+ All Categories
Home > Documents > Wetland(carbon(cycle(responses(to(...

Wetland(carbon(cycle(responses(to(...

Date post: 07-Jul-2020
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
53
Wetland carbon cycle responses to hydrological change: Impacts on regional and global carbon budgets Benjamin N. Sulman University of WisconsinMadison Department of Atmospheric and Oceanic Sciences Special thanks: Ankur R. Desai Jonathan Thom Nicole M. Schroeder Nicanor Z. Saliendra Peter M. Lafleur Larry B. Flanagan Rob Scheller Oliver Sonnentag D. ScoM Mackay Alan Barr Andrew Richardson NACP site synthesis parPcipants
Transcript
Page 1: Wetland(carbon(cycle(responses(to( hydrological(change:((co2.aos.wisc.edu/~adesai/documents/SulmanDefensetalk.pdf · Peatland(carbon(is(vulnerable(to(climate(and(hydrological(change(LETTERS100

Wetland  carbon  cycle  responses  to  hydrological  change:    

Impacts  on  regional  and  global  carbon  budgets  

Benjamin  N.  Sulman  University  of  Wisconsin-­‐Madison  

Department  of  Atmospheric  and  Oceanic  Sciences    

 Special  thanks:  Ankur  R.  Desai  Jonathan  Thom  Nicole  M.  Schroeder  Nicanor  Z.  Saliendra  Peter  M.  Lafleur  Larry  B.  Flanagan  Rob  Scheller  

Oliver  Sonnentag  D.  ScoM  Mackay  Alan  Barr  Andrew  Richardson  NACP  site  synthesis  parPcipants  

Page 2: Wetland(carbon(cycle(responses(to( hydrological(change:((co2.aos.wisc.edu/~adesai/documents/SulmanDefensetalk.pdf · Peatland(carbon(is(vulnerable(to(climate(and(hydrological(change(LETTERS100

Outline  •  What  are  wetlands?  •  How  are  they  important  to  the  global  carbon  cycle?  

•  How  do  they  respond  to  hydrological  variaPons?  –  Inter-­‐annual  Pme  scales  – Century  Pme  scales  

•  AddiPonal  complicaPons  •  Conclusions  

Page 3: Wetland(carbon(cycle(responses(to( hydrological(change:((co2.aos.wisc.edu/~adesai/documents/SulmanDefensetalk.pdf · Peatland(carbon(is(vulnerable(to(climate(and(hydrological(change(LETTERS100

What  are  wetlands?  U.S.  Clean  Water  Act  defini6on:  Areas  that  are  inundated  or  saturated  by  surface  or  ground  water…  sufficient  to  support  …  vegetaPon  typically  adapted  for  saturated  soil  condiPons  (U.S.  Army  Corps  of  Engineers)  

 

Peatlands:  

 Accumulate  thick  organic  soil  layers  

Page 4: Wetland(carbon(cycle(responses(to( hydrological(change:((co2.aos.wisc.edu/~adesai/documents/SulmanDefensetalk.pdf · Peatland(carbon(is(vulnerable(to(climate(and(hydrological(change(LETTERS100

Global  distribuPon  of  wetlands  

Forested  bog  

Nonforested  bog  

Forested  Swamp  

Nonforested  swamp  

Alluvial  FormaPons  

Other  land  

Water  body  

MaMhews  and  Fung,  1987,  GBC  

Page 5: Wetland(carbon(cycle(responses(to( hydrological(change:((co2.aos.wisc.edu/~adesai/documents/SulmanDefensetalk.pdf · Peatland(carbon(is(vulnerable(to(climate(and(hydrological(change(LETTERS100

Northern  peatland  types  Fen  

•  Groundwater  and  surface  water  fed  

•  Usually  shrubs  or  sedges  dominate  

•  Peat  results  from  anaerobic  soil  

Tundra  •  Permafrost  soils  •  Seasonal  thawing  leads  to  flooding  of  low  areas  

•  Peat  results  from  chronic  freezing  

 

Lost  Creek  (WI)  

Barrow  (AK)  (Photo  from  specnet.info)  

Bog  •  Rain-­‐fed  •  Nutrient-­‐poor  •  O`en  dominated  by  mosses  

•  Peat  results  from  anaerobic  soil  

Mer  Bleue  (ON)  

Western  Peatland  (AB)  

Page 6: Wetland(carbon(cycle(responses(to( hydrological(change:((co2.aos.wisc.edu/~adesai/documents/SulmanDefensetalk.pdf · Peatland(carbon(is(vulnerable(to(climate(and(hydrological(change(LETTERS100

Outline  •  What  are  wetlands?  •  How  are  they  important  to  the  global  carbon  cycle?  

•  How  do  they  respond  to  hydrological  variaPons?  –  Inter-­‐annual  Pme  scales  – Century  Pme  scales  

•  AddiPonal  complicaPons  •  Conclusions  

Page 7: Wetland(carbon(cycle(responses(to( hydrological(change:((co2.aos.wisc.edu/~adesai/documents/SulmanDefensetalk.pdf · Peatland(carbon(is(vulnerable(to(climate(and(hydrological(change(LETTERS100

The  global  peatland  carbon  pool  is  large  

Mitra  et  al,  2005,  Curr.  Sci.  

Boreal  and  subarcPc  wetlands  contain  between  120  and  500  Pg  soil  carbon  (Mitra  et  al,  2005)    This  is  up  to  1/3  of  total  global  soil  carbon  pool  (Gorham,  1991)  

Page 8: Wetland(carbon(cycle(responses(to( hydrological(change:((co2.aos.wisc.edu/~adesai/documents/SulmanDefensetalk.pdf · Peatland(carbon(is(vulnerable(to(climate(and(hydrological(change(LETTERS100

Wetlands  in  northern  landscapes  contain  a  large  fracPon  of  total  C  

WI:  Buffam  et  al.,  GCB  (2011);    MN:  Weishampel  et  al.,  For.  Ecol.  Man.  (2009)  FracPons  exclude  lake  area  and  carbon  storage  in  lake  sediments  

0%  

10%  

20%  

30%  

40%  

50%  

60%  

70%  

80%  

90%  

100%  

WI  area   WI  C   MN  area   MN  C  

Upland  %  

Wetland  %  

Page 9: Wetland(carbon(cycle(responses(to( hydrological(change:((co2.aos.wisc.edu/~adesai/documents/SulmanDefensetalk.pdf · Peatland(carbon(is(vulnerable(to(climate(and(hydrological(change(LETTERS100

Peatland  carbon  is  vulnerable  to  climate  and  hydrological  change   LETTERS

100

60

20

SOC

(kgC

m–2

)

2.0

1.0

0

Peat

dep

th (m

)4°C rise

0 1000 2000 3000 4000Years

0 1000 2000 3000 4000Years

6-year mean water table

Fibrous peat

Humic peat

Metabolic

4°C rise

Humic

Structural

Figure 3 A 4000-year simulation of peat SOC and peat depth at the BOREAS Fensite. a,b, Peat SOC (a) and peat depth (b). Meteorological data for 1994–2005 areused recursively for this long-term simulation. For years 0–2000, the simulated peatcolumn is in dynamic equilibrium under the current climate. A uniform rise oftemperature by 4 �C is applied at year 2000, indicated by downward arrows. Theblack line denotes total peat (fibrous plus humic), and the red line denotes theboundary between fibrous and humic peat.

decomposition. The change in temperature triggers this feedback,and the soil water–carbon system is eventually shifted to the newlow-SOC regime.

To study the transient behaviour of the system, we disturbedthe current equilibrium of the Fen simulation based on thetemperature and precipitation anomalies predicted by the generalcirculation model HadCM3 using scenario A2 of the SpecialReport on Emissions Scenarios for the period 2004–2099 (ref. 25).Transient responses of SOC to climate change strongly dependon the peat type2,18 (Fig. 4). The metabolic pool responds quicklyto climate change, and the decomposition rate of this pool iscontrolled by interannual variability in climate. Extended dryperiods are indicated during 2038–2045 and 2084–2087 due toclimate fluctuations generated by HadCM3 and the hydrologicalmemory of the peat system. The metabolic pool loses more than20% of SOC during each of these dry periods due to exposureof SOC to aerobic conditions10. Although the metabolic SOC is aminor portion of the total SOC, its fast temperature response isthe key process of interannual fluctuations in net ecosystem carbonexchange observed in northern peatlands4.

To single out the physical–biogeochemical interactions, weintentionally omitted ecophysical responses of peatland vegetationto environmental changes. In reality, however, plants willsensitively respond to changes in moisture and temperatureregimes, nutrient status, atmospheric CO2 and peat texture26,27,and changes in the wetland vegetation community and litterquantity and quality strongly influence peat decomposition

–0.2

0

0.2

0.4

0.6

Wat

er ta

ble

dept

h (m

)

1.0

0.8

0.6

0.4

Prop

ortio

nal c

hang

e

1980 2000 2020 2040 2060 2080 2100Years

1980 2000 2020 2040 2060 2080 2100Years

HumicStructuralMetabolic

Current climate

Climate change

Figure 4 Transient change in the water table at the BOREAS Fen site,2004–2099. a, Change in water table. b, Proportional changes in SOC. Before 2004,the model is in equilibrium under the 1994–2005 climate. Then, temperature andprecipitation anomalies projected by HadCM3 with Special Report on EmissionsScenarios A2 are used to force the model in and after year 2004. Shaded areasdenote extremely dry periods of 2038–2045 and 2084–2087.

and accumulation dynamics28. This study emphasizes that thehydrological–biogeochemical feedback inherent to peat has a strongpotential to increase climate sensitivities and avoids a studydesign that might be confounded by two new feedbacks, namelybiogeochemical and vegetation dynamics. The CO2 emissions fromthe peat collapse predicted by this study could be ameliorated orexacerbated by changes in ecosystem structure and function. Ournext research step is to include dynamic vegetation simulated bythe ED model framework15,16.

The transient resistance to peat decomposition observed inthe Fen site simulation is due mainly to microbial conversion oflabile SOC into more recalcitrant SOC29. The massive SOC lossinduced by the soil-condition–carbon feedback can be preventedif the temperature rise is reversed within a few hundred yearsor if a significant increase in precipitation maintains the currentlevels of the water table4. In summary, our modelling approachdemonstrates how the mechanistic linkages that exist between thephysical and biogeochemical dynamics of peatlands have strongimplications for the response of northern peatlands to climatechange30, including a large peat loss due to positive feedbacks inorganic soil.

METHODS

Air temperature, wind speed, net radiation and humidity observed for 12 years(1994–2005) at the BOREAS Northern Study Area OBS eddy-covariancetower site every 30 min (<http://www-as.harvard.edu/data >) are repeatedly

nature geoscience ADVANCE ONLINE PUBLICATION www.nature.com/naturegeoscience 3

•  Peat  carbon  is  preserved  by  cool  temperatures  and  flooded  condiPons  

•  Warming  and  drying  can  disrupt  the  process  and  lead  to  carbon  loss  

Ise  et  al  2008  

Page 10: Wetland(carbon(cycle(responses(to( hydrological(change:((co2.aos.wisc.edu/~adesai/documents/SulmanDefensetalk.pdf · Peatland(carbon(is(vulnerable(to(climate(and(hydrological(change(LETTERS100

Outline  •  What  are  wetlands?  •  How  are  they  important  to  the  global  carbon  cycle?  

•  How  do  they  respond  to  hydrological  variaPons?  –  Inter-­‐annual  Pme  scales  – Century  Pme  scales  

•  AddiPonal  complicaPons  •  Conclusions  

Page 11: Wetland(carbon(cycle(responses(to( hydrological(change:((co2.aos.wisc.edu/~adesai/documents/SulmanDefensetalk.pdf · Peatland(carbon(is(vulnerable(to(climate(and(hydrological(change(LETTERS100

Effects  of  water  table  change  

Saturated,  anoxic  Unsaturated,  oxygenated  

CH4   CO2   CH4  CO2  

Page 12: Wetland(carbon(cycle(responses(to( hydrological(change:((co2.aos.wisc.edu/~adesai/documents/SulmanDefensetalk.pdf · Peatland(carbon(is(vulnerable(to(climate(and(hydrological(change(LETTERS100

 North  American  Carbon  Program:  A  site  and  model  intercomparison  project  

•  Three  peatland  eddy  covariance  flux  sites  –  Plus  four  addiPonal  sites  in  a  

site  comparison  

•  Seven  ecosystem  models  •  Standardized  meteorological  

driver  data  •  Time  series  of  3-­‐8  years    

Results  presented  in  Sulman  et  al,  GRL,  2010  and    JGR-­‐Biogeosciences,  2012  

Western Peatland

Sandhill Fen

Lost CreekWilson FlowageSouth Fork

Mer Bleue

Page 13: Wetland(carbon(cycle(responses(to( hydrological(change:((co2.aos.wisc.edu/~adesai/documents/SulmanDefensetalk.pdf · Peatland(carbon(is(vulnerable(to(climate(and(hydrological(change(LETTERS100

NACP  Peatland  Sites  

Site   Lost  Creek  shrub  fen  (WI)    

Mer  Bleue  bog  (ON)    

Western  Peatland  treed  fen  (AB)    

VegetaPon   Primarily  alder  and  willow    

Sphagnum  mosses  with  some  shrubs    

Stunted  trees  and  shrubs,  understory  of  mosses    

Mean  GEP   2.31  g/m2/day   1.68   2.36  

Mean  ER   2.10  g/m2/day      

1.49   1.83  

Mean  NEE   -­‐0.21  g/m2/day   -­‐0.19   -­‐0.53  

Page 14: Wetland(carbon(cycle(responses(to( hydrological(change:((co2.aos.wisc.edu/~adesai/documents/SulmanDefensetalk.pdf · Peatland(carbon(is(vulnerable(to(climate(and(hydrological(change(LETTERS100

Example  Pmeseries  

Lost  Creek  Shrub  fen  

Western  Peatland  tree/sedge  fen  

Mer  Bleue  (Eastern  Peatland)  Bog  

NEE  (gC/m2/day)  

Water  table  (cm)  

NEE  (gC/m2/day)  

Water  table  (cm)  

NEE  (gC/m2/day)  

Water  table  (cm)  

Page 15: Wetland(carbon(cycle(responses(to( hydrological(change:((co2.aos.wisc.edu/~adesai/documents/SulmanDefensetalk.pdf · Peatland(carbon(is(vulnerable(to(climate(and(hydrological(change(LETTERS100

Hydrological  effects  in  four  fens  

•  Eddy-­‐covariance  summer  carbon  flux  anomaly  vs.  water  table  anomaly  for  four  northern  fen  sites  

•  Both  ER  and  GEP  increase  with  deeper  water  tables  (long  Pme  scales)  

•  Drying  over  short  Pme  scale  can  lead  to  reducPon  in  GEP  and  net  CO2  emission  

•  NEE  has  no  significant  correlaPon  with  water  table  

Sulman  et  al.,  GRL,  2010  

Page 16: Wetland(carbon(cycle(responses(to( hydrological(change:((co2.aos.wisc.edu/~adesai/documents/SulmanDefensetalk.pdf · Peatland(carbon(is(vulnerable(to(climate(and(hydrological(change(LETTERS100

ContrasPng  effects  in  bogs:  

•  Bog  C  fluxes  (white  symbols)  have  lower  magnitude  and  opposite  sign  correlaPon  with  water  table  

Sulman  et  al.,  GRL,  2010  

Page 17: Wetland(carbon(cycle(responses(to( hydrological(change:((co2.aos.wisc.edu/~adesai/documents/SulmanDefensetalk.pdf · Peatland(carbon(is(vulnerable(to(climate(and(hydrological(change(LETTERS100

How  well  did  models  simulate  peatland  processes?  

Model  name  

Temporal  resolu6on  

Soil  layers   Soil  C  pools   N  cycle   Max  soil  moisture  

DLEM   Daily   2   3   Yes   SaturaPon  

Ecosys   Hourly   8   9   Yes   SaturaPon  (with  water  table)  

LPJ   Daily   2   2   No   Field  capacity  

ORCHIDEE   30-­‐min   2   8   No   Field  capacity  

SiB   30-­‐min   10   None   No   SaturaPon  

SiBCASA   30-­‐min   25   9   No   SaturaPon  

TECO   30-­‐min   10   5   No   SaturaPon  

Page 18: Wetland(carbon(cycle(responses(to( hydrological(change:((co2.aos.wisc.edu/~adesai/documents/SulmanDefensetalk.pdf · Peatland(carbon(is(vulnerable(to(climate(and(hydrological(change(LETTERS100

All  models  overesPmated  GEP  and  ER  

Annual  

Summer  

Sulman  et  al.,  JGR,  2012  

Page 19: Wetland(carbon(cycle(responses(to( hydrological(change:((co2.aos.wisc.edu/~adesai/documents/SulmanDefensetalk.pdf · Peatland(carbon(is(vulnerable(to(climate(and(hydrological(change(LETTERS100

Monthly  residuals  were  correlated  with  observed  water  table  

Page 20: Wetland(carbon(cycle(responses(to( hydrological(change:((co2.aos.wisc.edu/~adesai/documents/SulmanDefensetalk.pdf · Peatland(carbon(is(vulnerable(to(climate(and(hydrological(change(LETTERS100

CorrelaPons  with  water  table  

CorrelaPon  coefficient  

Slope  

Page 21: Wetland(carbon(cycle(responses(to( hydrological(change:((co2.aos.wisc.edu/~adesai/documents/SulmanDefensetalk.pdf · Peatland(carbon(is(vulnerable(to(climate(and(hydrological(change(LETTERS100

Diurnal  cycles  not  bad  at  fens  

Lost  Creek  

Page 22: Wetland(carbon(cycle(responses(to( hydrological(change:((co2.aos.wisc.edu/~adesai/documents/SulmanDefensetalk.pdf · Peatland(carbon(is(vulnerable(to(climate(and(hydrological(change(LETTERS100

Diurnal  cycles  not  bad  at  fens  

Western  Peatland  

Page 23: Wetland(carbon(cycle(responses(to( hydrological(change:((co2.aos.wisc.edu/~adesai/documents/SulmanDefensetalk.pdf · Peatland(carbon(is(vulnerable(to(climate(and(hydrological(change(LETTERS100

Diurnal  cycles  significantly  worse  at  bog  

Page 24: Wetland(carbon(cycle(responses(to( hydrological(change:((co2.aos.wisc.edu/~adesai/documents/SulmanDefensetalk.pdf · Peatland(carbon(is(vulnerable(to(climate(and(hydrological(change(LETTERS100

Conclusions:  Interannual  Pme  scales  

•  Fens  and  bogs  have  opposite  responses  to  water  table  variaPons  

•  Ecosystem  models  overesPmate  peatland  producPvity  and  respiraPon  

•  Water  table  variaPons  contribute  significantly  to  model  error  

•  Models  perform  beMer  at  bogs  than  fens  

Page 25: Wetland(carbon(cycle(responses(to( hydrological(change:((co2.aos.wisc.edu/~adesai/documents/SulmanDefensetalk.pdf · Peatland(carbon(is(vulnerable(to(climate(and(hydrological(change(LETTERS100

Outline  •  What  are  wetlands?  •  How  are  they  important  to  the  global  carbon  cycle?  

•  How  do  they  respond  to  hydrological  variaPons?  –  Inter-­‐annual  Pme  scales  – Century  Pme  scales  

•  AddiPonal  complicaPons  •  Conclusions  

Page 26: Wetland(carbon(cycle(responses(to( hydrological(change:((co2.aos.wisc.edu/~adesai/documents/SulmanDefensetalk.pdf · Peatland(carbon(is(vulnerable(to(climate(and(hydrological(change(LETTERS100

Effects  of  water  table  change  

Saturated,  anoxic  Unsaturated,  oxygenated  

CH4   CO2   CH4  CO2  

Page 27: Wetland(carbon(cycle(responses(to( hydrological(change:((co2.aos.wisc.edu/~adesai/documents/SulmanDefensetalk.pdf · Peatland(carbon(is(vulnerable(to(climate(and(hydrological(change(LETTERS100

Long-­‐term  drying:  model  analysis  

LANDIS-­‐II  model:  •  Species  cohort  based  forest  

succession  model  •  Yearly  Pme  step  •  Tracks  cohort  biomass  and  

two  soil  C  pools  •  ReproducPon:  Seed  dispersal  

and  establishment  probability  •  NPP:  Species  maximum  NPP,  

maximum  biomass,  and  compePPon  

CO2

Litter Fast C Slow C

CO2

Atmosphere

NPP(max NPP, max biomass, competition)

Seed dispersal

Page 28: Wetland(carbon(cycle(responses(to( hydrological(change:((co2.aos.wisc.edu/~adesai/documents/SulmanDefensetalk.pdf · Peatland(carbon(is(vulnerable(to(climate(and(hydrological(change(LETTERS100

SimulaPng  wetlands  

•  Plants  divided  by  flood  tolerance  

•  Wet  fracPons  in  grid  cells  determined  with  soil  height  distribuPon  

•  Growth  parameters  mulPplied  by  habitat  surface  fracPon  in  grid  cell  

!1.2

!1.0

!0.8

!0.6

!0.4

!0.2

0.0

0.2

0.4

Dep

th (m

)

Underwater: 61.4% of peat, 36.0% of surface

Upland: 0.0% of peat, 0.0% of surface

Sedges: 23.9% of peat, 41.0% of surface

Wet woody: 14.7% of peat, 57.0% of surface

Bimodal  hummock/hollow  topography  (Eppinga  et  al.  2008)  

Page 29: Wetland(carbon(cycle(responses(to( hydrological(change:((co2.aos.wisc.edu/~adesai/documents/SulmanDefensetalk.pdf · Peatland(carbon(is(vulnerable(to(climate(and(hydrological(change(LETTERS100

Soil  decomposiPon  model  

1000 3000 5000 7000Age (years)

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

Dep

th in

soil

(m)

0.0 0.2 0.4 0.6 0.8 1.0Decomposition modifier

−2.5

−2.0

−1.5

−1.0

−0.5

0.0fTfWWater table

•  DecomposiPon  rate  k  depends  on  age,  temperature,  and  water  table  factors  

•  Mean  k  calculated  from  100  soil  columns  sampled  from  topography  distribuPon    

k(t) =k0

1 + k0t

k(z) = k(t)fT (z)fW (z) Model  and  profiles  based  on  Frolking  et  al.  2001  

Page 30: Wetland(carbon(cycle(responses(to( hydrological(change:((co2.aos.wisc.edu/~adesai/documents/SulmanDefensetalk.pdf · Peatland(carbon(is(vulnerable(to(climate(and(hydrological(change(LETTERS100

Soil  decomposiPon  and  plant  community  dependence  on  water  table  

0 50 100 150 200Decomposition rate (gC/m2/yr)

!2.0

!1.5

!1.0

!0.5

0.0

Wat

er ta

ble

(m)

UplandWetminDeep peatShallow peat

0.0 0.2 0.4 0.6 0.8 1.0Vegetation area fraction

!2.0

!1.5

!1.0

!0.5

0.0

UnderwaterUplandSedgesWet woodyGram peat initialShrub peat initialWet min initial

Peatland  pools:  Shallow  peat  scenario:  

 18.5  kgC/m2    45  cm  depth  

Deep  peat  scenario:    100kgC/m2    2.5  m  depth  

Low  sensiPvity  at  deeper  depths  is  due  to  older  C  

VegetaPon  fracPon  dependence  on  water  table  

Soil  decomposiPon  rate  dependence  on  water  table  

Page 31: Wetland(carbon(cycle(responses(to( hydrological(change:((co2.aos.wisc.edu/~adesai/documents/SulmanDefensetalk.pdf · Peatland(carbon(is(vulnerable(to(climate(and(hydrological(change(LETTERS100

Modeled  landscape:  Northern  Wisconsin  

MinnesotaWisconsin

Ecoregion   Ac6ve  area  frac6on  

Upland   38%  

Mineral  wetland  

27%  

Shrub  peat   29%  

Graminoid  peat  

5%  

Price  County,  near  Phillips,  WI  

Categorized  based  on  remote  sensing  and  soil  inventories  

Page 32: Wetland(carbon(cycle(responses(to( hydrological(change:((co2.aos.wisc.edu/~adesai/documents/SulmanDefensetalk.pdf · Peatland(carbon(is(vulnerable(to(climate(and(hydrological(change(LETTERS100

Summary  of  simulaPons  

40 cm 100 cm

40 y

ears

10 y

ears

Control Veg

Soil Both

Control Veg

Soil Both

Control Veg

Soil Both

Control Veg

Soil Both

Water table decline

Leng

th o

f dec

line

•  Moderate  and  severe  levels  of  water  table  decline  

•  Fast  and  slow  water  table  decline  

•  SeparaPon  of  plant  and  soil  effects  

•  These  combinaPons  were  applied  to  both  shallow  and  deep  peat  scenarios  

Page 33: Wetland(carbon(cycle(responses(to( hydrological(change:((co2.aos.wisc.edu/~adesai/documents/SulmanDefensetalk.pdf · Peatland(carbon(is(vulnerable(to(climate(and(hydrological(change(LETTERS100

Model  results:  control  simulaPon  fluxes  

0100200300400500600

Up

lan

d

NPP

Shallow resp

Deep resp

0

50

100

150

200

250

Wetm

in0

20

40

60

80

100

Sh

rub

peat

0 50 100 150 200 250 300 350 400Model time (years)

010203040506070

Gra

mp

eat

Fluxes

(gC

/m2

-yr)

•  Four  ecoregions:  –  Upland  forest  – Mineral  woody  wetland  –  Peat  shrub  wetland  –  Peat  graminoid  wetland  

•  Upland  was  most  producPve  

•  ProducPvity  declines  and  respiraPon  increases  as  forest  ages    

Page 34: Wetland(carbon(cycle(responses(to( hydrological(change:((co2.aos.wisc.edu/~adesai/documents/SulmanDefensetalk.pdf · Peatland(carbon(is(vulnerable(to(climate(and(hydrological(change(LETTERS100

Water  table  effects  on  carbon  balance  

0 100 200 300 400

−10

0

10

20

30

Tota

l ca

rbon

Wetmin

0 100 200 300 400

−10

0

10

20

30

Bio

mass

0 100 200 300 400

−10

0

10

20

30

Soil

carb

on

ch

an

ge

0 100 200 300 400

−10

0

10

20

30

Shrubpeat

0 100 200 300 400

−10

0

10

20

30

0 100 200 300 400

−10

0

10

20

30

0 100 200 300 400

−10

0

10

20

30

Grampeat

0 100 200 300 400

−10

0

10

20

30

0 100 200 300 400

−10

0

10

20

30

0 100 200 300 400

−10

0

10

20

30

Landscape

0 100 200 300 400

−10

0

10

20

30

0 100 200 300 400

−10

0

10

20

30

Carb

on (

kg/m

2)

Model time (years)

Control shallow

Control deep

Veg test shallow

Veg test deep

Soil test shallow

Soil test deep

Net shallow

Net deep

Zero line

Water  table  decline  caused:  •  Increased  soil  

decomposiPon  •  Increased  biomass  

accumulaPon  •  Net  effect:  Short  

term  increase  in  carbon,  followed  by  long-­‐term  losses  

Scenario:  100  cm  WT  decline  over  40  years      

Page 35: Wetland(carbon(cycle(responses(to( hydrological(change:((co2.aos.wisc.edu/~adesai/documents/SulmanDefensetalk.pdf · Peatland(carbon(is(vulnerable(to(climate(and(hydrological(change(LETTERS100

Water  table  effects  on  carbon  balance  

0 100 200 300 400−10

−5

0

5

10

15

20

Tota

l ca

rbon

Wetmin

0 100 200 300 400−10

−5

0

5

10

15

20

Bio

mass

0 100 200 300 400−10

−5

0

5

10

15

20

Soil

carb

on

0 100 200 300 400−10

−5

0

5

10

15

20Shrubpeat

0 100 200 300 400−10

−5

0

5

10

15

20

0 100 200 300 400−10

−5

0

5

10

15

20

0 100 200 300 400−10

−5

0

5

10

15

20Grampeat

0 100 200 300 400−10

−5

0

5

10

15

20

0 100 200 300 400−10

−5

0

5

10

15

20

0 100 200 300 400−10

−5

0

5

10

15

20Landscape

0 100 200 300 400−10

−5

0

5

10

15

20

0 100 200 300 400−10

−5

0

5

10

15

20

Carb

on (

kg/m

2)

Model time (years)

40 cm 40 yrs

40 cm 10 yrs

100 cm 40 yrs

100 cm 10 yrs

Zero line

Peatlands:  •  100  cm  declines:  

–  Short  term:  C  gain  –  Long  term:  C  loss  

•  40  cm  declines  –  Short  term:  C  neutral  –  Long  term:  C  loss  

Mineral  wetlands:  •  C  gain  for  both  Whole  landscape  •  Short-­‐term:  C  increase  •  Long-­‐term:  C  steady  •  Time  scale  of  decline  

made  liMle  difference  

Net  change  from  control  run  for  shallow  peat  simulaPons:  Different  water  table  scenarios  

Page 36: Wetland(carbon(cycle(responses(to( hydrological(change:((co2.aos.wisc.edu/~adesai/documents/SulmanDefensetalk.pdf · Peatland(carbon(is(vulnerable(to(climate(and(hydrological(change(LETTERS100

Simple  global  upscaling  

MaMhews  and  Fung,  1987,  GBC  

Forested  bog  

Nonforested  bog  

Forested  Swamp  

Nonforested  swamp  

Alluvial  FormaPons  

Other  land  

Water  body  

Boreal  and  subarcPc  wetland  area  ≈  2-­‐4x1012  m2  (Mitra  et  al  2005)  

Page 37: Wetland(carbon(cycle(responses(to( hydrological(change:((co2.aos.wisc.edu/~adesai/documents/SulmanDefensetalk.pdf · Peatland(carbon(is(vulnerable(to(climate(and(hydrological(change(LETTERS100

Simple  global  upscaling  

•  Boreal/subarcPc  wetland  area  ≈  2-­‐4x1012  m2  (Mitra  et  al  2005)  

•  Modeled  changes:    –  Soil  C  loss  of  5  kgC/m2  

–  Biomass  C  gain  of  5-­‐10  kgC/m2  

•  Anthro  emissions  ≈  4-­‐8  PgC/year  (IPCC  2007)    •  Global  equivalent  

–  Loss  of  10-­‐20  PgC  (1-­‐5%  addiPonal  emissions  over  100  yrs)  –  Gain  of  30-­‐60PgC  (4-­‐15%  lower  emissions  over  100  yrs)  

Page 38: Wetland(carbon(cycle(responses(to( hydrological(change:((co2.aos.wisc.edu/~adesai/documents/SulmanDefensetalk.pdf · Peatland(carbon(is(vulnerable(to(climate(and(hydrological(change(LETTERS100

Conclusions:  Century  Pme  scales  

•  Plant  community  responses  dominate  response  to  drying  

•  Moderate  drying  leads  to  C  loss  in  peatlands  •  Severe  drying  leads  to  short-­‐term  C  gain  followed  by  losses  

•  Drying  leads  to  C  gain  in  non-­‐peat  wetlands  •  Drying  leads  to  significant  C  gain  at  landscape  scale  

•  Magnitudes  are  significant  at  global  scales  

Page 39: Wetland(carbon(cycle(responses(to( hydrological(change:((co2.aos.wisc.edu/~adesai/documents/SulmanDefensetalk.pdf · Peatland(carbon(is(vulnerable(to(climate(and(hydrological(change(LETTERS100

Outline  •  What  are  wetlands?  •  How  are  they  important  to  the  global  carbon  cycle?  

•  How  do  they  respond  to  hydrological  variaPons?  –  Inter-­‐annual  Pme  scales  – Century  Pme  scales  

•  AddiPonal  complicaPons  •  Conclusions  

Page 40: Wetland(carbon(cycle(responses(to( hydrological(change:((co2.aos.wisc.edu/~adesai/documents/SulmanDefensetalk.pdf · Peatland(carbon(is(vulnerable(to(climate(and(hydrological(change(LETTERS100

AddiPonal  complicaPons  and  future  applicaPons  

•  Topography  •  Non-­‐CO2  carbon  fluxes  •  Changes  in  soil  properPes  over  Pme  •  Climate-­‐driven  hydrology  

Page 41: Wetland(carbon(cycle(responses(to( hydrological(change:((co2.aos.wisc.edu/~adesai/documents/SulmanDefensetalk.pdf · Peatland(carbon(is(vulnerable(to(climate(and(hydrological(change(LETTERS100

Peatland  topography  

J.  S.  Aber,  2001.      Accessed  from  hMp://www.emporia.edu/earthsci/estonia/estonia.htm,  1/13/2011.  See  Aber  et  al.,  Suo,  2002  

Männikjärve  bog,  Estonia  

Page 42: Wetland(carbon(cycle(responses(to( hydrological(change:((co2.aos.wisc.edu/~adesai/documents/SulmanDefensetalk.pdf · Peatland(carbon(is(vulnerable(to(climate(and(hydrological(change(LETTERS100

Peatland  topography  

Sonnentag,  PhD  thesis  (2008)  

Page 43: Wetland(carbon(cycle(responses(to( hydrological(change:((co2.aos.wisc.edu/~adesai/documents/SulmanDefensetalk.pdf · Peatland(carbon(is(vulnerable(to(climate(and(hydrological(change(LETTERS100

Microtopography  in  wet  peatlands  

What  does  water  table  depth  mean,  really?  

Page 44: Wetland(carbon(cycle(responses(to( hydrological(change:((co2.aos.wisc.edu/~adesai/documents/SulmanDefensetalk.pdf · Peatland(carbon(is(vulnerable(to(climate(and(hydrological(change(LETTERS100

Microtopography  in  wet  peatlands  

•  Water  table  can  vary  by  tens  of  cm  at  small  scales  

•  Mean  water  table  at  a  peatland  does  not  capture  the  real  range  of  variability  

•  Topographical  variaPons  lead  to  micro-­‐ecosystems  within  the  peatland  

 

Page 45: Wetland(carbon(cycle(responses(to( hydrological(change:((co2.aos.wisc.edu/~adesai/documents/SulmanDefensetalk.pdf · Peatland(carbon(is(vulnerable(to(climate(and(hydrological(change(LETTERS100

Measured  effects  

maintain soil ice later into the season than adjacent wetmicroforms and this may lead to the lower peat temper-atures following water table drawdown. Since Rtot ispositively related to temperature [Moore and Dalva,1993], this shift may help mediate increases in Rtot inducedby the larger oxic zone.[27] Productivity has not been altered significantly fol-

lowing the water table drawdown; however, the vegetationcommunity at experimental hollows changed and GEP atthese locations increased. GPmax increased linearly throughtime at experimental hollows and there is some indicationthat this is also the case at experimental lawns (Figure 5).Increases in the cover of vascular vegetation at lawns andhollows across the site support these trends. Manipulation

of water table position in peatland mesocosms suggests thatmaximum Sphagnum [Weltzin et al., 2001] and graminoidand forb productivity [Weltzin et al., 2000] occurs under wetconditions. These studies did not consider flooded condi-tions but only water table position at or below the surface.In contrast, descriptions from pools naturally drained by soilpipes suggest that the removal of standing water can inducean ecological succession that involves the colonization ofbare peat substrate by Sphagnum mosses and sedges [Fosteret al., 1988] and a similar process is occurring at theexperimental site.[28] A comparison of maximum GEP at the control site

and a nearby site drained for eight seasons [Strack et al.,2006] showed significantly higher productivity at drained

Figure 4. Log-transformed quotient experimental/control for seasonal total (a) GEP, (b) Rtot, and(c) CH4 efflux at individual sample plots through time. Sample plots are arranged from the driest at theleft to the wettest at the right. Vertical dashed lines indicate the transition from (left) hummocks to lawnsand (right) lawns to hollows. Horizontal lines at 1 indicate no difference between experimental andcontrol sites.

GB1007 STRACK AND WADDINGTON: PEATLAND C FLUX AFTER LOWER WATER TABLE

9 of 13

GB1007

WADDINGTON AND ROULET: ATMOSPHERE-WETLAND CARBON EXCHANGES 241

50.0

•. 37.5 2s.o •o m 12.5 0.0

i b 10

•o•' 10

z -200

Lawn

a) CH4

I 1992 :i:• 1993

b) NEE

1 1992

-30

1

0

1992 1993

d) -20 cm peat temperature (C)

I 1992 i'..'• 1993

Figure 4. Mesotopography scale ridge-lawn-pool sequence: (a) seasonal CH 4 flux, (b) seasonal NEE, (c) mean water table position, and (d) -20 cm peat temperature. Solid bars refer to 1992 data, while stippled bars refer to 1993 data. The overbar indicates 1 standard deviation above and below the mean.

The NEE results indicate that the MEF estimates (- 17 g CO 2 m '2 in 1992, +33.8 g CO 2 m '2 in 1993) and the MAF estimates (+38.8 g CO 2 m '2 in 1992, +171.1 g CO2 m '2 , in 1993) differ greatly from each other and the MMF extrapolation (-33.5 and -4.2 g CO2 m '2 in 1992 and 1993, respectively). Furthermore, the MAF approach estimates a net loss of CO 2 from the peatland in both 1992 and 1993. The MMF estimate of NEE is similar

to results of NEE from vegetated lawns in various peatlands of the Hudson Bay lowland (HBL) [Whiting, 1994]. Comparison of these approaches indicates the necessity to consider all scales of peatland topography when making an estimate of NEE. NEE estimates are extremely sensitive to scaling rules not only because NEE differs by 2 orders of magnitude between ridges and pools, but also because the sign of the flux changes among mesoscale units. The approach that includes the maximum ecosystem diversity and weights the fluxes according to that diversity should yield the best estimate of the true flux.

The MMF estimate of NEE indicates a large interalmual variability in the exchange of CO2 at Stor-Amyran (-33.5 and -4.2 g CO2 m '2 in 1992 and 1993, respectively). The mean water table position was similar in the two years, and both years experienced a pronounced dry period (mid June in 1992, mid

July in 1993). The timing ofthese dry periods, however, appears to be the reason why the exchange differed between years. Dry conditions in July coincide with peak peat temperature. Peak soil respiration therefore coincides with peak CO 2 fixation by plants. Consequently, lower water table conditions in July may reduce net uptake because the respiration offsets the fixation.

An earlier dry condition in June had less impact on net CO 2 exchange because soil respiration is limited due to colder soils

in June. Asymmetry between respiration and plant fixation of CO2 has been shown to determine the net source-sink

relationship in boreal forest stands (S. Frolking, University of New Hampshire, personal communication, 1995). Furthermore,

there was a greater loss of CO 2 from the pools in 1993 because they were warmer than in 1992. Since the pool flux is so large, the pools greatly influence the peatland ecosystem level NEE even though they represent only a small proportion of the total surface area. Similar results were found by Hamilton et al. [1994] for peatlands in the Hudson Bay lowlands.

Scales of Variability in Atmosphere - Peatland Carbon Exchange

This study examined the exchange of carbon over spatial scales from tens of centimeters (microtopography; Figure 3), to

Strack  and  Waddington,  Glob.  Biogeochem.  Cy.,  2007  

Waddington  and  Roulet,  Glob.  Biogeochem.  Cy.,  1996  

CH4  and  CO2  fluxes   Effects  of  lowered  water  table  

Page 46: Wetland(carbon(cycle(responses(to( hydrological(change:((co2.aos.wisc.edu/~adesai/documents/SulmanDefensetalk.pdf · Peatland(carbon(is(vulnerable(to(climate(and(hydrological(change(LETTERS100

Non-­‐CO2  carbon  fluxes  An  example:  Mer  Bleue  bog  

not representative of the long-term rates because thepeat is still actively decomposing in the oxygenated,unsaturated zone (Turunen et al., 2004). Peat age of 400years corresponds to depths of 0.32m in core MB930and 0.45m in core MB775, and zero depth correspondsto the base of living Sphagna. Deposition time withinthis window varies between 16 and 42 yr cm!1 for theMB930 core and between 19 and 31 yr cm!1 for theMB775 core.

Results

Annual and seasonal climate variations

The climate for 1998–2004 was quite variable (Fig. 2):over half the mean seasonal temperatures and totalprecipitation were greater than 1 SD from the long-term

mean and totals for the 66-year record at the OttawaMacdonald-Cartier International Airport (45.191N lati-tude, 75.401W longitude, 114m a.m.s.l.), approximately12km southwest of the Mer Bleue peatland (Fig. 1). Weranked the seasonal temperature and precipitation withinthe 66 years of record (Fig. 3). The winters of 2002 and2004, the spring of 1999, the summers of 2001 and 2002,and autumn 2000 received significantly (i.e. in the upperor lower quartile) less precipitation, while the springs of2000 through 2002, and the autumns of 1999, 2003, and2004 experienced precipitation closer to the norm. Onlythree seasons were colder than normal (summer andautumn 1999, and winter 2002), while in 11 of theremaining 21 seasons, or 45% of the study period, thetemperatures were in the top quartile. Six out of a possible24 seasons experienced both large temperature and pre-cipitation anomalies (drier/wetter and warmer/cooler).

!120

!100

!80

!60

!40

!20

0

20

40

1998–1999 1999–2000 2000–2001 2001–2002 2002–2003 2003–2004 Six-yearMean

C (g

m!2

yr!1

)

Peatland loss

Peatland gain

NEE

CH4 DOC

C balance

!80

!60

!40

!20

0

20

40

1-Nov-98 1-Nov-99 1-Nov-00 1-Nov-01 1-Nov-02 1-Nov-03 1-Nov-04

WT

(cm

); T

a an

d Ts

(°C

)

Water table (cm) Air temperature (2 m) Hummock temperature (!0.1 m)

Fig. 5 Components of the annual carbon balance (top panel) and the trends on air, hummock peat temperature and water table for the

6 years (1 November 1998 to 31 October 2004) for the Mer Bleue peatland (bottom panel).

C ONT EMPORARY AND LAT E HOLOC ENE CAR BON ACCUMULAT I ON 405

r 2007 The AuthorsJournal compilation r 2007 Blackwell Publishing Ltd, Global Change Biology, 13, 397–411

•  NEE  was  larger  than  other  factors,  but  ignoring  DOC  and  CH4  would  lead  to  overesPmate  of  net  carbon  uptake  

•  High  inter-­‐annual  variability  leads  to  high  uncertainty  

Roulet  et  al.,  Glob.  Change  Biol.,  2007  

Page 47: Wetland(carbon(cycle(responses(to( hydrological(change:((co2.aos.wisc.edu/~adesai/documents/SulmanDefensetalk.pdf · Peatland(carbon(is(vulnerable(to(climate(and(hydrological(change(LETTERS100

Northern  Wisconsin  landscape  

age of wetlands relative to upland forests (Table 2). LakeCO2 evasion contributes about 3% of the regional totalnet exchange. Precipitation flux into and hydrologicflux out of the NHLD are on the order of 1% and 3%,respectively, of the regional total net exchange.The mismatch between pool sizes and current rates

points to widely disparate mean C turnover timesamong wetlands, lakes, and forests of the region.Assuming current rates are representative of long-termrates, the estimated average time required to build upeach major regional C pool was 65 years for forest, 1775years for peat wetlands, and 7364 years for lake sedi-ments.

Spatial distribution of C pools and fluxes on the landscape

Pools and fluxes of C were spatially heterogeneous at arange of spatial scales in the NHLD landscape. Themost dense pools of C were peat in peatlands andsediments in lakes (Fig. 3b). Patches of relatively youngconiferous forest gave by far the greatest local rates ofinflux of C into the land surface, while lakes gave rise to

patches of C evasion, with smaller lakes having thehighest evasion rates (Fig. 3c).

Discussion

Implications of magnitude and spatial variability of Cpools and fluxes

By constructing a C budget we incorporated surfacefreshwaters, wetlands, and upland forests into a singleframework. This framework establishes a context for Ccycling research in this and other surface-water richregions. An integrated view like this is needed to targetresearch and management strategies in a parsimoniousway.We determined that the largest current-day annual

land–atmosphere fluxes in the NHLD region are foundin forests, which are aggrading. This rate is an order ofmagnitude higher than surface–atmosphere exchangein wetlands or surface waters (Fig. 2, Table 2). Thus thecurrent behavior of the NHLD in terms of annual C

Forests: 64,000

Pool sizes in Gg-C

Wetlands: 158,000 Surface Waters: 162,000

Atmosphere

Flux rates in Gg-C yr-1

Forest NEE994

GPP 3233, R 2238

CH4 emission13

Wetland NEE124

GPP 878, R 754

CO2 evasion28

Runoff34

CH4 evasion2

Fossil fuels154

Precip12

Sed 22

Wetland runoff21

Forest runoff24

Wetland litter1

Forest litter2

Fig. 2 Schematic showing the three major ecosystem types of the Northern Highlands Lake District (NHLD), along with best estimates of

C flux rates and pool sizes. These estimates are associated with varying degrees of uncertainty (Tables 1–5). Forests make up 54% of the

NHLD area, wetlands 28% (including 20% peatlands and 8% other wetlands), and lakes 13%. NEE, net ecosystem exchange; GPP, gross

primary production; R, respiration.

12 I . B U F FAM et al.

r 2010 Blackwell Publishing Ltd, Global Change Biology, doi: 10.1111/j.1365-2486.2010.02313.x

Results  for  northern  Wisconsin      Wetland  liMer    +  wetland  runoff    =  17.7%  of  wetland  NEE      LiMer    +  runoff    +  methane  =  28%  of  wetland  NEE      Forest  liMer  +  runoff  =  2.6%  of  forest  NEE     Buffam  et  al.,  Glob.  Change  Biol.,  2011  

Page 48: Wetland(carbon(cycle(responses(to( hydrological(change:((co2.aos.wisc.edu/~adesai/documents/SulmanDefensetalk.pdf · Peatland(carbon(is(vulnerable(to(climate(and(hydrological(change(LETTERS100

Future  model  improvements  •  Dynamic  soils  

–  Peat  layers  treated  as  age  cohorts  –  Soil  subsidence  and  changes  in  bulk  properPes  

•  InteracPve  hydrology  –  Couple  to  climate-­‐driven  hydrological  model  –  Landscape  topography  driven  by  digital  elevaPon  map  

•  Improved  biology  –  Nitrogen  cycle  –  ProducPvity  coupled  to  climate  –  Explicit  species  biological  responses  to  flooding  

•  Climate  feedbacks  –  Albedo  –  Latent  and  sensible  heat  fluxes  –  Carbon  cycle  coupled  to  climate  

Page 49: Wetland(carbon(cycle(responses(to( hydrological(change:((co2.aos.wisc.edu/~adesai/documents/SulmanDefensetalk.pdf · Peatland(carbon(is(vulnerable(to(climate(and(hydrological(change(LETTERS100

Outline  •  What  are  wetlands?  •  How  are  they  important  to  the  global  carbon  cycle?  

•  How  do  they  respond  to  hydrological  variaPons?  –  Inter-­‐annual  Pme  scales  – Century  Pme  scales  

•  AddiPonal  complicaPons  •  Conclusions  

Page 50: Wetland(carbon(cycle(responses(to( hydrological(change:((co2.aos.wisc.edu/~adesai/documents/SulmanDefensetalk.pdf · Peatland(carbon(is(vulnerable(to(climate(and(hydrological(change(LETTERS100

Summary  of  results  

•  Peatland  community  types  and  succession  control  carbon  cycle  responses  to  hydrological  change  

•  Model  simulaPons  overes6mate  produc6vity  and  respira6on  and  miss  hydrology-­‐driven  variability  in  peatlands  

•  Responses  to  hydrological  change  vary  greatly  depending  on  6me  scale  

Page 51: Wetland(carbon(cycle(responses(to( hydrological(change:((co2.aos.wisc.edu/~adesai/documents/SulmanDefensetalk.pdf · Peatland(carbon(is(vulnerable(to(climate(and(hydrological(change(LETTERS100

How  might  wetlands  surprise  us?  

•  Slow  and  fast  hydrological  changes  can  have  opposite  effects  on  carbon  fluxes  

•  Different  types  of  northern  wetlands  can  have  opposite  responses  to  similar  forcings  

•  Tundra,  northern  wetlands,  coastal  wetlands,  and  tropical  wetlands  could  have  different  behaviors  

•  MulPple  micro-­‐ecosystems  within  a  peatland  due  to  topography  could  lead  to  higher  resilience  than  expected  

Page 52: Wetland(carbon(cycle(responses(to( hydrological(change:((co2.aos.wisc.edu/~adesai/documents/SulmanDefensetalk.pdf · Peatland(carbon(is(vulnerable(to(climate(and(hydrological(change(LETTERS100

Acknowledgements  

•  Ankur  Desai  •  Jonathan  Thom  •  Lab  members  and  other  grad  students  •  Thanks  for  funding  from  the  BART  IGERT  fellowship  program  •  Natural  Sciences  and  Engineering  Research  Council  of  Canada  (NSERC),  the  

Canadian  FoundaPon  for  Climate  and  Atmospheric  Sciences  (CFCAS),  and  BIOCAP  Canada  

•  North  American  Carbon  Program  (NACP)  and  NASA  Terrestrial  Ecology  Program  •  U.S.  Department  of  Energy  (DOE)  Office  of  Biological  and  Environmental  Research  

(BER)  NaPonal  InsPtute  for  ClimaPc  Change  Research  (NICCR)  Midwestern  Region  Subagreement  050516Z19  

•  Thanks  to  my  coauthors  and  all  the  contributors  to  the  NACP  site  synthesis  

Page 53: Wetland(carbon(cycle(responses(to( hydrological(change:((co2.aos.wisc.edu/~adesai/documents/SulmanDefensetalk.pdf · Peatland(carbon(is(vulnerable(to(climate(and(hydrological(change(LETTERS100

References  •  Aber  et  al.  PaMerns  in  Estonian  bogs  as  depicted  in  color  kite  aerial  photographs.  Suo  (2002)  vol.  53  pp.  1-­‐15  •  Baird  et  al.  Upscaling  of  peatland-­‐atmosphere  fluxes  of  methane:  small-­‐scale  heterogeneity  in  process  rates  and  the  pitalls  of  “bucket-­‐and-­‐slab”  models.  In  Carbon  Cycling  in  Northern  Peatlands,  A.  J.  Baird,  L.  R.  Belyea,  X.  Comas,  A.  S.  Reeve,  and  L.  D.  Slater,  eds.    American  Geophysical  Union,  Washington,  D.C.,  2009.    

•  Belyea,  L.  R.  Nonlinear  dynamics  of  peatlands  and  potenPal  feedbacks  on  the  climate  system.  In  Carbon  Cycling  in  Northern  Peatlands,  A.  J.  Baird,  L.  R.  Belyea,  X.  Comas,  A.  S.  Reeve,  and  L.  D.  Slater,  eds.    American  Geophysical  Union,  Washington,  D.C.,  2009.  

•  Buffam  et  al.  IntegraPng  aquaPc  and  terrestrial  components  to  construct  a  complete  carbon  budget  for  a  north  temperate  lake  district.  Global  Change  Biology  (2011)  vol.  17  (2)  pp.  1193-­‐1211  

•  Eppinga,  M.  B.,  Rietkerk,  M.,  Borren,  W.,  Lapshina,  E.  D.,  Bleuten,  W.,  &  Wassen,  M.  J.  (2008).  Regular  Surface  PaMerning  of  Peatlands:  ConfronPng  Theory  with  Field  Data.  Ecoscience,  11(4),  520–536.    

•  Frolking,  S.,  Roulet,  N.,  Moore,  T.,  Richard,  P.  J.  H.,  Lavoie,  M.,  &  Muller,  S.  (2001).  Modeling  northern  peatland  decomposiPon  and  peat  accumulaPon.  Ecosystems,  4(5),  479–498.  

•  Mitra  et  al.  An  appraisal  of  global  wetland  area  and  its  organic  carbon  stock.  Current  Science  (2005)  vol.  88  (1)  pp.  25-­‐35  •  Roulet  et  al.  Contemporary  carbon  balance  and  late  Holocene  carbon  accumulaPon  in  a  northern  peatland.  Global  Change  Biology  (2007)  vol.  13  pp.  397-­‐411  

•  Strack  and  Waddington.  Response  of  peatland  carbon  dioxide  and  methane  fluxes  to  a  water  table  drawdown  experiment.  Global  Biogeochem.  Cycles  (2007)  vol.  21  (1)  pp.  GB1007  

•  Sulman  et  al.  CO2  fluxes  at  northern  fens  and  bogs  have  opposite  responses  to  inter-­‐annual  fluctuaPons  in  water  table.  Geophys  Res  LeM  (2010)  vol.  37  (19)  L19702  

•  Sulman,  B.  N.,  Desai,  A.  R.,  Schroeder,  N.  M.,  Ricciuto,  D.,  Barr,  A.,  Richardson,  A.  D.,  Flanagan,  L.  B.,  et  al.  (2012).  Impact  of  hydrological  variaPons  on  modeling  of  peatland  CO2  fluxes:  results  from  the  North  American  Carbon  Program  site  synthesis.  Journal  of  Geophysical  Research,  117,  G01031.  doi:10.1029/2011JG001862  

•  Waddington  and  Roulet.  Atmosphere-­‐wetland  carbon  exchanges:  Scale  dependency  of  CO2  and  CH4  exchange  on  the  developmental  topography  of  a  peatland.  Global  Biogeochem.  Cycles  (1996)  vol.  10  (2)  pp.  233-­‐245  

•  Waddington  et  al.  Water  table  control  of  CH4  emission  enhancement  by  vascular  plants  in  boreal  peatlands.  J.  Geophys.  Res  (1996)  vol.  101  (D17)  pp.  22775  

•  Weishampel  et  al.  Carbon  pools  and  producPvity  in  a  1-­‐km2  heterogeneous  forest  and  peatland  mosaic  in  Minnesota,  USA.  Forest  Ecology  and  Management  (2009)  vol.  257  (2)  pp.  747-­‐754  


Recommended