  drag,  speed  and  fuel  consumption  computational  results  

• Aircraft  and  engine  performance  from  operating  manuals  of  aircraft  using  the  same  engine  as  in  

AE’s  Electra  (North  American  T-­‐6,  for  example)  

• Fuel  consumption  analysis  referencing  actual  Pratt-­‐Whitney  Specific  Fuel  Consumption  (SFC)  

data  for  the  R-­‐1340-­‐S3H1  engine,  used  by  AE’s  Lockheed  10E.  

A  software  model  was  created  in  Jeppesen  FliteStar  flight  planning  software,  and  used  to  construct  flight  

plans  from  Lae  to  Howland  via  three  paths.  Takeoff,  climb,  cruise,  and  descent  were  re-­‐calculated  by  

segments,  with  performance  integrated  manually  from  multiple  sources.  Fuel  consumption  was  

examined  by  profile  segments,  summed  across  the  profile,  and  validated  from  multiple  source  data.  A  

more  precise,  manual  computational  analysis  of  fuel  consumption  was  made  from  resources,  further  

refining  this  important  factor.  

Overview  -­  Flight  Paths  A,  B,  and  C    

Research  for  this  report  includes  assessment  of  three  principal  re-­‐calculated  paths,  Path  A,  B,  and  C  as  

defined  below.  

While  each  Flight  Path  will  be  examined  in  detail,  in  general,  Flight  Path  A  arrives  almost  everywhere,  

too  early,  and  at  1912  GMT  has  actually  over-­‐flown  Howland  Island  by  enough  to  possibly  preclude  visual  

acquisition  of  the  island,  or  the  Itasca.  

Flight  Path  B  passes  through  the  incorrectly  reported  0519  GMT  longitude  position  at  2  hours  18  

minutes,  and  is  then  early  at  the  0718  GMT  position  report.  AT  1912  GMT,  this  Path  B  arrives  at  the  1937  

position  coordinates  for  Howland  Island.  

Path  B  is  also  misaligned  with  navigation  reporting  position  and  time,  and  despite  arriving  at  Howland  

Island,  no  person  saw  or  heard  the  Electra.  Path  B  may  have  passed  through  the  0519  GMT  reported  

position,  at  an  actual  time  of  0218  GMT,  with  these  times  misreported  by  Chater10  or  Collopy.11  

Reduced  mission  headwinds  during  the  last  8  hours  of  the  Lae  to  Howland  segment,  could  result  in  Path  

B  beyond  Howland  Island.  A  5-­‐10nm  lateral  error  could  result  in  nobody  hearing  or  seeing  the  Electra,  

                                                                                                                         

10  Eric  Chater,  Letter  to    friend  Mr.  M.E.  Griffin,  Placer  Management  Limited  (New  Guinea:  /LP  25  July,  1937).  11  J.  A.  Collopy,  Report  to  Civil  Aviation  Board  (Salamaua:  28  August,  1937).  

Page 21: Waitt Institute Re-Navigation Rpt

Nutter  and  Associates  Consulting  

 2009  Waitt  Institute  for  Discovery   21  

and  the  aircraft  at  a  wind-­‐adjusted  Path  B  End-­‐of-­‐Navigation  point,  20nm  northeast-­‐to-­‐southeast  of  

Howland  Island.    

The  evidence  suggests  that  the  0519  GMT  reported  longitude  may  be  incorrect.  

Correcting  the  0519  GMT  position  report  in  longitude,  with  the  actual  position  along  the  E  157.0  

longitude,  vice  the  E  150.7  longitude  reported  by  Chater12,  creates  Path  C.  This  path  is  reasonably  aligned  

with  all  navigation  reporting  positions  and  times  within  5%  of  the  time  the  aircraft  was  at  that  point.  Key  

factors  such  as  entering  the  visual  horizon  to  Nauru  Island,  where  AE  reported  seeing  lights  on  the  island,  

are  aligned  in  time  and  position.  AE  arrives  slightly  short  of  Howland  Island  due  to  what  is  possibly  a  

navigational  error,  or  miscalculation  between  200nm  and  100nm  west  of  Howland  Island,  between  1745  

GMT  and  1815  GMT.  One  possible  error  is  a  sunrise  celestial  calculation  of  refraction,  or  dip  angle  

computational  error,  of  31-­‐70  nm  depending  on  altitude  at  the  time  the  fix  was  taken,  such  that  “If  the  

correction  was  not  made,  Noonan  would  have  calculated  that  the  Electra  was  nearer  Howland  Island  

than  was  the  case.”13  

Other  errors  are  possible,  including  that  FN  made  no  errors  and  AE  decided  to  descend  slightly  early,  

perhaps  to  keep  Howland  ahead  of  them  to  facilitate  visual  acquisition.  This  behavior  would  not  be  

atypical  for  AE,  as  demonstrated  on  the  Natal-­‐Dakar  segment  when  she  turned  opposite  to  FN’s  

suggested  direction.  

At  the  1,000  feet  altitude  reported  by  AE  approaching  Howland  Island,  AE  is  at  the  edge  of  a  visual  

acquisition  range  to  the  island  and  Itasca.  Due  to  the  rising  sun  directly  ahead,  visual  acquisition  would  

require  being  much  closer  to  the  Island.  

Lateral  track  errors  are  possible,  but  there  is  no  factual  data  upon  which  to  make  assessments  of  lateral  

navigation  deviations  from  the  planned  course,  and  no  evidence  of  lateral  track  error.  On  the  contrary,  

the  available  data  indicates  AE  adhered  well  to  the  track  from  Lae  to  Howland  Island.  

While  all  three  paths  are  possible,  Path  A  may  be  unlikely.  Path  B  is  possible,  in  that  it  deviates  south  of  

track  for  weather  avoidance,  and  passes  through  the  point  chronicled  at  0519  GMT,  at  an  actual  time  of  

0218  GMT.  The  numerals  “5”  and  “2”  could  have  been  confused.  Path  C  is  likely.  

The  evidence  for  en  route  aircraft  performance,  mission  times,  position  reporting,  and  key  milestones,  

are  all  well  aligned  with  navigation  Path  C.  Even  with  reduced  second-­‐half  mission  winds,  Path  C  

concludes  short  of  Howland  Island,  in  the  designed  Primary  Search  Grid.  

A  final  AE  radio  report  at  2013  GMT  with  no  further  communication  from  AE,  indicates  a  possible  

scenario  in  which  the  Electra  contacted  the  water  during  terminal  area  maneuvering,  perhaps  due  to  

pilot  fatigue,  loss  of  situational  awareness,  or  due  to  fuel  exhaustion,  after  2013  GMT.  A  fuel  

                                                                                                                         

12  Eric  Chater,  Letter  to    friend  Mr.  M.E.  Griffin,  Placer  Management  Limited  (New  Guinea:  /LP  25  July,  1937).  13  Roy  Nesbit,  Missing  Believed  Killed  (Gloucestershire  U.K:  Sutton  Publishing  Limited,  2002)  26.  

Page 22: Waitt Institute Re-Navigation Rpt

Nutter  and  Associates  Consulting  

 2009  Waitt  Institute  for  Discovery   22  

consumption  analysis  (updated  from  Appendix  1)  creates  an  endurance  window  until  2100  GMT.  Fuel  

exhaustion  between  2013  GMT  and  2100  GMT  is  likely.  

Evidence  from  Itasca  weather  reports  for  the  morning  of  July  2,  1937  indicates  light  winds  and  a  calm  

surface.  Calm  seas  are  difficult  to  fly  over  at  lower  altitudes  because  the  pilot  can  lose  awareness  of  

altitude.  At  sea,  the  horizon  and  sea  surface  can  blend  into  an  uncertain  mirage  without  sufficient  detail  

to  visually  maintain  desired  altitude  above  the  smooth  water  surface.  Unintentional  contact  with  the  sea  

is  a  constant  hazard  during  low  altitude  maneuvers  over  calm  sea  surfaces.  

End-­of-­Navigation  Point  

An  End-­‐of-­‐Navigation  point  (EON)  was  identified  on  each  path,  at  1912  GMT  when  AE  thought,  and  

reported,  she  had  arrived  at  Howland  Island  (1937  coordinates).  The  End-­‐of-­‐Navigation  point  (EON)  is  

determined  by  the  lateral  path,  vertical  profile  dynamics,  and  aircraft  performance.  The  EON  point  is  the  

commencement  point  for  terminal  search  maneuvering,  and  construction  of  search  grids.  

Wind  effects  and  reasonable  navigation  errors  were  then  considered  with  terminal  maneuvering  to  

create  containment  zones  that  comprise  the  Primary  (west)  and  Secondary  (east)  Search  Grid  zones.  

On  the  two  most  likely  Paths,  Path  B  and  C,  the  effects  of  modified  winds  from  20  degrees  left  of  the  nose  

at  18  knots  (approximately  25%  less  velocity)  were  examined  to  produce  an  error  tolerance  for  the  case  

in  which  AE  held  a  magnetic  course  only,  with  no  overnight  wind  correction  applied.  

• A  scenario  examined  the  effect  of  a  wind  change  for  the  last  8.5  hours  of  the  mission.  

• A  second  scenario  examined  the  effect  of  a  wind  change  for  the  final  2.0  hours.  

Reduced  second-­‐half  winds  are  supported  by  data  from  weather  forecasts  from  Hawaii,  and  surface  

vessel  weather  reports  in  the  area  of  the  flight.  Both  Hawaii  preflight  weather  forecasts  contained  

reduced  second-­‐half  mission  wind  velocities.  

Grid  Search  areas  are  containment  zones  accommodating  these  effects,  which  move  the  End-­‐of-­‐

Navigation  point  slightly  east,  and  slightly  southeast,  of  the  original  track.  

Milestone  waypoints  for  AE  position  reports  were  placed  on  each  path  at  the  GMT  times  that  AE  made  

the  report,  to  see  where  on  the  path,  in  time,  these  might  have  occurred.  With  consideration  for  

tolerances  in  reporting  behavior,  variance  in  position  reporting,  and  error  in  fixing  positions,  the  aircraft  

locations  over  the  earth  at  the  times  of  the  reports,  support  validation  of  the  analysis.  This  helped  

provide  context  to  path  construction  and  timing.  

Page 23: Waitt Institute Re-Navigation Rpt

Nutter  and  Associates  Consulting  

 2009  Waitt  Institute  for  Discovery   23  

 

EON  Locations  

All  three  paths  are  executed  based  on  as  much  factual  data  as  possible,  concluding  in  End-­‐of-­‐Navigation  

points  at  time  1912  GMT.  The  location  of  the  aircraft  on  each  path,  at  this  time,  is  shown  below:  

• Path  A  is  the  great  circle  direct  path  from  Lae  to  Howland  Island,  with  an  EON  bearing  from  the  

island  066  degrees  magnetic  at  22nm  past  the  1937  Howland  Island  coordinates.  o N 00° 54' 22.2W176° 21' 33.9

 

• Path  B  passes  through  the  waypoint  reported  by  Chater  at  0519  (a  point  with  discrepancies  in  

location  and/or  time),  with  an  EON  at  the  1937  Howland  Island  coordinates.  o N 00° 49' 00.0W176° 43' 00.0

 

• Path  C  passes  through  a  longitude-­‐modified  0519  GMT  waypoint  with  an  EON  bearing  from  the  

island  247  degrees  magnetic  at  35nm  short  of  the  1937  Howland  Island  coordinates.  o N 00° 40' 51.7W177° 16' 41.1

Path  Depictions  

The  three  paths  are  depicted  below  with  the  time  of  arrival  at  two  important  AE  position  reports.  For  the  

0519  GMT  and  0718  GMT  waypoints,  the  aircraft  could  have  arrived  at  the  waypoint  before  the  

waypoint  was  reported,  consistent  with  Fred’s  navigation  techniques  demonstrated  on  the  Oakland  to  

Honolulu  segment,  and  Amelia’s  reporting  of  Fred’s  waypoints  on  that  flight.  

While  the  Oakland-­‐Hawaii  segment  revealed  FN  and  AE  waypoint  arrival  and  reporting  techniques,  the  

Lae  to  Howland  segment  uniquely  included  passage  over  landmasses,  unlike  the  Oakland-­‐Honolulu  and  

Natal-­‐Dakar  oceanic  crossings.  All  three  paths  contain  over-­‐flight  of  good,  visible  island  waypoints,  

where  checks  of  position,  time,  and  fuel  consumption  could  have  been  made  with  good  precision.  On  

these  unique  segments,  it  is  possible  that  a  position  report  was  issued  shortly  after  establishing  the  

aircraft  at  the  waypoint,  approximately  10-­‐15  minutes  later,  a  time  that  also  was  very  close  to  AE’s  pre-­‐

scheduled  reporting  at  15  and  45  past  the  hour.  

Page 24: Waitt Institute Re-Navigation Rpt

Nutter  and  Associates  Consulting  

 2009  Waitt  Institute  for  Discovery   24  

 

Figure  1  -­‐  Three  Possible  Paths  and  Initial  Position  Reports.  

Path  C  –  Initial  Discussion  

Path  C  is  a  likely  path.  Although  it  deviates  south  of  other,  more  direct  paths,  this  deviation  is  supported  

by  two  weather  forecast  reports.  One  report  was  delivered  to  AE  in  Lae  on  July  1,  from  Navy  

headquarters  in  Hawaii.14    AE  received  this  report  in  hard  copy.  The  second  forecast  arrived  in  Lae  on  July  

2  during  AE’s  takeoff  from  Lae.15  This  report  was  broadcast  to  AE  on  the  hourly  schedules  arranged  with  

Lae,  and  throughout  a  period  of  approximately  7  hours.  Both  pre-­‐launch  forecasts  were  for  strong  and  

dangerous  thunderstorms  east  of  Lae,  on  the  direct  path  to  Howland.  The  second  report  expanded  the  

area  of  thunderstorms  from  250  to  300  miles  east  of  Lae,  and  provided  an  updated  estimate  of  en  route  

winds.  While  the  first  report  contained  wind  estimates  less  than  what  AE  reported  at  0718  GMT,  the  

second  forecasted  en  route  winds  at  “…east  southeast  about  twenty  five  knots  to  Ontario,  then  east  to  

east  northeast  about  twenty  knots  to  Howland….”  

These  winds  estimates  were  surprisingly  accurate,  corroborated  by  AE’s  0718  GMT  in-­‐flight  position  

report  that  included  winds,  at  23  knots,  and  from  wind  reports  from  Nauru  Island,  and  surface  vessels.  

Second-­‐half  mission  winds  were  very  likely  at  reduced  velocity  and  from  slightly  left  of  the  track  from  Lae  

to  Howland.                                                                                                                            

14  ComHawSec  Fleet  Base  Pearl  Harbor  messages,  (Hawaii:  Headquarters,  1-­‐2  July,  1937).  15  Chater,  Letter  to  Mr.  M.  E.  Griffin,  6-­‐7.  

Page 25: Waitt Institute Re-Navigation Rpt

Nutter  and  Associates  Consulting  

 2009  Waitt  Institute  for  Discovery   25  

These  wind  profiles  were  modeled  by  out  team  in  the  Jeppesen  FliteStar  software  and  in  sensitivity  

analyses  resulting  in  establishing  the  search  grid.  

 AE  was  well  aware  of  the  existence  of  hazardous  weather,  between  Lae  and  Howland.    In  fact,  weather  

forecasts  from  Hawaii  contained  admonition  to  avoid  flying  through  these  dangerous  thunderstorms.  AE  

previously  experienced  heavy  weather,  from  Natal  to  Dakar,  and  likely  heeded  Hawaii’s  warnings.  

Fred  writes,  in  a  letter  to  his  friend,  movie  actor  Eugene  Pallette,  “…The  flight  from  Natal,  Brazil  to  Africa  

produced  the  worst  weather  we  have  experienced  –  heavy  rain  and  dense  cloud  formations  necessitated  

flying  blind  for  ten  of  the  thirteen  hours  we  were  in  flight.”16  

AE  also  felt  compelled  to  comment  on  the  rain,  “…the  heaviest  rain  I  ever  saw.  The  heavens  fairly  

opened.  Tons  of  water  descended,  a  buffeting  weight  bearing  so  heavily  on  the  ship  I  could  almost  feel  

it.”17  

Midday  cumulous  buildups  over  landmasses,  such  as  the  island  of  New  Britain,  may  have  also  presented  

hazardous  weather  on  the  direct  route  to  Howland  Island  that  could  be  avoided  with  a  relatively  minor  

deviation  southeast,  across  very  good  landmarks.  

From  their  Atlantic  crossing  segment,  Natal  to  Dakar,  AE  and  FN  possibly,  and  intentionally,  planned  a  

southerly  deviation  around  New  Guinea  area  weather,  one  with  few  penalties  and  several  advantages.  

Path  C  passes  over  Choiseul  Island,  the  first  island  south  of  Bougainville  Island.  Both  Bougainville  and  

Choiseul  are  prominent  visual  landmarks.  Bougainville’s  mountains  exceed  8,000  feet  in  the  northern  half  

of  the  island,  but  are  easily  avoided.  Choiseul’s  highest  terrain  is  approximately  2,000  feet.  

This  deviation  on  Path  C  added  only  42nm  to  the  overall  mission  distance.  The  path  also  facilitated  an  

afternoon  setting-­‐sun  celestial  fix,  from  the  left  side  of  the  aircraft,  inbound  to  the  0718  GMT  reporting  

point  near  Nukumanu  Island.  

                                                                                                                         

16  FN  letter  from  Dakar,  Senegal,  French  West  Africa,  June  9,  1937  to  Eugene  Pallette,  Hollywood  Roosevelt  Hotel.  17  Amelia  Earhart,  Last  Flight,  128.  

Page 26: Waitt Institute Re-Navigation Rpt

Nutter  and  Associates  Consulting  

 2009  Waitt  Institute  for  Discovery   26  

 

Figure  2  –  Path  depictions  and  supporting  Factors  for  Path  C.  

Page 27: Waitt Institute Re-Navigation Rpt

Nutter  and  Associates  Consulting  

 2009  Waitt  Institute  for  Discovery   27  

 

Figure  3  -­‐  Pilot-­‐eye  view  approaching  the  0718  GMT  position  on  Path  C.  

Only  on  Path  C  do  all  initial  position  reports  in  time  coincide  reasonably  and  closely  with  AE  reported  

positions  in  space,  and  they  agree  in  time  within  5%.  From  the  Oakland  to  Honolulu  navigation  logs,  

position  reports  were  often  made  at  some  time  after  passing  the  reported  position,  and  with  the  aircraft  

not  co-­‐located  with  the  reported  position.  The  lag  between  position  passage,  and  reporting,  is  

understandable  in  that  it  was  AE’s  first  real  navigation  challenge  working  with  Fred  Noonan  and  Paul  

Mantz,  and  there  were  no  landmarks  corresponding  to  reported  positions  and  times.  

AE  and  FN  may  have  sought  to  be  more  precise  on  the  Lae  to  Howland  segment,  to  more  closely  report  

positions  and  times.  The  data  supports  such  an  intention.  

A  more  detailed  analysis  of  Path  C  is  contained  in  Part  IV.  

Detailed  Fuel  Consumption  Analysis  

The  detailed  fuel  consumption  analysis,  Appendix  1,  initially  results  in  up  to  4  hours  fuel  remaining,  at  

1912  GMT.  Further  analysis  since  publication  of  Appendix  1  results  in  an  upper  boundary  of  3  hours  fuel  

remaining,  at  1912  GMT.  

Page 28: Waitt Institute Re-Navigation Rpt

Nutter  and  Associates  Consulting  

 2009  Waitt  Institute  for  Discovery   28  

Considering  past  AE  behaviors,  a  lack  of  radio  reports  after  2013  GMT,  and  further  analysis  of  an  

important  instrument  in  the  Electra  (the  Cambridge  Fuel  Analyzer),  there  is  a  high  probability  that  only  

approximately  60  gallons  of  fuel  remained  at  1912  GMT  –  enough  for  90  minutes  flight  time.  

 A  fuel  exhaustion  time  from  2013  GMT  to  2100  GMT  is  highly  likely.  

This  conclusion  is  well  supported  by  the  following  analysis,  completed  after  Appendix  1  was  published,  

involving  the  Cambridge  Fuel  Analyzer.  

A  fundamental  question  has  always  plagued  investigators  and  researchers,  regarding  theories  of  

excessive  fuel  consumption  on  the  Lae-­‐Howland  segment,  arrival  with  far  less  than  planned  fuel  reserves,  

and  premature  fuel  exhaustion  prior  to  landing  on  Howland  Island.  

The  Cambridge  Fuel  Analyzer  

The  answer  may  very  well  be  found  in  the  Cambridge  Fuel  Analyzer,  or  CFA,  instrument.  

AE’s  takeoff  fuel  quantity  at  Lae,  according  to  Lockheed,  Paul  Mantz,  Kelly  Johnson,  Swenson  and  Culick,  

and  our  own  independent  analysis,  should  have  enabled  the  Electra  to  fly  further  and  longer  than  it  

apparently  flew  –  as  much  as  3  to  4  hours  longer.  

If  AE  was  short  of  fuel,  how  would  it  be  possible  to  burn  more  fuel  than  planned?  

All  prior  researchers  addressing  this  question  concluded  that  excessive  fuel  consumption  was  due  to  one  

of  the  following  

• Incremental  en  route  navigation  adding  distance  to  the  planned  route.  

o This  would  require  adding  hours  of  en  route  time  to  the  original  route  distance.  

• Excessively  high  and  inappropriate  operating  altitudes  for  the  gross  weight  of  the  Electra,  

especially  early  in  the  mission,  requiring  excessive  engine  power  and  fuel  consumption  

o Evidence  from  AE’s  0418  GMT  position  report  at  “height  7,000  feet,”  the  0519  GMT  

position  report  at  “height  10,000  feet,”  and  the  0718  GMT  report  at  “height  8,000  feet”  

indicates  that  the  aircraft  is  approximately  at  the  optimum  altitude  prescribed  by  Kelly  

Johnson,  and  not  high  enough  to  produce  excessive  fuel  consumption.  

• Excessive  headwinds,  well  above  forecasts,  caused  higher  than  planned  power  settings  and  

resulting  fuel  consumption  

o Evidence  exists  to  validate  Long’s  headwind  value,  which  was  initially  more  than  forecast  

on  30  June  and  1  July,  but  within  the  range  of  forecasted  winds  on  2  July.  

o 2  July  weather  forecasts  included  winds  that  were  expected  to  be  reduced  in  the  second-­‐

half  of  the  mission,  during  the  final  8  hours  of  the  flight.  

None  of  these  traditional  positions  explain  excessive  fuel  consumption,  are  all  are  considered  not  valid.  

Page 29: Waitt Institute Re-Navigation Rpt

Nutter  and  Associates  Consulting  

 2009  Waitt  Institute  for  Discovery   29  

If  AE  arrived  in  the  Howland  area  with  critically  low  fuel  quantity  remaining,  i.e.,  below  planned  reserves,  

there  may  be  a  more  scientific,  and  more  likely,  explanation  for  excessive  fuel  consumption.  This  arises  

from  understanding  the  importance  of  the  Cambridge  Fuel  Analyzer  equipment  to  achieving  long  range  

flight  in  the  Lockheed  Electra.  

The  Cambridge  Fuel  Analyzer  (CFA),  sometimes  referred  to  as  the  Cambridge  Exhaust  Analyzer,  was  a  

very  important  tool  in  the  World  Flight  attempt  plan.  The  CFA  monitors  exhaust  gases,  enabling  the  pilot  

to  precisely  and  safely  set  the  optimum  mixture  control  of  the  fuel-­‐air  mixture,  to  ratios  that  allow  

achieving  optimum  engine  performance,  minimum  fuel  consumption,  and  therefore,  maximum  aircraft  

range.  The  CFA  assures  that  minimum  fuel  is  consumed,  with  no  adverse  effect  on  engine  health.  

We  showed  in  Appendix  1  that  a  fuel  burn  variance  of  just  1-­‐2  GPH  per  engine,  or  2-­‐4  GPH  total  

additional  fuel  consumption,  could  explain  a  significant  fuel  remaining  variance.  

Appendix  1  fuel  remaining  by  our  calculation  was  123  gallons  at  1912  GMT,  enough  fuel  for  3  hours  

flight  time.  If  an  inoperative  Cambridge  Fuel  Analyzer  resulted  in  AE  burning  4  GPH  above  plan  (less  than  

10%  variance)  for  15  hours,  the  aircraft  would  arrive  at  1912  GMT  with  fuel  quantity  at  just  63  gallons,  

approximately  90  minutes  fuel  remaining.  

An  airline’s  Electra  Operating  Manual  states  that  without  the  CFA,  the  fuel-­‐air  mixture  must  be  manually  

set  to  a  more  rich  mixture,  to  prevent  engine  damage.  The  resulting  higher  fuel  consumption  reduces  

aircraft  range.  In  fact,  the  Electra  manual  states  that  maximum  chart  ranges  cannot  be  achieved  without  

a  functioning  Cambridge  Fuel  Analyzer.  

The  CFA  was  used  extensively  on  the  Kelly  Johnson  test  flights  of  AE's  aircraft,  to  maximize  engine  

efficiency,  and  obtain  the  gallons  per  hour  fuel  consumption  rate  for  different  power  settings.  Every  flight  

test  data  point  contained  an  associated  CFA  value.  These  CFA,  manifold  pressure  and  propeller  RPM  

settings  were  supplied  to  AE  as  mission  profile  specifications,  including  as  detailed  cruise  specifications  

issued  by  Kelly  Johnson  for  the  World  Flight.  

The  Lockheed  487  Report  preamble  contains  the  statements  

• “To  enable  close  control  to  be  maintained  over  the  mixture  strength,  a  Cambridge  gas  analyzer  

is  connected  into  the  exhaust  system.”  

•  “The  complete  performance  has  been  computed  conservatively  based  on  actual  flight  test  

results  on  Model  10E.  Fuel  consumption  data  is  based  on  results  that  have  been  obtained  in  

flight  with  careful  mixture  control.  To  get  a  range  of  4500  miles  it  will  be  necessary  to  calibrate  

the  Cambridge  Analyzer  so  that  the  fuel  consumption  curve  shown  on  page  13  can  be  obtained.”  

• “The  Cambridge  Gas  Analyzers  should  be  carefully  calibrated  in  flight  to  see  if  the  fuel  

consumption  data  used  in  this  analysis  can  be  obtained.”  

o The  report  L487  was  dated  June  19,  1936,  and  subsequently,  test  flights  were  conducted  

by  Kelly  Johnson,  using  the  calibrated  Cambridge  Gas  Analyzer,  to  identify  World  Flight  

performance  specifications  for  AE.  

Page 30: Waitt Institute Re-Navigation Rpt

Nutter  and  Associates  Consulting  

 2009  Waitt  Institute  for  Discovery   30  

o These  recommendations  were  contained  in  three  telegrams  from  Kelly  Johnson  to  AE  

dated  11  March  1937.18  

Clearly,  the  CFA  was  very  important,  and  AE  adhered  to  these  CFA  settings  very  closely  for  all  flight  

profiles.  

                                                                                                                         

18  Kelley  Johnson,  Telegrams  for  Electra  flight  test  data  and  World  Flight  performance  recommendations  (Western  Union  11  March  1937).  

Page 31: Waitt Institute Re-Navigation Rpt

Nutter  and  Associates  Consulting  

 2009  Waitt  Institute  for  Discovery   31  

 

Figure  4  -­‐  Cambridge  Fuel  Analyzer  

Page 32: Waitt Institute Re-Navigation Rpt

Nutter  and  Associates  Consulting  

 2009  Waitt  Institute  for  Discovery   32  

Apparently  the  CFA  was  also  somewhat  fragile,  as  it  was  frequently  being  repaired  throughout  the  World  

Flight,  at  many  of  AE’s  intermediate  stops  where  maintenance  was  available.  The  leads  to  the  exhaust  

stack,  the  analysis  cells,  and  calibration  were  reported  as  problematic.  

• The  CFA  failed  en  route  to  Karachi,  and  on  JUN  16,  1937  AE  sent  a  telegram  to  George  Putnam,  

“FUEL  ANALYSER  OUT  ASCERTAIN  FROM  CAMBRIDGE  INSTRUMENT  IF  POSSIBLE  GET  

REPLACEMENT  OR  IF  ANYONE  AVAILABLE  TO  REPAIR  HESITATE  ATTEMPT  PACIFIC  WITHOUT  

[author’s  emphasis]  CABLE  CALCUTTA.”19  

o George  Putnam  replied,  “KLM  USES  CAMBRIDGE  CABLING  AMSTERDAM  

HEADQUARTERS  TO  ARRANGE  CALCUTTA  SUPPLY  NEW  ANALYSIS  CELL  IF  NECESSARY  

WHICH  BELIEVE  FAULTY  STOP….”20  

During  3  days  of  maintenance  in  Bandoeng,  JUN  21,  22,  and  23,  the  CFA  was  again,  repaired.  Among  a  

long  list  of  maintenance  performed  on  AE’s  Electra,  specifically21  

• “Two  broken  leads  in  left  analyzer  cell  of  exhaust  analyzer  repaired.”  

• “Switch  on  junction  box  of  exhaust  analyzer  repaired.”  

• “Transmitter  on  left  engine  of  Eclipse  flow  meter  repaired  (soldering  between  pivot  and  internal  

magneto  loose)  and  transmitter  adjusted.”  

• Alternator  of  Eclipse  flow  meter  cleaned.  

• Oil  and  fuel  filter  strainers  cleaned.  

• Thermocouple  No.  3  lead,  starboard  engine  repaired.  

• Thermocouple  No.2  lead,  port  engine,  replaced.  

We  know  from  AE's  logs  that  she  then  flew  from  Bandoeng  to  Surabaya,  Indonesia,  and  the  next  day,  

flew  back  to  Bandoeng  for  repairs  to  “an  instrument  necessary  for  long  range  flight.”22  

In  AE’s  own  words:  “In  the  air,  and  afterward,  we  found  that  our  mechanical  troubles  had  not  been  

cured.  Certain  further  adjustments  of  faulty  long-­‐distance  flying  instruments  were  necessary,  and  so  I  

had  to  do  one  of  the  most  difficult  things  I  had  ever  done  in  aviation.  Instead  of  keeping  on  I  turned  back  

the  next  day  to  Bandoeng.  With  good  weather  ahead,  the  Electra  herself  working  perfectly,  and  pilot  and  

navigator  eager  to  go,  it  was  especially  hard  to  have  to  be  “sensible.”  However,  lack  of  essential  

instruments  in  working  order  would  increase  unduly  the  hazards  ahead.  At  Bandoeng  were  the  

admirable  Dutch  technicians  and  equipment,  and  wisdom  directed  we  should  return  for  their  friendly  

succor23.”  

                                                                                                                         

19  Amelia  Earhart,  Telegram  to  George  Putnam  (Purdue  Collection),  JUN  16,  1937.  20  George  Putnam,  Telegram  to  Amelia  Earhart  (Purdue  Collection),  JUN  16,  1937.  21  T.  D.  Knilm,  Bandoeng  Inspection  Report  Lockheed  Electra  Reg.Markings  NR  16020  (Purdue  Collection),  June  23,  1937.  22  Amelia  Earhart,  Last  Flight,  211.  23  Ibid.  

Page 33: Waitt Institute Re-Navigation Rpt

Nutter  and  Associates  Consulting  

 2009  Waitt  Institute  for  Discovery   33  

There  is  likely  only  one  "instrument  necessary  for  long  range  flight"  that  AE  would  not  need  on  shorter  

range  flights  –  the  Cambridge  Fuel  Analyzer  –  and  it  may  be  the  subject  instrument  referenced  in  AE’s  

single  passage,  and  in  letters  written  by  Fred  Noonan.  

The  Electra  also  contained  Eclipse  fuel  flow  meters,  and  while  occasionally  problematic  throughout  the  

World  Flight,  the  fuel  flow  meters  were  not  necessary,  and  were  never  more  accurate  than  the  CFA.  

This  single  passage  concerning  an  “instrument  necessary  for  long  range  flight”  was  not  further  

explained,  or  developed  anywhere  in  the  research,  and  no  researchers  have  addressed  this  aspect  of  the  

mission.  

This  may  represent  a  very  important  finding.  

Fred  also  commented  on  this  seemingly  important,  instrument.  In  letters  he  wrote  to  Ms.  Helen  Day,  a  

friend  in  Miami,  FN  alluded  to  what  was  likely,  the  Cambridge  Fuel  Analyzer24  

• 22  June  1937  –  from  Bandoeng,  Java  –  “We  arrived  here  yesterday  from  Singapore[,]  and  as  

some  minor  instrument  adjustments  were  necessary  we  decided  to  remain  here  an  additional  

day.”  

• 27  June  1937  -­‐  FN  writes  again  from  Koepang,  Timor  Island,  Dutch  East  Indies  after  arriving  from  

Surabaya,  Java,  in  which  he  references  the  previous  few  days,  “…we  spent  considerably  more  

time  in  Java  than  we  expected  to  –  had  some  minor  but  important  instrument  adjustments  to  be  

made,  and  as  the  Dutch  Line  is  using  the  new  DC3  Douglas  –  equipped  with  similar  instruments  –  

we  decided  to  have  the  work  done  in  their  shops  at  Bandoeng.  We  remained  there  from  last  

Sunday  until  yesterday  –  Saturday.  Took  off  once  and  got  as  far  as  Surabaya  –  about  three  

hundred  and  fifty  miles  –  only  to  have  the  instruments  fail  again  –  so  returned  to  Bandoeng.  

They  are  functioning  perfectly  now,  thank  goodness  for  the  Dutch  mechanics.”  

In  a  short  period  of  time,  this  “long  range  instrument,”  which  may  be  the  Electra’s  CFA,  had  recently  

failed  inbound  to  Bandoeng.  It  likely  failed  again  after  leaving  Bandoeng.  And  even  following  the  return  

to  Bandoeng,  and  repairs,  the  CFA  failed  just  two  flight  segments  later,  from  Darwin  to  Lae.  It  was  

serviced  in  Lae  according  to  servicing  records  there,  which  detailed  replacement  of  an  analysis  cell,  which  

AE  had  aboard  the  Electra.25  

The  Lae  Chief  Engineer’s  Report26contains  entries  for  repairs  to  AE’s  Electra  before  embarking  on  the  Lae  

to  Howland  Island  segment.  

• Oil  filters  inspected  and  cleaned  –  both  engines.  

• Fuel  pump  starboard  engine  removed  and  replaced.  

                                                                                                                         

24  Fred  Noonan,  Letters  to  Helen  Day  (Self  published  June  1937).  25  J.  A.  Collopy,  Report  to  Civil  Aviation  Board  (Salamaua:  28  August,  1937).  26  Ibid.  

Page 34: Waitt Institute Re-Navigation Rpt

Nutter  and  Associates  Consulting  

 2009  Waitt  Institute  for  Discovery   34  

• Thermocouple  connection  on  No.  4  cylinder,  starboard  engine,  repaired.  

• New  cartridge  fitted  to  exhaust  gas  analyzer  –  starboard  side  

En  route  to  Howland  Island,  it  is  quite  possible  that  AE  suffered  yet  another  failure  of  the  CFA,  which  

would  adversely  affect  fuel  consumption.  

 Without  the  CFA,  AE  could  not  set  optimum  power,  or  minimum  fuel  consumption  rates,  nor  attain  

maximum  aircraft  range  for  the  fuel  load  from  Lae  to  Howland.  

At  the  point  of  failure,  AE  may  have  determined  that  returning  to  Lae,  or  perhaps,  Bandoeng,  for  another  

repair  of  the  CFA,  was  complicated  by  weather,  and  unnecessary  if  careful  setting  of  the  engine  mixture  

was  monitored.  A  return  would  require  an  excessive  amount  of  time,  perhaps  deemed  unacceptable  to  

maintaining  the  arrival  schedule  in  Hawaii  of  4  July  1937.  

For  whatever  reason,  AE  may  have  elected  to  continue  without  operable  Cambridge  Fuel  Analyzers,  

perhaps  on  one,  or  both,  engines.  The  result  was  likely  increased  fuel  consumption,  which  resulted  in  

arriving  in  the  Howland  area  with  perhaps  half  the  quantity  theoretically  possible.  

Throughout  this  research,  attempts  to  acquire  documentary  evidence  of  the  difference  in  fuel  

consumption  between  using  and  not  using  the  Cambridge  Fuel  Analyzer,  were  unsuccessful.  It  is  not  clear  

that  such  data  exists  at  all,  or  was  ever  compiled  by  the  Cambridge  Instrument  Company,27  Lockheed,  or  

Pratt-­‐Whitney.  

Of  note  is  that  all  of  Kelly  Johnson’s  performance  recommendations  resulted  from  use  of  the  CFA.  It  may  

have  been  so  important  that  AE  actually  backtracked  an  entire  flying  day,  and  invested  another  ground  

maintenance  day,  to  have  this  instrument  “necessary  for  long  range  flight,”  repaired.  

Sperry  Gyro  Horizon  

One  other  instrument  that  may  be  considered  necessary  for  long-­‐range  flight  could  be  the  Sperry  

autopilot  system.  This  equipment  relieves  the  pilot  from  manually  and  continuously  controlling  the  

aircraft  for  many  hours.  Such  relief  is  beneficial  in  fatigue  management.  

The  Sperry  was  repaired  in  Lae.28  

• “Sperry  Gyro  Horizon  (lateral  and  fore  and  aft  level)  removed,  cleaned,  oiled,  and  replaced,  as  

this  reported  showing  machine  in  right  wing  low  position  when  actually  horizontal.”  

The  Sperry  autopilot  equipment  was  problematic  in  Miami  before  commencing  the  flight  to  San  Juan,  

Puerto  Rico.  Pan  Am  mechanics  identified  the  problem,  which  was  a  faulty  initial  installation  at  Burbank,  

CA.  They  corrected  the  problems  and  the  equipment  worked  perfectly  leaving  Miami  for  San  Juan.29  

                                                                                                                         

27  Cambridge  Instrument  Company,  LTD,  13  Grosvenor  Place,  London.  28  J.  A.  Collopy,  Report  to  Civil  Aviation  Board  (Salamaua:  28  August,  1937).  

Page 35: Waitt Institute Re-Navigation Rpt

Nutter  and  Associates  Consulting  

 2009  Waitt  Institute  for  Discovery   35  

But  this  equipment  was  never  identified  as  problematic  throughout  the  World  Flight.  

Separate  redundant  flight  attitude  instruments  of  which  there  were  likely  two,  one  for  the  left  seat  pilot  

and  one  for  the  right  seat  pilot,  were  necessary  for  instrument  flight  in  clouds,  and  at  night,  during  any  

flight  segment,  not  specifically  for  “long  range  flight,”  since  the  aircraft  could  be  flown  manually.  

• One  artificial  horizon  instrument  was  repaired  in  Bandoeng30  (bar  stuck  in  case).  

It  is  possible  that  had  the  Sperry  Gyro  Horizon  autopilot  failed,  depending  at  what  time  that  occurred,  AE  

may  have  been  compelled  to  return  to  Lae,  and  abort  the  long  distance,  night,  overwater  segment  to  

Howland.  Since  there  were  redundant  and  backup  artificial  horizon  instruments  to  reference  in  manually  

flying  the  aircraft,  it  is  doubtful  a  failure  of  the  autopilot  system  alone  would  cause  a  turn  back  to  Lae.  

The  most  compelling  evidence  that  the  Cambridge  Fuel  Analyzer  was  the  subject  of  the  “instrument  

necessary  for  long  range  flight”  was  AE’s  investment  in  having  it  repaired  multiple  times,  and  AE’s  

telegram  to  George  Putnam,  from  Karachi,  mentioned  above.  

As  AE  stated,  “…HESITATE  ATTEMPT  PACIFIC  WITHOUT  [Cambridge  Fuel  Analyzer]…”  and  this  largely  

substantiates  that  the  CFA  was  indeed  the  necessary  instrument,  and  that  had  it  failed  from  Lae  to  

Howland,  would  certainly  have  resulted  in  increased  fuel  consumption.  

Appendix  1  Excerpt  –  Review  and  Summary  

Combining  Pratt-­‐Whitney  engine  data,  with  Kelly  Johnson’s  recommendations  and  data,  offers  a  more  

complete  profile  of  fuel  consumption.  

• Takeoff  using  10  gallons  

• 1  hour  climb  using  110  gallons  

• 3  hours  at  60  GPH  using  180  gallons  

• 3  hours  at  51  GPH  using  153  gallons  

• 3  hours  at  43  GPH  using  129  gallons  

• 8.5  hours  at  38  GPH  using  323  gallons  

• 0.5  hours  descent  at  30  GPH  (estimated)  using  15  gallons  

• Total  920  gallons  required  from  takeoff  to  1912  GMT  

Fuel  Consumption  and  Time  Remaining  From  All  Analyses  

Below  summarizes  the  solutions  for  mission  fuel  consumed,  and  fuel  remaining  upon  arrival  at  where  AE  

thought  Howland  should  be,  at  1912  GMT.  

                                                                                                                                                                                                                                                                                                                                                                                                       

29  Elgen  Long,  Amelia  Earhart  The  Mystery  Solved,  130.  30  T.  D.  Knilm,  Bandoeng  Inspection  Report  Lockheed  Electra  Reg.Markings  NR  16020  (Purdue  Collection),  June  23,  1937.  

Page 36: Waitt Institute Re-Navigation Rpt

Nutter  and  Associates  Consulting  

 2009  Waitt  Institute  for  Discovery   36  

• If  AE  began  with  1080  gallons,  and  flew  this  Kelly  Johnson  profile  (“modified”  for  takeoff,  climb  

and  descent)  requiring  920  gallons,  the  total  fuel  remaining  would  have  been  160  gallons  at  

1912  GMT,  or  4  hours  endurance.  

• Computer  flight  profile  modeling  of  all  available  data,  but  largely  from  Kelley  Johnson  and  L487  

data,  also  indicate  the  total  fuel  remaining  would  have  been  160  gallons  at  1912  GMT,  or  4  

hours  endurance.  

o While  our  Jeppesen  software  model  results,  in  terms  of  fuel  used,  corroborate  the  Kelly  

Johnson/L487  Report,  our  further  analysis  offers  increased  accuracy  in  this  area.  

• Swenson  and  Culick’s  analysis  concluded  that  AE  had  enough  fuel  for  20  hours  38  minutes  total  

mission  time.  Subtracting  the  known  mission  time  of  19  hours  12  minutes,  results  in  

approximately  1  hour  26  minutes  remaining  endurance.  

o This  represents  57.3  gallons  remaining  at  1912  GMT.  

• Our  research,  using  a  specific  flight  profile  segment  analysis  technique,  results  in  a  total  mission  

fuel  burn  of  957  gallons.  AE  should  have  arrived  at  time  1912  GMT  with  123  gallons,  enough  for  

3  hours  04  minutes  endurance.  

Fuel  Remaining  Implications  

Our  calculations  of  957  gallons  fuel  consumed  result  in  arriving  in  the  Howland  area  with  123  gallons.  

A  failure  of  the  Cambridge  Fuel  Analyzer  would  have  increased  fuel  consumption,  possibly  accounting  for  

the  entire  "over  burn"  of  fuel,  from  the  amount  that  should  have  produced  a  sufficiently  comfortable  

range  and  endurance  upon  arrival  to  the  Howland  area,  to  a  quantity  that  may  have  precipitated  the  

initial  check  in  at  1912  GMT  "we  should  be  on  you,  gas  is  running  low."    

In  this  case,  there  would  be  no  gross  navigation  errors,  no  large,  unexpected  headwinds,  no  

extraordinary  climbs  to  altitudes  well  in  excess  of  that  specified  by  Kelly  Johnson,  and  no  excessive  cruise  

speeds  maintained  that  would  have  irresponsibly  burned  an  excessive  amount  of  fuel.  Such  speeds  would  

have  been  statistically  abnormal,  well  outside  prescribed  ranges  and  inconsistent  with  AE’s  past  

operating  performance.  

 Under  a  Cambridge  Fuel  Analyzer  failure  scenario,  the  aircraft  may  have  experienced  fuel  exhaustion  

between  2013  GMT  and  2100  GMT.  

Page 37: Waitt Institute Re-Navigation Rpt

Nutter  and  Associates  Consulting  

 2009  Waitt  Institute  for  Discovery   37  

 

Part  III.  Detailed  Flight  Analysis  

 

Validated  Statistical  Data  

 

Direct  evidence  includes  AE’s  flight  performance  on  earlier  World  Flight  segments,  in  which  weather,  

winds  and  navigation  challenges  were  similar  to  the  final  flight  segment.  Terrain  was  a  factor  in  some  

mission  segments,  however,  on  the  final  flight  segment,  only  Bougainville  Island  presented  a  terrain  

consideration  with  mountains  reaching  approximately  8,000  feet.  

Wherever  first-­‐hand  factual  evidence  was  available  from  AE’s  flight  logs  and  accounts,  that  data  was  

used  to  establish  AE’s  historical  flight  patterns.  Analysis  of  an  audit  of  World  Flight  mission  segments  

provides  important  understanding  for  mission  performance.  

This  data  is  also  important  when  considering  alternative  flight  profiles  and  mission  outcomes,  offered  by  

various  authors.  When  alleged  mission  flight  parameters  fall  outside  an  established  pattern  of  historical  

performance,  the  associated  theory  and  conclusions  demand  careful  scrutiny.  The  business  analogy  is  

that  if  a  performance  factor  were  well  outside  statistical  Quality  Assurance  ranges,  such  as  Six-­‐Sigma,  or  

Control  Chart  limits,  it  would  exist  as  an  abnormal  data  point,  one  requiring  additional  validation.  

Some  alternative  theories  about  the  World  Flight,  for  example,  require  aircraft  and  mission  performance  

that  exceeds  capabilities  or  that  falls  well  outside  historical  patterns.  

Winds  

There  are  7  weather  reports  relevant  to  this  mission  segment.  

 Reported  wind  speeds  from  weather  observations  are  in  mph.  Only  AE’s  position  report  of  wind  speed  

was  in  knots  at  0718  GMT.  

Two  reports  are  from  Hawaii  Headquarters,  one  issued  1  July  and  handed  to  AE,  and  one  issued  2  July  

and  broadcast  from  Lae  to  AE.31  

Both  ship-­‐based  and  shore-­‐based  weather  reports  of  upper  winds  are  not  extremely  accurate  in  1937.  A  

meteorograph  instrument  was  sent  aloft  under  a  tethered  balloon  or  kite,  where  it  recorded  a  few  

parameters  for  examination  following  retrieval.  Upper  winds  may  also  have  been  established  from  an  

observation  made  by  a  qualified  weather  person.                                                                                                                            

31  ComHawSec  Fleet  Base  Pearl  Harbor  messages,  (Hawaii:  Headquarters,  1-­‐2  July,  1937).  

Page 38: Waitt Institute Re-Navigation Rpt

Nutter  and  Associates  Consulting  

 2009  Waitt  Institute  for  Discovery   38  

Two  reports  are  from  Itasca,  both  at  noon  local  time.  One,  on  June  30,  1937  reported  winds  at  5000  feet  

from  the  east  (090  deg)  at  22  mph.  The  other,  on  July  1,  1937  reported  winds  at  7000  feet  ENE  (060  deg)  

at  30  mph  and  at  9000  feet  ENE  (060  deg)  at  31  mph.32  

One  report  is  from  AE  at  0718  GMT  (1718  local  time)  on  July  2,  1937,  as  an  in-­‐flight  position  report,  in  

which  a  reference  to  “winds  23  knots”  is  made.  No  direction  was  specified.33  

One  report  is  from  the  USS  Ontario,  July  2,  1937  bridge  logs,  that  reported  surface  wind  ENE  (060  

degrees)  at  force  3-­‐4  (up  to  16  knots)  but  it  is  only  a  surface  report  of  sea  state  and  winds.34  

One  report  is  from  Nauru  Island,  on  July  2,  1937  at  0800  local  time  GMT,  approximately  3  hours  prior  to  

AE’s  departure  from  Lae,  and  nearly  10-­‐12  hours  prior  to  AE’s  arrival  in  the  vicinity  of  Nauru  Island,  en  

route  to  Howland.  In  this  report,  upper  wind  values  were  reported  at  4000  feet  from  090  deg  at  12  mph  

and  at  7500  feet  from  090  deg  at  24  mph.35  

This  is  evidence  that  at  the  mid-­‐point  of  the  Lae  to  Howland  Island  segment,  upper  winds  were  very  close  

to  those  used  by  Long  (26.5  mph)  and  our  own  baseline  analysis.  

Long36  assumed  a  constant  headwind  of  26.5  mph  (23  knots)  throughout  his  analysis.  In  arriving  at  this  

value,  Long  likely  considered  the  AE  in-­‐flight  position  report  at  0718  GMT  reported  wind  value,  and  a  

single  Nauru  Island  weather  observation  with  wind  direction  and  values  linearly  extrapolated  to  assess  

winds  at  AE  mission  altitudes  of  8,000  and  10,000  feet.  

While  wind  profiles  are  often  not  linear,  over  small  altitude  differences,  a  linear  interpolation  is  

sufficiently  accurate  for  this  analysis.  Evidence  exists  that  wind  velocity  was  reduced,  and  direction  

shifted  slightly,  in  the  second-­‐half  of  the  mission.  

For  this  research,  the  authors  used  upper  winds  from  070  deg  magnetic  at  23  knots,  or  26.5  mph.  On  

course  to  Howland  Island,  this  was  a  headwind  component  of  23  knots,  or  26.5  mph.  Sensitivity  analyses  

for  second-­‐half  wind  changes  were  completed,  with  resulting  aircraft  positions  contained  in  the  search  

grid.  

Speeds  –  Aircraft  and  AE  Performance  

There  are  seven  principal  sources  of  historical  and  statistical  in-­‐flight  performance  data.  These  include  

L487;  Kelly  Johnson  Telegrams;  Electra  capabilities  in  terms  of  power,  speed,  and  fuel  consumption,  from  

operating  manuals  and  Pratt-­‐Whitney  engine  data;  AE’s  first-­‐hand  reports  during  her  World  Flight  

                                                                                                                         

32  Itasca,  Message  logs.  33  Eric  Chater,  Letter  to  Mr.  M.  E.  Griffin,  8.  34  Randall  S.  Jacobson,  Ph.D.,  The  Final  Flight  –  Part  2,  (TIGHAR.org).  35  Laurence  Safford,  Amelia’s  Flight  Into  Yesterday,  195.  36  Elgen  Long,  Amelia  Earhart  –  The  Mystery  Solved,  18.  

Page 39: Waitt Institute Re-Navigation Rpt

Nutter  and  Associates  Consulting  

 2009  Waitt  Institute  for  Discovery   39  

performance37;  research  by  Long;  and  research  by  Swenson  and  Culick38  with  aerodynamic  and  engine  

performance  research.  

Definition  of  speed  is  important  in  understanding  a  Lae-­‐Howland  specific  segment  analysis.  

Below  is  a  table  compiled  from  two  reference  sources,  Long39  and  Finch.40  The  data  was  crosschecked  

with  notes  reported  by  AE41,  providing  a  single  source  for  historic  mission  segment  examination.  

The  data  show  that  in  30  World  Flight  legs,  excluding  3  test  flights  of  short  duration  (less  than  2.5  hours)  

the  average  ground  speed  is  142.1  mph.  

This  is  useful  in  assessing  various  AE  reported  speeds,  that  often  omitted  units  (statute  or  nautical  miles  

per  hour),  or  what  type  of  speed  was  being  used  (indicated,  true  or  ground  speed).  AE  frequently  omitted  

other  details,  such  as  altitude,  outside  air  temperature,  and  winds,  from  her  in-­‐flight  reports.  

Statistical  data  combined  with  report  times  and  positions,  helps  to  assess  the  reasonableness  of  aircraft  

performance  and  to  corroborate  other  data.  

A  report  of  speed  in  knots  likely  resulted  from  FN  calculations,  handed  to  AE  for  reporting,  since  FN  likely  

worked  in  nautical  miles  from  navigation  charts,  and  AE’s  airspeed  indicator  was  calibrated  in  statute  

miles  per  hour.  AE,  simply  due  to  the  state  of  aviation  in  1937,  most  likely  did  not  possess  the  tools  to  

convert  statute  miles  per  hour  to  knots,  or  to  work  between  indicated,  true,  and  ground  speed,  from  the  

cockpit  and  without  reference  to  published  tables  or  graphs.  

AE’s  Lae  to  Howland  performance  is  defined  from  corroborating  power  settings,  Brake  Horsepower,  

Cambridge  Fuel  Analyzer  indications,  L487  and  Kelly  Johnson  recommendations,  and  statistically  

validated  to  calculated  and  historical  values.  These  values  can  be  used  to  determine  flight  path  data,  

with  reasonable  assurance  that  a  re-­‐calculated  flight  path  represents  an  accurate  calculation.  

                                                                                                                         

37  Amelia  Earhart,  Last  Flight.  38  F.  E.  C.  Culick,  Analysis  of  Amelia  Earhart’s  Final  Flight  (Consulting  Report).  39  Elgen  Long,  Amelia  Earhart  –  The  Mystery  Solved,  250.  40  Linda  Finch,  No  Limits,  (San  Antonio:  World  Flight,  Inc.,  1996)  113.  41  Amelia  Earhart,  Last  Flight.  

Page 40: Waitt Institute Re-Navigation Rpt

Nutter  and  Associates  Consulting  

 2009  Waitt  Institute  for  Discovery   40  

 

Table  1  –  Segment  Speed  Performance  

FROM TO DATE TIME DIST NM FLIGHT

TIME AVG GS KTS AVG GS

MPH

OAKLAND BURBANK 20-May-37 1550 283 2.25 125.78 144.75

BURBANK TUCSAN 21-May-37 1425 393 3.33 118.02 135.82

TUCSON NEW ORLEANS 22-May-37 730 1070 8.67 123.41 142.02

NEW ORLEANS MIAMI 23-May-37 910 586 5 117.20 134.87

MIAMI SAN JUAN 1-Jun-37 556 908 7.56 120.11 138.22

SAN JUAN CARIPITO 2-Jun-37 650 492 4.53 108.61 124.99

CARIPITO PARAMARIBO 3-Jun-37 848 610 4.83 126.29 145.34

PARAMARIBO FORTALEZA 4-Jun-37 710 1142 9.33 122.40 140.86

FORTALEZA NATAL 6-Jun-37 650 235 2.08 112.98 130.02

NATAL SAINT-LOUIS 7-Jun-37 313 1727 13.37 129.17 148.65

SAINT-LOUIS DAKAR 8-Jun-37 905 100 0.87 114.94 132.28

DAKAR GAO 10-Jun-37 651 1016 7.92 128.28 147.63

GAO FORT LAMY 11-Jun-37 610 910 6.63 137.25 157.95

FORT LAMY EL FASHER 12-Jun-37 1224 610 4.1 148.78 171.22

EL FASHER KHARTOUM 13-Jun-27 610 437 3.25 134.46 154.74

KHARTOUM MASSAWA 13-Jun-27 1050 400 2.83 141.34 162.66

MASSAWA ASSAB 14-Jun-37 730 241 2.43 99.18 114.13

ASSAB KARACHI 15-Jun-37 313 1627 13.37 121.69 140.04

KARACHI CALCUTTA 17-Jun-37 725 1178 8.33 141.42 162.74

CALCUTTA AKYAB 18-Jun-37 705 291 2.45 118.78 136.69

AKYAB RANGOON 19-Jun-37 842 268 2.5 107.20 123.37

RANGOON BANGKOK 20-Jun-37 630 315 2.72 115.81 133.27

BANGKOK SINGAPORE 20-Jun-37 1027 780 6.47 120.56 138.74

SINGAPORE BANDOENG 21-Jun-37 617 541 4.33 124.94 143.78

BANDOENG SURABYA 24-Jun-37 1400 310 2.58 120.16 138.27

SURABAYA BANDOENG 25-Jun-37 600 310 2.5 124.00 142.70

BANDOENG SURABAYA 26-Jun-37 1154 310 2.6 119.23 137.21

SURABAYA KOEPANG 27-Jun-37 630 668 5.5 121.45 139.77

KOEPANG DARWIN 28-Jun-37 630 445 3.43 129.74 149.30

DARWIN LAE 29-Jun-37 649 1012 7.72 131.09 150.86

AVG 119.49 142.10

SDEV 12.14

 

This  graph  below  of  average  speeds  flown  on  each  World  Flight  mission  segment,  illustrates  two  

important  conclusions.  

• AE  typically  operated  at  parameters  specified  by  experts,  especially  for  longer  duration  flights.  

• AE’s  performance  consistently  adheres  to  a  reasonably  small  range  of  speeds.  

Page 41: Waitt Institute Re-Navigation Rpt

Nutter  and  Associates  Consulting  

 2009  Waitt  Institute  for  Discovery   41  

The  data  shows  a  larger  variance  in  speed  for  shorter  segment  lengths.  As  the  segment  length  increases,  

the  speed  variance  decreases,  approaching  speeds  recommended  by  the  L487  Report42  and  Kelly  

Johnson.43  

This  process  increases  confidence  in  the  preflight  planning,  flight  parameter  specifications,  and,  for  the  

few  longer  segments  flown  by  AE,  a  sense  that  these  values  were  typical.  

The  final  mission  segment  is  not  included  in  this  data,  since  a  definite  completion  time  was  not  

established.  

 

Figure  5  –  Average  World  Flight  Ground  Speed  

 

                                                                                                                         

42  Clarence  L.  “Kelly”  Johnson  and  W.C.  Nelson,  Lockheed  Report  487  Range  Study  of  Lockheed  Electra  Bimotor  Airplane  (California,  Lockheed  Aircraft  Company  -­‐  June  1936).  43  Kelley  Johnson,  Telegrams    -­‐  Electra  flight  test  data  and  World  Flight  performance  recommendations  (Western  Union  11  March  1937).  

Page 42: Waitt Institute Re-Navigation Rpt

Nutter  and  Associates  Consulting  

 2009  Waitt  Institute  for  Discovery   42  

This  graph  below  depicts  flight  segment  times,  providing  an  interesting  perspective  of  some  of  the  

human  factors  involved  in  this  flight.  

The  30  World  Flight  times  in  the  graph  average  5.1  hours  per  flight  segment.  For  comparison,  the  Lae  to  

Howland  segment  was  planned  for  approximately  18  hours,  and  lasted  in  excess  of  20  hours.  

• The  maximum  flight  time  prior  to  Lae,  was  13.37  hours,  recorded  for  two  mission  segments.  

o No  other  mission  segment  was  more  than  10  hours.  

• AE  had  completed  flights  of  durations  approaching  the  length  of  the  Lae-­‐Howland  segment.  

o On  May  20-­‐21,  1932,  AE  completed  a  solo  transatlantic  crossing  in  14  hours  56  minutes.  

o On  August  24-­‐25,  1932  AE  completed  a  solo  non-­‐stop  transcontinental  crossing  in  19  

hours  5  minutes.  

o On  July  7-­‐8,  1933,  AE  completed  a  transcontinental  crossing  in  17  hours  7  min.  

o On  January  11,  1935  AE  completed  a  solo  flight  from  Honolulu  to  Oakland  in  18  hours.  

o On  May  8,  1935,  AE  completed  a  Mexico  City  to  Newark  flight  in  14  hours  19  minutes.  

AE  was  no  stranger  to  long  flights,  yet  all  were  completed  2-­‐5  years  earlier,  none  were  to  islands,  and  

none  required  a  need  for  maximum  range  performance  and  fuel  management  to  the  level  required  from  

Lae  to  Howland  Island.  

This  data  provides  insight  into  not  only  the  challenge  undertaken  by  AE  and  FN,  but  the  complexity  of  this  

operation  relative  to  their  previous  experience.  

 

Page 43: Waitt Institute Re-Navigation Rpt

Nutter  and  Associates  Consulting  

 2009  Waitt  Institute  for  Discovery   43  

 

Figure  6  –  Average  Segment  Length  

Flight  Modeling  –  Lae  to  Howland  Island  

For  this  research,  prior  to  AE’s  0718  GMT  in-­‐flight  position  report,  climb  speeds  were  determined  from  

L487  and  Kelly  Johnson  power  setting  recommendations,  engine  operating  limitations,  climb  speed  

specifications,  with  consideration  of  climb  rate  as  reported  by  Pellegreno.  

From  AE’s  0718  GMT  in-­‐flight  position  report,  to  Howland  Island,  the  re-­‐calculated  true  airspeed  was  

determined  by  setting  power  in  accordance  with  L48744  and  Kelly  Johnson  recommendations,45  with  

reference  to  direct  evidence  from  previous  flight  profiles,  statistical  reference,  and  behavior  where  AE  

included  specifics  about  power  setting  and  speed,  in  flight  notes.  Lockheed  and  Pratt-­‐Whitney  data  were  

also  considered.  

This  technique  produced  en  route  speeds  after  0718  GMT,  of  138  knots  true  air  speed,  or  158.8  mph.  

                                                                                                                         

44  Clarence  L.  “Kelly”  Johnson  and  W.C.  Nelson,  Lockheed  Report  487  Range  Study  of  Lockheed  Electra.  45  Kelley  Johnson,  Telegrams    -­‐  Electra  flight  test  data  and  World  Flight  performance  recommendations.  

Page 44: Waitt Institute Re-Navigation Rpt

Nutter  and  Associates  Consulting  

 2009  Waitt  Institute  for  Discovery   44  

Applying  the  23  knots,  or  26.5  mph,  headwind  component,  produced  116  knots  ground  speed,  or  132.3  

mph  ground  speed,  after  the  0718  GMT  position,  which  was  held  until  the  perceived  descent  point  to  

Howland  Island  at  approximately  80  statute  miles  per  Kelly  Johnson,  Paul  Mantz  (OAK-­‐HNL)  and  Fred  

Noonan  recommendations.  

Our  result  of  132.3  mph  ground  speed,  from  the  0718  GMT  position  to  Howland  Island,  is  only  1.7  mph  

(1.2%)  less  than  Long’s  overall  mission  average  ground  speed.  Our  result  of  158.8  mph  true  air  speed  is  

also  1.7  mph  (1.1%)  less  than  Long’s  overall  average  true  air  speed.  

These  are  considered  valid  performance  numbers,  and  when  combined  in  a  discrete  and  stepwise  

analysis,  the  modeling  technique  provides  a  more  accurate  profile.  

• Despite  flying  a  Lockheed  Model  10A  aircraft  with  smaller  engines,  less  weight  and  likely  a  lower  

drag  profile,  Pellegreno46  routinely  observed  ground  speeds  of  133-­‐135  mph  during  a  

Commemoration  Flight,  indicating  that  computed  speeds  are  in  the  range  of  reasonable  

performance.  

• Pellegreno’s  aircraft  has  effectively  the  same  horsepower-­‐to-­‐weight  ratio  as  AE’s  Electra  10E.  

• Long  assumed  a  constant  overall  true  air  speed  of  160.547mph,  in  the  presence  of  a  constant  

headwind  component  of  26.5  mph,  producing  an  overall  mission  average  ground  speed  of  134  

mph.  

• Long’s  approach  of  averaging  distance  and  time  was  updated  in  our  research  using  a  discrete  

approach,  a  stepwise  analysis  at  each  waypoint,  facilitated  by  software.  

Using  flight  planning  and  analysis  software  to  model  the  climb,  cruise,  descent  performance  and  wind  

effects,  can  produce  a  more  accurate  overall  mission  analysis.  The  software  enabled  modeling  three  

flight  paths,  sensitivity  analyses  from  headwind  speed  and  direction  modifications,  and  examination  of  

route  timing  and  the  terminal  EON  position.  

Further  corroboration  of  these  results  is  found  in  L48748  that  recommended  flying  at  155  mph  indicated  

air  speed  at  2,000  feet,  145  mph  indicated  air  speed  at  4,000  feet,  and  135  mph  indicated  air  speed  at  

8,000  feet.  This  profile  was  apparently  not  flown,  as  it  was  pre-­‐empted  by  later  Kelly  Johnson  profile  

recommendations,  which  appear  to  have  been  executed  and  adhered  to  on  many  World  Flight  segments,  

including  the  Lae  to  Howland  Island  segment.  The  8,000  feet  speed  specification  is  very  near  what  AE  

likely  flew.  

The  later  Kelly  Johnson  recommendations  specified  flying  at  8,000  feet,  and  under  conditions  that  likely  

existed  during  AE’s  flight,  are  equivalent  to  155.4  mph  true  air  speed.  Kelly  Johnson  Telegrams49  

                                                                                                                         

46  Ann  Pellegreno,  World  Flight  –  The  Earhart  Trail  (Ames,  Iowa:  Iowa  State  University  Press,  1971)  60,  177.  47  Elgen  Long,  Amelia  Earhart  –  The  Mystery  Solved,  194.  48  Ibid.  7  49  Kelley  Johnson,  Telegrams    -­‐  Electra  flight  test  data  and  World  Flight  performance  recommendations.  

Page 45: Waitt Institute Re-Navigation Rpt

Nutter  and  Associates  Consulting  

 2009  Waitt  Institute  for  Discovery   45  

indicated  power  settings  and  speeds,  showing  that  after  0718  GMT,  a  target  speed  would  be  133-­‐158  

mph  true  air  speed.  

• This  data  and  resultant  recommendations  were  based  on  analytic  aerodynamic  calculations  

including  wind  tunnel  testing,  and  actual  flight  test  data  from  AE’s  aircraft.  

L48750  provided  values  for  flight  at  sea  level,  with  no  altitude  adjustments,  and  recommended  flying  150  

mph  true  air  speed  in  still  air,  and  with  a  20  mph  headwind,  flying  154  mph  true  air  speed.    

Table  2,  from  0718  GMT  to  approximately  1830  GMT,  compares  cruise  performance  in  statute  miles  per  

hour  (MPH),  for  this  specific  cruise  segment.  

Table  2  –  Comparative  Speed  Calculations  

Performance  Parameter     Our  Flight  Plan   Long  Research51   L487  Recommendations  Indicated  Air  Speed   138.1   139.2   135.0  True  Air  Speed   158.8   160.5   155.4  Ground  Speed   132.3   134.0   132.4    

AE  adhered  remarkably  close  to  these  recommendations.  These  speeds  are  highly  corroborated.  

The  MSI  and  modeling  process  forms  a  corroborating  body  of  evidence  of  the  likely  mission  flight  

performance  actually  achieved  on  the  Lae  to  Howland  Island  mission  segment,  in  terms  of  speed,  fuel  

consumption,  position  and  time.  MSI  incorporated  a  broader  range  of  corroborated  data  sources:  

• All  AE  in-­‐flight  reports  

• AE  historical  performance  data  

• The  Nauru  Island  weather  observation  of  upper  altitude  winds  

• Data  used  by  Long  

• The  L487  report  aerodynamic  data  

• Kelly  Johnson  recommendations  

• Swenson  and  Culick’s  analysis  

• Our  independent  analysis  for  validation  of  previous  work  

• Lockheed  Electra  Operating  Manuals  

• Pratt-­‐Whitney  engine  operating  data  specific  to  AE’s  engines  

                                                                                                                         

50  Clarence  L.  “Kelly”  Johnson  and  W.C.  Nelson,  Lockheed  Report  487  Range  Study  of  Lockheed  Electra.  8  51  Long  used  overall  averages  for  analysis.  

Page 46: Waitt Institute Re-Navigation Rpt

Nutter  and  Associates  Consulting  

 2009  Waitt  Institute  for  Discovery   46  

 

Using  this  MSI  blending  process  we  calculate  performance  used  in  our  aircraft  modeling  and  flight  

planning  process,  as  follows:  

• Indicated  Air  Speed  within  2.3%  of  L487  and  0.8%  of  Long  

• True  Air  Speed  within  2.2%  of  L487  and  1.1%  of  Long  

• Ground  Speed  within  1.2%  of  L487  and  1.3%  of  Long  

This  methodology  directly  affects  speed,  time,  fuel  consumption,  and  most  important,  final  position.  

Except  for  lateral  navigation  track  errors  or  deviations  from  a  planned  path,  speed  and  fuel  consumption  

are  the  most  fundamental  parameters  in  locating  the  Electra,  and  worthy  of  close  scrutiny.  

Improved  Accuracy  

Modern  methods  yielding  2%  improvements  in  a  solution  represent  approximately  50nm  in  a  final  EON  

point  on  a  Lae  to  Howland  Island  segment.  

Performance  Specification  Challenges  

Among  sources  of  Lockheed  Electra  10E  aircraft  performance  specifications,  Lockheed  and  Kelly  Johnson  

provide  reference  data.  Lockheed  Electra  Operating  Manuals  provide  good  information.  AE  provides  data  

in  nine  citations  of  some  aspect  of  en  route  aircraft  performance.52  Pellegreno  provides  two  climb  

airspeed  citations  and  two  en  route  ground  speed  citations  under  normal  wind  and  weather  conditions  

that  are  useful.53  

Lockheed  Report  487  54  contains  extensive  aerodynamic  and  performance  analyses  of  the  Lockheed  

Electra  Model  10E.  

Completed  13  months  in  advance  of  the  actual  World  Flight  attempt,  this  report  detailed  a  

recommended  flight  profile,  flight  parameter  recommendations,  and  supporting  aerodynamic  data.  

Among  these,  are  useful  information  on  engine  power  settings  for  Brake  Horsepower  (BHP),  Manifold  

Pressure  (MP),  propeller  RPM  (RPM),  fuel  flow  in  gallons  per  hour  (GPH),  flight  speed,  range,  fuel  

consumption,  and  Cambridge  Fuel  Analyzer  settings.  

Conversion  factors  used  in  this  analysis55  are  shown  below.  

• 1  nautical  mile  per  hour  =  1.1508  statute  miles  per  hour  

• 1  nautical  mile  =  1852  meters  =  1.1508  statute  miles  =  6076.1  feet.                                                                                                                            

52  Amelia  Earhart,  Last  Flight.  53  Ann  Pellegreno,  World  Flight  –  The  Earhart  Trail.  54  Clarence  L.  “Kelly”  Johnson  and  W.C.  Nelson,  Lockheed  Report  487  Range  Study  of  Lockheed  Electra.  55  AIAA  Aerospace  Design  Engineering  Guide,  AIAA,  September  2003.  

Page 47: Waitt Institute Re-Navigation Rpt

Nutter  and  Associates  Consulting  

 2009  Waitt  Institute  for  Discovery   47  

These  conversions  are  important.  Charts,  tables,  AE  in-­‐flight  position  reports  of  speed  and  distance,  Fred  

Noonan’s  notes  to  AE  and  radio  logs  of  communications,  contain  either  no  definitions  for  the  metrics  

being  reported,  or  when  a  unit  of  measure  is  defined,  it  sometimes  conflicts  with  other  reports,  historical  

accounts,  or  engineering  data.  

Within  L487,56  and  in  most  every  resource,  flight  speed  is  frequently  not  defined  in  terms  of  the  units,  

nautical  miles  per  hour  (knots)  or  statute  miles  per  hour  (MPH).  In  some  cases  in  the  same  report,  speed  

units  are  mixed  in  different  charts  or  tabular  data,  and  flight  speed  is  sometimes  defined  in  one  graph,  

and  not  defined  in  other  graphs  or  tables.  

In  every  case,  these  precise  units  of  measure  require  definition  to  enable  meaningful  analysis.  

This  complicates  all  analyses.  

Flight  speed  is  an  important  metric.  There  are  three  flight  speed  measures  of  interest,  and  in  this  

research  the  authors  have  been  required  to  calculate,  and  identify  the  measure  being  used  in  a  majority  

of  historical  references.  

• AE’s  airspeed  indicator  was  calibrated  in  statute  miles  per  hour,  or  MPH.  AE  flew  her  airplane  

with  reference  to  MPH.  This  is  Indicated  Air  Speed  (IAS)  in  MPH.  

• When  Indicated  Air  Speed  in  MPH  is  corrected  for  altitude  (pressure  and  temperature)  the  result  

is  an  associated  True  Air  Speed  (TAS)  in  MPH.  This  is  “over  the  earth”  speed  in  a  no  wind  

condition.  

• When  TAS  in  MPH  is  corrected  for  headwinds  and  tailwinds,  the  result  is  Ground  Speed.  This  is  

the  aircraft’s  actual  speed  over  the  ground,  in  the  air  mass  existing  at  the  time  of  flight.  

• For  distances  measured  in  nautical  miles,  the  associated  speeds  are  defined  as  knots,  or  nautical  

miles  per  hour.  

While  AE’s  IAS  registered  in  MPH,  many  charts  such  as  aeronautical  and  marine  charts  are  presented  in  

nautical  miles.  Fred  Noonan’s  chart  navigation  was  likely  in  nautical  miles,  requiring  a  conversion  from  

nautical  miles  (or  NM  per  hour  which  is  defined  as  Knots)  to  statute  miles  (or  statute  MPH).  

“Speed  140  knots…”  

As  an  example  of  this  complexity  and  the  importance  of  precise  specifications,  AE  provides,  according  to  

Chater,  an  in-­‐flight  position  report  at  0418  GMT  including  a  report  of  “140  knots.”  

• Chater57  reports  this  as  140  knots.  

• Collopy58    reports  this  as  150  knots.  

                                                                                                                         

56  Clarence  L.  “Kelly”  Johnson  and  W.C.  Nelson,  Lockheed  Report  487  Range  Study  of  Lockheed  Electra.  57  Eric  Chater,  Letter  to  Mr.  M.  E.  Griffin  58  J.  A.  Collopy,  Report  to  Civil  Aviation  Board  (Salamaua:  28  August,  1937).  

Page 48: Waitt Institute Re-Navigation Rpt

Nutter  and  Associates  Consulting  

 2009  Waitt  Institute  for  Discovery   48  

The  type  of  speed  is  not  specified.  It  could  be  140  knots  True  Airspeed,  Indicated  Airspeed,  or  Ground  

Speed.  The  implications  of  each  are  very  important.  

Referring  to  L487,59  for  ambient  meteorological  conditions  likely  at  0418,  area  weather  reports  indicate  

outside  air  temperature  at  sea  level  of  approximately  83  degrees  F.  Using  the  standard  adiabatic  

temperature  lapse  rate  of  -­‐3.5  degrees  F  per  1000  fee  to  find  the  ambient  temperature  at  AE’s  cruise  

altitude,  we  find  that  if  “140  knots”  were  an  indicated  air  speed,  it  would  imply  the  aircraft  was  flying  at  

a  true  air  speed  beyond  the  Electra’s  performance  capability  at  its  gross  weight  at  0418  GMT.  

Similarly,  if  “140  knots”  were  a  ground  speed,  with  an  assumed  23-­‐knot  headwind  component  (26.5  mph  

headwind  defined  by  Long),  the  true  airspeed  required  is  again,  beyond  the  Electra’s  performance  

capability  at  its  gross  weight  at  0418  GMT.  

If  “140  knots”  were  a  true  air  speed  (equivalent  to  161.1  mph  true  air  speed),  it  would  place  AE’s  

indicated  airspeed  in  miles  per  hour  (143  mph  IAS),  in  the  range  of  historical  performance  and  Electra  

capabilities,  and  near  the  speeds  prescribed  in  L487  and  Kelly  Johnson,60  and  Paul  Mantz  

recommendations.  

If  the  reported  speed  was  150  knots,  and  a  true  air  speed,  this  would  be  uncharacteristically  high  for  the  

Electra’s  gross  weight  and  mission  time,  atypical  of  AE’s  performance,  and  beyond  statistical  norms.  

At  140  knot,  and  161.1  mph  true  air  speed  with  the  assumed  26.5  mph  headwind  (Long),  AE’s  ground  

speed  would  have  been  134.6  mph,  which  is  within  7  mph  (5.6%)  of  AE’s  statistical  range  of  historical  

World  Flight  performance,  within  the  Electra’s  capabilities  at  that  gross  weight,  closely  aligned  with  

flight  recommendations,  and  typical  for  the  mission  time  en  route.  

The  conclusion  is  that  AE’s  report  of  “140  knots”  is  a  true  air  speed.  Fred  Noonan  likely  handed  AE  the  

data  to  make  this  report  (in  knots),  and  AE  was  flying  very  close  to  recommended  or  prescribed  

parameters.  This  precise  and  consistent  performance  is  typical  for  AE  throughout  the  World  Flight,  and  

vitally  important  to  understanding  the  Lae  to  Howland  Island  mission  segment.  

Further,  Chater’s  report61  is  considered  more  accurate  regarding  this  reference  to  speed.  

Fred  likely  worked  in  knots  and  nautical  miles,  making  conversions  from  AE’s  indicated  airspeed  and  

meteorological  data  such  as  outside  air  temperature.  There  would  be  no  instrument  indication  

presenting  “knots”  to  AE  in  the  cockpit,  and  AE  would  likely  not  have  made  conversions  from  mph  to  

knots  with  Fred  aboard,  and  possibly,  not  at  all.  The  charts  and  process  for  these  calculations  were  

largely  unavailable  for  most  flying  in  1937.  The  conversions  were  not  easily  performed,  and  no  handy  

calculators  existed  to  make  the  job  easier  or  more  reliable.  

                                                                                                                         

59  Clarence  L.  “Kelly”  Johnson  and  W.C.  Nelson,  Lockheed  Report  487  Range  Study  of  Lockheed  Electra.  60  Ibid.  61  Ibid.  

Page 49: Waitt Institute Re-Navigation Rpt

Nutter  and  Associates  Consulting  

 2009  Waitt  Institute  for  Discovery   49  

In  1937  aviation,  flying  was  referenced  to  “miles  per  hour,”  which  is  statute  miles  per  hour.  

The  ubiquitous  handheld  calculator,  the  E-­‐6B  flight  computer,  made  it  possible  for  pilots  to  easily  and  

rapidly  compute  speeds,  winds,  conversions,  and  other  flight  performance  data.  Unfortunately,  it  was  

effectively  not  yet  invented  in  July  1937,  and  did  not  gain  widespread  use  until  mid-­‐WWII.  

Flight  Data  -­  AE  Natal  to  Dakar  

This  flight  segment  was  the  longest  over-­‐water  portion  of  the  World  Flight,  and  among  the  two  segments  

with  the  longest  duration,  prior  to  the  planned  Lae-­‐Howland  segment.  AE  crossed  the  Atlantic  at  night,  

just  as  the  planned  Lae  to  Howland  flight  would  be  executed.    

Position  and  Time  

In  AE’s  flight  notes62,  this  flight  segment  offers  the  most  comprehensive  detail  of  flight  conditions,  

speeds,  outside  air  temperature,  aircraft  location  (by  calculation),  possible  sun  position,  and  factual  data  

of  any  World  Flight  segment.  It’s  worth  studying  carefully,  and  it  relates  directly  to  the  Lae  to  Howland  

segment.  

• These  notes  are  recorded  in  a  logbook  fashion,  at  “6:50.”63  

o Takeoff  from  Natal  was  at  “…0315  in  the  morning...”  

• We  assessed  this  as  local  time.  

• The  notation  “6:50”  could  be  the  mission  elapsed  time  since  takeoff.  

• The  notes  include  “crossing  the  equator”  which  was  approximately  513sm  from  Natal,  and  would  

have  corresponded  to  approximately  3  hours  30  minutes  flying  time,  crossing  the  equator  at  

approximately  0645  AM  local  Natal  time.    

o  “6:50”  is  then  the  Natal  local  time  of  this  logbook  entry,  and  the  local  time  of  the  

equator  crossing.  

o With  this  entry  is  “sun  brilliant”  which  may  refer  to  sunrise,  which  in  Natal  on  the  

morning  of  June  7,  1937  was  at  0636  local  time.  

• Later  in  these  same  notes,  AE  records  an  entry  titled  “9:41  Natal  time.”  In  this  entry  AE  notes  147  

mph  for  8  hours  [since  takeoff]  covering  1176  statute  miles.  

o This  147  mph  is  a  ground  speed,  multiplied  by  time  and  resulting  in  a  distance  covered.  

o “9:41  Natal  time”  is  6  hours  26  minutes  elapsed  mission  time,  approximately  the  mid-­‐

point  of  the  Atlantic  crossing.  Natal  to  Dakar  is  a  3-­‐hour  time  zone  change.    AE  notes  

their  time  airborne  as  8  hours  since  takeoff.  This  may  simply  be  an  error,  or  the  entry  

“9:41  Natal  time”  could  simply  be  unrelated  to  the  notes  about  speed,  time  and  distance.  

                                                                                                                         

62  Amelia  Earhart,  Last  Flight.  63  ibid.  131.  

Page 50: Waitt Institute Re-Navigation Rpt

Nutter  and  Associates  Consulting  

 2009  Waitt  Institute  for  Discovery   50  

At  “9:41”  Natal  time,  on  June  7,  1937,  the  sun  azimuth  from  true  north  was  050.35  degrees,  and  its  

elevation  above  the  horizon  was  +40.81  degrees.  AE  writes  that  “…they  can  hardly  believe  the  sun  is  

north  of  them.…”    Their  true  course  to  Dakar  was  approximately  038  degrees.  The  sun  would  have  been  

slightly  to  the  right  of  their  heading,  south  of  their  course,  if  they  were  on  course.  If  they  were  heading  in  

a  more  easterly  direction,  the  sun  would  indeed  appear  north  of  them.  

From  AE’s  logs  we  know  that  AE  was  north  of  course  at  some  point  in  the  crossing.  It  is  possible  that  

these  observations  of  the  “…sun…north  of  them…”  were  made  after  a  heading  correction  to  rejoin  their  

original  track  to  Dakar.  This  heading  correction  would  place  the  sun  to  their  left,  possibly  appearing  as  if  

it  was  “north”  of  them.  

These  observations  are  tremendous  insights  into  flight  parameters,  mission  timing,  how  AE  recorded  

information,  and  the  accuracy  of  their  navigation.  

All  of  these  are  central  to  the  Lae-­‐Howland  recalculation.  

En  route  Weather  –  Overcast  or  Undercast  

In  AE’s  notes  from  Natal  to  Dakar,64  at  approximately  the  halfway  point,  she  writes,  “High  overcast  now.  

Good  visibility  except  now  and  then  showers.  Fred  takes  sight.  Says  we’re  north  of  course  a  little.”  

The  importance  of  this  entry  is  significant  for  the  Lae-­‐Howland  segment.  The  insight  here  is  that  with  a  

high  overcast,  Fred  could  not  take  a  sight,  unless  the  “overcast”  was  actually  an  “undercast.”  

Even  today,  pilots  observing  a  cloud  deck  below  them  in  cruise  flight  sometimes  refer  to  the  condition  as  

an  overcast  sky.  The  term  “undercast”  is  not  widely  used,  or  common  in  the  “pilot-­‐vernacular”  of  aviation  

today,  and  in  1937  aviation,  it  likely  wasn’t  yet  conceived.  

In  several  AE  Lae  to  Howland  in-­‐flight  position  reports,  references  to  “overcast”  conditions  are  made.  

• At  1415  GMT,  AE  reported  “cloudy  and  overcast.”  

• At  1515  GMT,  AE  reported  “overcast.”  

• At  1627  GMT  AE  reported  “partly  cloudy.”  

Traditionally,  researchers  have  concluded,  in  reference  to  these  reports,  that  the  sky  above  AE  was  

indeed  as  reported,  “overcast.”  However,  it  is  possible  that  we  have  misinterpreted  flight  conditions,  

from  semantic  or  contextual  differences  between  today,  and  1937.  

If  AE  was  in  fact  reporting  an  “undercast,”  which  we  believe  is  likely,  it  means  that  FN  had  good  celestial  

navigation  targets  (as  AE  stated),  could  take  good  position  fixes,  and  assure  that  they  were  on  their  

planned  track  from  Lae  to  Howland.  

                                                                                                                         

64  Amelia  Earhart,  Last  Flight.  

Page 51: Waitt Institute Re-Navigation Rpt

Nutter  and  Associates  Consulting  

 2009  Waitt  Institute  for  Discovery   51  

This  conclusion  has  a  significant  effect  on  the  end-­‐of-­‐navigation  position.  It  essentially  allows  that  AE  had  

a  good  opportunity  to  be  on  course  to  the  end-­‐of-­‐navigation  fix.  It  could  further  allow  that  AE  descended  

at  the  perceived  descent  point,  slightly  early,  and  while  on  track.  

The  end-­‐of-­‐navigation  fix  would  then  be  quite  accurate.  

The  Lae  to  Howland  implications  from  studying  these  World  Flight  segments  preclude  wildly  off-­‐track  

navigation  positions,  gross  timing  and  navigation  errors,  poor  en  route  weather  conditions,  or  excessive  

fuel  use  due  to  large  un-­‐forecast  headwinds,  or  in  greatly  varying  distances  flown  on  various  profiles  

proposed  in  some  previous  works.  

This  understanding  increases  confidence  in  the  end-­‐of-­‐navigation  and  fuel  consumption  calculations.  

Aircraft  Fuel  Load  

AE  writes  of  refueling  the  aircraft  at  Natal,  and  with  some  concern  for  adequate  fuel  quantity,  for  using  

the  “secondary”  grass  runway  at  Natal,  and  for  departing  that  runway,  “…in  the  dark  with  such  a  heavy  

load….”  

She  had  a  backup  plan,  as  she  frequently  detailed  throughout  her  flying  experiences,  which  called  for  

delaying  that  takeoff  until  more  suitable  conditions  existed.  Her  backup  plans  for  fuel  generally  included  

a  safety  margin.  

AE  and  FN  examined  that  grass  runway  by  walking  its  length  with  flashlights,  and  ultimately  departed  as  

planned,  “…we  got  into  the  air  easily.”  This  is  the  1937  equivalent  of  today’s  safety  risk  management  

process.  

In  Natal,  the  Electra  was  likely  refueled  to  approximately  80%  of  the  fuel  loaded  at  Lae.  The  Natal-­‐Dakar  

segment  of  approximately  1900  statute  miles  was  656  statute  miles  less  than  the  planned  distance  from  

Lae-­‐Howland,  or  approximately  74%  of  the  Lae-­‐Howland  distance  At  AE’s  baseline  150  mph  still-­‐air  

ground  speed,  the  4.4  hour  difference  in  mission  time,  at  nominally  50  gallons  per  hour,  would  mean  218  

less  gallons  of  fuel  were  required  at  Natal,  and  a  takeoff  fuel  load  from  Natal  was  approximately  862  

gallons.  This  provided  more  than  4  hours  endurance  at  destination.  

AE  stated  on  the  OAK-­‐HNL  flight  segment  that  she  considered  4  hours  reserve  fuel  an  adequate  safety  

margin,  “Incidentally,  we  arrived  at  Hawaii  with  more  than  four  hours’[sic]  supply  of  gasoline  remaining,  

which  would  have  given  us  over  600  miles  of  additional  flying,  a  satisfactory  safety  margin.”65  

It  is  important  to  note  in  that  passage,  that  AE’s  baseline  speed  is  150  mph  ground  speed  as  

recommended,  and  apparently  50  GPH  as  a  general  fuel  consumption  rate.  

Here,  Natal  to  Dakar,  we  have  the  second  incidence  of  knowing  that  AE  planned  for  a  4-­‐hour  fuel  reserve.  

                                                                                                                         

65  Amelia  Earhart,  Last  Flight,  63.  

Page 52: Waitt Institute Re-Navigation Rpt

Nutter  and  Associates  Consulting  

 2009  Waitt  Institute  for  Discovery   52  

This  has  implications  for  the  Lae  to  Howland  segment,  in  terms  of  how  much  fuel  AE  planned  upon  

arrival  at  Howland  Island.  While  perhaps  not  4  hours,  AE  may  have  planned  at  least  3  hours  fuel  

remaining  at  Howland  Island,  120-­‐150  gallons  of  fuel,  again  providing  us  with  a  valuable  insight  to  what  

went  wrong  on  the  Lae  to  Howland  segment.  

AE’s  details  of  the  Natal  to  Dakar  flight  parameters  after  6  hours  50  minutes  can  be  compared  with  her  

in-­‐flight  position  reports  from  Lae,  made  at  0718  GMT,  as  a  quality  assurance  process.  

In-­Flight  Speed  and  Performance  

Following,  the  two  segments,  Natal-­‐Dakar  (St.  Louis)  and  Lae-­‐Howland,  are  compared  and  evaluated.  

AE  writes  at  6:50  elapsed  mission  time:  

• Indicated  Air  Speed  140  (likely  in  mph  since  her  airspeed  indicator  was  calibrated  in  mph)  

• Altitude  5,780  feet  

• Manifold  pressure  26.5  inches  

• RPM  1700  

• Outside  Air  Temperature  60  (likely  indicated  air  temperature  in  degrees  Fahrenheit)  

These  conditions  equate  to  approximately  a  power  setting  of  250  Brake  Horsepower  (BHP),  burning  

approximately  46-­‐49  gallons  per  hour  in  cruise  flight.  Accounting  for  an  estimated  70  gallons  for  climb  in  

the  first  hour,  25  gallons  for  a  30-­‐minute  descent,  and  a  cruise  portion  of  11.8  hours  at  an  average  47.5  

gallons  per  hour,  the  Natal-­‐St.  Louis  segment  should  have  consumed  655  gallons.  From  an  initial  fuel  

load  of  862  gallons,  at  least  4  hours  fuel  remained  at  arrival  in  Dakar  (St.  Louis).  

AE  likely  adhered  as  much  as  possible  to  these  parameters  during  the  Lae-­‐Howland  segment.  

Comparing  Natal-­Dakar  (St.  Louis)  and  Lae-­Howland  

We  can  make  some  comparative  assessments.  For  example,  if  we  use  the  same  Natal-­‐Dakar  climb  and  

descent  numbers  for  fuel  and  time,  it  leaves  a  Lae-­‐Howland  17.7-­‐hour  cruise  segment  at  47.5  gallons  per  

hour,  consuming  841  gallons.  Adding  the  climb  and  descent,  the  Lae-­‐Howland  mission  fuel  consumption  

would  have  been  936  gallons.  

Our  Lae  to  Howland  specific  fuel  consumption  analysis  resulted  in  a  segment  fuel  consumption  of  957  

gallons,  leaving  123  gallons  of  fuel  remaining  at  Howland.  

We  have  two  different  mission  segments,  two  very  different  computational  methods  and  processes,  one  

generalized  and  one  very  specific,  and  two  conclusions  for  segment  fuel  consumption,  that  differ  by  just  

2.2%.  The  confidence  in  these  solutions,  the  Lae  to  Howland  analysis,  the  End-­‐of-­‐Navigation  point,  and  

the  possible  location  of  the  Electra,  increases  with  each  MSI  corroboration.  

Reproducing  Table  1  and  including  data  from  AE’s  Natal-­‐St.  Louis  flight  segment  provides  analytical  

corroboration,  and  again  reflects  AE’s  consistent,  disciplined  adherence  to  specified  flight  parameters.  

Page 53: Waitt Institute Re-Navigation Rpt

Nutter  and  Associates  Consulting  

 2009  Waitt  Institute  for  Discovery   53  

Table  3  –  Table  1  with  added  detail  for  Natal  to  Dakar  mission  segment.  

Performance  Parameter    

Our  Flight  Plan   Long  Research   L487  Recommendations  

AE  Flight  Notes  Natal-­‐St.  Louis  

Indicated  Air  Speed   138.1   139.2   135.0   140.0  True  Air  Speed   158.8   160.5   155.4   154.2  Ground  Speed   132.3   134.0   132.4   134.266  

Part  IV.    Detailed  Flight  Path  Navigation  and  Position  Reporting  

 

Howland  Island  Coordinates  

We  discovered  eight  different  coordinates  in  use  by  various  authors,  organizations,  ships,  and  charts.  

Our  navigation  analyses  used  the  charted  coordinates  for  Howland  Island  in  1937,  from  Clarence  

Williams,  on  AE’s  flight  planning  paperwork.  

• N  0  deg  49  min  /  W  176  deg  43  min  

Elgen  Long  used  [N  0  deg  49  min  /  W  176  deg  38  min].  

Author  Captain  Riley,  in  a  piece  discussing  the  varying  coordinates  for  Howland  Island,  reported  the  1937  

position  as  [N  0  deg  53  min  /  W  176  deg  35  min]  and  the  more  current  position  at  the  time  of  his  writing  

as  [N  0  deg  48  min  /  W  176  deg  38  min].  

Commanding  Officers  of  USS  Colorado,  USS  Lexington,  and  1st  LT  Daniel  Cooper  of  the  Army  Air  Corps  

aboard  Itasca,  all  included  positions  for  Howland  Island  in  their  final  reports  for  this  accident.  Only  1st  LT  

Cooper  used  the  same  coordinates  as  Clarence  Williams,  and  likely  AE  as  well.  Each  of  the  two  Navy  ships  

used  different  coordinates  for  Howland  Island,  and  neither  matched  Williams’  and  Cooper’s  coordinates.  

The  U.S.  Naval  Observatory  cites  Howland  Island  coordinates  as  [N  0  deg  54  min  /  W  176  deg  36  min].  

Google  Earth  shows  the  Howland  Island  coordinates  as  [N  0  deg  48  min  28  sec  /  W  176  deg  37  min].  

These  are  based  on  the  WGS84  geodetic  datum.  

A  plot  of  Howland  Island  from  Chart  617  4617  shows  [N  0  deg  49  min  /  W  176  deg  40  min].  

The  entries  here  are  for  completeness  –  all  of  the  variances  in  island  position  are  within  a  small  range.  

The  most  important  factor  is  that  AE’s  position  for  Howland  Island  was  approximately  6nm  west  of  the  

actual  island.  

                                                                                                                         

66  AE  estimated  20  mph  headwind  for  the  first  half  of  this  Natal-­‐St.  Louis  flight  segment.  

Page 54: Waitt Institute Re-Navigation Rpt

Nutter  and  Associates  Consulting  

 2009  Waitt  Institute  for  Discovery   54  

For  an  arrival  short  of  Howland,  this  only  adds  to  the  challenge  of  visual  acquisition.  Geodetic  Datums  

This  area  was  examined  for  its  impact  on  the  mission.  While  many  geodetic  datums  are  presently  used  

around  the  world,  the  differences  among  them  are  not  large  in  most  cases,  in  terms  of  locating  object  

coordinates  within  a  few  hundred  feet  of  actual  locations.  Other  charting  and  location  differences  can  

produce  more  significant  variance,  such  as  occurred  at  Howland  Island.  

The  difference  between  the  1937  Howland  Island  position,  and  today’s  WGS84  coordinates  for  Howland  

Island,  is  5.92  nautical  miles,  6.82  statute  miles,  on  a  bearing  from  the  1937  position  of  095.17  degrees  

true.  

The  actual  location  of  Howland  Island,  east  of  its  charted  position  in  1937,  was  not  a  trivial  threat  to  

success.  Had  the  flight  from  Lae  to  Howland  been  executed  perfectly  in  all  respects,  AE  would  have  been  

nearly  7  statute  miles  and,  at  maximum  endurance  speed,  approximately  3.5  minutes  flying  time,  west  of  

the  actual  land  mass  of  Howland  Island.  Visual  acquisition  of  Howland  Island  from  10  miles  is  known  to  

be  difficult  –  the  island  could  be  missed.    

This  was  a  significant  handicap,  given  the  difficulty  of  visually  locating  the  very  small  island.  

Specific  Flight  Path  Navigation  Summary  –  Lae  to  Howland  Island  

We  have  confidently  specified  the  aircraft’s  performance  in  terms  of  speeds,  power  settings,  fuel  

consumption,  and  time.  

With  these  important  mission  flight  parameters  accurately  specified,  and  using  reasonable  assumptions  

for  the  value  of  winds  aloft,  we  have  a  good  assessment  of  along-­‐track  navigation.  

Following  is  an  examination  of  lateral  navigation  issues.  

Lateral  Navigation  –  Lae  to  Howland  Island  

Flight  Paths  A,  B,  and  C,  were  analyzed  with  other  data  previously  described,  additional  AE  in-­‐flight  

position  reports,  Itasca  radio  logs,  and  Nauru  Island  radio  logs,  etc.  

Flight  Path  A  is  a  great  circle  direct  routing  from  Lae  to  Howland  Island.  As  mentioned  earlier,  this  is  not  

a  likely  path  as  it  penetrates  forecast  areas  of  dangerous  convective  weather,  and  passes  over  large  land  

masses  where  convective  weather  is  most  likely  to  exist.  

Flight  Path  B  is  modified  from  Path  A  to  pass  through  the  incorrectly  reported,  or  stated,  0519  GMT  

position,  known  to  be  incorrect  in  terms  of  longitude,  or  time.  Path  B  must  be  considered  for  two  reasons  

• The  path  shows  a  southerly  deviation  around  forecast  weather.    

•  On  the  Electra’s  flight  progress,  it  passes  this  reported  coordinate  at  0218  GMT.  It  is  possible  

that  the  coordinate  is  correctly  recorded,  yet  the  time  was  incorrectly  noted  as  0519  GMT  

Page 55: Waitt Institute Re-Navigation Rpt

Nutter  and  Associates  Consulting  

 2009  Waitt  Institute  for  Discovery   55  

instead  of  0218  GMT.  The  numeral  “5”  could  have  actually  been  reported  by  AE  as  a  “2,”  and  

transcribed  in  error.  

Flight  Path  C  is  an  alternative  flight  path  with  consideration  that  the  0519  GMT  report  of  longitude  was  

either  incorrectly  reported  by  AE,  or  incorrectly  stated  by  Chater.67    Path  C  is  created  with  consideration  

that  the  recounted  longitude  value  of  W  150.7  may  actually  have  been  W  157.0.  

Using  this  new  position,  several  results  emerge,  notably  that  flight  path  modeling  in  speed  and  time  

results  in  all  reported  positions  in  agreement  within  approximately  5%  of  the  in-­‐flight  position  report  

times.  

This  is  more  precise  than  the  reporting  exhibited  on  the  first  Oakland  to  Honolulu  segment,  but,  as  the  

most  critical  segment  of  the  flight,  AE  and  FN  may  have  worked  hard  to  be  more  precise  on  the  Lae  to  

Howland  segment.  

North  of  Howland  Island  

A  “north  of  Howland  Island”  conclusion  was  largely  that  of  the  Itasca  Captain  Warner  Thompson,  

detailed  in  his  Cruise  Report  dated  24  July  1937.68  CDR  Thompson’s  report  is  comprehensive.  It  details  

good  weather  40  miles  around  Howland  Island  on  the  morning  of  July  2,  1937,  better  to  the  south  and  

east.  There  were  distant  horizon  clouds  far  to  the  north  and  west.  

While  perfectly  understandable,  and  logical,  to  CDR  Thompson  at  the  time,  from  the  foregoing  analysis  it  

is  possible  that  most  of  CDR  Thompson’s  linked  assessments  were  incorrect.  

• AE’s  report  of  “clouds”  and  “overcast”  conditions,  and  a  final  altitude  of  1,000  feet,  led  CDR  

Thompson  to  conclude  the  aircraft’s  approach  and  descent  to  Howland  Island  must  have  been  

from  the  west  northwest  direction.  

o This  was  likely  incorrect.  

• CDR  Thompson  concluded  no  celestial  fixes  had  been  taken  throughout  the  night.  

o Again,  this  conclusion  was  likely  incorrect.  

• CDR  Thompson  assessed  that  a  sun  shot  might  have  been  obtained  at  sunrise  in  the  vicinity  of  

Howland  Island.  He  assumed  a  sun  shot  was  made,  and  that  a  sun  LOP  was  correctly  computed,  

and  accurately  placed  over  Howland  Island.  

o The  sun  shot  assessment  was  likely  correct,  however,  it  is  apparent  that  the  sun  LOP,  

while  a  correct  value  (337-­‐157  deg  true),  did  not  overlay  Howland  Island.  

• CDR  Thompson  assumed  that  the  sun’s  glare  was  responsible  for  AE  missing  the  island,  Itasca,  

and  the  smoke  screen  produced  by  Itasca  to  aid  visual  acquisition.  

o This  was  likely  a  factor.  

                                                                                                                         

67  Eric  Chater,  Letter  to  Mr.  M.  E.  Griffin.  68  Cruise  Report  24  July,  1937  CDR  Warner  Thompson,  Commanding  Officer,  Itasca  (TIGHAR).  

Page 56: Waitt Institute Re-Navigation Rpt

Nutter  and  Associates  Consulting  

 2009  Waitt  Institute  for  Discovery   56  

• CDR  Thompson  assumed  that  AE  passed  within  200  miles  north  of  Howland  Island,  and  ditched  in  

a  sector  bearing  true  337-­‐045  degrees  from  Howland  Island  (presumably  the  correct  position  of  

Howland  Island,  5.92  nm  east  of  AE’s  coordinates  for  Howland  Island),  at  a  distance  between  40  

and  200  miles.  

o The  evidence  does  not  support  this  conclusion.  

Position  Reporting  

The  0418  GMT  In-­flight  position  report  

The  0418  GMT  in-­‐flight  position  report  from  AE  was  chronicled  by  Chater.69  This  report  contains  only  an  

altitude,  and  the  “140  knots”  speed  reference.  The  reported  speed  and  altitude  are  valuable  data.  

Analysis  concludes  the  speed  is  a  true  air  speed.  

The  0519  GMT  In-­flight  position  report  anomaly  

The  reported  point  is  approximately  220  nautical  miles  from  Lae.  The  Electra  covers  this  distance  in  2  

hours  18  minutes,  far  less  than  5  hours.  

Two  sources  of  error  were  assessed.  

1. The  actual  longitude  at  0519  GMT  was  not  W  150.7  degrees,  but  rather,  W  157.0  degrees.  

2. The  0519  GMT  time  reported  was  actually  at  0219  GMT.  

Coordinate  Transposed  

The  transposed  coordinate  creates  Path  C,  supported  by  these  factors.  

• This  position,  when  contained  in  a  flight  path  reconstruction,  conforms  to  historic,  

recommended,  and/or  statistical  speeds  and  times  demonstrated  by  AE.  

• When  contained  in  the  mission  path,  this  point  results  in  all  other  reported  points,  times,  speeds  

and  flight  performance  data,  conforming  to  Electra  capabilities,  AE  historical  performance,  

engineering  recommendations,  and  pilot  behaviors.  

• Path  C  is  a  reasonable  deviation  around  significant  convective  weather  east  of  Lae.  

• At  the  157.0  west  longitude  position,  islands  are  large  and  clearly  visible,  well  charted,  and  allow  

an  accurate  navigation  position  fix.  

Time  Error  

It  is  possible  that  the  report  at  0519  GMT  was  actually  made  at  0219  GMT,  with  the  error  recorded  as  a  

“5”  instead  of  a  “2.”  

                                                                                                                         

69  Eric  Chater,  Letter  to  Mr.  M.  E.  Griffin.  

Page 57: Waitt Institute Re-Navigation Rpt

Nutter  and  Associates  Consulting  

 2009  Waitt  Institute  for  Discovery   57  

• Supporting  this  theory  is  the  Electra’s  performance  on  the  mission  results  in  the  aircraft  passing  

the  reported  position  coordinates  at  0218  GMT.  

• Accepting  the  “Time  Error  Theory”  creates  Path  B.  

The  0718  GMT  In-­flight  position  report  

This  report  is  made  within  visual  sighting  of  Nukumanu  Island,  within  20  nautical  miles  of  the  island.  

AE  reports  “winds  23  knots”  which  becomes  a  basis  for  every  researcher’s  calculations.  

The  reported  aircraft  altitude  is  consistent  with  preflight  planning.  The  reported  winds  show  that  AE  and  

Fred  had  good  navigation  fixes  and  knew  their  winds  –  unfortunately,  they  just  didn’t  report  the  wind  

direction,  which  is  important  to  identify  the  headwind  component,  and  subsequently,  key  flight  speeds  

and  times.  

The  assumption  that  these  were  “headwinds”  produces  the  26.5  mph  headwind  component  identified  by  

Long,  and  used  by  every  author  referring  to  this  event.  

Previous  analysis  results  show  that  forecast  and  actual  winds  were  very  close  at  the  0718  GMT  position,  

but  likely  diminished  after  passing  the  Nauru  Island  area.  

The  1030  GMT  Visual  Sighting  of  Nauru  Island  Lights  

“A  Ship  in  Sight  Ahead”  

AE  reported  seeing  “…a  ship  in  sight  ahead…”  at  about  1030  GMT,  according  to  Harold  J.  Barnes,  officer  

in  charge  of  the  radio  station  at  Nauru  Island  who  copied  Earhart’s  message.70  

In  a  letter  from  Mr.  T.  H.  Cude,  Director  of  Police,  Nauru  Island,  to  Dr.  Francis  Holbrook  of  Fordham  

University,  he  stated  he  heard  AE  broadcasting  to  Harold  Barnes,  Chief  Wireless  Operator  at  Nauru  

Island,  several  times  between  10-­‐11  PM  that  she  could  see  the  lights  on  Nauru  Island.    The  lights  she  

referred  to  were  the  flood-­‐lights  strung  out  along  the  two  1,000-­‐foot  cableways  situated  on  top  of  the  

island  to  permit  mining  at  night.71    

• Note  that  10-­‐11  PM  on  Nauru  Island  corresponds  to  10-­‐11  GMT.  

The  lights  on  Nauru  Island  were  at  an  approximate  elevation  of  556  feet  above  sea  level,  and  AE  could  

not  have  seen  these  lights  until  entering  the  visual  horizon  to  Nauru  Island  at  AE’s  cruise  altitude.  The  

Figure  below  shows  the  Electra’s  arrival  times  on  each  Path  A,  B,  and  C,  at  the  USS  Ontario  which  was  

assigned  a  station  at  the  half-­‐way  point  of  the  mission  and  in  the  vicinity  of  Nauru  Island,  entering  the  

visual  horizon  to  Nauru  Island,  and  relative  to  two  positions  estimated  by  researchers  for  the  location  of  

the  SS  Myrtlebank.  

                                                                                                                         

70  Elgen  Long,  Amelia  Earhart  –  The  Mystery  Solved,  20.  71  Laurance  Safford,  Amelia’s  Flight  Into  Yesterday,  (McLean,  Virginia:  Paladwr  Press,  2003)  31-­‐33.  

Page 58: Waitt Institute Re-Navigation Rpt

Nutter  and  Associates  Consulting  

 2009  Waitt  Institute  for  Discovery   58  

• Any  Path  A,  B,  or  C  could  result  in  AE  reporting  the  Nauru  Island  lights  at  the  times  logged  for  her  

reports.  

At  1030,  if  USS  Ontario  was  the  ship  referred  to  in  AE’s  in-­‐flight  position  report,  it  does  not  make  sense  

the  report  would  be,  “a  ship  in  sight  ahead,”  because  on  any  Path,  USS  Ontario  would  have  been  behind  

her.  

The  “ship  in  sight  ahead”  was  likely  the  SS  Myrtlebank.  This  is  based  on  the  navigation  times,  the  visual  

horizon  distance  to  Nauru  Island  and  AE’s  proximity  to  SS  Myrtlebank,  the  area  of  location  of  the  SS  

Myrtlebank  on  its  voyage  from  New  Zealand  to  Nauru  Island,  and  the  size  of  SS  Myrtlebank  at  420  feet,  ,  

and  much  larger,  than  the  185  foot  USS  Ontario.  

• At  1030  GMT,  only  the  SS  Myrtlebank  is  “ahead”  of  AE  on  any  Path  A,  B,  or  C.  

This  places  AE  in  a  location  in  time  and  space,  from  which  the  integrity  of  a  flight  path  reconstruction,  

and  ultimately,  the  final  location  of  wreckage,  can  be  considered  with  some  sense  of  confidence  that  AE  

and  FN  were  largely  on  course,  and  on  track,  to  Howland  Island,  at  1030  GMT.  

 

Figure  7  -­‐  Penetration  of  the  visual  horizon  to  Nauru  Island.  

Page 59: Waitt Institute Re-Navigation Rpt

Nutter  and  Associates  Consulting  

 2009  Waitt  Institute  for  Discovery   59  

 

The  1745  GMT  In-­flight  position  report  

AE  reports  here,  “about  200  miles  out.”  The  Electra  flight  plan  at  this  time  shows  the  aircraft  204nm  

from  Howland  Island  (1937  coordinates).  This  is  possibly  the  most  accurate  position,  and  report,  of  the  

mission  since  the  0718  GMT  report  near  a  visible  island.  

This  position  was  prepared  by  FN,  likely  using  celestial  navigation  stars  and/or  planets  with  good  

visibility.  These  provide  the  most  accurate  fixes,  and  this  fix  appears  to  have  been  very  accurate.  

The  1815  GMT  In-­flight  position  report  

AE  reports  here,  “about  100  miles  out.”  This  report  is  problematic  because  the  Electra  could  not  cover  

100  miles  in  30  minutes,  and  also,  the  Electra  flight  plan  shows  the  aircraft  at  146nm  from  Howland  

Island  (1937  coordinates).  This  report  may  reflect  an  estimated  position,  unlike  the  very  accurate  position  

computed  by  FN  30  minutes  earlier.  

Aircraft  Position  –  Report  Correlation  

The  table  below  depicts  the  Electra  position,  on  performance  and  path,  at  the  times  when  these  two  

reports  were  made.  Data  supports  that  Path  C  was  the  likely  path  flown,  and  that  the  Electra’s  position  

on  Path  C  at  1745  GMT  resulted  from  very  good  celestial  fixes.  

Celestial  fixes  are  much  more  accurate  than  a  sun  fix,  which  would  have  been  used  to  prepare  the  1815  

GMT  report.  

Table  4  –  Electra  position  on  each  Path  at  the  time  of  these  two  in-­‐flight  position  reports.  

ROUTE     200  Miles  Out  1745  GMT     100  Miles  Out  1815  GMT    

PATH  A  Great  Circle     165     108    

PATH  B  “Chater  Point”     165     106    

PATH  C  Choiseul  Island     204     146    

 

If  these  are  accurate  results,  AE  likely  descended  early,  perhaps  at  1825  GMT,  in  accordance  with  descent  

specifications  and  past  historical  performance.  

The  result  is  the  Path  C  End-­‐of-­‐Navigation  point,  short  of  Howland  Island.  

 

Page 60: Waitt Institute Re-Navigation Rpt

Nutter  and  Associates  Consulting  

 2009  Waitt  Institute  for  Discovery   60  

   

Fatigue  and  Human  Factors  

Research  on  fatigue,  impairment,  and  cognitive  function72  demonstrated  that  after  17  hours  of  sustained  

wakefulness,  cognitive  psychomotor  performance  decreased  to  the  equivalent  performance  impairment  

at  a  blood  alcohol  concentration  of  0.05%.  At  24  hours  of  wakefulness,  performance  was  equivalent  to  a  

blood  alcohol  concentration  of  0.10%.  

Modern  fatigue  guidelines  in  human  factors  attempt  to  assure  that  employees  are  not  on  duty  beyond  16  

hours  of  wakefulness,  with  duty  times  ranging  from  approximately  8-­‐16  hours,  depending  on  industry  

and  regulatory  requirements.  

Both  acute  and  chronic  sleep  loss  affect  fatigue,  and  can  decrease  performance.  

AE  and  FN  arrived  in  Lae,  Papua  New  Guinea73  on  the  afternoon  of  Tuesday,  June  29,  1937.  They’d  been  

on  duty  for  30  consecutive  days,  largely  flying  1  mission  per  day  averaging  5.1  hours  flying  per  day.  For  

the  previous  7  flying  days,  only  two  flights  exceeded  5  hours,  and  five  flights  were  much  less  than  5  

hours.  

• There  were  3  days  in  Bandoeng,  from  June  21-­‐23,  for  aircraft  maintenance  and  no  flying.  

• June  24  and  June  25  were  flying  days.  

•  June  26  was  a  non-­‐flying  day  again,  in  Bandoeng,  where  AE  returned  for  maintenance  repairs.  

• June  27-­‐29  were  flying  days.  

• June  29  included  7  hours  40  minutes  from  Darwin,  Australia  to  Lae,  New  Guinea.74  

• June  30  was  a  non-­‐flying  day,  however,  AE  was  at  work  on  radio  traffic  at  0615,  and  testing  

aircraft  radios  at  noon.  

• On  July  1  at  0635  

o AE  conducted  a  short,  30-­‐minute  test  flight.  

o FN  got  a  time  signal  check  at  2220  local  time.  

• On  July  2  at  0800,  FN  got  another  time  signal  check.  

• On  July  2,  AE  departed  Lae  at  1000  local  time.  

In  the  11  days  from  June  21-­‐July  1,  5  days  were  non-­‐flying  days,  and  5  days  were  flying  days.  

In  the  72  hours  before  departing  Lae,  AE  flew  7  hours  40  minutes  Darwin  to  Lae,  and  a  30-­‐minute  test  

flight,  for  a  total  of  8  hours  10  minutes,  in  two  days  of  flying.  

                                                                                                                         

72  “Fatigue,  alcohol  and  performance  impairment,”  Dawson  and  Reid,  The  Queen  Elizabeth  Hospital,  Woodville,  South  Australia,  17  July  1997  73  Purdue  University,  George  Palmer  Putnam  Collection  of  Amelia  Earhart  Papers  74  Eric  Chater,  Letter  to  Mr.  M.  E.  Griffin,  3.  

Page 61: Waitt Institute Re-Navigation Rpt

Nutter  and  Associates  Consulting  

 2009  Waitt  Institute  for  Discovery   61  

It  is  likely  AE  and  FN  rested  normally  June  29,  June  30,  and  July  1.  Arising  early  was  AE’s  standard  

habitual  norm  on  the  World  Flight,  and  that  was  adhered  to  while  in  Lae.  

The  Human  Factors  conclusions  are  that  AE  and  FN  were  reasonably  well  rested  in  Lae,  with  two  days  of  

non-­‐flying  (excepting  the  early  and  short  test  flight)  before  departing  on  the  final  Lae  to  Howland  

segment.  They  had  relatively  short  duty  days  during  the  past  7  flying  days,  with  no  reports  or  indications  

of  acute  sleep  loss,  and  no  illness  reported.  

July  1  was  an  early,  but  normal  day  for  both  crewmembers,  and  afforded  a  reasonable  sleep  opportunity  

prior  to  arising  for  their  flight  to  Howland.  

Previous  World  Flight  mission  flight  times  ranged  from  0.87  to  13.37  hours,  with  a  mean  flight  segment,  

or  “stage  length”  of  5.1  hours.    Standard  deviation  for  this  data  is  3.22  hours.  Ninety-­‐five  percent  of  the  

World  Flight  stage  length  flight  times  were  less  than  11.5  hours.  

The  Lae-­‐Howland  segment  was  65%  longer  than  most  of  the  previous  mission  segments.  AE  and  FN  

appear  to  have  conscientiously  prepared  for  their  mission  to  Howland,  were  well  rested  prior  to  

commencing  this  challenging  segment,  and  from  a  Human  Factors  perspective,  the  conclusion  is  that  no  

extraordinary  pre-­‐mission  factors  adversely  affected  preparations  and  rest  for  the  Pacific  crossing.  

The  Lae  to  Howland  segment  included  approximately  a  24-­‐hour  continuous  duty  period.  FN  was  getting  a  

time  check  at  0800  local  time  and  AE  was  likely  already  at  the  aircraft.  Both  likely  arose  at  approximately  

0500-­‐0600,  if  not  slightly  earlier.  They  would  be  awake  for  23  hours  when  they  reported  “on  you”  at  

1912  GMT  on  July  2,  after  concluding  the  most  demanding  navigation  and  landing  site  acquisition  

challenge  of  the  entire  World  Flight.  

Despite  their  rested  beginning  to  the  Lae-­‐Howland  flight  segment,  their  time-­‐on-­‐task  and  time  awake  

combined  to  increase  fatigue  and  risk.  This  reduced  human  performance  to  levels  associated  with  

alcohol-­‐related  cognitive  impairment  at  0.10%  concentration  of  blood  alcohol,  likely  interfered  with  

terminal  maneuvering,  radio  work,  searching,  and  visual  acquisition  of  Howland  Island  or  Itasca.  

At  this  level  of  fatigue,  significant  challenges  to  fly  the  aircraft  at  lower  altitudes,  operate  radio  

equipment  that  was,  to  some  extent,  unfamiliar  and  untested,  navigate  and  visually  search  for  Howland  

Island  proved  to  be  insurmountable.  

The  implications  of  this  accident  scenario,  whether  a  water  impact  resulted  from  fatigue  or  fuel  

exhaustion,  are  that  the  aircraft  location  should  be  relatively  close  to  its  estimated  end-­‐of-­‐navigation  

position.  

Celestial  Navigation  

Below  are  the  July  2,  1937  celestial  opportunities  for  key  navigational  fixes  along  the  route  from  Lae  to  

Howland  Island.  

Page 62: Waitt Institute Re-Navigation Rpt

Nutter  and  Associates  Consulting  

 2009  Waitt  Institute  for  Discovery   62  

In  general  the  sky  was  still  quite  bright  during  the  time  the  Electra  passed  the  position  of  USS  Ontario.  

Combined  with  the  ship’s  small  size,  it  is  possible  that  USS  Ontario  was  not  visually  acquired  by  AE  or  FN.  

Subsequent  to  passing  the  USS  Ontario’s  position,  a  darkening  sky  would  have  enhanced  celestial  

navigation  opportunities,  with  consideration  for  weather.  Navigation  stars,  weather  permitting,  were  

available  from  the  side  view  cabin  windows,  where  FN  conducted  his  navigation  and  charting.  

The  implications  of  these  conditions  and  celestial  body  positions  in  the  night  sky,  were  that  no  radical  

aircraft  course  changes  were  necessary  for  FN  to  take  good  celestial  fixes  on  stars,  which  facilitated  a  

higher  probability  that  the  aircraft  could  accurately  remain  on  a  track  to  Howland  Island.  

Numerous  sight  reduction  table  corrections,  required  to  be  applied  to  a  star  fix,  are  additional  sources  of  

potential  error.  Although  FN  was  among  the  best  navigators  of  his  day,  cumulative  fatigue  throughout  

this  flight  segment  could  have  resulted  in  errors.  The  data  shows  this  is  not  likely,  but  always  possible.  

On  Path  C  the  1745  GMT  report  at  “200  miles  out”  was  made  at  204  nm  from  the  1937  position  of  

Howland  Island,  likely  from  good  celestial  navigation  fixes,  and  likely  very  accurate.  The  1815  GMT  

report  at  “100  miles  out”  was  made  at  146  nm  from  Howland  Island.  

If  the  first  report  was  accurate,  a  refraction  calculation  error  at  AE’s  altitudes  could  produce  the  error  

evident  in  the  second  report.  This  error  would  result  in  AE  descending  early,  and  arriving  early,  to  what  

they  thought  would  be  Howland  Island.  AE  may  also  have  simply  estimated  the  “about  100  miles  out”  

position,  and  started  an  early  descent,  with  no  FN  errors  involved.  

Below  is  a  table  of  position  reports  and  the  primary  stars  available  to  FN  for  celestial  navigation.  

Weather  was  reported  by  Itasca  as  good,  and  likely  good  en  route.  AE’s  report  of  “overcast”  skies  is  

possibly  a  report  of  an  “undercast”  because  along  with  these  reports  on  previous  segments,  she  adds  the  

report  of  good  visibility  for  navigational  celestial  fixes.  

Position  Report  Time  and  Corresponding  Celestial  Opportunities  

Table  5  -­‐  PUB  249  Air  Almanac  of  available  stars  on  the  Lae-­‐Howland  segment,  with  brightness  magnitudes  

0718  GMT  Position  Report  

Sun                  

0930  GMT  at  Ontario  Position  

Arcturus  0.2  

Vega  0.1  

Spica  1.2  

Antares  1.2  

Regulus  1.3  

       

1041  GMT  Abeam  Nauru  Island,  SS  Myrtlebank  

Arcturus  0.2  

Vega  0.1  

Spica  1.2  

Antares  1.2  

Regulus  1.3  

Jupiter  -­‐2.8  

Altair  0.9  

Acrux  1.1  

Mars  -­‐3.0  

1745  GMT  “200  out”  

Deneb  1.3  

Vega  0.1  

Fomalhaut  1.3  

Acherner  0.6  

Venus    -­‐3.7  

Jupiter  -­‐2.8  

Moon  -­‐12.6  Full  

Saturn  -­‐0.24  

 

Page 63: Waitt Institute Re-Navigation Rpt

Nutter  and  Associates  Consulting  

 2009  Waitt  Institute  for  Discovery   63  

1815  GMT  “100  out”  

Deneb  1.3  

Vega  0.1  

Fomalhaut  1.3  

Acherner  0.6  

Venus    -­‐3.7  

Jupiter  -­‐2.8  

Moon  -­‐12.6  Full  

Saturn  -­‐0.24  

Alderbaran  1.1  

 

The  faintest  stars  visible  to  the  naked  eye  under  perfect  conditions  are  magnitude  6.5.  Brighter  stars  

have  lower  magnitudes,  with  negative  numbers  indicating  very  bright  stars.  The  brightest  star  is  Sirius  at  

magnitude  -­‐1.6.  

Throughout  the  evening  hours  from  Lae  to  Howland,  there  is  no  moon  visible  because  its  elevation  is  

below  the  horizon.  The  moon  rises  early  at  0123  Howland  local  time  in  the  morning  and  sets  at  midday  

1351  local  time.  Thus,  bright  stars  are  more  visible  without  moonlight.  

The  official  sunrise  at  Howland  is  contained  in  the  following  US  Naval  Observatory  data.  Civil  twilight  

begins  in  the  morning  when  the  geometric  center  of  the  Sun  is  6°  below  the  horizon,  and  ends  at  sunrise.  

The  angular  diameter  of  the  sun  is  0.5  degrees.  At  civil  twilight,  bright  stars  and  planets  are  visible,  and  

outdoor  activities  may  proceed  with  no  additional  illumination.  

At  civil  twilight  on  Howland  Island,  on  July  2,  1937,  the  Sun’s  azimuth  is  067  degrees  true,  the  moon  

azimuth  is  38.5  degrees  true,  or  approximately  30  degrees  left  of  AE’s  inbound  course.  The  moon  

elevation  is  73.4  degrees,  with  an  illumination  of  37%.  The  moon  is  visible  during  the  final  hours  inbound  

to  Howland  Island.  

 

Page 64: Waitt Institute Re-Navigation Rpt

Nutter  and  Associates  Consulting  

 2009  Waitt  Institute  for  Discovery   64  

 

Figure  8  -­‐  Important  data  for  Howland  Island.  

Page 65: Waitt Institute Re-Navigation Rpt

Nutter  and  Associates  Consulting  

 2009  Waitt  Institute  for  Discovery   65  

 

A  Line  of  Position  Approach  Unlikely  

If  AE  had  taken  a  course  change  at  where  she  thought  “about  100  miles  out”  was  at  1815  GMT,  a  30  

degree  course  change  to  intercept  a  line  of  position  would  require  approximately  45  minutes  to  a  LOP  

turn  point  that  lies  on  a  bearing  337  true  or  157  true  at  40nm  from  the  end-­‐of-­‐navigation  point.  

AE  would  have  intended  this  EON  point  as  Howland  Island.  The  LOP  would  actually  lie  well  short  of  

Howland  Island.  

Time  at  the  turn  point  would  be  1900  GMT,  with  another  40nm  remaining  on  the  LOP.  

The  LOP  segment  would  require  20  minutes  to  the  EON  point  at  1920  GMT.  

If  AE  had  flown  the  LOP,  they  may  not  have  reported  “on  you”  at  1912  GMT.  

Instead,  the  flight  modeling  data  indicates  AE  flew  a  direct  course  during  descent  towards  an  EON  point,  

which  she  presumed  would  be  Howland  Island,  and  where  she  anticipated  a  DF  steer  to  the  Itasca,  with  

visual  acquisition  of  Howland  Island’s  landing  strip.  

Regardless  of  whether  or  not  AE  flew  a  LOP,  the  EON  point  for  the  LOP  is  virtually  co-­‐located  with  the  

EON  point  for  a  straight  in  descent,  at  1912  GMT.  The  aircraft  is  effectively  at  the  same  EON  position  for  

either  terminal  flight  track.  

Sun  Rise  and  the  LOP  

AE  and  FN  defined  their  337-­‐157  line  of  position  from  the  line  orthogonal  to  the  sun’s  azimuth  of  067  

degrees  true  at  sunrise  on  Howland  Island,  as  they  continued  inbound  at  8,000  feet.  The  distance  to  the  

Path  C  EON  point  at  the  time  of  the  1815  GMT  report  “about  100  miles  out”  was  146nm.  If  a  sunrise  fix  

was  used  to  compute  this  position  estimate,  the  46nm  difference  between  the  reported  distance  and  the  

actual  aircraft  position  is  in  the  range  of  a  refraction  error  to  a  sun  fix.  It  exceeds  the  standard  15-­‐30nm  

accuracy  of  1937  celestial  navigation.  

Adjusting  latitude  by  +/-­‐  3  degrees  to  approximate  a  lateral  course  error  of  180nm  results  in  the  sun  

azimuth  of  a  sun  shot  remaining  at  approximately  067  degrees  true.  The  337-­‐157  degrees  true  LOP  value  

gives  us  no  information  as  to  the  potential  for  a  lateral  position  error  when  the  sun  fix  was  taken.  

Advancing  longitude  has  no  effect  on  the  value  of  the  337-­‐157  degrees  true  LOP.  Again,  the  LOP  value  

gives  us  no  information  as  to  the  potential  for  an  along-­‐track  error.  

Advancing  the  time  to  1928  GMT  to  2013  GMT  produces  a  line  of  position  at  333-­‐153  degrees  true.  This  

gives  us  information  that  FN’s  337-­‐157  degrees  true  LOP  was  based  on  a  sunrise  fix.  

Page 66: Waitt Institute Re-Navigation Rpt

Nutter  and  Associates  Consulting  

 2009  Waitt  Institute  for  Discovery   66  

This  reasoning  supports  that  the  “about  100  miles  out”  report  was  made  possibly  using  a  sun  shot  for  

this  position  fix  (stars  would  not  be  visible),  with  a  possible  error  that  caused  the  aircraft  position  to  be  

further  from  Howland  Island  than  the  calculations  showed.  This  may  have  led  to  an  early  descent  to  the  

EON  point,  because  descents  were  made  at  approximately  70-­‐80nm  from  the  destination,  leaving  the  

aircraft  at  the  EON  point,  short  of  Howland  Island.  

The  search  grids  are  oriented  around  the  Path  C  EON  point  to  the  west,  and  the  Path  A  and  B  EON  points  

to  the  northeast  of  the  1937  Howland  Island  coordinates.    

Part  V.    The  Final  Search  Grid  

   

Search  Grid  Orientation  

The  sunrise  azimuth  at  Howland  Island  of  067  produced  the  perpendicular  Line  of  Position  of  337-­‐157  

degrees.  Since  the  sun  azimuth  is  in  true  degrees,  the  337-­‐157  degree  Line  of  Position  (LOP)  should  also  

be  in  true  degrees.  However,  in  practice,  AE  may  have  flown  along  the  LOP  on  a  magetic  heading  of  337-­‐

157  degrees.  Our  final  search  grid  is  oriented  to  a  337-­‐157  degrees  magnetic  LOP,  reflecting  what  AE  

likely  flew.  The  difference  in  search  grid  coverage  between  orienting  the  grids  using  true  or  magnetic    

degrees,  is  not  significant.  

Page 67: Waitt Institute Re-Navigation Rpt

Nutter  and  Associates  Consulting  

 2009  Waitt  Institute  for  Discovery   67  

 

Final  Search  Grid  

Standard  Grid  

This  is  the  final  search  grid.  Terminal  area  maneuvering,  as  well  as  wind  effects  on  the  flight’s  EON  point  

are  contained  in  these  search  grids.  

 

Page 68: Waitt Institute Re-Navigation Rpt

Nutter  and  Associates  Consulting  

 2009  Waitt  Institute  for  Discovery   68  

 

Bathymetric  Grid  

This  NOAA  image  includes  the  bathymetric  characteristics  of  the  search  area.  

 

 

Page 69: Waitt Institute Re-Navigation Rpt

Nutter  and  Associates  Consulting  

 2009  Waitt  Institute  for  Discovery   69  

 

Search  Strategy  Considerations  

 

Debris  Field  

Following  the  Natal-­‐Dakar  flight  segment,  AE  describes  a  project  conducted  during  the  World  Flight  in  

which  air  samples  were  being  taken,  in  a  study  of  upper  air  microorganisms.75  

These  were  performed  by  AE  and  FN  for  Dr.  Fred  C.  Meier  of  the  Department  of  Agriculture,  and  were  

similar  to  experiments  carried  out  on  some  of  Charles  Lindbergh’s  flights.  The  collection  devices  were  

aluminum  cylinders,  and  AE  reported  having  a  supply  aboard  exceeding  a  dozen  broomstick-­‐sized  

collection  cylinders.  These  were  mentioned  in  AE’s  logs  and  the  Luke  Field  aircraft  inventory  established  

following  the  initial  westbound  World  Flight  attempt  and  crash  at  Luke  Field.  

These  cylinders,  if  distributed  post-­‐impact,  would  be  characteristic  shapes  in  a  debris  field  that  could  be  

used  to  assist  in  identifying  the  wreckage.  

In  Situ  Documentation  

Ideally  the  entire  structure  should  be  documented  as  it  is  found,  from  as  many  angles  as  possible  for  360  

degrees  around  the  wreckage.  Interest  areas  include  

• Condition  of  fuselage,  wings,  engines,  propellers,  flaps,  and  control  surfaces.  

o Impact  damage  is  important  to  computing  impact  dynamics.  

• Debris  field  mapping  and  geo-­‐referencing  of  anything  found  in  the  debris  field.  

• If  possible,  cockpit  documentation  of  controls,  instrument  indications,  and  items  found  in  the  

cockpit  are  valuable  to  the  crash  analysis.  

Accident  investigators  should  be  on-­‐site  to  observe  and  record  information  prior  to  recovery,  and  to  

examine  wreckage  as  it  is  recovered.  

Aircraft  Views  and  Dimensions  

Dimensional  Data  

Below  are  basic  dimensional  data  for  a  Lockheed  10A  airframe.  AE’s  Lockheed  10E  had  larger  engines  

and  other  modifications.  

                                                                                                                         

75  Amelia  Earhart,  Last  Flight,  133.  

Page 70: Waitt Institute Re-Navigation Rpt

Nutter  and  Associates  Consulting  

 2009  Waitt  Institute  for  Discovery   70  

 

Figure  9  -­‐  From  Purdue's  Collection  –  Basic  Data  –  From  Lockheed,  Burbank,  CA.  

Page 71: Waitt Institute Re-Navigation Rpt

Nutter  and  Associates  Consulting  

 2009  Waitt  Institute  for  Discovery   71  

 

Figure  10  -­‐  From  Purdue's  Collection  -­‐  Three-­‐view  Drawings.  

Page 72: Waitt Institute Re-Navigation Rpt

Nutter  and  Associates  Consulting  

 2009  Waitt  Institute  for  Discovery   72  

 

 

Exemplars  

Below  are  basic  images  for  general  structural  reference.  

 

Page 73: Waitt Institute Re-Navigation Rpt

Nutter  and  Associates  Consulting  

 2009  Waitt  Institute  for  Discovery   73  

 

Prior  Work  Review  

Long,  Elgen  M.  and  Marie  K.  

Amelia  Earhart  –  The  Mystery  Solved  (Simon  &  Schuster,  1999)  

Long’s  research  is  by  far,  the  most  complete,  comprehensive,  and  accurate  work  done  to  locate  this  

accident  aircraft.  Documentation  of  the  entire  mission  is  very  thorough,  and  where  literary  license  is  

taken  to  craft  the  publication,  it  does  not  materially  detract  from  the  research  work.  

Rather  than  reiterate  Long’s  extensive  analysis,  the  following  are  significant  points  as  they  relate  to  our  

work  in  review,  analysis,  and  aircraft  localization:  

• Valid  assessment  of  headwind  at  23  knots,  26.5  mph  throughout  mission.  

o We  investigate  reduced  headwind  and  increased  crosswind  effects  on  final  position.  

o These  effects  are  contained  in  the  Primary  Search  Grids.  

• Flight  path  Lae-­‐Howland  passes  through  three  points  that  are  updated.  

o No  evidence  the  flight  was  at  the  point  reported  at  0519  GMT.  

Long’s  path  through  this  point  may  simply  conform  to  tradition.  

o No  evidence  the  flight  passed  directly  over  the  SS  Myrtlebank.  

This  point  is  40-­‐60nm  north  of  track  from  Lae  to  Howland.  

There  is  no  evidence  the  flight  did  not  overfly  SS  Myrtlebank,  and  the  final  End-­‐

of-­‐Navigation  point(s)  should  not  be  affected  by  the  small  lateral  track  deviation  

abeam  Nauru  Island,  if  indeed,  AE  was  slightly  closer  to  Nauru  and  did  fly  closer  

to  SS  Myrtlebank.  

o No  evidence  the  flight  was  north  of  track,  or  Howland,  at  any  time  

This  conclusion  appears  to  have  come  from  CDR  Thompson  of  Itasca  

• Distance  and  time  averages  are  valid  assessments,  remarkably  accurate  for  the  analysis  methods  

used,  and  comprise  a  very  credible  basis  for  track  plot  and  terminal  area  arrival  at  Howland.  

o Validates  an  arrival  near  Howland  with  insufficient  fuel  to  exit  the  Howland  area  

• Long  creates  a  reference  to  “Itasca  standard  time  (IST)”  in  addition  to  the  already  confusing  

Howland  Standard  Time  and  GMT  references.  

• Long  advances  a  compounding  10%  of  navigation  distance  error  model,  that,  while  somewhat  

subjective  and  lacking  of  a  more  rigorous  analytical  conclusion,  is  a  reasonable  approach  to  a  

location  methodology.  

Page 74: Waitt Institute Re-Navigation Rpt

Nutter  and  Associates  Consulting  

 2009  Waitt  Institute  for  Discovery   74  

 

Swenson,  G.,  Culick,  F.E.C.  

Analysis  of  Amelia  Earhart’s  Final  Flight  –  July  2,  1937  

This  research  is  well  done.  The  engineering  assessments  are  based  on  L487  and  wind  tunnel  testing  

performed  in  1935  and  contained  in  a  test  report,  GALCIT  Report  No.  161P.  Standard  aerodynamics  

equations  are  applied  to  determine  performance.  

Assumptions  underlying  this  research  include:  

1. The  magnitude  of  headwinds  and  their  constant  velocity  throughout  the  entire  flight.  

a. This  value,  from  Long,  was  26.5  mph.  

2. A  constant  true  air  speed  flown  throughout  the  entire  flight.  

a. This  value,  From  Long,  was  161.5  mph.  

3. Initial  fuel  load.  

a. This  initial  value  was  reported  by  Chater  and    Collopy.  

b. Swenson  and  Culick,  et  al,  applied  adjustments  for  temperature  and  volume  to  arrive  at  

an  initial  fuel  load  of  1080  gallons,  vice  the  value  of  1100  gallons  reported  by  Collopy.  

4. Flight  Path.  

a. The  authors  used  the  path  constructed  by  Long.  

5. Altitudes.  

a. The  authors  used  In-­‐flight  position  reports  as  the  basis  for  reconstructing  the  vertical  

flight  path  profile  between  Lae  and  Howland  Island.  

6. Ship  Sighting.  

a. The  authors  addressed  the  relative  reliability  in  the  1030  ship  sighting  report  by  AE  

i. They  concluded  that  the  vessel  observed  was  either  the  USS  Ontario,  or  SS  

Myrtlebank.  

b. Their  assessment  is  based  on  assumed  aircraft  ground  speed  and  time  to  the  ship  

sighting,  and  a  projection  forward  to  the  Howland  area  arrival  time.  This  helps  to  

establish  a  time  abeam  Nauru  Island,  in  their  path  reconstruction.  

The  authors’  work  is  very  credible.  They  presented  a  good  baseline  fuel  consumption  analysis,  and  

created  numerous  alternate  scenarios  as  functions  of  headwind,  fuel  consumption  and  error  tolerance.  

Their  assumptions  for  headwind,  aircraft  true  air  speed,  initial  fuel  load,  fuel  consumption  and  endurance  

are  appropriate  given  the  scarcity  of  facts.  Their  conclusions  are  valuable  and  interesting  in  assessing  

boundary  values  for  mission  parameters.  

The  authors’  choice  to  use  Long’s  26.5  mph  headwinds  is  prudent  and  replicated  by  virtually  all  

researchers.  Similarly,  assuming  aircraft  true  airspeed  of  161.5  mph  is  considered  valid.  

Page 75: Waitt Institute Re-Navigation Rpt

Nutter  and  Associates  Consulting  

 2009  Waitt  Institute  for  Discovery   75  

Swenson  and  Culick  and  Long  plot  AE’s  flight  path  at  the  ship  sighting  as  passing  over  the  assumed  ship’s  

position,  which  very  slightly  affects  distance,  timing,  and  position.  

Swenson  and  Culick  do  not  project  this  path  point,  slightly  north  of  the  great  circle  direct  route  

from  Lae  to  Howland  (Path  A),  to  an  end  point  north  of  Howland,  as  Long  does.  

Swenson  and  Culick’s  path  from  the  ship  sighting  converges  to  Path  A  as  it  proceeds  direct  to  

Howland  from  the  ship  sighting  point.  

The  Swenson  and  Culick,  et  al,  conclusions  below,  are  validated  as  follows  

1. Initial  fuel  load  and  preflight  planning  should  have  enabled  flight  for  20  hours  38  minutes.  

2. Actual  mission  time  to  initial  arrival  near  Howland  was  19  hours  12  minutes.  

3. This  should  have  allowed  post-­‐arrival  endurance  of  1  hour  16  minutes.  

4. The  ship  sighted  was  SS  Myrtlebank,  based  on  assumed  average  headwind  and  aircraft  ground  

speed  and  time,  and  projecting  those  parameters  forward  to  an  estimated  arrival  at  Howland  at  

1912  GMT.  

5. AE  was  within  100  miles  [units  not  specified]  of  Howland  based  on  radio  strength.  

6. “…AE’s  flight…ended  in  the  ocean  short  of  her  intended  landing  place.”  

Safford,  Laurance  

Earhart’s  Flight  Into  Yesterday  –  The  Facts  Without  the  Fiction  (Paladwr  Press,  2003)  

Captain  Laurance  Safford  passed  away  before  this  book  was  published.  Co-­‐editors  Cameron  Warren  and  

Bob  Payne  salvaged  the  original  manuscript  and  its  supporting  exhibits,  presenting  the  work  in  this  

publication.  Most  of  Safford’s  work  involves  the  communications  in  the  planning  and  search  phases  of  

the  mission.  Safford  devotes  only  38  of  199  pages  to  the  actual  Lae  to  Howland  mission  segment.  Most  

of  his  work  is  with  radio  logs  and  communications,  coordination,  control  (operational  as  well  as  

administrative),  and  the  search  effort.  

This  is  no  surprise  as  Captain  Safford’s  Navy  career  was  in  Cryptology,  and  Intelligence.  

Safford’s  conclusion  (p115)  is  that  AE  crashed  at  N  01.00  degrees  and  E  178.00  degrees,  with  a  95%  

probability  of  a  final  position  within  100  miles  [units  not  specified]  of  this  location.  

• This  is  approximately  325  miles  [units  not  specified]  west  of  Howland  Island.  

Safford’s  inclusion  of  logs,  messages,  radio  communications,  and  the  attention  to  command  and  control  

issues  associated  with  the  mission  planning  and  conduct  of  search  operations,  is  valuable  in  adding  

background  detail  to  our  overall  analysis.  

Perhaps  the  most  valuable  information  from  Safford  concerns  the  Itasca  search  patterns,  and  search  

decisions,  made  by  its  commanding  officer,  CDR  Thompson.  In  his  messaged  assessment  to  COMDESRON  

2,  CDR  Thompson  concluded  that  AE  was  within  250  miles  [units  not  specified]  of  Itasca,  based  on  signal  

Page 76: Waitt Institute Re-Navigation Rpt

Nutter  and  Associates  Consulting  

 2009  Waitt  Institute  for  Discovery   76  

strength,  and  went  down  within  250  miles  [units  not  specified]  of  Howland  Island  between  337  degrees  

and  45  degrees  true  and  not  nearer  than  30  miles  [units  not  specified].  

CDR  Thompson  and  Itasca  assumed  AE  had  laterally  deviated  north  and  had  overflown  Howland.  

Safford  is  critical  of  many  elements  of  this  mission  and  his  work  does  a  credible  job  of  detailing  errors  

and  inconsistencies.    

Nesbit,  Roy  

Missing  Believed  Killed  (Sutton  Publishing  LTD,  2002)  

In  this  work  detailing  the  accounts  of  famous  missing  persons,  the  author  devotes  34  pages  in  a  total  173  

pages  to  AE’s  life  and  final  flight.  The  book  is  an  account  of  5  accidents  involving  famous  people.  

The  author  details  the  Electra  aircraft  from  Lockheed  documents,  including  interesting  details  concerning  

fuel  tank  arrangements  and  capacities,  previous  flight  segments,  aircraft  weights  and  speeds,  flight  

times  and  position.  

• The  author  depicts  a  flight  path  directly  over  Nauru  Island,  assuming  this  path  from  the  AE  report  

of  seeing  Nauru  Island’s  lights.  This  path  discounts  the  involvement  of  USS  Ontario,  and  SS  

Myrtlebank,  but  validates  identifying  lights  on  Nauru  Island.  

Most  interesting  and  valuable  are  the  author’s  references  to  celestial  navigation,  and  the  effect  on  the  

Lae-­‐Howland  flight  from  various  aspects  of  celestial  navigation,  including  navigation  errors.  The  author  is  

an  experienced  aircraft  navigator,  with  experience  near  the  era  of  AE’s  World  Flight  and  with  the  USAAF  

in  WWII.  

The  author  “recreates”  an  assumed  series  of  actions  taken  inside  the  Electra,  by  Fred  Noonan  and  

centered  on  celestial  navigation,  during  the  final  portion  of  the  flight.  

This  recreation  begins  with  the  AE  In-­‐flight  position  report  of  200  miles  out  [units  not  specified]  at  1745  

GMT,  and  includes  a  proposed  resolution  of  this  position,  with  the  next  report  at  1815  of  100  miles  out  

[units  not  specified].  

The  author  generally  concludes  that  these  reports  are  consistent  with  an  increasing  accuracy  of  

navigation  provided  by  the  fixing  of  position  based  on  sunrise.  Further,  the  author  discusses  the  Line  of  

Position,  how  it  is  used,  and  how  it  may  have  been  used  by  Noonan,  if  he  used  such  a  technique  at  all.  No  

conclusions  are  provided.  

The  author  details  (p26)  one  source  of  navigation  error  in  using  a  sun  fix  at  sunrise.    The  error  arises  in  

defining  the  sunrise  time,  and  angle  to  the  sun  itself,  at  the  time  of  first  sighting  of  the  rising  sun.  

• “On  the  sea,  the  angle  is  essentially  zero,  however,  in  an  aircraft  at  altitude,  the  occupants  view  

the  sun  rise  at  an  earlier  time  than  if  viewed  from  the  sea  surface.  This  difference  is  accounted  

Page 77: Waitt Institute Re-Navigation Rpt

Nutter  and  Associates  Consulting  

 2009  Waitt  Institute  for  Discovery   77  

for  by  correction  factors  in  sight  reduction  tables.”    Failing  to  correct  a  sun  shot  for  this  angular  

value,  according  to  the  author  [no  mile  units  specified],  results  in  a  31-­‐mile  error  at  1000  feet,  44  

miles  at  2000  feet,  70  miles  at  5000  feet.  

• This  error  produces  an  aircraft  position  that  is  closer  to  Howland  than  the  actual  aircraft  

position.  Further,  the  author  contends  that  the  “200  miles  out”  report  was  more  accurate  than  

the  “100  miles  out”  report,  if  this  error  were  made.  

• The  author  concludes  this  error  was  made,  and  that  AE  was  flying  north  and  south  along  a  Sun  

Line  of  Position,  located  at  least  31  miles  [units  not  specified]  west  of  Howland  Island.  

In  general,  the  author  publishes  interesting  aircraft  information,  and  covers  the  celestial  navigation  

issues  and  error  potential  very  well.    

The  work  concludes  that  a  sun  shot  error  produced  a  final  position  at  least  31  miles  west  of  Howland  

Island,  and  that  AE  had  flown  north  and  south  along  a  337-­‐157  line  through  this  position.  

Page 78: Waitt Institute Re-Navigation Rpt

Nutter  and  Associates  Consulting  

 2009  Waitt  Institute  for  Discovery   78  

 

Pellegreno,  Ann  Holtgren  

World  Flight  –  The  Earhart  Trail  (The  Iowa  State  University  Press,  1971)  

Valuable  data  from  this  1967  Commemorative  Flight  includes  references  to  climb  speed  of  100-­‐120  mph,  

and  20  minutes  time  to  climb  to  1000  feet  after  a  gross  weight  takeoff.  This  reference  is  made  twice  and  

the  author  comments  that  this  is  normal  performance  for  her  Electra.  

The  author  cites  several  cruise  performance  values  which  provide  good  comparisons  for  AE  mission  

analysis,  in  speed  and  fuel  consumption,  despite  flying  an  Electra  model  10A  with  smaller  engines,  but  

effectively  the  same  horsepower-­‐to-­‐weight  ratio,  as  for  AE’s  Electra  10E.  

The  author  also  cites  en  route  winds  throughout  the  flight  from  Lae  to  Nauru  Island,  indicating  useful  

information  about  the  behavior  of  en  route  winds  in  this  area.  

Pellegrino  cites  work  published  by  Polhemus  (p208)  in  which  Polhemus  calculates  AE’s  initial  fuel  at  Lae  

at  900  gallons,  and  that  AE  executed  a  direct  (great  circle)  flight  path  to  Howland.  Polhemus  estimates  

AE’s  final  position  “…in  the  vicinity  of  Howland  Island….”  

Near  Howland  Island,  as  Pellegreno  was  flying  on  the  Line  of  Position  heading  157  degrees  at  1905  GMT  

(p160),  a  squall  appeared  over  where  Howland  Island  should  be.  The  flight  adjusted  course  slightly  to  

avoid  the  squall,  but  continued  to  pursue  visual  acquisition  of  the  island.  

With  pilot  Pellegreno  flying,  and  two  dedicated  observers  (one  in  the  cockpit  right  seat  and  one  in  the  

cabin),  Howland  Island  could  not  be  found  until  approximately  1957  GMT,  when  the  person  in  the  cabin  

spotted  what  he  thought  was  land.  They  had  less  than  20  minutes  remaining  fuel  on  station  to  devote  to  

the  search  for  the  Island,  and  as  Pellegreno  later  said,  “we  nearly  missed  it.”  This,  after  searching  for  

nearly  an  hour.  

They  were  approximately  10-­‐12  miles  [units  not  specified]  north  of  Howland  Island  at  the  moment  they  

visually  acquired  the  island.  

Pelllegreno’s  account  of  her  thoughts  and  feelings  upon  arriving  and  not  seeing  Howland,  then  

conducting  a  protracted  search  with  limited  fuel  resources,  is  extremely  interesting  as  a  human  factors  

and  operational  comparison  to  what  may  have  occurred  on  AE’s  mission.  Pellegreno  writes  a  compelling  

narrative  here,  one  that  can  not  help  but  evoke  a  sense  of  urgency,  desperation,  and  elevated  tension.  

Pellegreno’s  flight  had  the  advantage  of  better  navigation  equipment,  a  third  set  of  human  eyes,  a  

nearby  ship  providing  good  DF  bearings,  and  the  luxury  of  having  departed  Nauru  Island,  with  a  Canton  

Island  destination.  With  all  of  these  advantages,  they  nearly  missed  visually  acquiring  Howland  Island.  

This  account  demonstrates  the  great  challenge  attempted  by  Amelia  and  Fred,  and  provides  a  good  

assessment  of  the  difficulty  in  visually  acquiring  tiny  Howland  Island.

Page 79: Waitt Institute Re-Navigation Rpt

Nutter  and  Associates  Consulting  

 2009  Waitt  Institute  for  Discovery   79  

 

Finch,  Linda  

No  Limits  (World  Flight,  Inc.,  1996)  

This  account  of  preparations  for  a  1997  Commemorative  Flight  details  most  known  facts  and  

assumptions  concerning  AE’s  flight  from  Lae  to  Howland  Island.  

Strippel,  Dick  

Amelia  Earhart  –  The  Myth  and  the  Reality  (Exposition  Press,  1972)  

The  author  concludes  that  initial  fuel  load  was  980  gallons,  based  on  two  calculations  

• A  gross  weight  and  takeoff  distance  analysis  for  Lae’s  grass  airfield  in  1937,  that  results  in  a  

possible  takeoff  weight  and  fuel  load.  

The  author  concludes  the  ship  sighted  was  USS  Ontario  because  had  it  been  SS  Myrtlebank,  the  position  

and  time  error  would  have  exceeded  Noonan’s  standard  performance  for  navigation  accuracy.  

The  author  recounts  a  number  of  scenario  theories,  possible  errors,  and  the  effects  of  those  errors.  

The  only  actual  position  statement  in  this  work  is  from  Captain  J.S.  Dowell  of  the  USS  Lexington  (p156)  

who  concludes  “…at  2030  the  plane  landed  on  the  sea  to  the  northwest  of  Howland  Island,  within  120  

miles  [units  not  specified]  of  the  island.”  

The  author’s  Appendices  contain  interesting  and  useful  information  regarding  aircraft  configuration,  

performance,  and  some  details  of  the  declassified  messages  and  logs  contained  in  national  archives.  

Gillespie,  Ric  

Finding  Amelia  –  The  True  Story  of  the  Earhart  Disappearance  (Naval  Institute  Press,  2006)  

The  International  Group  for  Historic  Aircraft  Recovery  (TIGHAR)  and  the  author  have  compiled  a  

comprehensive  and  useful  website,  and  this  publication,  including  a  resource  CD  containing  AE-­‐related  

information,  research  and  data.  

This  work  supports  an  alternate  theory  that  AE  landed  the  Electra  on  Gardner  Island  in  the  1937  Phoenix  

Island  Group.  Gardner  Island  is  now  Nikumaroro  Island  in  the  Republic  of  Kiribati,  approximately  400  

statute  miles  southeast  of  Howland  Island.  

This  theory  emanates  from  essentially  the  immediate  four-­‐day  period  following  the  disappearance  of  AE,  

information  for  up  to  two  weeks  following  the  disappearance  of  AE,  and  multiple  expeditions  to  

Nikumaroro  by  TIGHAR  personnel  during  which  artifacts  were  found  that  are  claimed  to  possibly  be  

linked  to  the  AE  mission.  These  artifacts  have  not  yet  been  validated  or  documented  as  coming  from  AE’s  

mission,  however,  the  discoveries  are  interesting.  

Page 80: Waitt Institute Re-Navigation Rpt

Nutter  and  Associates  Consulting  

 2009  Waitt  Institute  for  Discovery   80  

Main  support  for  the  theory  comes  from  analysis  of  radio  transmissions  allegedly  made  by  AE,  and  

received  by  experienced  radio  operators  at  Honolulu,  Wake  Island,  and  Midway  Island  radio  operator  

stations.  

The  signals  and  attempted  direction  finding  (DF)  bearings  from  these  three  stations  converge  somewhat  

close  to  Gardner  Island,  lending  to  TIGHAR’s  theory  that  AE  crash  landed  the  Electra  on  Gardner  or  very  

near  it,  making  landfall  and  transmitting  radio  calls.  

Numerous  challenges  exist  in  these  theories,  not  the  least  of  which  is  whether  or  not  the  Electra  could  

have  flown  to  Gardner  Island  at  all,  or  transmit  any  signal  with  inoperative  engines  and  generators,  or  do  

so  following  an  off-­‐field  landing  or  water  ditching.  

Interestingly,  the  best  DF  bearings  on  good,  strong  radio  signals  in  1937  contained  some  directional  

variance  under  the  best  conditions.  If  the  DF  bearing  signals  received  by  Honolulu,  and  Midway  Island  

are  adjusted  by  a  10  degree  variability  in  directional  reliability,  and  in  the  direction  of  common  sense  

toward  the  area  most  likely  containing  the  Electra,  and  the  Wake  Island  bearing  is  given  a  +/-­‐10  degree  

azimuth  variance  since  it  was  reported  as  a  strong  signal  and  bearing,  the  area  bounded  by  the  

convergence  of  these  adjusted  signal  directions  is  a  centroid  approximately  90-­‐123  nm  southwest  of  

Howland  Island,  and  260nm  northwest  of  Gardner  Island.  Questions  remain  concerning  whether  or  not  

the  Electra  could  transmit  these  radio  signals  following  a  water  ditching,  if  AE  had  any  backup  or  

portable  radio  transmitting  equipment  aboard  the  Electra  on  the  Lae-­‐Howland  mission  segment,  or  if  a  

life  raft  was  aboard  the  Electra,  which  AE  may  have  occupied  while  transmitting  and  drifting  towards  

Gardner  Island.  The  research  of  many  investigators  indicates  that  flying  a  total  of  more  than  4  hours  fuel  

after  1912  GMT,  is  not  likely.  If  AE’s  last  transmission  was  at  2013  GMT,  an  hour  after  arriving  at  

Howland,  and  they  commenced  a  divert  to  Gardner  Island,  then  AE  would  have  had  to  arrive  at  Howland  

Island  with  more  than  5  hours  fuel  remaining.  

Swenson  and  Culick’s  thorough  aerodynamic  analysis  precludes  such  a  fuel  state,  and  other  researchers  

corroborate  these  findings.  

However,  the  author  makes  some  compelling  arguments  for  TIGHAR’s  theories,  discusses  interesting  

discoveries  made  on  Nikomororo  Island,  and  provides  evidence  to  consider  TIGHAR’s  alternative  theories.  

CDR  Thompson,  Commanding  Officer,  Itasca  

Itasca’s  commanding  officer  was  certain  that  AE  had  crashed  into  the  sea  between  337  and  045  degrees  

from  Howland  at  up  to  250  miles  [units  not  specified].  This  belief  directed  Itasca’s  initial  search  efforts,  

however,  it  was  never  really  clear  from  any  historic  account,  why  CDR  Thompson  felt  the  aircraft  was  so  

far  north  of  Howland  Island.  

The  only  clue  to  what  may  have  justified  this  assessment  in  CDR  Thompson’s  own  mind,  is  his  belief  that  

had  AE  been  south,  they  would  have  visually  acquired  either  Baker  or  Howland  Island,  the  Itasca,  the  

Page 81: Waitt Institute Re-Navigation Rpt

Nutter  and  Associates  Consulting  

 2009  Waitt  Institute  for  Discovery   81  

smoke  being  created  by  Itasca,  and  that  missing  all  of  this  was  clear  evidence  of  the  aircraft  being  far  to  

the  north.  

Hewlett  Schlereth  

Celestial  Navigation  in  a  Nutshell  (Sheridan  House,  2000)  

The  author  provides  an  excellent  primer  in  the  process,  mechanics,  and  administrative  details  for  

executing  celestial  navigation.  

The  dip  angle  or  refraction  error  is  among  other  errors  well  explained.  

This  work  is  an  excellent  background  in  understanding  what  occurs  in  celestial  navigation.  

Earhart,  Amelia  

Last  Flight  (Harcourt,  Brace  and  Company,  1937)  

This  critically  important  work  provides  the  only  record  of  the  World  Flight,  AE’s  flight  log  information,  

operational  and  administrative  data,  and  insight  into  human  factors  and  behaviors  relevant  to  the  World  

Flight  mission  segments.  

The  publication  is  a  collection  of  writings  from  AE  to  her  husband,  George  Palmer  Putnam,  who  published  

the  book  in  the  same  year  AE  was  missing  on  the  World  Flight  mission.  

The  value  of  this  work  is  immeasurable.  

Signal  Strength  and  Distance  

Signal  strength  is  an  unreliable  indicator  of  distance,  however,  the  Itasca  logged  signal  strengths  of  AE  

in-­‐flight  position  reports,  and  it  is  worthy  to  examine  this  data.  

The  chart  below  shows  AE’s  approximate  distance  from  Itasca  for  each  of  AE’s  en  route  position  reports.  

No  specific  conclusions  can  be  made  from  this  data,  although,  it  has  merit  for  qualitative  assessments.  

Final  AE  radio  transmissions  were  logged  with  strong  signal  strengths,  alluding  to  an  aircraft  very  near  

the  Itasca.  

Page 82: Waitt Institute Re-Navigation Rpt

Nutter  and  Associates  Consulting  

 2009  Waitt  Institute  for  Discovery   82  

 

Figure  11  –  Radio  Signal  Strength  versus  Distance  Plot.

R²  =  0.80495  

R²  =  0.99636  

0  

1  

2  

3  

4  

5  

6  

-­‐100  0  100  200  300  400  500  600  700  

SIGNAL  STRENGTH  vs  Distance  (nm)  

SIGNAL  STRENGTH  

Linear(SIGNAL  STRENGTH)  

Linear  Forecast  50nm  shows  ~5  therefore  5+  could  be  <50  nm.  

Poly  forecast  50nm  shows  ~3-­‐4.  Signal  Strength  to  Distance  relaUonship    is  not  well  defined.  

Page 83: Waitt Institute Re-Navigation Rpt

Nutter  and  Associates  Consulting  

 2009  Waitt  Institute  for  Discovery   83  

 

APPENDIX  

 

 

Search  Strategy  Refinement  

Abbreviations  

• AE   -­‐   Amelia  Earhart  

• BHP   -­‐   Brake  Horse  Power  

• CFIT   -­‐   Controlled  Flight  Into  Terrain  

• EON     -­‐   End  of  Navigation  Point  

• FN   -­‐   Fred  Noonan  

• GPH   -­‐   US  Gallons  Per  Hour  

• LOP   -­‐   Line  of  Position  

• L487   -­‐   Lockheed  and  Kelly  Johnson  Report  487  

• SFC   -­‐   Specific  Fuel  Consumption  (lbs/BHP/hr)  

Search  Grid  and  Scenarios  

The  challenge  to  identify  a  starting  point  in  the  overall  search  grid  requires  a  detailed  fuel  consumption  

analysis  and  a  consideration  of  lost  aircraft  location  theories.  

We  agree  with  Long  and  other  researchers  that  NR  16020  was  not  lost  en  route,  did  not  land  at  Howland  

or  Baker  Island,  and  lacked  sufficient  fuel  (shown  later)  to  reach  any  other  land  mass.  Therefore,  we  

focus  on  a  failure  to  arrive  scenario,  where  the  aircraft  possibly  crashed,  experienced  a  Controlled  Flight  

Into  Terrain  (CFIT)  event,  or  exhausted  its  fuel  supply.  

• A  crash  event  could  result  from  a  loss  of  control,  or  a  mechanical  malfunction.  

• A  CFIT  event  is  an  inadvertent  collision  with  terrain  (water),  often  involving  a  loss  of  situational  

awareness,  but  with  the  aircraft  flying  normally  in  terms  of  configuration,  speed  and  attitude.  

o Flying  over  smooth  water  conditions  reported  by  Itasca,  is  a  challenge.  

o Depth  perception  is  more  difficult  than  while  flying  over  rougher  seas.  

• A  fuel  exhaustion  event  could  produce  a  survivable,  controlled  water  ditching.  

Page 84: Waitt Institute Re-Navigation Rpt

Nutter  and  Associates  Consulting  

 2009  Waitt  Institute  for  Discovery   84  

Various  calculations  result  in  sufficient  fuel  at  1912  GMT  to  conduct  a  1.5-­‐4.0  hour  search,  but  more  

likely  a  search  in  the  range  of  1.5-­‐3.1  hours.  After  2013  GMT,  the  total  absence  of  radio  communications  

is  unusual,  supporting  two  possibilities.  

1. The  aircraft  may  have  impacted  the  water  prior  to  fuel  exhaustion.  

2. Fuel  exhaustion  precluded  further  radio  communications.  This  could  result  from  a  mission  fuel  

over-­‐burn  for  unknown  reasons.  For  example  

a. Zero  fuel  at  2030  GMT  would  indicate  a  mission  over-­‐burn  of  71  gallons.  

b. Zero  fuel  at  2100  GMT  would  indicate  a  mission  over-­‐burn  of  51  gallons.  

These  examples  represent  a  2.4  to  3.5  GPH  variance  in  total  fuel  consumption  from  planning  

calculations.  The  per-­‐engine  fuel  use  variance  of  1.2  to  1.75  GPH  is  certainly  possible.  

A  search  strategy  requires  calculation  of  where  the  aircraft  is  in  time  and  space,  and  how  much  fuel  and  

time  remained,  after  arriving  in  the  Howland  area  at  1912  GMT.  

Reference  Grids  

Reference  points  are  plotted  in  the  search  grids,  including  the  Path  C  End  of  Navigation  (EON)  point  and  

a  2013  GMT  position.  

There  is  evidence  that  winds  in  the  final  8.5  hours  of  the  mission  either  decreased  in  headwind  

component,  and/or  shifted  direction  to  come  from  slightly  left  of  course  and  at  reduced  strength.  

In  order  to  address  the  effects  of  winds  that  may  not  have  been  detected  or  accounted  for  by  AE  and  FN,  

an  analysis  was  completed  for  a  range  of  possible  wind  values.  This  analysis  applied  various  realistic  

wind  values  to  fixed  headings  the  crew  could  have  maintained.  The  resulting  End  of  Navigation  points  

are  contained  in  the  existing  search  grid.  

The  Search  Plan  is  oriented  along  a  337-­‐157  degrees  magnetic  compass  heading,  perpendicular  to  the  

planned  magnetic  ground  track  from  Lae  to  Howland.  The  Search  Plan  accounts  for  possible  cross-­‐track  

error  en  route,  as  well  as  subsequent  Line  of  Position  (LOP)  ground  tracks  in  the  terminal  area  as  

functions  of  true  or  magnetic  tracks.  

 The  LOP  established  by  FN  at  Howland  sunrise  in  preparation  for  AE’s  “about  100  miles  out”  position  

report  at  1815  GMT,  was  337-­‐157  degrees  true.    

We  assess  AE  did  not  fly  the  LOP  initially,  nor  until  at  least  1928  GMT  (“…circling…”),  when  they  reported  

flying  the  LOP  at  2013  GMT.  

At  2013  GMT,  AE  reported,  “WE  ARE  ON  THE  LINE  OF  POSITION  157-­‐337,  WILL  REPEAT  THIS  MESSAGE.  

WE  WILL  REPEAT  THIS  MESSAGE  ON  6210  KCS.  WAIT  LISTENING  ON  6210  KCS.  WE  ARE  RUNNING  NORTH  

AND  SOUTH.”    

Page 85: Waitt Institute Re-Navigation Rpt

Nutter  and  Associates  Consulting  

 2009  Waitt  Institute  for  Discovery   85  

This  report  is  61  minutes  after  initial  arrival  at  where  they  thought  Howland  Island  was,  following  an  

initial  search  of  the  area.  After  the  “circling”  report  at  1928  GMT,  they  likely  commenced  flying  the  LOP  

tracks  in  a  rectangular  pattern,  progressing  further  east  on  each  LOP,  while  attempting  to  contact  Itasca  

and  visually  acquire  Howland  Island.  

Anxiety  was  reported  in  AE’s  2013  GMT  radio  transmission.  It  would  be  possible  that  under  the  

circumstances,  AE  flew  northwest  on  a  heading  of  337  degrees  magnetic.  

 not  accounting  for  a  magnetic  variation  correction  to  FN’s  LOP  if  it  was  indeed  in  degrees  True.  

The  10-­‐degree  difference  between  true  and  magnetic  courses  in  search  grid  orientation  was  constructed  

to  examine  positional  effects  on  search  operations.    

The  effect  of  this  orientation  is  insignificant.  

Fuel  Remaining  

The  amount  of  fuel  remaining  in  the  Electra  at  1912  GMT  is  important  because  it  determines  how  long  

the  aircraft  could  stay  airborne,  and  how  far  it  could  fly,  before  fuel  exhaustion.  

The  amount  of  fuel  remaining  is  a  function  of  how  much  fuel  was  consumed.  

This  analysis  is  a  challenge  due  to  the  need  for  estimation  in  the  absence  of  empirical  data.  

Direct  evidence  from  AE,  and  World  Flight  data,  corroborate  that  mission  segments  were  flown  

adhering  closely  to  the  accurate  Kelly  Johnson  specifications.  

It  was  not  possible  to  conduct  test  flights  on  the  aircraft  to  acquire  necessary  performance  data  because  

there  are  very  few  remaining  Lockheed  Electra  10E  aircraft.  The  one  article  we  photo-­‐documented  is  not  

flyable.    

In  order  to  make  an  assessment  of  fuel  consumption,  and  the  possible  amount  remaining,  other  data  

were  examined.  

Fuel  Consumption  

Constants  used  in  this  analysis  are  

• Fuel  weight  is  6  pounds  per  gallon  (also  used  by  Swenson  and  Culick).  

• Maximum  endurance  speed  is  120  mph  at  40  GPH.  

o Estimated  from  L487  and  Pratt-­‐Whitney  engine  data  (35-­‐40  GPH).  

• Takeoff  fuel  quantity  is  1080  US  gallons  (Swenson  and  Culick).  

The  following  resources  were  examined  

Page 86: Waitt Institute Re-Navigation Rpt

Nutter  and  Associates  Consulting  

 2009  Waitt  Institute  for  Discovery   86  

• Kelly  Johnson  Telegrams.  

• “Range  Study  of  Lockheed  Electra  Bi-­‐Motor  Airplane,”  Lockheed  Report  487  dated  4  June  1936.  

• AE  Flight  Notes,  Flight  Performance  history,  and  direct  evidence  of  performance.  

• “Aircraft  Engine  Characteristics  Summary,”  Pratt-­‐Whitney  dated  1  May  1951.  

• “Flight  Operation  Instruction  Chart,”  detailing  aircraft  performance  for  the  North  American  AT-­‐6  

SNJ  with  the  Pratt-­‐Whitney  R-­‐1340-­‐AN-­‐1  (very  similar  to  –S3H1).  

• Jeppesen  Flight  Planning  software  interpolating  L487,  Kelly  Johnson  and  AE  Flight  Notes  data.  

Each  of  these  resources  is  limited  to  some  extent,  in  its  usefulness.  

• Lockheed  Report  487  is  largely  analytical,  reflecting  computations  vice  actual  aircraft  

performance.  The  L487  Report  includes  brake  horsepower,  however,  it  does  not  specifically  cover  

engine  power  settings  frequently  used  and  reported  by  AE  in  her  flight  notes.  

• None  of  the  three  Kelly  Johnson  telegrams  (issued  post-­‐L487  Report)  containing  flight  test  data  

mention  the  gross  weight  of  the  Electra  as  tested,  the  speed  associated  with  each  power  setting,  

outside  air  temperature,  or  the  brake  horsepower  at  which  fuel  consumption  data  were  

recorded.  

From  the  Kelly  Johnson  flight  test  data,  notably  the  third  Telegram  to  AE,  mission  profile  

recommendations  were  made  for  altitude,  power  setting,  and  fuel  consumption.  These  recommended  

settings  were  grouped  into  3-­‐hour  segments,  reflecting  that  Electra  aircraft  performance  is  relatively  

unaffected  by  small  gross  weight  changes.  

Page 87: Waitt Institute Re-Navigation Rpt

Nutter  and  Associates  Consulting  

 2009  Waitt  Institute  for  Discovery   87  

 

Aircraft  Gross  Weight  

The  gross  weight  of  the  aircraft  and  the  power  from  its  engines  are  important  to  climb  rate,  cruise  speed,  

and  fuel  consumption.  

For  constant  altitude,  constant  speed  cruise  flight,  lift  must  balance  weight,  and  engine  power  must  

balance  the  total  vehicle  drag  from  all  sources.  

An  aircraft  design  axiom  is  that  an  “aircraft  climbs  on  its  engines.”  Excess  engine  power  beyond  that  

required  for  cruise  flight  where  vehicle  drag  is  balanced  by  engine  power,  can  be  used  to  climb,  and  

where  excess  power  is  limited,  climb  rate  is  also  limited.  

Report  L487  indicates  climb  rates  at  AE’s  operating  weight,  should  be  in  the  range  of  600-­‐700  feet  per  

minute.  However,  Pellegreno  reported  routinely  requiring  20  minutes  to  reach  1,000  feet,  after  takeoff.  

L487  optimum  initial  cruise  altitudes  were  2,000-­‐4,000  feet.  Kelly  Johnson  modified  the  initial  cruise  

altitude  to  8,000  feet.  

In  practice,  climbing  the  heavy  Electra  to  8,000  feet,  10,000  feet,  or  higher,  likely  required  30-­‐60  minutes  

at  high  power  settings  of  approximately  500-­‐550  BHP  and  high  fuel  consumption  ranging  from  95-­‐110  

GPH  (Pratt-­‐Whitney).  

AE’s  Electra  gross  weight  is  important  because  the  mission  routinely  operated  at  high  gross  weight.  

Takeoff  from  Lae  was  at  approximately  15,500  pounds,  47.6%  above  design  maximum  gross  weight.  The  

Lae  to  Howland  mission  average  gross  weight  was  approximately  22.9%  above  design  maximum  gross  

weight.  

One  concern  was  that  if  the  Kelly  Johnson  flight  tests  were  performed  at  significantly  “lower-­‐than-­‐actual-­‐

mission”  aircraft  weights,  the  resulting  profile  recommendations  could  result  in  AE  experiencing  less  

climb  rate,  slower  aircraft  speed,  and  higher  fuel  consumption  throughout  the  World  Flight.  

Our  assessment  is  that  Kelly  Johnson’s  data  was  accurate.  

The  empirical  data  from  Kelly  Johnson’s  flight  tests  are  very  close  to  Pratt-­‐Whitney  engine  data,  and  

likely  resulted  from  either  testing  the  Electra  at  actual  operational  weights,  or  from  computational  

corrections  to  test  data,  producing  the  three  Telegrams  recommending  the  following  fuel  consumption  

planning  data.  

• 3  hours  at  60  GPH  for  180  gallons  

• 3  hours  at  51  GPH  for  153  gallons  

• 3  hours  at  43  GPH  for  129  gallons  

• 10  hours  at  38  GPH  for  380  gallons  

Page 88: Waitt Institute Re-Navigation Rpt

Nutter  and  Associates  Consulting  

 2009  Waitt  Institute  for  Discovery   88  

This  data  agrees  well  with  fuel  consumption  data  we  derived  by  calculations  from  Pratt-­‐Whitney  engine  

data  supplied  by  the  Smithsonian  Institution,  and  from  flight  handbooks  for  other  aircraft  using  the  same  

engine  as  in  AE’s  Electra.  

Kelly  Johnson  specified  settings  for  3-­‐hour  cruise  segments,  however,  he  did  not  specify  takeoff,  climb  or  

descent  fuel  consumption  data.  

Combining  Pratt-­‐Whitney  engine  data,  with  Kelly  Johnson’s  recommendations  and  data,  offers  a  more  

complete  profile  of  fuel  consumption.  

• Takeoff  using  10  gallons  

• 1  hour  climb  using  110  gallons  

• 3  hours  at  60  GPH  using  180  gallons  

• 3  hours  at  51  GPH  using  153  gallons  

• 3  hours  at  43  GPH  using  129  gallons  

• 8.5  hours  at  38  GPH  using  323  gallons  

• 0.5  hours  descent  at  30  GPH  (estimated)  using  15  gallons  

• Total  920  gallons  required  from  takeoff  to  1912  GMT  

Fuel  Consumption  and  Time  Remaining  From  All  Analyses  

Below  summarizes  the  solutions  for  mission  fuel  consumed,  and  fuel  remaining  upon  arrival  at  where  AE  

thought  Howland  should  be,  at  1912  GMT.  

• If  AE  began  with  1080  gallons,  and  flew  this  Kelly  Johnson  profile  (“adjusted”  for  takeoff,  climb  

and  descent)  requiring  920  gallons,  the  total  fuel  remaining  would  have  been  160  gallons  at  

1912  GMT,  or  4  hours  endurance.  

• Computer  flight  profile  modeling  of  data  largely  from  Kelly  Johnson  and  L487  data,  also  indicate  

the  total  fuel  remaining  would  have  been  160  gallons  at  1912  GMT,  or  4  hours  endurance.  

o While  our  Jeppesen  software  model  results,  in  terms  of  fuel  used,  corroborate  the  Kelly  

Johnson/L487  Report,  our  further  analysis  offers  increased  accuracy  in  this  area.  

• Swenson  and  Culick’s  analysis  concluded  that  AE  had  enough  fuel  for  20  hours  38  minutes  total  

mission  time.  Subtracting  the  known  mission  time  of  19  hours  12  minutes,  results  in  

approximately  1  hour  26  minutes  remaining  endurance.  

o This  represents  57.3  gallons  remaining  at  1912  GMT.  

• Our  research,  using  a  specific  flight  profile  segment  analysis  technique,  results  in  a  total  mission  

fuel  burn  of  957  gallons.  Under  the  best  circumstances  AE  should  have  arrived  at  time  1912  GMT  

with  123  gallons,  enough  for  3  hours  04  minutes  endurance.  

o This  figure  could  have  been  reduced  due  to  malfunction  of  the  Cambridge  Fuel  Analyzer  

and  increased  fuel  consumption  en  route  due  to  cruise  altitude  choices,  winds  or  other  

factors.  

Page 89: Waitt Institute Re-Navigation Rpt

Nutter  and  Associates  Consulting  

 2009  Waitt  Institute  for  Discovery   89  

 

“…Gas  is  Running  Low…”  

For  the  Oakland  to  Honolulu  flight,  AE  planned  to  have  4  hours  of  fuel  remaining,  a  “…good  safety  

margin…”  by  her  own  account.  AE  also  planned  on  having  enough  fuel  on  the  Honolulu  to  Howland  

flight,  8  hours  fuel  remaining,  to  return  to  Honolulu  from  Howland  in  the  event  of  an  aborted  landing  

situation.  

Below  4  hours  fuel  quantity,  even  were  it  planned,  AE  would  likely  consider  this  a  low  fuel  quantity  

situation,  as  she  reported  at  1912  GMT.  

• With  fuel  remaining  of  4  hours,  per  Kelly  Johnson/L487,  and  software  modeling  solutions,  it  is  

not  likely  that  AE  would  have  reported  a  low  fuel  condition.  

• With  fuel  remaining  of  1  hour  26  minutes,  per  Swenson  and  Culick,  it  is  likely  AE  would  have  

reported  a  low  fuel  condition,  but  possibly  with  a  sense  of  urgency,  due  to  the  extreme  nature  of  

her  fuel  quantity,  with  just  57.6  total  gallons  remaining.  

o Our  analysis  of  3  hours  04  minutes  fuel  remaining  falls  within  the  range  for  AE  to  report  

a  low  fuel  condition,  but  without  a  sense  of  urgency.  This  figure  could  have  been  reduced  

due  to  malfunction  of  the  Cambridge  Fuel  Analyzer  and  increased  fuel  consumption  en  

route  due  to  cruise  altitude  choices,  winds  or  other  factors.  

Engine  Specific  Fuel  Consumption  (SFC)  Detail  

Kelly  Johnson’s  third  Telegram  modifying  World  Flight  operating  parameters  is  important  because  

indications  from  direct  evidence  are  that  AE  closely  adhered  to  these  recommendations  for  altitude,  and  

for  mid-­‐segment  power  setting,  speed  and  fuel  consumption,  throughout  the  World  Flight.  

Unfortunately,  AE  made  no  reference  to  actual  fuel  burn,  and  drawing  conclusions  in  this  area  requires  

analysis  from  a  broad  spectrum  of  data.  

Assembling  various  aircraft  performance  data  elements  from  pre-­‐mission  preparations,  and  30  days  of  

the  World  Flight,  provides  information  on  engine  settings,  speeds,  altitudes,  etc.  These  can  be  used  to  

assess  BHP,  from  which  specific  fuel  consumption  (SFC)  can  be  derived.  

The  engine’s  specific  fuel  consumption  (SFC)  is  an  engineering  parameter,  defined  as  “pounds  of  fuel  per  

brake  horsepower  per  hour.”  Since  this  term  is  difficult  to  put  into  perspective,  a  more  useful  metric  is  

gallons  per  hour  (GPH).  

SFC  can  be  directly  converted  to  GPH,  and  related  to  miles  per  gallon,  range,  and  endurance.  

We  examined  Pratt-­‐Whitney  documents  from  the  Smithsonian  Institute  for  AE’s  engines,  Swenson  and  

Culick’s  SFC  calculations,  and  flight  handbook  engine  operating  data  for  nearly  the  same  engine  installed  

Page 90: Waitt Institute Re-Navigation Rpt

Nutter  and  Associates  Consulting  

 2009  Waitt  Institute  for  Discovery   90  

in  a  North  American  T-­‐6  single  engine  aircraft,  as  well  as  for  the  Lockheed  10A  aircraft,  in  context  with  all  

other  performance  data.  

While  the  lack  of  Electra  10E-­‐specific  operating  data  hampered  the  investigation,  we  found  that  

published  operating  information  also  varies  among  sources.  Examples  include  

• For  takeoff,  the  Pratt-­‐Whitney  R-­‐1340-­‐S3H1  engine  has  a  5-­‐minute  time  limit  at  that  power  

setting,  per  Pratt-­‐Whitney  documents.  

• The  L487  report  specifies  setting  takeoff  power  for  1  minute,  then  directs  a  power  reduction  

“…as  soon  as  it  is  safe…”  (L487  p6).  It  does  not  define  climb  conditions.  

• Swenson  and  Culick  discusses  a  climb  power  setting  of  420  brake  horsepower  (BHP).  The  source  

of  this  specification  is  not  provided.  

• Pratt-­‐Whitney  specifies  550  BHP  for  climb,  in  engine  data  charts.  

For  cruise  power,  Swenson  and  Culick  does  not  discuss  power  settings.  L487  specifies  for  AE’s  initial  gross  

weight,  a  cruise  power  setting  must  be  375-­‐400  BHP.  

The  graph  below  is  plotted  from  Pratt-­‐Whitney  engine  data  for  AE’s  engines.  The  GPH  curve  (parabola)  is  

relatively  flat  in  the  range  of  250-­‐400  BHP  typically  used  for  cruise  flight,  producing  a  linear  relationship  

of  BHP  and  GPH.  

 

Figure  12  -­‐  From  Pratt-­‐Whitney  Engine  Data  

BHP  setting  is  important  to  a  mission  fuel  analysis,  because  fuel  consumption  is  directly  proportional  to  

BHP  and  gross  weight.  

40.6   43.5  47.0  

50.4  54.8  

59.4  64.0  

0.0  

10.0  

20.0  

30.0  

40.0  

50.0  

60.0  

70.0  

200   250   300   350   400   450  

GPH

 Lockh

eed  Electra  10E  

BHP  

GPH  SensiBvity  to  BHP  

GPH  

Page 91: Waitt Institute Re-Navigation Rpt

Nutter  and  Associates  Consulting  

 2009  Waitt  Institute  for  Discovery   91  

At  initial  heavy  gross  weights,  higher  BHP  in  the  range  of  375-­‐400  BHP  is  required,  while  at  lower  gross  

weights  (achieved  at  approximately  one  third  of  the  mission  distance)  power  can  be  reduced  to  more  

economical  settings,  such  as  250  BHP,  to  maintain  prescribed  speeds  and  altitudes,  and  achieved  desired  

ranges.  

Page 92: Waitt Institute Re-Navigation Rpt

Nutter  and  Associates  Consulting  

 2009  Waitt  Institute  for  Discovery   92  

The  table  below  compares  sources  of  fuel  consumption  data,  with  the  associated  effect  on  the  mission  

fuel  used  (Total  Gallons  Required).  

Profile  Segment  

Kelly  Johnson  GPH  

Kelly  Johnson  Fuel  Used  (gallons)  

“Adjusted  Kelly  Johnson  Fuel  Used  (gallons)  

Pratt-­‐Whitney  GPH  

Pratt-­‐Whitney  BHP  

Time  (hours)  

Pratt-­‐Whitney  Fuel  Used  (gallons)  

Takeoff   N/A     10       0.08  (5  min)  

10  

Climb   N/A     110   110.0   550   1   110  Cruise   60   180   180   61.8   390   3   190  Cruise   51   153   153   54.8   350   3   165  Cruise     43   129   129   40.6   250   3   122  Cruise   38   380   323   40.6   250   8.5   345  Descent   N/A     15  (est.)   N/A   N/A   0.5   15  (est.)  Total  Gallons  Required     842   920       19.08   957  Table  6  -­‐  Engine  Fuel  Consumption  

As  corroboration,  the  P&W  R-­‐1340-­‐AN-­‐1  engine  in  the  North  American  T-­‐6  aircraft  achieves  its  best  long-­‐

range  cruise  at  5,000-­‐10,000  feet  altitude,  burning  22-­‐23  GPH.  For  simplicity,  we  can  double  this  value,  

to  approximate  a  representative  cruise  value  for  the  twin-­‐engine  Electra  of  44-­‐46  GPH.  

 Differences  among  source  data  are  relatively  reasonable  for  the  1937  period  

• AT-­‐6  engine  GPH  data,  doubled  to  approximate  Electra  fuel  consumption,  is  within  10%  of  simple  

(non-­‐weighted)  averages  for  Kelly  Johnson  and  Pratt-­‐Whitney  data.  

• Kelly  Johnson  and  Pratt-­‐Whitney  GPH  data  are  within  3%  to  7%.  

• L487  specifies  initial  cruise  fuel  consumption  of  57  GPH  

o Within  4%-­‐8%  of  Pratt-­‐Whitney  data.  

o Within  5%-­‐11%  of  Kelly  Johnson  data.  

• Kelly  Johnson  and  L487  cruise  fuel  burn  at  250  BHP  is  39.2  GPH  

o Within  4%  of  Pratt-­‐Whitney’s  published  chart  data.  

o Two-­‐thirds  of  the  Lae  to  Howland  mission  was  specified  to  be  flown  at  250  BHP,  which  

was  also  used  by  AE  during  the  Natal  to  Dakar  Atlantic  Ocean  crossing,  earlier  on  the  

World  Flight.  

Pratt-­‐Whitney  engine  data  examined,  to  date,  is  for  standard  conditions  of  pressure  and  temperature.  

The  Lae  to  Howland  environmental  conditions  in  temperature  were  warmer  than  sea  level  standard,  

which  increases  fuel  flow.  Flying  at  high  altitude,  while  not  exceeding  optimum  altitude,  has  a  small  

positive  effect  on  reducing  fuel  flow  for  AE’s  engines.  

These  effects  could  account  for  differences  between  Pratt-­‐Whitney  engine  data,  and  Kelly  Johnson  flight  

test  data.  

Page 93: Waitt Institute Re-Navigation Rpt

Nutter  and  Associates  Consulting  

 2009  Waitt  Institute  for  Discovery   93  

MSI  Analysis  (Multi-­Source  Integration)  

Despite  the  absence  of  specific  Lockheed  10E  Flight  Manuals,  flight  tests,  and  variances  in  published  

data,  we  can  reach  reasonable  conclusions  using  all  available  resources.  

After  departing  Lae  with  1080  US  gallons,  and  arriving  in  the  Howland  area  at  1912  GMT,  Fuel  

Remaining  values  from  Kelly  Johnson,  L487,  and  our  specific  analyses,  are  all  among  the  9  unique  results  

from  Swenson  and  Culick’s  interesting  and  comprehensive  sensitivity  analysis.  

These  9  unique  results  are  shown  on  the  following  graph.  These  serve  as  increasing  confidence  in  

identifying  reasonable  values  for  fuel  consumption,  fuel  remaining,  endurance  time  after  1912  GMT,  and  

where  the  Electra  could  be  located.  

 

Figure  13  –  Swenson  and  Culick  conclusions  (Average  21.37  hours.  Standard  Deviation  1.58  hours)  

Conclusions  for  Fuel  Consumption  

The  conclusions  from  this  analysis  include  

• AE  had  sufficient  fuel  for  the  Lae  to  Howland  flight  under  existing  environmental  conditions,  for  

Paths  A,  B  and  C,  plus  adequate  reserves  for  a  terminal  area  search.  

• After  2013  GMT  there  were  no  further  transmissions  heard  from  NR  16020.  

o Given  AE’s  communication  history,  this  is  uncharacteristic.  

o AE  transmissions  are  expected  at  2030  GMT,  2045  GMT,  and  2100  GMT.  

o This  supports  a  theory  of  a  pre-­‐fuel  exhaustion  water  impact,  possibly  between  2013  

GMT  and  2100  GMT.  

20.63   19.63  21.83  

23.63   23.25  21.63   22.25  

18.92  20.5  

0  

5  

10  

15  

20  

25  

0   2   4   6   8   10  

Mission

 Hou

rs  

Case  Number  

Swenson  and  Culick  Fuel  Endurance  Time  

Time  

Page 94: Waitt Institute Re-Navigation Rpt

Nutter  and  Associates  Consulting  

 2009  Waitt  Institute  for  Discovery   94  

This  may  result  from  a  CFIT  event,  or  a  mission  fuel  over-­‐burn.  

• The  fuel  consumption  rates  in  GPH  computed  from  Kelly  Johnson,  L487,  and  Pratt-­‐Whitney  

engine  data,  reasonably  agree  with  empirical  data  from  AE  flight  logs  and  position  reports,  in  the  

range  of  250  BHP  prescribed  for  mission  cruise.  

• A  summation  of  discrete,  mission  segment  analyses  can  produce  a  more  accurate  result  in  fuel  

consumption,  using  BHP  and  SFC  with  all  other  data.  

• Reaching  Gardner  Island,  at  approximately  400  statute  miles  distant,  at  120  mph  would  require  

3  hours  22  minutes,  after  2013  GMT,  or  4  hours  22  minutes  after  arriving  at  Howland  Island  at  

1912  GMT.  

o Only  Case  4  and  5  in  Swenson  and  Culick’s  analysis  enable  this  result.  

Possible  Impact  Areas  

At  1912  GMT  the  three  basic  fuel  remaining  scenarios  are  

• 1  hour  26  minutes  

• 3  hours  04  minutes  (and  reductions  due  to  possible  failure  of  the  Cambridge  Fuel  Analyzer)  

• 4  hours  00  minutes  

Position  estimates  result  from  search  maneuvering  and  estimates  of  aircraft  position  in  time.  

Key  points  include  

• At  the  Path  C  EON  point,  the  aircraft  flys  west  for  10sm,  then  east  for  10sm,  then  east  another  

10sm.  At  that  point,  AE  reported,  “circling,”  and  embarks  on  flying  the  LOP  as  a  magnetic  

compass  heading  337  degrees.  

• The  LOP  is  flown  for  20  minutes,  covering  40sm.  

• A  turn  east  then  to  a  compass  heading  of  157  degrees,  requires  6-­‐7  minutes,  where  the  aircraft  

then  searches  southeast.  

• This  pattern  is  continued  until  reaching  a  4-­‐hour  fuel  exhaustion  point.  

Three  key  locations  are  added  to  the  search  area,  corresponding  to  fuel  remaining  calculations,  from  

Swenson  and  Culick,  Kelly  Johnson/L487,  and  our  analysis.  

Key  inferences  from  this  analysis  include  

• It  is  realistic  to  expect  further  AE  radio  reports  from  2030  GMT  to  2100  GMT,  or  later.  

• The  aircraft  would  be  located  in  the  search  grid  at  2100  GMT.  

• Of  the  three  fuel  remaining  calculation  scenarios  

o The  Kelly  Johnson/L487  point  is  considered  least  likely.  

o The  Swenson  and  Culick  point  is  considered  possible.  

o A  point  between  our  most  optimistic  calculation  and  the  Swenson  and  Culick  result    is  

considered  the  most  likely  of  the  fuel  exhaustion  scenarios,  allowing  the  possibility  of  an  

Page 95: Waitt Institute Re-Navigation Rpt

Nutter  and  Associates  Consulting  

 2009  Waitt  Institute  for  Discovery   95  

en  route  failure  of  the  Cambridge  Fuel  Analyzer,  slightly  increased  fuel  consumption  

rates,  and  reduced  fuel  remaining  in  the  Howland  Island  area.

Page 96: Waitt Institute Re-Navigation Rpt

Nutter  and  Associates  Consulting  

 2009  Waitt  Institute  for  Discovery   96  

 

Search  Considerations  

If  AE  used  fuel  differently  from  this  analysis,  she  likely  used  more  fuel,  not  less  fuel,  resulting  in  fuel  

exhaustion  in  less  than  3  hours  04  minutes,  and  within  the  Search  Grid.  

Effects  of  Significant  Lateral  Deviation  North  of  Path  C  

If  the  aircraft  passed  overhead  Nauru  Island,  it  would  mean  that  navigation  had  either  inadvertently  

deviated  120nm  in  just  three  hours  since  flying  over  Nukumanu  Island,  or  the  course  deviation  was  

intentional  to  facilitate  sighting  Nauru’s  expected  lights,  and  logging  the  last  good  navigation  fix  until  

Howland  Island.  

An  inadvertent  deviation  of  this  magnitude  is  very  unlikely.  

Intentionally  passing  overhead  the  island  to  establish  a  position  is  a  reasonable  intention.  Unfortunately,  

there  is  no  evidence  to  support  the  theory.  

If  we  suppose  that  it  did  occur,  then  the  course  to  Howland  Island  from  overhead  Nauru  Island  converges  

with  the  Path  C  track,  terminating  within  a  few  miles  northwest  of  the  Path  C  End-­‐of-­‐Navigation  point.  

No  matter  how  close  to  Nauru  Island  the  Electra  passed,  at  1912  GMT  on  Path  C  it  would  be  located  

within  the  Search  Grid,  very  near  the  Path  C  EON  point.  

From  a  position  overhead  Nauru  Island,  another  possible  course  would  parallel  Path  C  to  1912  GMT.  

This  is  considered  unlikely,  as  it  would  indicate  intentional  navigation  to  a  point  other  than  Howland  

Island,  or  a  failure  to  correctly  navigate  to  Howland  Island.  

Conclusion  

The  effects  of  reasonable  lateral  deviations  place  the  aircraft  in  the  existing  Search  Grid  for  scenarios  of  

wind  and  weather  considered  possible,  or  likely.  

Page 97: Waitt Institute Re-Navigation Rpt

Nutter  and  Associates  Consulting  

 2009  Waitt  Institute  for  Discovery   97  

 

Appendix  2  

 

Search  Grids  and  Grid  Coordinates  

 

 

 

Page 98: Waitt Institute Re-Navigation Rpt

Nutter  and  Associates  Consulting  

 2009  Waitt  Institute  for  Discovery   98  

 

 

Page 99: Waitt Institute Re-Navigation Rpt

Nutter  and  Associates  Consulting  

 2009  Waitt  Institute  for  Discovery   99  

 

 

Page 100: Waitt Institute Re-Navigation Rpt

Nutter  and  Associates  Consulting  

 2009  Waitt  Institute  for  Discovery   100  

 

 

 


Recommended