+ All Categories
Home > Documents > WOODexpress example

WOODexpress example

Date post: 11-Oct-2015
Category:
Upload: sergiu-alexandru-neghina
View: 39 times
Download: 0 times
Share this document with a friend
Description:
WOODexpress example
98
5/21/2018 WOODexpressexample-slidepdf.com http://slidepdf.com/reader/full/woodexpress-example 1/98 Example of Attic truss  CONTENTS  1. ROOF -001, Attic trus s  1.1. General description, assumptions, materials, loads  1.1.1. Construction type  1.1.2. Design codes  1.1.3. Design methodology  1.1.4. Material properties (truss , purlins)  1.1.5. Distributed roof loads  1.2. Snow load  1.3. Wind loading 1.4. Design of purlins  1.4.1. Serviceability limit state, Control of deflection 1.4.2. Check of purlins, Ultimate limit state of design  1.5. Truss design  1.6. Truss static analysis  1.6.1. Static solutions for unit loads  1.6.2. Internal forces for applied loads  1.6.3. Element end forces for applied loads  1.6.4. Vertical nodal displacements (in mm)  1.6.5. Support reactions (kN)  1.7. Support reactions for load combinations (kN)  1.7.1. Reactions at node : 1 (kN)  1.7.2. Reactions at node : 4 (kN)  1.7.3. Reactions at node : 3 (kN)  1.8. Serviceability limit state 1.8.1. Serviceability limit state, Control of deflection at node 7  1.8.2. Serviceability limit state, Control of deflection at node 10  1.8.3. Serviceability limit state, Control of deflection in middle of element 2  1.9. Characteristic structural natural frequencies (self w eight + permanent loads)  1.10. Ultimate limit state 1.10.1. Ultimate limit state, Rafter, elements: 1 1.10.2. Check of cross section Rafter, elements: 1 1.10.3. Ultimate limit state, Rafter, elements: 3 1.10.4. Check of cross section Rafter, elements: 3 1.10.5. Ultimate limit state, Rafter, elements: 2 software byRUNET (c) RUNET Nor w ay as 12/09/2011 14:43:49
Transcript
  • Example of Attic truss

    CONTENTS

    1. ROOF -001, Attic truss

    1.1. General description, assumptions, materials, loads

    1.1.1. Construction type

    1.1.2. Design codes

    1.1.3. Design methodology

    1.1.4. Material properties (truss, purlins)

    1.1.5. Distributed roof loads

    1.2. Snow load

    1.3. Wind loading

    1.4. Design of purlins

    1.4.1. Serviceability limit state, Control of deflection

    1.4.2. Check of purlins, Ultimate limit state of design

    1.5. Truss design

    1.6. Truss static analysis

    1.6.1. Static solutions for unit loads

    1.6.2. Internal forces for applied loads

    1.6.3. Element end forces for applied loads

    1.6.4. Vertical nodal displacements (in mm)

    1.6.5. Support reactions (kN)

    1.7. Support reactions for load combinations (kN)

    1.7.1. Reactions at node : 1 (kN)

    1.7.2. Reactions at node : 4 (kN)

    1.7.3. Reactions at node : 3 (kN)

    1.8. Serviceability limit state

    1.8.1. Serviceability limit state, Control of deflection at node 7

    1.8.2. Serviceability limit state, Control of deflection at node 10

    1.8.3. Serviceability limit state, Control of deflection in middle of element 2

    1.9. Characteristic structural natural frequencies (self w eight + permanent loads)

    1.10. Ultimate limit state

    1.10.1. Ultimate limit state, Rafter, elements: 1

    1.10.2. Check of cross section Rafter, elements: 1

    1.10.3. Ultimate limit state, Rafter, elements: 3

    1.10.4. Check of cross section Rafter, elements: 3

    1.10.5. Ultimate limit state, Rafter, elements: 2

    software by RUNET (c) RUNET Norway as12/09/2011 14:43:49

  • Example of Attic truss

    1.10.6. Check of cross section Rafter, elements: 2

    1.10.7. Ultimate limit state, Rafter, elements: 4

    1.10.8. Check of cross section Rafter, elements: 4

    1.10.9. Ultimate limit state, Rafter, elements: 13, 14

    1.10.10. Check of cross section Rafter, elements: 13, 14

    1.10.11. Ultimate limit state, Tie, elements: 5

    1.10.12. Check of cross section Tie, elements: 5

    1.10.13. Ultimate limit state, Tie, elements: 6

    1.10.14. Check of cross section Tie, elements: 6

    1.10.15. Ultimate limit state, Elements: 7

    1.10.16. Check of cross section Elements: 7

    1.10.17. Ultimate limit state, Elements: 8

    1.10.18. Check of cross section Elements: 8

    1.10.19. Ultimate limit state, Elements: 9

    1.10.20. Check of cross section Elements: 9

    1.10.21. Ultimate limit state, Elements: 10

    1.10.22. Check of cross section Elements: 10

    1.10.23. Ultimate limit state, Elements: 11

    1.10.24. Check of cross section Elements: 11

    1.10.25. Ultimate limit state, Elements: 12

    1.10.26. Check of cross section Elements: 12

    1.11. Truss connections

    1.11.1. Lateral Load-carrying capacity of connections

    1.11.2. Ultimate limit state , Design of bolted connection at node : 2

    1.11.3. Ultimate limit state , Design of bolted connection at node : 7

    1.11.4. Ultimate limit state , Design of bolted connection at node : 8

    1.11.5. Ultimate limit state , Design of bolted connection at node : 5

    1.11.6. Ultimate limit state , Design of bolted connection at node : 6

    1.11.7. Ultimate limit state , Design of bolted connection at node : 1

    1.11.8. Ultimate limit state , Design of bolted connection at node : 3

    1.11.9. Ultimate limit state , Design of bolted connection at node : 4

    1.11.10. Ultimate limit state , Design of bolted connection at node : 9

    software by RUNET (c) RUNET Norway as12/09/2011 14:43:49

  • 12

    34

    5 6

    7 89

    1011

    8.620.49 0.49

    5.51 3.11

    4.13

    4.23

    1.56

    4.23

    1.37

    6.57 4.60

    2.58

    0.97

    1.42

    1.42

    0.61

    2.95

    3.00 1.99

    1.93

    0.68 23.96

    38.4260x220

    C27

    60x220 C27

    60x220

    C27 60x220 C27

    60x220 C27 60x220 C27

    60x2

    20

    C27

    60x220 C27

    60x220 C27 60x220 C27

    60x2

    20

    C27

    60

    x220

    C

    27

    General informationTimber class for trusses C27

    Truss spacing C/C 0.60 m

    Purlins C27, 50x50 mm, at C/C 0.30 m

    Service classes (EN1995-1-1, 2.3.1.3): Class 2

    Material factor: 1.30 (EC5 EN1995-1-1:2009, Table 2.3)

    Truss volume =0.409 m

    Design codesEN1990-1-1:2002 Basis of structural design

    EN1991-1-1:2003 Actions on structures

    EN1991-1-3:2003 Snow loads

    EN1991-1-4:2005 Wind actions

    EN1995-1-1:2009 Design of timber structures

    Distributed roof loadsPermanent load of roof covering 0.100 kN/m

    Purlins, finishing, insulation 0.100 kN/m

    Load of ceiling under the roof 0.300 kN/m

    Snow load on the ground 1.600 kN/m

    Wind pressure on vertical surface 0.500 kN/m

    Permanent load of attic floor finishing 0.500 kN/m

    Live load on attic floor 2.000 kN/m

    Truss elements elem size class length(L) (Lmax) El 2-5 : 60x220 C27 L2-5 =5.91 m Lmax =6.57 m

    El 2-6 : 60x220 C27 L2-6 =3.84 m Lmax =4.60 m

    El 1-3 : 60x220 C27 L1-3 =8.40 m Lmax =8.62 m

    El 1-5 : 60x220 C27 L1-5 =1.60 m Lmax =1.42 m

    El 3-6 : 60x220 C27 L3-6 =1.60 m Lmax =1.44 m

    El 7-8 : 60x220 C27 L7-8 =4.20 m Lmax =4.13 m

    El 2-4 : 60x220 C27 L2-4 =4.00 m Lmax =2.58 m

    El 2-9 : 60x220 C27 L2-9 =1.20 m Lmax =0.97 m

    Connection plates node type size (BxL)mm boltsNd 2 : Steel plate 2.0mm 2x130x180mm 4.0mm :20 [8+4+8]

    Nd 7 : Steel plate 2.0mm 2x180x45mm 4.0mm :8 [4+4]

    Nd 8 : Steel plate 2.0mm 2x180x45mm 4.0mm :8 [4+4]

    Nd 5 : Steel plate 2.0mm 2x110x180mm 4.0mm :32 [16+16]

    Nd 6 : Steel plate 2.0mm 2x135x180mm 4.0mm :40 [20+20]

    Nd 1 : Steel plate 2.0mm 2x205x225mm 4.0mm :72 [36+36]

    Nd 3 : Steel plate 2.0mm 2x175x195mm 4.0mm :60 [30+30]

    Nd 4 : Steel plate 2.0mm 2x45x125mm 4.0mm :8 [4+4]

    Nd 9 : Steel plate 2.0mm 2x45x100mm 4.0mm :8 [4+4]

    Nd 9 : Steel plate 2.0mm 2x45x100mm 4.0mm :8 [4+4]

    Project: Example of Attic Truss

    Scale : 1:75 Date: 09/09/2011

    Designer: Draw.No.:

    Filename: Example of Attic Truss Sign:

    RUNET Norway as

    WOODexpresswww.runet-software.com

  • Example of Attic truss

    Example of Attic truss

    1. ROOF -001

    Attic truss

    1

    2

    34

    5 6

    7 89

    1011

    1

    2

    3

    4

    5 6

    7

    89 10

    1112

    1314

    a=23.96

    8.400

    4.0

    00

    1.6

    00 2

    .800

    0.600

    1.1. General description, assumptions, materials, loads

    1.1.1. Construction typeTimber roof, from trusses with timber C27. The truss type as sketch above.Span 8.400m, height 4.000m, roof pitch 23.96, 38.66, truss spacing 0.600mPurlins from timber C27, with dimensions 50x50 mm, in spacing 0.300 mTruss element cross sections BxH [mm]Elements 1, 2, 3, 4, cross section 60x220 [mm]Elements 5, 6, cross section 60x220 [mm]Elements 7, 8, cross section 60x220 [mm]Elements 9, 10, cross section 60x220 [mm]Elements 11,12, cross section 60x220 [mm]Truss volume =0.409 m, truss weight =1.484 kN

    1.1.2. Design codesEN1990-1-1:2002, Eurocode 0 Part 1-1, Basis of structural designEN1991-1-1:2003, Eurocode 1 Part 1-1, Actions on structuresEN1991-1-3:2003, Eurocode 1 Part 1-3, Snow loadsEN1991-1-4:2005, Eurocode 1 Part 1-4, Wind actionsEN1995-1-1:2009, Eurocode 5 Part 1-1, Design of timber structures

    1software by RUNET (c) RUNET Norway as

    12/09/2011 16:46:19C:\RUNETENG\WOOD\Examples\to net\WOODexpress Example01

    W OODexpress

  • Example of Attic truss

    1.1.3. Design methodologyThe internal forces of the roof trusses are computed with finite element analysis. The truss isconsidered as a two dimensional frame. The stiffness of the connections is adjusted according to the selected degree of stiffness. In order to compute the design values for internal forcesin various loading conditions, the internal forces are first computed in unit loading, and thenfrom their combination the internal forces in various loading conditions are obtained.All the load combinations according to Eurocode 1 and Eurocode 5 are taken into account,and the checks are performed in the most unfavourable loading conditions, for combined action,in ultimate limit state, according to EC5 EN1995-1-1:2009, 6. The connections are designedas bolted connections with metal plates according to EC5 EN1995-1-1:2009, 8. The deflections are checked in serviceability limit condition,according to EC5 EN1995-1-1:2009, 7.

    1.1.4. Material properties (truss, purlins) (EC5 EN1995-1-1:2009, 3)Timber class : C27Service classes : Class 1, moisture content

  • Example of Attic truss

    Wind pressure on roof we=QrefCe(z).Cpe (EC1 EN1991-1-4:2005, 5.2)External pressure coefficients (EC1 EN1991-1-4:2005 Table 7.3)For pitch angle =23.96, Cpe(+)=0.41, Cpe(-)=-0.44Wind pressure we(Left )= 0.205 kN/mWind pressure we(Right )= -0.221 kN/mFor pitch angle =38.66, Cpe(+)=0.61, Cpe(-)=-0.54Wind pressure we(Left )= -0.270 kN/mWind pressure we(Right )= 0.304 kN/m

    3software by RUNET (c) RUNET Norway as

    12/09/2011 16:46:19C:\RUNETENG\WOOD\Examples\to net\WOODexpress Example01

    W OODexpress

  • Example of Attic truss

    1.4. Design of purlins

    Structural system for purlinsThe purlins are designed as simply supported beams with span length L=0.600m the distancebetween the trusses. They are loaded with a surface load of width L1=0.300m (purlin spacing).The purlin axis has inclination a=23.96 with the vertical. The vertical loads (self weight,snow, concentrated load) are decomposed in two components in the directions z-z P.cosa,and y-y P.sina, the wind load acts in the z-z direction.

    Dimensions of purlinsTimber of purlins: C27, Class 1, moisture content

  • Example of Attic truss

    Check according to EC5 EN1995-1-1:2009 7.2, Tab.7.2Final deflections w.inst = 0.051 mm < L/300=600/300= 2.000 mmw.net,fin = 0.055 mm < L/250=600/250= 2.400 mmw.fin = 0.055 mm < L/150=600/150= 4.000 mmThe check is satisfied

    1.4.2. Check of purlins, Ultimate limit state of design (EC5 EN1995-1-1:2009, 6)

    L.C. Load combination duration class kmod Qz/Kmod Qy/Kmod My/Kmod Mz/Kmod 1 g.Gk Permanent 0.60 0.037 0.016 0.006 0.002 2 g.Gk + q.Qk1 Short-term 0.90 0.200 0.089 0.030 0.013 3 g.Gk + q.Qk2 Short-term 0.90 0.055 0.011 0.008 0.002 4 g.Gk + q.Qk3 Instantaneous 1.10 0.436 0.194 0.128 0.057 5 g.Gk + q.Qk1 + q.o.Qk2 + q. Short-term 0.90 0.215 0.089 0.032 0.013 6 g.Gk + q.Qk2 + q.o.Qk1 + q. Short-term 0.90 0.161 0.058 0.024 0.009 Maximum values 0.436 0.194 0.128 0.057

    Purlin, load combination No 4Shear, Fv=0.479 kN (EC5 6.1.7)Rectangular cross section, bef=0.67x50=34 mm, h=50 mm, A= 1 700 mmModification factor Kmod=1.10 (Table 3.1), material factor M=1.30 (Table 2.3)fvk=4.00 N/mm, fvd=Kmodfvk/M=1.10x4.00/1.30=3.38N/mm (EC5 Eq.2.14)Fv=0.479 kN, v0d=1.50Fv0d/Anetto=1000x1.50x0.479/1700=0.42N/mm < 3.38N/mm=fv0d (Eq.6.13)The check is satisfied

    Purlin, load combination No 4Shear, Fv=0.213 kN (EC5 6.1.7)Rectangular cross section, bef=0.67x50=34 mm, h=50 mm, A= 1 700 mmModification factor Kmod=1.10 (Table 3.1), material factor M=1.30 (Table 2.3)fvk=4.00 N/mm, fvd=Kmodfvk/M=1.10x4.00/1.30=3.38N/mm (EC5 Eq.2.14)Fv=0.213 kN, v0d=1.50Fv0d/Anetto=1000x1.50x0.213/1700=0.19N/mm < 3.38N/mm=fv0d (Eq.6.13)The check is satisfied

    Purlin, load combination No 4Bending, Myd=0.140 kNm, Mzd=0.062 kNm (EC5 6.1.6)Rectangular cross section, b=50mm, h=50mm, A=2.500E+003mm, Wy=2.083E+004mm, Wz=2.083E+004mmModification factor Kmod=1.10 (Table 3.1), material factor M=1.30 (Table 2.3)fmyk=27.00 N/mm, fmyd=Kmodfmyk/M=1.10x27.00/1.30=22.85N/mmfmzk=27.00 N/mm, fmzd=Kmodfmzk/M=1.10x27.00/1.30=22.85N/mm

    Rectangular cross section Km=0.70 (EC5 6.1.6.(2))myd=Myd/Wmy,netto=1E+06x0.140/2.083E+004= 6.74 N/mmmzd=Mzd/Wmz,netto=1E+06x0.062/2.083E+004= 3.00 N/mm

    myd/fmyd+Km.mzd/fmzd=0.295+0.092= 0.39 < 1 (EC5 Eq.6.11)Km.myd/fmyd+mzd/fmzd=0.206+0.131= 0.34 < 1 (EC5 Eq.6.12)The check is satisfied

    Purlin, load combination No 4Lateral torsional stability of beams, Myd=0.140 kNm, Mzd=0.062 kNm (EC5 6.3.3)Rectangular cross section, b=50mm, h=50mm, A=2.500E+003mm, Wy=2.083E+004mm, Wz=2.083E+004mmModification factor Kmod=1.10 (Table 3.1), material factor M=1.30 (Table 2.3)fc0k=22.00 N/mm, fc0d=Kmodfc0k/M=1.10x22.00/1.30=18.62N/mmfmyk=27.00 N/mm, fmyd=Kmodfmyk/M=1.10x27.00/1.30=22.85N/mmfmzk=27.00 N/mm, fmzd=Kmodfmzk/M=1.10x27.00/1.30=22.85N/mm

    5software by RUNET (c) RUNET Norway as

    12/09/2011 16:46:19C:\RUNETENG\WOOD\Examples\to net\WOODexpress Example01

    W OODexpress

  • Example of Attic truss

    Rectangular cross section Km=0.70 (EC5 6.1.6.(2))myd=Myd/Wmy,netto=1E+06x0.140/2.083E+004= 6.74 N/mmmzd=Mzd/Wmz,netto=1E+06x0.062/2.083E+004= 3.00 N/mm

    Buckling length SkSky= 1.00x0.600=0.600 m= 600 mmSkz= 1.00x0.600=0.600 m= 600 mm

    Slendernessiy=(Iy/A)=0.289x 50= 14 mm, y= 600/ 14= 42.86iz=(Iz/A)=0.289x 50= 14 mm, z= 600/ 14= 42.86

    m,crit=0.78.bE005/(hLef)=0.78x50x 7700/(50x600)= 500.50N/mm (EC5 Eq.6.32)m,crit=0.78.bE005/(hLef)=0.78x50x 7700/(50x600)= 500.50N/mm (EC5 Eq.6.32)Critical stressesm,crity= 500.50 N/mm, rel,my=(fmyk/m,crity)= 0.23 (EC5 Eq.6.30)m,critz= 500.50 N/mm, rel,mz=(fmzk/m,critz)= 0.23 (EC5 Eq.6.30)

    rel,my=0.23, (rel

  • Example of Attic truss

    1.5. Truss design

    Truss geometric characteristics

    Length L=8.400 m, height H=4.000 m, truss spacing d=0.600 mPitch =44.44%, angle =23.96 , tan=0.444, sin=0.406, cos=0.914Pitch =80.00%, angle =38.66 , tan=0.800, sin=0.625, cos=0.781Number of nodes = 11, number of elements =14, supports 3

    Nodal coordinates Truss element propertiesNode x[m] y[m] Sup. Element K1 K2 bxh[mm] L[m] A[mm] Iy[mm4] Wy[mm] 1 0.000 0.000 11 1 5 7 60x220 2.955 1.320E+004 5.324E+007 4.840E+005 2 5.400 4.000 2 7 2 60x220 2.955 1.320E+004 5.324E+007 4.840E+005 3 8.400 0.000 01 3 8 6 60x220 1.921 1.320E+004 5.324E+007 4.840E+005 4 5.400 0.000 01 4 2 8 60x220 1.921 1.320E+004 5.324E+007 4.840E+005 5 0.000 1.600 5 1 4 60x220 5.400 1.320E+004 5.324E+007 4.840E+005 6 8.400 1.600 6 4 3 60x220 3.000 1.320E+004 5.324E+007 4.840E+005 7 2.700 2.800 7 1 5 60x220 1.600 1.320E+004 5.324E+007 4.840E+005 8 6.900 2.800 8 6 3 60x220 1.600 1.320E+004 5.324E+007 4.840E+005 9 5.400 2.800 9 7 9 60x220 2.700 1.320E+004 5.324E+007 4.840E+005 10 -0.600 1.333 10 9 8 60x220 1.500 1.320E+004 5.324E+007 4.840E+005 11 9.000 1.120 11 4 9 60x220 2.800 1.320E+004 5.324E+007 4.840E+005 12 9 2 60x220 1.200 1.320E+004 5.324E+007 4.840E+005 13 10 5 60x220 0.657 1.320E+004 5.324E+007 4.840E+005 14 6 11 60x220 0.768 1.320E+004 5.324E+007 4.840E+005

    Line loads per trussTimber density =370.00 kg/m, truss self weight =1.484 kNTruss spacing d=0.60 m, weight of truss connections =0.148 kN

    Permanent line loads (kN/m) on trussRoof covering+self weight Gk1= 0.314 kN/mCeiling under roof Gk2= 0.180 kN/mPermanent load of attic floor Gkf= 0.300 kN/m

    Variable line loads of medium term (kN/m) on trussLive load of attic floor Qkf= 1.200 kN/mVariable line loads of short term action (kN/m) on trussImposed Qki= 0.40x0.600= 0.240 kN/mSnow (Left ) Qk1l= 0.768 kN/m (Right ) Qk1r= 0.546 kN/mSnow (Left ) Qk2l= 0.384 kN/m (Right ) Qk2r= 0.546 kN/mSnow (Left ) Qk3l= 0.768 kN/m (Right ) Qk3r= 0.273 kN/mWind (Left ) Qk4l= 0.123 kN/m (Right ) Qk4r=-0.133 kN/mWind (Left ) Qk5l=-0.162 kN/m (Right ) Qk5r= 0.182 kN/m

    7software by RUNET (c) RUNET Norway as

    12/09/2011 16:46:20C:\RUNETENG\WOOD\Examples\to net\WOODexpress Example01

    W OODexpress

  • Example of Attic truss

    Design load combinations(g=1.35, q=1.50, o(live Qf)=0.70, o(snow Q1,Q2,Q3)=0.60, o(wind Q4,Q5)=0.50)L.C. Actions Permanent-Variable Duration classes 1 g.G Permanent 2 g.G+q.Q1 Short-term 3 g.G+q.Q2 Short-term 4 g.G+q.Q3 Short-term 5 g.G+q.Q4 Short-term 6 g.G+q.Q5 Short-term 7 g.G+q.Qf Medium-term 8 g.G+q.Qi Short-term 9 g.G+q.Q1+q.o.Q4+q.o.Qf Short-term 10 g.G+q.Q1+q.o.Q5+q.o.Qf Short-term 11 g.G+q.Q2+q.o.Q4+q.o.Qf Short-term 12 g.G+q.Q2+q.o.Q5+q.o.Qf Short-term 13 g.G+q.Q3+q.o.Q4+q.o.Qf Short-term 14 g.G+q.Q3+q.o.Q5+q.o.Qf Short-term 15 g.G+q.Q4+q.o.Q1+q.o.Qf Short-term 16 g.G+q.Q4+q.o.Q2+q.o.Qf Short-term 17 g.G+q.Q4+q.o.Q3+q.o.Qf Short-term 18 g.G+q.Q5+q.o.Q1+q.o.Qf Short-term 19 g.G+q.Q5+q.o.Q2+q.o.Qf Short-term 20 g.G+q.Q5+q.o.Q3+q.o.Qf Short-term 21 g.G+q.Qf+q.o.Q1+q.o.Q4 Short-term 22 g.G+q.Qf+q.o.Q1+q.o.Q5 Short-term 23 g.G+q.Qf+q.o.Q2+q.o.Q4 Short-term 24 g.G+q.Qf+q.o.Q2+q.o.Q5 Short-term 25 g.G+q.Qf+q.o.Q3+q.o.Q4 Short-term 26 g.G+q.Qf+q.o.Q3+q.o.Q5 Short-term 27 g.G+q.Qi+q.o.Q1+q.o.Q4+q.o.Qf Short-term 28 g.G+q.Qi+q.o.Q1+q.o.Q5+q.o.Qf Short-term 29 g.G+q.Qi+q.o.Q2+q.o.Q4+q.o.Qf Short-term 30 g.G+q.Qi+q.o.Q2+q.o.Q5+q.o.Qf Short-term 31 g.G+q.Qi+q.o.Q3+q.o.Q4+q.o.Qf Short-term 32 g.G+q.Qi+q.o.Q3+q.o.Q5+q.o.Qf Short-term

    8software by RUNET (c) RUNET Norway as

    12/09/2011 16:46:20C:\RUNETENG\WOOD\Examples\to net\WOODexpress Example01

    W OODexpress

  • Example of Attic truss

    1.6. Truss static analysis

    Design for connections with reduced stiffness (factor 0.40)The truss is designed as frame structure (EN1995-1-1 5.4.1)with reduced connection stiffness according to the above factorThe rafter and the tie are considered as continuous elements.The truss is first solved for various unit load conditions,and from them are computed the internal forcesfor the various loading conditions and load combinations.Number of nodes = 11, number of elements =14, supports 3

    1.6.1. Static solutions for unit loads

    Internal forces for unit loading (1 kN/m left rafter downwards)elem. node-1 node-2 N1[kN] V1[kN] M1[kNm] N2[kN] V2[kN] M2[kNm] 1 5 7 -1.14 1.87 -1.04 -0.04 -0.60 0.83 2 7 2 3.47 0.97 0.81 4.56 -1.50 0.02 3 8 6 0.70 1.30 -2.12 0.70 1.30 0.37 4 2 8 3.71 -1.08 -0.02 3.71 -1.08 -2.10 5 1 4 0.28 -0.08 0.41 0.28 -0.08 0.00 6 4 3 0.26 -0.27 0.02 0.26 -0.27 -0.79 7 1 5 -2.77 -0.28 -0.41 -2.77 -0.28 -0.86 8 6 3 1.45 0.26 0.37 1.45 0.26 0.79 9 7 9 -3.84 -0.01 0.02 -3.84 -0.01 -0.01 10 9 8 -3.84 -0.02 0.01 -3.84 -0.02 -0.03 11 4 9 -4.68 0.02 -0.02 -4.68 0.02 0.02 12 9 2 -4.70 0.01 0.01 -4.70 0.01 0.03 13 10 5 0.00 0.00 0.00 0.24 -0.55 -0.18 14 6 11 0.00 0.00 0.00 0.00 0.00 0.00

    Element end forces for unit loading (1 kN/m left rafter downwards)elem. node-1 node-2 F1x[kN] F1y[kN] M1[kNm] F2x[kN] F2y[kN] M2[kNm] 1 5 7 0.28 2.17 -1.04 -0.28 0.53 -0.83 2 7 2 -3.56 -0.52 0.81 3.56 3.22 -0.02 3 8 6 0.26 1.45 -2.12 -0.26 -1.45 -0.37 4 2 8 -3.57 1.47 -0.02 3.57 -1.47 2.10 5 1 4 -0.28 -0.08 0.41 0.28 0.08 0.00 6 4 3 -0.26 -0.27 0.02 0.26 0.27 0.79 7 1 5 0.28 2.77 -0.41 -0.28 -2.77 0.86 8 6 3 0.26 1.45 0.37 -0.26 -1.45 -0.79 9 7 9 3.84 -0.01 0.02 -3.84 0.01 0.01 10 9 8 3.84 -0.02 0.01 -3.84 0.02 0.03 11 4 9 -0.02 4.68 -0.02 0.02 -4.68 -0.02 12 9 2 -0.01 4.70 0.01 0.01 -4.70 -0.03 13 10 5 0.00 0.00 0.00 0.00 0.60 0.18 14 6 11 0.00 0.00 0.00 0.00 0.00 0.00 (element end forces in global coordinate system x-y)

    9software by RUNET (c) RUNET Norway as

    12/09/2011 16:46:20C:\RUNETENG\WOOD\Examples\to net\WOODexpress Example01

    W OODexpress

  • Example of Attic truss

    Internal forces for unit loading (1 kN/m right rafter downwards)elem. node-1 node-2 N1[kN] V1[kN] M1[kNm] N2[kN] V2[kN] M2[kNm] 1 5 7 0.05 -0.18 0.11 0.05 -0.18 -0.41 2 7 2 0.76 0.14 -0.40 0.76 0.14 0.00 3 8 6 0.08 0.14 0.46 -0.86 -1.03 -0.40 4 2 8 1.61 0.82 0.01 0.67 -0.35 0.45 5 1 4 0.02 0.03 -0.15 0.02 0.03 0.02 6 4 3 0.03 0.05 0.01 0.03 0.05 0.17 7 1 5 0.18 -0.02 0.15 0.18 -0.02 0.11 8 6 3 -1.95 0.03 -0.22 -1.95 0.03 -0.17 9 7 9 -0.77 0.00 0.00 -0.77 0.00 0.00 10 9 8 -0.77 0.01 0.00 -0.77 0.01 0.01 11 4 9 -1.84 0.00 0.01 -1.84 0.00 -0.01 12 9 2 -1.83 0.00 0.00 -1.83 0.00 -0.01 13 10 5 0.00 0.00 0.00 0.00 0.00 0.00 14 6 11 0.37 0.47 -0.18 0.00 0.00 0.00

    Element end forces for unit loading (1 kN/m right rafter downwards)elem. node-1 node-2 F1x[kN] F1y[kN] M1[kNm] F2x[kN] F2y[kN] M2[kNm] 1 5 7 0.02 -0.18 0.11 -0.02 0.18 0.41 2 7 2 -0.75 -0.19 -0.40 0.75 0.19 0.00 3 8 6 0.03 0.15 0.46 -0.03 1.35 0.40 4 2 8 -0.75 1.65 0.01 0.75 -0.15 -0.45 5 1 4 -0.02 0.03 -0.15 0.02 -0.03 -0.02 6 4 3 -0.03 0.05 0.01 0.03 -0.05 -0.17 7 1 5 0.02 -0.18 0.15 -0.02 0.18 -0.11 8 6 3 0.03 -1.95 -0.22 -0.03 1.95 0.17 9 7 9 0.77 0.00 0.00 -0.77 0.00 0.00 10 9 8 0.77 0.01 0.00 -0.77 -0.01 -0.01 11 4 9 0.00 1.84 0.01 0.00 -1.84 0.01 12 9 2 0.00 1.83 0.00 0.00 -1.83 0.01 13 10 5 0.00 0.00 0.00 0.00 0.00 0.00 14 6 11 0.00 0.60 -0.18 0.00 0.00 0.00 (element end forces in global coordinate system x-y)

    Internal forces for unit loading (1 kN/m tie downwards)elem. node-1 node-2 N1[kN] V1[kN] M1[kNm] N2[kN] V2[kN] M2[kNm] 1 5 7 -0.95 0.00 0.17 -0.95 0.00 0.17 2 7 2 -1.08 -0.06 0.17 -1.08 -0.06 0.00 3 8 6 -1.27 -0.21 -0.23 -1.27 -0.21 -0.64 4 2 8 -1.39 -0.12 0.00 -1.39 -0.12 -0.22 5 1 4 0.87 2.60 -1.56 0.87 -2.80 -2.12 6 4 3 0.86 1.95 -2.10 0.86 -1.05 -0.74 7 1 5 -0.39 -0.87 1.56 -0.39 -0.87 0.17 8 6 3 -0.96 0.86 -0.64 -0.96 0.86 0.74 9 7 9 0.14 0.00 0.00 0.14 0.00 0.00 10 9 8 0.15 0.00 0.00 0.15 0.00 0.00 11 4 9 1.35 0.01 -0.02 1.35 0.01 0.01 12 9 2 1.35 0.00 0.00 1.35 0.00 0.00 13 10 5 0.00 0.00 0.00 0.00 0.00 0.00 14 6 11 0.00 0.00 0.00 0.00 0.00 0.00

    10software by RUNET (c) RUNET Norway as

    12/09/2011 16:46:20C:\RUNETENG\WOOD\Examples\to net\WOODexpress Example01

    W OODexpress

  • Example of Attic truss

    Element end forces for unit loading (1 kN/m tie downwards)elem. node-1 node-2 F1x[kN] F1y[kN] M1[kNm] F2x[kN] F2y[kN] M2[kNm] 1 5 7 0.87 0.39 0.17 -0.87 -0.39 -0.17 2 7 2 1.01 0.39 0.17 -1.01 -0.39 0.00 3 8 6 0.86 -0.96 -0.23 -0.86 0.96 0.64 4 2 8 1.01 -0.96 0.00 -1.01 0.96 0.22 5 1 4 -0.87 2.60 -1.56 0.87 2.80 2.12 6 4 3 -0.86 1.95 -2.10 0.86 1.05 0.74 7 1 5 0.87 0.39 1.56 -0.87 -0.39 -0.17 8 6 3 0.86 -0.96 -0.64 -0.86 0.96 -0.74 9 7 9 -0.14 0.00 0.00 0.14 0.00 0.00 10 9 8 -0.15 0.00 0.00 0.15 0.00 0.00 11 4 9 -0.01 -1.35 -0.02 0.01 1.35 -0.01 12 9 2 0.00 -1.35 0.00 0.00 1.35 0.00 13 10 5 0.00 0.00 0.00 0.00 0.00 0.00 14 6 11 0.00 0.00 0.00 0.00 0.00 0.00 (element end forces in global coordinate system x-y)

    Internal forces for unit loading (1 kN/m left rafter pressure)elem. node-1 node-2 N1[kN] V1[kN] M1[kNm] N2[kN] V2[kN] M2[kNm] 1 5 7 -0.80 2.01 -0.15 -0.80 -0.95 1.42 2 7 2 3.57 1.01 1.40 3.57 -1.94 0.03 3 8 6 -1.94 1.23 -3.36 -1.94 1.23 -0.99 4 2 8 1.81 -1.71 -0.02 1.81 -1.71 -3.32 5 1 4 2.32 -0.35 1.77 2.32 -0.35 -0.11 6 4 3 2.28 -0.87 -0.06 2.28 -0.87 -2.66 7 1 5 -2.76 1.95 -1.77 -2.76 0.35 0.07 8 6 3 -0.25 2.28 -0.99 -0.25 2.28 2.66 9 7 9 -4.79 -0.01 0.03 -4.79 -0.01 -0.01 10 9 8 -4.77 -0.04 0.02 -4.77 -0.04 -0.04 11 4 9 -2.99 0.04 -0.05 -2.99 0.04 0.05 12 9 2 -3.02 0.01 0.02 -3.02 0.01 0.04 13 10 5 0.00 0.00 0.00 0.00 -0.66 -0.22 14 6 11 0.00 0.00 0.00 0.00 0.00 0.00

    Element end forces for unit loading (1 kN/m left rafter pressure)elem. node-1 node-2 F1x[kN] F1y[kN] M1[kNm] F2x[kN] F2y[kN] M2[kNm] 1 5 7 -0.08 2.16 -0.15 -1.12 0.54 -1.42 2 7 2 -3.67 -0.52 1.40 2.47 3.22 -0.03 3 8 6 2.28 -0.25 -3.36 -2.28 0.25 0.99 4 2 8 -2.49 -0.21 -0.02 2.49 0.21 3.32 5 1 4 -2.32 -0.35 1.77 2.32 0.35 0.11 6 4 3 -2.28 -0.87 -0.06 2.28 0.87 2.66 7 1 5 -1.95 2.76 -1.77 0.35 -2.76 -0.07 8 6 3 2.28 -0.25 -0.99 -2.28 0.25 -2.66 9 7 9 4.79 -0.01 0.03 -4.79 0.01 0.01 10 9 8 4.77 -0.04 0.02 -4.77 0.04 0.04 11 4 9 -0.04 2.99 -0.05 0.04 -2.99 -0.05 12 9 2 -0.01 3.02 0.02 0.01 -3.02 -0.04 13 10 5 0.00 0.00 0.00 -0.27 0.60 0.22 14 6 11 0.00 0.00 0.00 0.00 0.00 0.00 (element end forces in global coordinate system x-y)

    11software by RUNET (c) RUNET Norway as

    12/09/2011 16:46:20C:\RUNETENG\WOOD\Examples\to net\WOODexpress Example01

    W OODexpress

  • Example of Attic truss

    Internal forces for unit loading (1 kN/m right rafter pressure)elem. node-1 node-2 N1[kN] V1[kN] M1[kNm] N2[kN] V2[kN] M2[kNm] 1 5 7 -1.61 -0.08 -0.96 -1.61 -0.08 -1.19 2 7 2 -0.52 0.40 -1.18 -0.52 0.40 -0.01 3 8 6 0.06 0.61 1.56 0.06 -1.31 0.88 4 2 8 0.99 1.75 0.02 0.99 -0.17 1.53 5 1 4 -2.97 0.28 -1.45 -2.97 0.28 0.08 6 4 3 -2.95 0.74 0.04 -2.95 0.74 2.26 7 1 5 -0.58 -1.51 1.45 -0.58 -1.51 -0.96 8 6 3 -1.59 -1.35 1.18 -1.59 -2.95 -2.26 9 7 9 -1.19 0.01 -0.01 -1.19 0.01 0.01 10 9 8 -1.21 0.03 -0.01 -1.21 0.03 0.03 11 4 9 -1.43 -0.03 0.04 -1.43 -0.03 -0.03 12 9 2 -1.41 0.00 -0.02 -1.41 0.00 -0.02 13 10 5 0.00 0.00 0.00 0.00 0.00 0.00 14 6 11 0.00 0.77 -0.30 0.00 0.00 0.00

    Element end forces for unit loading (1 kN/m right rafter pressure)elem. node-1 node-2 F1x[kN] F1y[kN] M1[kNm] F2x[kN] F2y[kN] M2[kNm] 1 5 7 1.51 0.58 -0.96 -1.51 -0.58 1.19 2 7 2 0.32 0.57 -1.18 -0.32 -0.57 0.01 3 8 6 0.33 0.51 1.56 0.87 0.99 -0.88 4 2 8 0.32 1.98 0.02 0.88 -0.48 -1.53 5 1 4 2.97 0.28 -1.45 -2.97 -0.28 -0.08 6 4 3 2.95 0.74 0.04 -2.95 -0.74 -2.26 7 1 5 1.51 0.58 1.45 -1.51 -0.58 0.96 8 6 3 -1.35 -1.59 1.18 2.95 1.59 2.26 9 7 9 1.19 0.01 -0.01 -1.19 -0.01 -0.01 10 9 8 1.21 0.03 -0.01 -1.21 -0.03 -0.03 11 4 9 0.03 1.43 0.04 -0.03 -1.43 0.03 12 9 2 0.00 1.41 -0.02 0.00 -1.41 0.02 13 10 5 0.00 0.00 0.00 0.00 0.00 0.00 14 6 11 0.48 0.60 -0.30 0.00 0.00 0.00 (element end forces in global coordinate system x-y)

    12software by RUNET (c) RUNET Norway as

    12/09/2011 16:46:20C:\RUNETENG\WOOD\Examples\to net\WOODexpress Example01

    W OODexpress

  • Example of Attic truss

    1.6.2. Internal forces for applied loads Internal forces, Loading: ( G) Dead Gk1 = 0.314, Gk2 = 0.180, Gkf=0.300 [kN/m]elem. node-1 node-2 N1[kN] V1[kN] M1[kNm] N2[kN] V2[kN] M2[kNm] Nm[kN] Vm[kN] Mm[kNm] 1 5 7 -0.83 0.57 -0.23 -0.45 -0.28 0.20 -0.57 0.00 0.34 2 7 2 0.98 0.36 0.20 1.36 -0.49 0.01 1.14 0.00 0.42 3 8 6 -0.34 0.40 -0.65 -0.72 -0.07 -0.34 -0.66 0.00 -0.33 4 2 8 1.26 -0.10 0.00 0.88 -0.57 -0.65 1.22 -0.15 -0.03 5 1 4 0.52 1.23 -0.67 0.52 -1.36 -1.01 0.52 0.00 0.91 6 4 3 0.52 0.87 -0.99 0.52 -0.57 -0.56 0.52 0.00 -0.21 7 1 5 -1.06 -0.52 0.67 -1.06 -0.52 -0.17 -1.06 -0.52 0.25 8 6 3 -0.75 0.52 -0.27 -0.75 0.52 0.56 -0.75 0.52 0.15 9 7 9 -1.56 0.00 0.01 -1.56 0.00 0.00 -1.56 -0.25 -0.16 10 9 8 -1.56 -0.01 0.00 -1.56 -0.01 -0.01 -1.56 -0.14 -0.05 11 4 9 -1.70 0.01 -0.01 -1.70 0.01 0.01 -1.70 0.01 0.00 12 9 2 -1.71 0.00 0.00 -1.71 0.00 0.01 -1.71 0.00 0.01 13 10 5 0.00 0.00 0.00 0.08 -0.19 -0.06 0.00 0.00 0.00 14 6 11 0.15 0.19 -0.07 0.00 0.00 0.00 0.00 0.00 0.00 (m point of maximum span moment for permanent load, or element middle point)

    Internal forces, Loading: ( Q1) Snow QksL= 0.768, QksR= 0.546 [kN/m]elem. node-1 node-2 N1[kN] V1[kN] M1[kNm] N2[kN] V2[kN] M2[kNm] Nm[kN] Vm[kN] Mm[kNm] 1 5 7 -0.84 1.34 -0.74 0.00 -0.56 0.41 -0.28 0.06 0.65 2 7 2 3.08 0.82 0.40 3.92 -1.08 0.01 3.44 0.01 0.92 3 8 6 0.58 1.07 -1.38 0.07 0.43 0.07 0.15 0.53 -0.08 4 2 8 3.73 -0.38 -0.01 3.22 -1.02 -1.36 3.68 -0.45 -0.09 5 1 4 0.23 -0.04 0.24 0.23 -0.04 0.01 0.23 -0.04 0.13 6 4 3 0.22 -0.18 0.02 0.22 -0.18 -0.51 0.22 -0.18 -0.30 7 1 5 -2.02 -0.23 -0.24 -2.02 -0.23 -0.60 -2.02 -0.23 -0.42 8 6 3 0.05 0.22 0.17 0.05 0.22 0.51 0.05 0.22 0.34 9 7 9 -3.37 -0.01 0.01 -3.37 -0.01 0.00 -3.37 -0.01 0.00 10 9 8 -3.37 -0.01 0.00 -3.37 -0.01 -0.02 -3.37 -0.01 -0.01 11 4 9 -4.60 0.01 -0.01 -4.60 0.01 0.02 -4.60 0.01 0.00 12 9 2 -4.61 0.01 0.01 -4.61 0.01 0.02 -4.61 0.01 0.01 13 10 5 0.00 0.00 0.00 0.19 -0.42 -0.14 0.00 0.00 0.00 14 6 11 0.20 0.26 -0.10 0.00 0.00 0.00 0.00 0.00 0.00 (m point of maximum span moment for permanent load, or element middle point)

    Internal forces, Loading: ( Q2) Snow QksL= 0.384, QksR= 0.546 [kN/m]elem. node-1 node-2 N1[kN] V1[kN] M1[kNm] N2[kN] V2[kN] M2[kNm] Nm[kN] Vm[kN] Mm[kNm] 1 5 7 -0.41 0.62 -0.34 0.01 -0.33 0.09 -0.12 -0.02 0.26 2 7 2 1.75 0.45 0.09 2.17 -0.50 0.01 1.93 0.04 0.40 3 8 6 0.31 0.57 -0.56 -0.20 -0.07 -0.08 -0.12 0.03 -0.07 4 2 8 2.31 0.03 0.00 1.79 -0.61 -0.56 2.25 -0.04 0.00 5 1 4 0.12 -0.01 0.08 0.12 -0.01 0.01 0.12 -0.01 0.05 6 4 3 0.12 -0.07 0.02 0.12 -0.07 -0.21 0.12 -0.07 -0.12 7 1 5 -0.96 -0.12 -0.08 -0.96 -0.12 -0.27 -0.96 -0.12 -0.17 8 6 3 -0.51 0.12 0.02 -0.51 0.12 0.21 -0.51 0.12 0.12 9 7 9 -1.90 0.00 0.01 -1.90 0.00 0.00 -1.90 0.00 0.00 10 9 8 -1.90 0.00 0.00 -1.90 0.00 -0.01 -1.90 0.00 0.00 11 4 9 -2.80 0.00 0.00 -2.80 0.00 0.01 -2.80 0.00 0.00 12 9 2 -2.80 0.00 0.00 -2.80 0.00 0.01 -2.80 0.00 0.00 13 10 5 0.00 0.00 0.00 0.09 -0.21 -0.07 0.00 0.00 0.00 14 6 11 0.20 0.26 -0.10 0.00 0.00 0.00 0.00 0.00 0.00

    13software by RUNET (c) RUNET Norway as

    12/09/2011 16:46:20C:\RUNETENG\WOOD\Examples\to net\WOODexpress Example01

    W OODexpress

  • Example of Attic truss

    Internal forces, Loading: ( Q3) Snow QksL= 0.768, QksR= 0.273 [kN/m]elem. node-1 node-2 N1[kN] V1[kN] M1[kNm] N2[kN] V2[kN] M2[kNm] Nm[kN] Vm[kN] Mm[kNm] 1 5 7 -0.86 1.38 -0.77 -0.01 -0.51 0.52 -0.29 0.11 0.72 2 7 2 2.87 0.78 0.51 3.71 -1.12 0.01 3.23 -0.02 0.98 3 8 6 0.56 1.03 -1.50 0.30 0.71 0.18 0.34 0.76 -0.04 4 2 8 3.29 -0.61 -0.01 3.03 -0.93 -1.49 3.26 -0.64 -0.14 5 1 4 0.22 -0.05 0.28 0.22 -0.05 0.01 0.22 -0.05 0.15 6 4 3 0.21 -0.19 0.02 0.21 -0.19 -0.56 0.21 -0.19 -0.33 7 1 5 -2.07 -0.22 -0.28 -2.07 -0.22 -0.63 -2.07 -0.22 -0.45 8 6 3 0.58 0.21 0.22 0.58 0.21 0.56 0.58 0.21 0.39 9 7 9 -3.16 -0.01 0.01 -3.16 -0.01 0.00 -3.16 -0.01 0.00 10 9 8 -3.16 -0.02 0.01 -3.16 -0.02 -0.02 -3.16 -0.02 -0.01 11 4 9 -4.10 0.01 -0.01 -4.10 0.01 0.02 -4.10 0.01 0.00 12 9 2 -4.11 0.01 0.01 -4.11 0.01 0.02 -4.11 0.01 0.01 13 10 5 0.00 0.00 0.00 0.19 -0.42 -0.14 0.00 0.00 0.00 14 6 11 0.10 0.13 -0.05 0.00 0.00 0.00 0.00 0.00 0.00

    Internal forces, Loading: ( Q4) Wind QkwL= 0.123, QkwR=-0.133 [kN/m]elem. node-1 node-2 N1[kN] V1[kN] M1[kNm] N2[kN] V2[kN] M2[kNm] Nm[kN] Vm[kN] Mm[kNm] 1 5 7 0.12 0.26 0.11 0.12 -0.11 0.33 0.12 0.01 0.38 2 7 2 0.51 0.07 0.33 0.51 -0.29 0.00 0.51 -0.08 0.32 3 8 6 -0.25 0.07 -0.62 -0.25 0.33 -0.24 -0.25 0.29 -0.33 4 2 8 0.09 -0.44 -0.01 0.09 -0.19 -0.61 0.09 -0.42 -0.09 5 1 4 0.68 -0.08 0.41 0.68 -0.08 -0.02 0.68 -0.08 0.20 6 4 3 0.67 -0.20 -0.01 0.67 -0.20 -0.63 0.67 -0.20 -0.38 7 1 5 -0.26 0.44 -0.41 -0.26 0.24 0.14 -0.26 0.44 -0.06 8 6 3 0.18 0.46 -0.28 0.18 0.67 0.63 0.18 0.46 0.09 9 7 9 -0.43 0.00 0.01 -0.43 0.00 0.00 -0.43 0.00 0.00 10 9 8 -0.42 -0.01 0.00 -0.42 -0.01 -0.01 -0.42 -0.01 0.00 11 4 9 -0.18 0.01 -0.01 -0.18 0.01 0.01 -0.18 0.01 0.00 12 9 2 -0.18 0.00 0.00 -0.18 0.00 0.01 -0.18 0.00 0.01 13 10 5 0.00 0.00 0.00 0.00 -0.08 -0.03 0.00 0.00 0.00 14 6 11 0.00 -0.10 0.04 0.00 0.00 0.00 0.00 0.00 0.00 (m point of maximum span moment for permanent load, or element middle point)

    Internal forces, Loading: ( Q5) Wind QkwL=-0.162, QkwR= 0.182 [kN/m]elem. node-1 node-2 N1[kN] V1[kN] M1[kNm] N2[kN] V2[kN] M2[kNm] Nm[kN] Vm[kN] Mm[kNm] 1 5 7 -0.16 -0.34 -0.15 -0.16 0.14 -0.45 -0.16 -0.02 -0.51 2 7 2 -0.67 -0.09 -0.44 -0.67 0.39 -0.01 -0.67 0.11 -0.43 3 8 6 0.32 -0.09 0.83 0.32 -0.44 0.32 0.32 -0.39 0.44 4 2 8 -0.11 0.60 0.01 -0.11 0.25 0.82 -0.11 0.56 0.12 5 1 4 -0.92 0.11 -0.55 -0.92 0.11 0.03 -0.92 0.11 -0.27 6 4 3 -0.91 0.28 0.02 -0.91 0.28 0.84 -0.91 0.28 0.51 7 1 5 0.34 -0.59 0.55 0.34 -0.33 -0.19 0.34 -0.59 0.08 8 6 3 -0.25 -0.62 0.38 -0.25 -0.91 -0.84 -0.25 -0.62 -0.12 9 7 9 0.56 0.00 -0.01 0.56 0.00 0.00 0.56 0.00 0.00 10 9 8 0.55 0.01 -0.01 0.55 0.01 0.01 0.55 0.01 0.00 11 4 9 0.22 -0.01 0.02 0.22 -0.01 -0.01 0.22 -0.01 0.00 12 9 2 0.23 0.00 -0.01 0.23 0.00 -0.01 0.23 0.00 -0.01 13 10 5 0.00 0.00 0.00 0.00 0.11 0.03 0.00 0.00 0.00 14 6 11 0.00 0.14 -0.05 0.00 0.00 0.00 0.00 0.00 0.00

    14software by RUNET (c) RUNET Norway as

    12/09/2011 16:46:20C:\RUNETENG\WOOD\Examples\to net\WOODexpress Example01

    W OODexpress

  • Example of Attic truss

    Internal forces, Loading: ( Qf) Live Qkf = 1.200 [kN/m]elem. node-1 node-2 N1[kN] V1[kN] M1[kNm] N2[kN] V2[kN] M2[kNm] Nm[kN] Vm[kN] Mm[kNm] 1 5 7 -1.15 0.00 0.20 -1.15 0.00 0.20 -1.15 0.00 0.20 2 7 2 -1.30 -0.07 0.20 -1.30 -0.07 0.00 -1.30 -0.07 0.12 3 8 6 -1.53 -0.26 -0.27 -1.53 -0.26 -0.77 -1.53 -0.26 -0.69 4 2 8 -1.67 -0.14 0.00 -1.67 -0.14 -0.27 -1.67 -0.14 -0.03 5 1 4 1.05 3.12 -1.88 1.05 -3.36 -2.54 1.05 0.03 2.17 6 4 3 1.03 2.34 -2.52 1.03 -1.26 -0.89 1.03 0.18 -0.24 7 1 5 -0.46 -1.05 1.88 -0.46 -1.05 0.20 -0.46 -1.05 1.04 8 6 3 -1.16 1.03 -0.77 -1.16 1.03 0.89 -1.16 1.03 0.06 9 7 9 0.17 0.00 0.00 0.17 0.00 0.00 0.17 0.00 0.00 10 9 8 0.18 -0.01 0.00 0.18 -0.01 0.00 0.18 -0.01 0.00 11 4 9 1.62 0.01 -0.03 1.62 0.01 0.01 1.62 0.01 -0.01 12 9 2 1.62 0.00 0.00 1.62 0.00 0.00 1.62 0.00 0.00 13 10 5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 14 6 11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 (m point of maximum span moment for permanent load, or element middle point)

    Internal forces, Loading: ( Qi) Imposed (H) Qi = 0.240 [kN/m]elem. node-1 node-2 N1[kN] V1[kN] M1[kNm] N2[kN] V2[kN] M2[kNm] Nm[kN] Vm[kN] Mm[kNm] 1 5 7 -0.26 0.41 -0.22 0.00 -0.19 0.10 -0.08 0.01 0.19 2 7 2 1.01 0.26 0.10 1.28 -0.33 0.00 1.13 0.01 0.27 3 8 6 0.19 0.34 -0.40 -0.04 0.06 -0.01 0.00 0.11 -0.03 4 2 8 1.28 -0.06 0.00 1.05 -0.34 -0.39 1.25 -0.09 -0.02 5 1 4 0.07 -0.01 0.06 0.07 -0.01 0.00 0.07 -0.01 0.04 6 4 3 0.07 -0.05 0.01 0.07 -0.05 -0.15 0.07 -0.05 -0.09 7 1 5 -0.62 -0.07 -0.06 -0.62 -0.07 -0.18 -0.62 -0.07 -0.12 8 6 3 -0.12 0.07 0.04 -0.12 0.07 0.15 -0.12 0.07 0.09 9 7 9 -1.11 0.00 0.00 -1.11 0.00 0.00 -1.11 0.00 0.00 10 9 8 -1.11 0.00 0.00 -1.11 0.00 0.00 -1.11 0.00 0.00 11 4 9 -1.57 0.00 0.00 -1.57 0.00 0.00 -1.57 0.00 0.00 12 9 2 -1.57 0.00 0.00 -1.57 0.00 0.00 -1.57 0.00 0.00 13 10 5 0.00 0.00 0.00 0.06 -0.13 -0.04 0.00 0.00 0.00 14 6 11 0.09 0.11 -0.04 0.00 0.00 0.00 0.00 0.00 0.00 (m point of maximum span moment for permanent load, or element middle point)

    1.6.3. Element end forces for applied loads Element end forces, Loading: ( G) Dead Gk1 = 0.314, Gk2 = 0.180, Gkf=0.300 [kN/m]elem. node-1 node-2 F1x[kN] F1y[kN] M1[kNm] F2x[kN] F2y[kN] M2[kNm] 1 5 7 0.52 0.86 -0.23 -0.52 0.07 -0.20 2 7 2 -1.04 -0.07 0.20 1.04 1.00 -0.01 3 8 6 0.52 0.10 -0.65 -0.52 0.51 0.34 4 2 8 -1.04 0.71 0.00 1.04 -0.11 0.65 5 1 4 -0.52 1.23 -0.67 0.52 1.36 1.01 6 4 3 -0.52 0.87 -0.99 0.52 0.57 0.56 7 1 5 0.52 1.06 0.67 -0.52 -1.06 0.17 8 6 3 0.52 -0.75 -0.27 -0.52 0.75 -0.56 9 7 9 1.56 0.00 0.01 -1.56 0.00 0.00 10 9 8 1.56 -0.01 0.00 -1.56 0.01 0.01 11 4 9 -0.01 1.70 -0.01 0.01 -1.70 -0.01 12 9 2 0.00 1.71 0.00 0.00 -1.71 -0.01 13 10 5 0.00 0.00 0.00 0.00 0.21 0.06 14 6 11 0.00 0.24 -0.07 0.00 0.00 0.00 (element end forces in global coordinate system x-y)

    15software by RUNET (c) RUNET Norway as

    12/09/2011 16:46:20C:\RUNETENG\WOOD\Examples\to net\WOODexpress Example01

    W OODexpress

  • Example of Attic truss

    Element end forces, Loading: ( Q1) Snow QksL= 0.768, QksR= 0.546 [kN/m]elem. node-1 node-2 F1x[kN] F1y[kN] M1[kNm] F2x[kN] F2y[kN] M2[kNm] 1 5 7 0.23 1.56 -0.74 -0.23 0.51 -0.41 2 7 2 -3.14 -0.50 0.40 3.14 2.58 -0.01 3 8 6 0.22 1.20 -1.38 -0.22 -0.38 -0.07 4 2 8 -3.15 2.03 -0.01 3.15 -1.21 1.36 5 1 4 -0.23 -0.04 0.24 0.23 0.04 -0.01 6 4 3 -0.22 -0.18 0.02 0.22 0.18 0.51 7 1 5 0.23 2.02 -0.24 -0.23 -2.02 0.60 8 6 3 0.22 0.05 0.17 -0.22 -0.05 -0.51 9 7 9 3.37 -0.01 0.01 -3.37 0.01 0.00 10 9 8 3.37 -0.01 0.00 -3.37 0.01 0.02 11 4 9 -0.01 4.60 -0.01 0.01 -4.60 -0.02 12 9 2 -0.01 4.61 0.01 0.01 -4.61 -0.02 13 10 5 0.00 0.00 0.00 0.00 0.46 0.14 14 6 11 0.00 0.33 -0.10 0.00 0.00 0.00 (element end forces in global coordinate system x-y)

    Element end forces, Loading: ( Q2) Snow QksL= 0.384, QksR= 0.546 [kN/m]elem. node-1 node-2 F1x[kN] F1y[kN] M1[kNm] F2x[kN] F2y[kN] M2[kNm] 1 5 7 0.12 0.73 -0.34 -0.12 0.31 -0.09 2 7 2 -1.78 -0.30 0.09 1.78 1.34 -0.01 3 8 6 0.12 0.64 -0.56 -0.12 0.18 0.08 4 2 8 -1.78 1.46 0.00 1.78 -0.65 0.56 5 1 4 -0.12 -0.01 0.08 0.12 0.01 -0.01 6 4 3 -0.12 -0.07 0.02 0.12 0.07 0.21 7 1 5 0.12 0.96 -0.08 -0.12 -0.96 0.27 8 6 3 0.12 -0.51 0.02 -0.12 0.51 -0.21 9 7 9 1.90 0.00 0.01 -1.90 0.00 0.00 10 9 8 1.90 0.00 0.00 -1.90 0.00 0.01 11 4 9 0.00 2.80 0.00 0.00 -2.80 -0.01 12 9 2 0.00 2.80 0.00 0.00 -2.80 -0.01 13 10 5 0.00 0.00 0.00 0.00 0.23 0.07 14 6 11 0.00 0.33 -0.10 0.00 0.00 0.00 (element end forces in global coordinate system x-y)

    Element end forces, Loading: ( Q3) Snow QksL= 0.768, QksR= 0.273 [kN/m]elem. node-1 node-2 F1x[kN] F1y[kN] M1[kNm] F2x[kN] F2y[kN] M2[kNm] 1 5 7 0.22 1.61 -0.77 -0.22 0.46 -0.52 2 7 2 -2.94 -0.45 0.51 2.94 2.53 -0.01 3 8 6 0.21 1.16 -1.50 -0.21 -0.75 -0.18 4 2 8 -2.95 1.58 -0.01 2.95 -1.17 1.49 5 1 4 -0.22 -0.05 0.28 0.22 0.05 -0.01 6 4 3 -0.21 -0.19 0.02 0.21 0.19 0.56 7 1 5 0.22 2.07 -0.28 -0.22 -2.07 0.63 8 6 3 0.21 0.58 0.22 -0.21 -0.58 -0.56 9 7 9 3.16 -0.01 0.01 -3.16 0.01 0.00 10 9 8 3.16 -0.02 0.01 -3.16 0.02 0.02 11 4 9 -0.01 4.10 -0.01 0.01 -4.10 -0.02 12 9 2 -0.01 4.11 0.01 0.01 -4.11 -0.02 13 10 5 0.00 0.00 0.00 0.00 0.46 0.14 14 6 11 0.00 0.16 -0.05 0.00 0.00 0.00 (element end forces in global coordinate system x-y)

    16software by RUNET (c) RUNET Norway as

    12/09/2011 16:46:20C:\RUNETENG\WOOD\Examples\to net\WOODexpress Example01

    W OODexpress

  • Example of Attic truss

    Element end forces, Loading: ( Q4) Wind QkwL= 0.123, QkwR=-0.133 [kN/m]elem. node-1 node-2 F1x[kN] F1y[kN] M1[kNm] F2x[kN] F2y[kN] M2[kNm] 1 5 7 -0.21 0.19 0.11 0.06 0.14 -0.33 2 7 2 -0.49 -0.14 0.33 0.35 0.47 0.00 3 8 6 0.24 -0.10 -0.62 -0.40 -0.10 0.24 4 2 8 -0.35 -0.29 -0.01 0.19 0.09 0.61 5 1 4 -0.68 -0.08 0.41 0.68 0.08 0.02 6 4 3 -0.67 -0.20 -0.01 0.67 0.20 0.63 7 1 5 -0.44 0.26 -0.41 0.24 -0.26 -0.14 8 6 3 0.46 0.18 -0.28 -0.67 -0.18 -0.63 9 7 9 0.43 0.00 0.01 -0.43 0.00 0.00 10 9 8 0.42 -0.01 0.00 -0.42 0.01 0.01 11 4 9 -0.01 0.18 -0.01 0.01 -0.18 -0.01 12 9 2 0.00 0.18 0.00 0.00 -0.18 -0.01 13 10 5 0.00 0.00 0.00 -0.03 0.07 0.03 14 6 11 -0.06 -0.08 0.04 0.00 0.00 0.00 (element end forces in global coordinate system x-y)

    Element end forces, Loading: ( Q5) Wind QkwL=-0.162, QkwR= 0.182 [kN/m]elem. node-1 node-2 F1x[kN] F1y[kN] M1[kNm] F2x[kN] F2y[kN] M2[kNm] 1 5 7 0.29 -0.24 -0.15 -0.09 -0.19 0.45 2 7 2 0.65 0.19 -0.44 -0.46 -0.63 0.01 3 8 6 -0.31 0.13 0.83 0.53 0.14 -0.32 4 2 8 0.46 0.40 0.01 -0.24 -0.12 -0.82 5 1 4 0.92 0.11 -0.55 -0.92 -0.11 -0.03 6 4 3 0.91 0.28 0.02 -0.91 -0.28 -0.84 7 1 5 0.59 -0.34 0.55 -0.33 0.34 0.19 8 6 3 -0.62 -0.25 0.38 0.91 0.25 0.84 9 7 9 -0.56 0.00 -0.01 0.56 0.00 0.00 10 9 8 -0.55 0.01 -0.01 0.55 -0.01 -0.01 11 4 9 0.01 -0.22 0.02 -0.01 0.22 0.01 12 9 2 0.00 -0.23 -0.01 0.00 0.23 0.01 13 10 5 0.00 0.00 0.00 0.04 -0.10 -0.03 14 6 11 0.09 0.11 -0.05 0.00 0.00 0.00 (element end forces in global coordinate system x-y)

    Element end forces, Loading: ( Qf) Live Qkf = 1.200 [kN/m]elem. node-1 node-2 F1x[kN] F1y[kN] M1[kNm] F2x[kN] F2y[kN] M2[kNm] 1 5 7 1.05 0.46 0.20 -1.05 -0.46 -0.20 2 7 2 1.22 0.47 0.20 -1.22 -0.47 0.00 3 8 6 1.03 -1.16 -0.27 -1.03 1.16 0.77 4 2 8 1.22 -1.15 0.00 -1.22 1.15 0.27 5 1 4 -1.05 3.12 -1.88 1.05 3.36 2.54 6 4 3 -1.03 2.34 -2.52 1.03 1.26 0.89 7 1 5 1.05 0.46 1.88 -1.05 -0.46 -0.20 8 6 3 1.03 -1.16 -0.77 -1.03 1.16 -0.89 9 7 9 -0.17 0.00 0.00 0.17 0.00 0.00 10 9 8 -0.18 -0.01 0.00 0.18 0.01 0.00 11 4 9 -0.01 -1.62 -0.03 0.01 1.62 -0.01 12 9 2 0.00 -1.62 0.00 0.00 1.62 0.00 13 10 5 0.00 0.00 0.00 0.00 0.00 0.00 14 6 11 0.00 0.00 0.00 0.00 0.00 0.00 (element end forces in global coordinate system x-y)

    17software by RUNET (c) RUNET Norway as

    12/09/2011 16:46:20C:\RUNETENG\WOOD\Examples\to net\WOODexpress Example01

    W OODexpress

  • Example of Attic truss

    Element end forces, Loading: ( Qi) Imposed (H) Qi = 0.240 [kN/m]elem. node-1 node-2 F1x[kN] F1y[kN] M1[kNm] F2x[kN] F2y[kN] M2[kNm] 1 5 7 0.07 0.48 -0.22 -0.07 0.17 -0.10 2 7 2 -1.03 -0.17 0.10 1.03 0.82 0.00 3 8 6 0.07 0.39 -0.40 -0.07 -0.03 0.01 4 2 8 -1.04 0.75 0.00 1.04 -0.39 0.39 5 1 4 -0.07 -0.01 0.06 0.07 0.01 0.00 6 4 3 -0.07 -0.05 0.01 0.07 0.05 0.15 7 1 5 0.07 0.62 -0.06 -0.07 -0.62 0.18 8 6 3 0.07 -0.12 0.04 -0.07 0.12 -0.15 9 7 9 1.11 0.00 0.00 -1.11 0.00 0.00 10 9 8 1.11 0.00 0.00 -1.11 0.00 0.00 11 4 9 0.00 1.57 0.00 0.00 -1.57 0.00 12 9 2 0.00 1.57 0.00 0.00 -1.57 0.00 13 10 5 0.00 0.00 0.00 0.00 0.14 0.04 14 6 11 0.00 0.14 -0.04 0.00 0.00 0.00 (element end forces in global coordinate system x-y)

    1.6.4. Vertical nodal displacements (in mm)

    node Gk Qk1 Qk2 Qk3 Qk4 Qk5 Qkf Qki 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2 -0.05 -0.12 -0.08 -0.11 0.00 0.01 0.04 -0.05 3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5 -0.01 -0.02 -0.01 -0.02 0.00 0.00 0.00 -0.01 6 -0.01 0.00 -0.01 0.01 0.00 0.00 -0.01 0.00 7 -2.03 -4.15 -1.63 -4.59 -2.16 2.90 -1.08 -1.97 8 0.95 1.83 0.62 2.12 1.16 -1.56 0.75 0.90 9 -0.03 -0.09 -0.05 -0.08 0.00 0.00 0.03 -0.03 10 0.60 1.04 0.39 1.16 0.87 -1.17 0.53 0.50 11 -0.75 -1.04 -0.40 -1.16 -0.84 1.13 -0.89 -0.50

    1.6.5. Support reactions (kN)

    node react. Gk Qk1 Qk2 Qk3 Qk4 Qk5 Qkf Qki 1 Fx 0.00 0.00 0.00 0.00 -1.12 1.51 0.00 0.00 1 Fy 2.30 1.98 0.95 2.02 0.18 -0.23 3.58 0.61 3 Fx 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3 Fy 1.32 0.13 0.58 -0.39 0.02 -0.03 2.41 0.17 4 Fx 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4 Fy 3.93 4.46 2.74 3.96 0.05 -0.06 4.08 1.52

    18software by RUNET (c) RUNET Norway as

    12/09/2011 16:46:20C:\RUNETENG\WOOD\Examples\to net\WOODexpress Example01

    W OODexpress

  • Example of Attic truss

    1.7. Support reactions for load combinations (kN)

    Loading [kN/m] action g q o ( Gk) Dead Gk1 = 0.314, Gk2 = 0.180, Gkf=0.300 Permanent 1.35 0.00 1.00 (Qk1) Snow QksL= 0.768, QksR= 0.546 Short-term 0.00 1.50 0.60 (Qk2) Snow QksL= 0.384, QksR= 0.546 Short-term 0.00 1.50 0.60 (Qk3) Snow QksL= 0.768, QksR= 0.273 Short-term 0.00 1.50 0.60 (Qk4) Wind QkwL= 0.123, QkwR=-0.133 Short-term 0.00 1.50 0.50 (Qk5) Wind QkwL=-0.162, QkwR= 0.182 Short-term 0.00 1.50 0.50 (Qkf) Live Qkf = 1.200 Medium-term 0.00 1.50 0.70 (Qki) Imposed (H) Qi = 0.240 Short-term 0.00 1.50 0.00

    1.7.1. Reactions at node : 1 (kN)

    L.C. Load combination duration class kmod Fx Fy Fx/Kmod Fy/Kmod 1 g.G Permanent 0.60 0.000 3.101 0.000 5.168 2 g.G+q.Q1 Short-term 0.90 0.000 6.075 0.000 6.750 3 g.G+q.Q2 Short-term 0.90 0.000 4.525 0.000 5.028 4 g.G+q.Q3 Short-term 0.90 0.000 6.137 0.000 6.819 5 g.G+q.Q4 Short-term 0.90 -1.677 3.373 -1.863 3.748 6 g.G+q.Q5 Short-term 0.90 2.262 2.750 2.514 3.056 7 g.G+q.Qf Medium-term 0.80 0.000 8.473 0.000 10.592 8 g.G+q.Qi Short-term 0.90 0.000 4.014 0.000 4.460 9 g.G+q.Q1+q.o.Q4+q.o.Qf Short-term 0.90 -0.839 9.972 -0.932 11.080 10 g.G+q.Q1+q.o.Q5+q.o.Qf Short-term 0.90 1.131 9.661 1.257 10.734 11 g.G+q.Q2+q.o.Q4+q.o.Qf Short-term 0.90 -0.839 8.422 -0.932 9.358 12 g.G+q.Q2+q.o.Q5+q.o.Qf Short-term 0.90 1.131 8.111 1.257 9.012 13 g.G+q.Q3+q.o.Q4+q.o.Qf Short-term 0.90 -0.839 10.034 -0.932 11.149 14 g.G+q.Q3+q.o.Q5+q.o.Qf Short-term 0.90 1.131 9.723 1.257 10.803 15 g.G+q.Q4+q.o.Q1+q.o.Qf Short-term 0.90 -1.677 8.918 -1.863 9.909 16 g.G+q.Q4+q.o.Q2+q.o.Qf Short-term 0.90 -1.677 7.989 -1.863 8.876 17 g.G+q.Q4+q.o.Q3+q.o.Qf Short-term 0.90 -1.677 8.956 -1.863 9.951 18 g.G+q.Q5+q.o.Q1+q.o.Qf Short-term 0.90 2.262 8.296 2.514 9.218 19 g.G+q.Q5+q.o.Q2+q.o.Qf Short-term 0.90 2.262 7.366 2.514 8.185 20 g.G+q.Q5+q.o.Q3+q.o.Qf Short-term 0.90 2.262 8.333 2.514 9.259 21 g.G+q.Qf+q.o.Q1+q.o.Q4 Short-term 0.90 -0.839 10.394 -0.932 11.549 22 g.G+q.Qf+q.o.Q1+q.o.Q5 Short-term 0.90 1.131 10.083 1.257 11.203 23 g.G+q.Qf+q.o.Q2+q.o.Q4 Short-term 0.90 -0.839 9.464 -0.932 10.516 24 g.G+q.Qf+q.o.Q2+q.o.Q5 Short-term 0.90 1.131 9.153 1.257 10.170 25 g.G+q.Qf+q.o.Q3+q.o.Q4 Short-term 0.90 -0.839 10.432 -0.932 11.591 26 g.G+q.Qf+q.o.Q3+q.o.Q5 Short-term 0.90 1.131 10.120 1.257 11.245 27 g.G+q.Qi+q.o.Q1+q.o.Q4+q.o.Qf Short-term 0.90 -0.839 9.696 -0.932 10.773 28 g.G+q.Qi+q.o.Q1+q.o.Q5+q.o.Qf Short-term 0.90 1.131 9.385 1.257 10.427 29 g.G+q.Qi+q.o.Q2+q.o.Q4+q.o.Qf Short-term 0.90 -0.839 8.766 -0.932 9.740 30 g.G+q.Qi+q.o.Q2+q.o.Q5+q.o.Qf Short-term 0.90 1.131 8.455 1.257 9.394 31 g.G+q.Qi+q.o.Q3+q.o.Q4+q.o.Qf Short-term 0.90 -0.839 9.733 -0.932 10.815 32 g.G+q.Qi+q.o.Q3+q.o.Q5+q.o.Qf Short-term 0.90 1.131 9.422 1.257 10.469 Maximum values 2.262 10.432 2.514 11.591 33 g.G+q.Q4=0.9G+1.5Q4, (EQU) Short-term 0.90 -1.677 2.339 -1.863 2.599 34 g.G+q.Q5=0.9G+1.5Q5, (EQU) Short-term 0.90 2.262 1.717 2.514 1.908

    19software by RUNET (c) RUNET Norway as

    12/09/2011 16:46:21C:\RUNETENG\WOOD\Examples\to net\WOODexpress Example01

    W OODexpress

  • Example of Attic truss

    1.7.2. Reactions at node : 4 (kN)

    L.C. Load combination duration class kmod Fx Fy Fx/Kmod Fy/Kmod 1 g.G Permanent 0.60 0.000 5.301 0.000 8.834 2 g.G+q.Q1 Short-term 0.90 0.000 11.996 0.000 13.329 3 g.G+q.Q2 Short-term 0.90 0.000 9.410 0.000 10.456 4 g.G+q.Q3 Short-term 0.90 0.000 11.234 0.000 12.482 5 g.G+q.Q4 Short-term 0.90 0.000 5.380 0.000 5.977 6 g.G+q.Q5 Short-term 0.90 0.000 5.216 0.000 5.796 7 g.G+q.Qf Medium-term 0.80 0.000 11.426 0.000 14.282 8 g.G+q.Qi Short-term 0.90 0.000 7.586 0.000 8.429 9 g.G+q.Q1+q.o.Q4+q.o.Qf Short-term 0.90 0.000 16.323 0.000 18.137 10 g.G+q.Q1+q.o.Q5+q.o.Qf Short-term 0.90 0.000 16.241 0.000 18.046 11 g.G+q.Q2+q.o.Q4+q.o.Qf Short-term 0.90 0.000 13.738 0.000 15.264 12 g.G+q.Q2+q.o.Q5+q.o.Qf Short-term 0.90 0.000 13.656 0.000 15.173 13 g.G+q.Q3+q.o.Q4+q.o.Qf Short-term 0.90 0.000 15.561 0.000 17.290 14 g.G+q.Q3+q.o.Q5+q.o.Qf Short-term 0.90 0.000 15.479 0.000 17.199 15 g.G+q.Q4+q.o.Q1+q.o.Qf Short-term 0.90 0.000 13.684 0.000 15.205 16 g.G+q.Q4+q.o.Q2+q.o.Qf Short-term 0.90 0.000 12.133 0.000 13.481 17 g.G+q.Q4+q.o.Q3+q.o.Qf Short-term 0.90 0.000 13.227 0.000 14.697 18 g.G+q.Q5+q.o.Q1+q.o.Qf Short-term 0.90 0.000 13.521 0.000 15.024 19 g.G+q.Q5+q.o.Q2+q.o.Qf Short-term 0.90 0.000 11.970 0.000 13.300 20 g.G+q.Q5+q.o.Q3+q.o.Qf Short-term 0.90 0.000 13.064 0.000 14.515 21 g.G+q.Qf+q.o.Q1+q.o.Q4 Short-term 0.90 0.000 15.482 0.000 17.203 22 g.G+q.Qf+q.o.Q1+q.o.Q5 Short-term 0.90 0.000 15.401 0.000 17.112 23 g.G+q.Qf+q.o.Q2+q.o.Q4 Short-term 0.90 0.000 13.931 0.000 15.479 24 g.G+q.Qf+q.o.Q2+q.o.Q5 Short-term 0.90 0.000 13.850 0.000 15.388 25 g.G+q.Qf+q.o.Q3+q.o.Q4 Short-term 0.90 0.000 15.025 0.000 16.695 26 g.G+q.Qf+q.o.Q3+q.o.Q5 Short-term 0.90 0.000 14.943 0.000 16.604 27 g.G+q.Qi+q.o.Q1+q.o.Q4+q.o.Qf Short-term 0.90 0.000 15.930 0.000 17.700 28 g.G+q.Qi+q.o.Q1+q.o.Q5+q.o.Qf Short-term 0.90 0.000 15.849 0.000 17.610 29 g.G+q.Qi+q.o.Q2+q.o.Q4+q.o.Qf Short-term 0.90 0.000 14.379 0.000 15.977 30 g.G+q.Qi+q.o.Q2+q.o.Q5+q.o.Qf Short-term 0.90 0.000 14.298 0.000 15.886 31 g.G+q.Qi+q.o.Q3+q.o.Q4+q.o.Qf Short-term 0.90 0.000 15.473 0.000 17.192 32 g.G+q.Qi+q.o.Q3+q.o.Q5+q.o.Qf Short-term 0.90 0.000 15.391 0.000 17.102 Maximum values 0.000 16.323 0.000 18.137 33 g.G+q.Q4=0.9G+1.5Q4, (EQU) Short-term 0.90 0.000 3.613 0.000 4.014 34 g.G+q.Q5=0.9G+1.5Q5, (EQU) Short-term 0.90 0.000 3.450 0.000 3.833

    20software by RUNET (c) RUNET Norway as

    12/09/2011 16:46:21C:\RUNETENG\WOOD\Examples\to net\WOODexpress Example01

    W OODexpress

  • Example of Attic truss

    1.7.3. Reactions at node : 3 (kN)

    L.C. Load combination duration class kmod Fx Fy Fx/Kmod Fy/Kmod 1 g.G Permanent 0.60 0.000 1.784 0.000 2.974 2 g.G+q.Q1 Short-term 0.90 0.000 1.976 0.000 2.196 3 g.G+q.Q2 Short-term 0.90 0.000 2.655 0.000 2.950 4 g.G+q.Q3 Short-term 0.90 0.000 1.201 0.000 1.334 5 g.G+q.Q4 Short-term 0.90 0.000 1.820 0.000 2.022 6 g.G+q.Q5 Short-term 0.90 0.000 1.746 0.000 1.940 7 g.G+q.Qf Medium-term 0.80 0.000 5.405 0.000 6.756 8 g.G+q.Qi Short-term 0.90 0.000 2.041 0.000 2.268 9 g.G+q.Q1+q.o.Q4+q.o.Qf Short-term 0.90 0.000 4.529 0.000 5.032 10 g.G+q.Q1+q.o.Q5+q.o.Qf Short-term 0.90 0.000 4.491 0.000 4.990 11 g.G+q.Q2+q.o.Q4+q.o.Qf Short-term 0.90 0.000 5.208 0.000 5.787 12 g.G+q.Q2+q.o.Q5+q.o.Qf Short-term 0.90 0.000 5.171 0.000 5.745 13 g.G+q.Q3+q.o.Q4+q.o.Qf Short-term 0.90 0.000 3.753 0.000 4.170 14 g.G+q.Q3+q.o.Q5+q.o.Qf Short-term 0.90 0.000 3.716 0.000 4.129 15 g.G+q.Q4+q.o.Q1+q.o.Qf Short-term 0.90 0.000 4.470 0.000 4.967 16 g.G+q.Q4+q.o.Q2+q.o.Qf Short-term 0.90 0.000 4.878 0.000 5.420 17 g.G+q.Q4+q.o.Q3+q.o.Qf Short-term 0.90 0.000 4.005 0.000 4.450 18 g.G+q.Q5+q.o.Q1+q.o.Qf Short-term 0.90 0.000 4.395 0.000 4.884 19 g.G+q.Q5+q.o.Q2+q.o.Qf Short-term 0.90 0.000 4.803 0.000 5.337 20 g.G+q.Q5+q.o.Q3+q.o.Qf Short-term 0.90 0.000 3.930 0.000 4.367 21 g.G+q.Qf+q.o.Q1+q.o.Q4 Short-term 0.90 0.000 5.538 0.000 6.154 22 g.G+q.Qf+q.o.Q1+q.o.Q5 Short-term 0.90 0.000 5.501 0.000 6.112 23 g.G+q.Qf+q.o.Q2+q.o.Q4 Short-term 0.90 0.000 5.946 0.000 6.607 24 g.G+q.Qf+q.o.Q2+q.o.Q5 Short-term 0.90 0.000 5.909 0.000 6.565 25 g.G+q.Qf+q.o.Q3+q.o.Q4 Short-term 0.90 0.000 5.073 0.000 5.637 26 g.G+q.Qf+q.o.Q3+q.o.Q5 Short-term 0.90 0.000 5.036 0.000 5.595 27 g.G+q.Qi+q.o.Q1+q.o.Q4+q.o.Qf Short-term 0.90 0.000 4.709 0.000 5.232 28 g.G+q.Qi+q.o.Q1+q.o.Q5+q.o.Qf Short-term 0.90 0.000 4.671 0.000 5.190 29 g.G+q.Qi+q.o.Q2+q.o.Q4+q.o.Qf Short-term 0.90 0.000 5.116 0.000 5.685 30 g.G+q.Qi+q.o.Q2+q.o.Q5+q.o.Qf Short-term 0.90 0.000 5.079 0.000 5.643 31 g.G+q.Qi+q.o.Q3+q.o.Q4+q.o.Qf Short-term 0.90 0.000 4.243 0.000 4.715 32 g.G+q.Qi+q.o.Q3+q.o.Q5+q.o.Qf Short-term 0.90 0.000 4.206 0.000 4.673 Maximum values 0.000 5.405 0.000 6.756 33 g.G+q.Q4=0.9G+1.5Q4, (EQU) Short-term 0.90 0.000 1.225 0.000 1.362 34 g.G+q.Q5=0.9G+1.5Q5, (EQU) Short-term 0.90 0.000 1.151 0.000 1.279

    21software by RUNET (c) RUNET Norway as

    12/09/2011 16:46:21C:\RUNETENG\WOOD\Examples\to net\WOODexpress Example01

    W OODexpress

  • Example of Attic truss

    1.8. Serviceability limit state

    1.8.1. Serviceability limit state (EC5 EN1995-1-1:2009, 2.2.3, 7)Control of deflection at node 7 (EC5 7.2)

    Loading [kN/m] u[mm] action 0 1 2 Kdef ( Gk) Dead Gk1 = 0.314, Gk2 = 0.180, Gkf=0.300 -2.032 Permanent 1.00 1.00 1.00 0.60 (Qk1) Snow QksL= 0.768, QksR= 0.546 -4.146 Short-term 0.60 0.20 0.00 0.60 (Qk2) Snow QksL= 0.384, QksR= 0.546 -1.626 Short-term 0.60 0.20 0.00 0.60 (Qk3) Snow QksL= 0.768, QksR= 0.273 -4.594 Short-term 0.60 0.20 0.00 0.60 (Qk4) Wind QkwL= 0.123, QkwR=-0.133 -2.163 Short-term 0.50 0.20 0.00 0.60 (Qk5) Wind QkwL=-0.162, QkwR= 0.182 2.901 Short-term 0.50 0.20 0.00 0.60 (Qkf) Live Qkf = 1.200 -1.085 Medium-term 0.70 0.50 0.30 0.60

    Load combination w.inst w.fin [mm] 1 Gk 2.032 3.252 2 Gk + Qk1 6.178 7.398 3 Gk + Qk2 3.658 4.877 4 Gk + Qk3 6.626 7.845 5 Gk + Qk4 4.195 5.415 6 Gk + Qk5 2.032 3.252 7 Gk + Qkf 3.117 4.531 8 Gk + Qk1 + o.Qk4 + o.Qkf 8.019 9.434 9 Gk + Qk1 + o.Qk5 + o.Qkf 6.938 8.352 10 Gk + Qk2 + o.Qk4 + o.Qkf 5.499 6.913 11 Gk + Qk2 + o.Qk5 + o.Qkf 4.417 5.832 12 Gk + Qk3 + o.Qk4 + o.Qkf 8.467 9.881 13 Gk + Qk3 + o.Qk5 + o.Qkf 7.385 8.800 14 Gk + Qk4 + o.Qk1 + o.Qkf 7.442 8.857 15 Gk + Qk4 + o.Qk2 + o.Qkf 5.930 7.345 16 Gk + Qk4 + o.Qk3 + o.Qkf 7.711 9.125 17 Gk + Qk5 + o.Qk1 + o.Qkf 5.279 6.694 18 Gk + Qk5 + o.Qk2 + o.Qkf 3.767 5.181 19 Gk + Qk5 + o.Qk3 + o.Qkf 5.548 6.962 20 Gk + Qkf + o.Qk1 + o.Qk4 6.686 8.101 21 Gk + Qkf + o.Qk1 + o.Qk5 5.605 7.019 22 Gk + Qkf + o.Qk2 + o.Qk4 5.174 6.588 23 Gk + Qkf + o.Qk2 + o.Qk5 4.092 5.507 24 Gk + Qkf + o.Qk3 + o.Qk4 6.955 8.369 25 Gk + Qkf + o.Qk3 + o.Qk5 5.873 7.288 w.fin,g=w.inst,g(1+kdef), w.fin,q=w.inst,q(1+2kdef)(EC5 2.2.3, Eq.2.3, Eq.2.4)

    Maximum deflection values at node 7w.inst = 8.467 mm, w.fin = 9.881 mm

    Check according to EC5 EN1995-1-1:2009 7.2, Tab.7.2Final deflections at node 7w.inst = 8.467 mm < L/300=8400/300= 28.000 mmw.net,fin = 9.881 mm < L/250=8400/250= 33.600 mmw.fin = 9.881 mm < L/150=8400/150= 56.000 mmThe check is satisfied

    22software by RUNET (c) RUNET Norway as

    12/09/2011 16:46:21C:\RUNETENG\WOOD\Examples\to net\WOODexpress Example01

    W OODexpress

  • Example of Attic truss

    1.8.2. Serviceability limit state (EC5 EN1995-1-1:2009, 2.2.3, 7)Control of deflection at node 10 (EC5 7.2)

    Loading [kN/m] u[mm] action 0 1 2 Kdef ( Gk) Dead Gk1 = 0.314, Gk2 = 0.180, Gkf=0.300 0.603 Permanent 1.00 1.00 1.00 0.60 (Qk1) Snow QksL= 0.768, QksR= 0.546 1.035 Short-term 0.60 0.20 0.00 0.60 (Qk2) Snow QksL= 0.384, QksR= 0.546 0.395 Short-term 0.60 0.20 0.00 0.60 (Qk3) Snow QksL= 0.768, QksR= 0.273 1.158 Short-term 0.60 0.20 0.00 0.60 (Qk4) Wind QkwL= 0.123, QkwR=-0.133 0.868 Short-term 0.50 0.20 0.00 0.60 (Qk5) Wind QkwL=-0.162, QkwR= 0.182 -1.167 Short-term 0.50 0.20 0.00 0.60 (Qkf) Live Qkf = 1.200 0.527 Medium-term 0.70 0.50 0.30 0.60

    Load combination w.inst w.fin [mm] 1 Gk 0.603 0.965 2 Gk + Qk1 1.639 2.001 3 Gk + Qk2 0.998 1.360 4 Gk + Qk3 1.762 2.124 5 Gk + Qk4 1.472 1.834 6 Gk + Qk5 0.603 0.965 7 Gk + Qkf 1.130 1.587 8 Gk + Qk1 + o.Qk4 + o.Qkf 2.442 2.899 9 Gk + Qk1 + o.Qk5 + o.Qkf 2.008 2.464 10 Gk + Qk2 + o.Qk4 + o.Qkf 1.801 2.258 11 Gk + Qk2 + o.Qk5 + o.Qkf 1.367 1.824 12 Gk + Qk3 + o.Qk4 + o.Qkf 2.565 3.022 13 Gk + Qk3 + o.Qk5 + o.Qkf 2.131 2.587 14 Gk + Qk4 + o.Qk1 + o.Qkf 2.462 2.919 15 Gk + Qk4 + o.Qk2 + o.Qkf 2.077 2.534 16 Gk + Qk4 + o.Qk3 + o.Qkf 2.536 2.992 17 Gk + Qk5 + o.Qk1 + o.Qkf 1.593 2.050 18 Gk + Qk5 + o.Qk2 + o.Qkf 1.209 1.666 19 Gk + Qk5 + o.Qk3 + o.Qkf 1.667 2.124 20 Gk + Qkf + o.Qk1 + o.Qk4 2.186 2.642 21 Gk + Qkf + o.Qk1 + o.Qk5 1.751 2.208 22 Gk + Qkf + o.Qk2 + o.Qk4 1.801 2.258 23 Gk + Qkf + o.Qk2 + o.Qk5 1.367 1.824 24 Gk + Qkf + o.Qk3 + o.Qk4 2.259 2.716 25 Gk + Qkf + o.Qk3 + o.Qk5 1.825 2.282 w.fin,g=w.inst,g(1+kdef), w.fin,q=w.inst,q(1+2kdef)(EC5 2.2.3, Eq.2.3, Eq.2.4)

    Maximum deflection values at node 10w.inst = 2.565 mm, w.fin = 3.022 mm

    Check according to EC5 EN1995-1-1:2009 7.2, Tab.7.2Final deflections at node 10w.inst = 2.565 mm < L/150=600/150= 4.000 mmw.net,fin = 3.022 mm < L/125=600/125= 4.800 mmw.fin = 3.022 mm < L/75=600/75= 8.000 mmThe check is satisfied

    23software by RUNET (c) RUNET Norway as

    12/09/2011 16:46:21C:\RUNETENG\WOOD\Examples\to net\WOODexpress Example01

    W OODexpress

  • Example of Attic truss

    1.8.3. Serviceability limit state (EC5 EN1995-1-1:2009, 2.2.3, 7)Control of deflection in middle of element 2 (EC5 7.2)

    Loading [kN/m] u[mm] action 0 1 2 Kdef ( Gk) Dead Gk1 = 0.314, Gk2 = 0.180, Gkf=0.300 0.194 Permanent 1.00 1.00 1.00 0.60 (Qk1) Snow QksL= 0.768, QksR= 0.546 0.473 Short-term 0.60 0.20 0.00 0.60 (Qk2) Snow QksL= 0.384, QksR= 0.546 0.237 Short-term 0.60 0.20 0.00 0.60 (Qk3) Snow QksL= 0.768, QksR= 0.273 0.473 Short-term 0.60 0.20 0.00 0.60 (Qk4) Wind QkwL= 0.123, QkwR=-0.133 0.083 Short-term 0.50 0.20 0.00 0.60 (Qk5) Wind QkwL=-0.162, QkwR= 0.182 -0.109 Short-term 0.50 0.20 0.00 0.60 (Qkf) Live Qkf = 1.200 0.000 Medium-term 0.70 0.50 0.30 0.60

    Load combination w.inst w.fin [mm] 1 Gk 0.194 0.310 2 Gk + Qk1 0.667 0.783 3 Gk + Qk2 0.430 0.547 4 Gk + Qk3 0.667 0.783 5 Gk + Qk4 0.276 0.393 6 Gk + Qk5 0.194 0.310 7 Gk + Qkf 0.194 0.310 8 Gk + Qk1 + o.Qk4 + o.Qkf 0.708 0.825 9 Gk + Qk1 + o.Qk5 + o.Qkf 0.667 0.783 10 Gk + Qk2 + o.Qk4 + o.Qkf 0.472 0.588 11 Gk + Qk2 + o.Qk5 + o.Qkf 0.430 0.547 12 Gk + Qk3 + o.Qk4 + o.Qkf 0.708 0.825 13 Gk + Qk3 + o.Qk5 + o.Qkf 0.667 0.783 14 Gk + Qk4 + o.Qk1 + o.Qkf 0.560 0.677 15 Gk + Qk4 + o.Qk2 + o.Qkf 0.418 0.535 16 Gk + Qk4 + o.Qk3 + o.Qkf 0.560 0.677 17 Gk + Qk5 + o.Qk1 + o.Qkf 0.478 0.594 18 Gk + Qk5 + o.Qk2 + o.Qkf 0.336 0.452 19 Gk + Qk5 + o.Qk3 + o.Qkf 0.478 0.594 20 Gk + Qkf + o.Qk1 + o.Qk4 0.519 0.635 21 Gk + Qkf + o.Qk1 + o.Qk5 0.478 0.594 22 Gk + Qkf + o.Qk2 + o.Qk4 0.377 0.493 23 Gk + Qkf + o.Qk2 + o.Qk5 0.336 0.452 24 Gk + Qkf + o.Qk3 + o.Qk4 0.519 0.635 25 Gk + Qkf + o.Qk3 + o.Qk5 0.478 0.594 w.fin,g=w.inst,g(1+kdef), w.fin,q=w.inst,q(1+2kdef)(EC5 2.2.3, Eq.2.3, Eq.2.4)

    Maximum deflection values in middle of element 2w.inst = 0.708 mm, w.fin = 0.825 mm

    Check according to EC5 EN1995-1-1:2009 7.2, Tab.7.2Final deflections in middle of element 2w.inst = 0.708 mm < L/300=2955/300= 9.849 mmw.net,fin = 0.825 mm < L/250=2955/250= 11.819 mmw.fin = 0.825 mm < L/150=2955/150= 19.698 mmThe check is satisfied

    24software by RUNET (c) RUNET Norway as

    12/09/2011 16:46:21C:\RUNETENG\WOOD\Examples\to net\WOODexpress Example01

    W OODexpress

  • Example of Attic truss

    1.9. Characteristic structural natural frequencies (self weight + permanent loads)

    After a dynamic analysis the basic natural frequencies of the structure are computed.For the computation of natural frequencies, we consider mass correspondingto the self weight and the permanent loads.

    No. Frequency[Hz] Period[sec] 1 6.52223 0.15332 2 13.27990 0.07530 3 18.55571 0.05389 4 34.48668 0.02900 5 41.35096 0.02418 6 44.93245 0.02226 7 50.49334 0.01980 8 69.15631 0.01446 9 75.40775 0.01326

    25software by RUNET (c) RUNET Norway as

    12/09/2011 16:46:21C:\RUNETENG\WOOD\Examples\to net\WOODexpress Example01

    W OODexpress

  • Example of Attic truss

    1.10. Ultimate limit state

    1.10.1. Ultimate limit state (EC5 EN1995-1-1:2009, 6)Rafter, elements: 1

    Loading [kN/m] action g q o ( Gk) Dead Gk1 = 0.314, Gk2 = 0.180, Gkf=0.300 Permanent 1.35 0.00 1.00 (Qk1) Snow QksL= 0.768, QksR= 0.546 Short-term 0.00 1.50 0.60 (Qk2) Snow QksL= 0.384, QksR= 0.546 Short-term 0.00 1.50 0.60 (Qk3) Snow QksL= 0.768, QksR= 0.273 Short-term 0.00 1.50 0.60 (Qk4) Wind QkwL= 0.123, QkwR=-0.133 Short-term 0.00 1.50 0.50 (Qk5) Wind QkwL=-0.162, QkwR= 0.182 Short-term 0.00 1.50 0.50 (Qkf) Live Qkf = 1.200 Medium-term 0.00 1.50 0.70 (Qki) Imposed (H) Qi = 0.240 Short-term 0.00 1.50 0.00

    L.C. Load combination duration class kmod -N/Kmod +N/Kmod V/Kmod M/Kmod 1 g.G Permanent 0.60 -1.860 0.000 1.284 0.755 2 g.G+q.Q1 Short-term 0.90 -2.644 0.000 3.083 1.591 3 g.G+q.Q2 Short-term 0.90 -1.918 0.000 1.889 0.939 4 g.G+q.Q3 Short-term 0.90 -2.669 0.000 3.164 1.700 5 g.G+q.Q4 Short-term 0.90 -1.048 0.000 1.285 1.133 6 g.G+q.Q5 Short-term 0.90 -1.240 0.000 0.856 0.504 7 g.G+q.Qf Medium-term 0.80 -3.542 0.000 0.963 0.947 8 g.G+q.Qi Short-term 0.90 -1.673 0.000 1.532 0.816 9 g.G+q.Q1+q.o.Q4+q.o.Qf Short-term 0.90 -3.884 0.000 3.297 2.142 10 g.G+q.Q1+q.o.Q5+q.o.Qf Short-term 0.90 -3.980 0.000 3.083 1.828 11 g.G+q.Q2+q.o.Q4+q.o.Qf Short-term 0.90 -3.158 0.000 2.103 1.490 12 g.G+q.Q2+q.o.Q5+q.o.Qf Short-term 0.90 -3.254 0.000 1.889 1.175 13 g.G+q.Q3+q.o.Q4+q.o.Qf Short-term 0.90 -3.909 0.000 3.378 2.251 14 g.G+q.Q3+q.o.Q5+q.o.Qf Short-term 0.90 -4.005 0.000 3.164 1.936 15 g.G+q.Q4+q.o.Q1+q.o.Qf Short-term 0.90 -3.226 0.000 2.621 2.022 16 g.G+q.Q4+q.o.Q2+q.o.Qf Short-term 0.90 -2.791 0.000 1.904 1.631 17 g.G+q.Q4+q.o.Q3+q.o.Qf Short-term 0.90 -3.241 0.000 2.669 2.087 18 g.G+q.Q5+q.o.Q1+q.o.Qf Short-term 0.90 -3.419 0.000 2.192 1.393 19 g.G+q.Q5+q.o.Q2+q.o.Qf Short-term 0.90 -2.983 0.000 1.476 1.001 20 g.G+q.Q5+q.o.Q3+q.o.Qf Short-term 0.90 -3.433 0.000 2.240 1.458 21 g.G+q.Qf+q.o.Q1+q.o.Q4 Short-term 0.90 -3.895 0.000 2.406 1.809 22 g.G+q.Qf+q.o.Q1+q.o.Q5 Short-term 0.90 -3.991 0.000 2.192 1.494 23 g.G+q.Qf+q.o.Q2+q.o.Q4 Short-term 0.90 -3.459 0.000 1.690 1.417 24 g.G+q.Qf+q.o.Q2+q.o.Q5 Short-term 0.90 -3.555 0.000 1.476 1.103 25 g.G+q.Qf+q.o.Q3+q.o.Q4 Short-term 0.90 -3.910 0.000 2.455 1.874 26 g.G+q.Qf+q.o.Q3+q.o.Q5 Short-term 0.90 -4.006 0.000 2.240 1.559 27 g.G+q.Qi+q.o.Q1+q.o.Q4+q.o.Q Short-term 0.90 -3.755 0.000 3.082 2.020 28 g.G+q.Qi+q.o.Q1+q.o.Q5+q.o.Q Short-term 0.90 -3.851 0.000 2.868 1.705 29 g.G+q.Qi+q.o.Q2+q.o.Q4+q.o.Q Short-term 0.90 -3.319 0.000 2.366 1.628 30 g.G+q.Qi+q.o.Q2+q.o.Q5+q.o.Q Short-term 0.90 -3.415 0.000 2.151 1.314 31 g.G+q.Qi+q.o.Q3+q.o.Q4+q.o.Q Short-term 0.90 -3.770 0.000 3.130 2.085 32 g.G+q.Qi+q.o.Q3+q.o.Q5+q.o.Q Short-term 0.90 -3.866 0.000 2.916 1.770 Maximum values -4.006 0.000 3.378 2.251

    1.10.2. Check of cross section Rafter, elements: 1

    Rafter, elements: 1 , load combination No 26Compression parallel to the grain, Fc0d=-3.605 kN (EC5 6.1.4)Rectangular cross section, b=60 mm, h=220 mm, A= 13 200 mmModification factor Kmod=0.90 (Table 3.1), material factor M=1.30 (Table 2.3)fc0k=22.00 N/mm, fc0d=Kmodfc0k/M=0.90x22.00/1.30=15.23N/mm (EC5 Eq.2.14)Fc0d=-3.605 kN, c0d=Fc0d/Anetto=1000x3.605/13200=0.27N/mm < 15.23N/mm=fc0d (Eq.6.2)The check is satisfied

    26software by RUNET (c) RUNET Norway as

    12/09/2011 16:46:21C:\RUNETENG\WOOD\Examples\to net\WOODexpress Example01

    W OODexpress

  • Example of Attic truss

    Rafter, elements: 1 , load combination No 13Shear, Fv=3.040 kN (EC5 6.1.7)Rectangular cross section, bef=0.67x60=40 mm, h=220 mm, A= 8 800 mmModification factor Kmod=0.90 (Table 3.1), material factor M=1.30 (Table 2.3)fvk=4.00 N/mm, fvd=Kmodfvk/M=0.90x4.00/1.30=2.77N/mm (EC5 Eq.2.14)Fv=3.040 kN, v0d=1.50Fv0d/Anetto=1000x1.50x3.040/8800=0.52N/mm < 2.77N/mm=fv0d (Eq.6.13)The check is satisfied

    Rafter, elements: 1 , load combination No 13Bending, Myd=2.026 kNm, Mzd=0.000 kNm (EC5 6.1.6)Rectangular cross section, b=60mm, h=220mm, A=1.320E+004mm, Wy=4.840E+005mm, Wz=1.320E+005mmModification factor Kmod=0.90 (Table 3.1), material factor M=1.30 (Table 2.3)fmyk=27.00 N/mm, fmyd=Kmodfmyk/M=0.90x27.00/1.30=18.69N/mmfmzk=27.00 N/mm, fmzd=Kmodfmzk/M=0.90x27.00/1.30=18.69N/mm

    Rectangular cross section Km=0.70 (EC5 6.1.6.(2))myd=Myd/Wmy,netto=1E+06x2.026/4.840E+005= 4.19 N/mmmzd=Mzd/Wmz,netto=1E+06x0.000/1.320E+005= 0.00 N/mm

    myd/fmyd+Km.mzd/fmzd=0.224+0.000= 0.22 < 1 (EC5 Eq.6.11)Km.myd/fmyd+mzd/fmzd=0.157+0.000= 0.16 < 1 (EC5 Eq.6.12)The check is satisfied

    Rafter, elements: 1 , load combination No 26Combined bending and axial compression, Fc0d=-3.605kN, Myd=1.403kNm, Mzd=0.000kNm (EC5 6.2.4)Rectangular cross section, b=60mm, h=220mm, A=1.320E+004mm, Wy=4.840E+005mm, Wz=1.320E+005mmModification factor Kmod=0.90 (Table 3.1), material factor M=1.30 (Table 2.3)fc0k=22.00 N/mm, fc0d=Kmodfc0k/M=0.90x22.00/1.30=15.23N/mmfmyk=27.00 N/mm, fmyd=Kmodfmyk/M=0.90x27.00/1.30=18.69N/mmfmzk=27.00 N/mm, fmzd=Kmodfmzk/M=0.90x27.00/1.30=18.69N/mm

    Rectangular cross section Km=0.70 (EC5 6.1.6.(2))c0d=Fc0d/Anetto=1000x3.605/13200= 0.27 N/mmmyd=Myd/Wmy,netto=1E+06x1.403/4.840E+005= 2.90 N/mmmzd=Mzd/Wmz,netto=1E+06x0.000/1.320E+005= 0.00 N/mm

    (c0d/fc0d)+myd/fmyd+Km.mzd/fmzd=0.000+0.155+0.000= 0.16 < 1 (EC5 Eq.6.19)(c0d/fc0d)+Km.myd/fmyd+mzd/fmzd=0.000+0.109+0.000= 0.11 < 1 (EC5 Eq.6.20)The check is satisfied

    Rafter, elements: 1 , load combination No 13Combined bending and axial compression, Fc0d=-3.518kN, Myd=2.026kNm, Mzd=0.000kNm (EC5 6.2.4)Rectangular cross section, b=60mm, h=220mm, A=1.320E+004mm, Wy=4.840E+005mm, Wz=1.320E+005mmModification factor Kmod=0.90 (Table 3.1), material factor M=1.30 (Table 2.3)fc0k=22.00 N/mm, fc0d=Kmodfc0k/M=0.90x22.00/1.30=15.23N/mmfmyk=27.00 N/mm, fmyd=Kmodfmyk/M=0.90x27.00/1.30=18.69N/mmfmzk=27.00 N/mm, fmzd=Kmodfmzk/M=0.90x27.00/1.30=18.69N/mm

    Rectangular cross section Km=0.70 (EC5 6.1.6.(2))c0d=Fc0d/Anetto=1000x3.518/13200= 0.27 N/mmmyd=Myd/Wmy,netto=1E+06x2.026/4.840E+005= 4.19 N/mmmzd=Mzd/Wmz,netto=1E+06x0.000/1.320E+005= 0.00 N/mm

    (c0d/fc0d)+myd/fmyd+Km.mzd/fmzd=0.000+0.224+0.000= 0.22 < 1 (EC5 Eq.6.19)(c0d/fc0d)+Km.myd/fmyd+mzd/fmzd=0.000+0.157+0.000= 0.16 < 1 (EC5 Eq.6.20)The check is satisfied

    27software by RUNET (c) RUNET Norway as

    12/09/2011 16:46:21C:\RUNETENG\WOOD\Examples\to net\WOODexpress Example01

    W OODexpress

  • Example of Attic truss

    Rafter, elements: 1 , load combination No 26Column stability with bending, Fc0d=-3.605kN, Myd=1.403kNm, Mzd=0.000kNm (EC5 6.3.2)Rectangular cross section, b=60mm, h=220mm, A=1.320E+004mm, Wy=4.840E+005mm, Wz=1.320E+005mmModification factor Kmod=0.90 (Table 3.1), material factor M=1.30 (Table 2.3, E005=7700N/mmfc0k=22.00 N/mm, fc0d=Kmodfc0k/M=0.90x22.00/1.30=15.23N/mmfmyk=27.00 N/mm, fmyd=Kmodfmyk/M=0.90x27.00/1.30=18.69N/mmfmzk=27.00 N/mm, fmzd=Kmodfmzk/M=0.90x27.00/1.30=18.69N/mm

    Rectangular cross section Km=0.70 (EC5 6.1.6.(2))c0d=Fc0d/Anetto=1000x3.605/13200= 0.27 N/mmmyd=Myd/Wmy,netto=1E+06x1.403/4.840E+005= 2.90 N/mmmzd=Mzd/Wmz,netto=1E+06x0.000/1.320E+005= 0.00 N/mm

    Buckling length SkSky= 1.00x2.955=2.955 m= 2955 mm (most unfavourable)Skz= 0.10x2.955=0.300 m= 300 mm (effective length/total length=0.30/2.95=0.10)

    Slendernessiy=(Iy/A)=0.289x 220= 64 mm, y= 2955/ 64= 46.17iz=(Iz/A)=0.289x 60= 17 mm, z= 300/ 17= 17.65

    Critical stressesc,crity=E005/y= 35.65 N/mm, rel,y=(fc0k/c,crity)= 0.79 (EC5 Eq.6.21)c,critz=E005/z= 243.95 N/mm, rel,z=(fc0k/c,critz)= 0.30 (EC5 Eq.6.22)

    c=0.20 (solid timber)ky=0.5[1+c(rely-0.3)+rely]= 0.86, Kcy=1/(ky+(ky-rely))=0.833 (Eq.6.27 6.25)kz=0.5[1+c(relz-0.3)+relz]= 0.55, Kcz=1/(kz+(kz-relz))=1.000 (Eq.6.28 6.26)

    c0d/(Kcyfc0d)+myd/fmyd+Km.mzd/fmzd=0.022+0.155+0.000= 0.18 < 1 (EC5 Eq.6.23)c0d/(Kczfc0d)+Km.myd/fmyd+mzd/fmzd=0.018+0.109+0.000= 0.13 < 1 (EC5 Eq.6.24)The check is satisfied

    Rafter, elements: 1 , load combination No 13Column stability with bending, Fc0d=-3.518kN, Myd=2.026kNm, Mzd=0.000kNm (EC5 6.3.2)Rectangular cross section, b=60mm, h=220mm, A=1.320E+004mm, Wy=4.840E+005mm, Wz=1.320E+005mmModification factor Kmod=0.90 (Table 3.1), material factor M=1.30 (Table 2.3, E005=7700N/mmfc0k=22.00 N/mm, fc0d=Kmodfc0k/M=0.90x22.00/1.30=15.23N/mmfmyk=27.00 N/mm, fmyd=Kmodfmyk/M=0.90x27.00/1.30=18.69N/mmfmzk=27.00 N/mm, fmzd=Kmodfmzk/M=0.90x27.00/1.30=18.69N/mm

    Rectangular cross section Km=0.70 (EC5 6.1.6.(2))c0d=Fc0d/Anetto=1000x3.518/13200= 0.27 N/mmmyd=Myd/Wmy,netto=1E+06x2.026/4.840E+005= 4.19 N/mmmzd=Mzd/Wmz,netto=1E+06x0.000/1.320E+005= 0.00 N/mm

    Buckling length SkSky= 1.00x2.955=2.955 m= 2955 mm (most unfavourable)Skz= 0.10x2.955=0.300 m= 300 mm (effective length/total length=0.30/2.95=0.10)

    Slendernessiy=(Iy/A)=0.289x 220= 64 mm, y= 2955/ 64= 46.17iz=(Iz/A)=0.289x 60= 17 mm, z= 300/ 17= 17.65

    Critical stressesc,crity=E005/y= 35.65 N/mm, rel,y=(fc0k/c,crity)= 0.79 (EC5 Eq.6.21)c,critz=E005/z= 243.95 N/mm, rel,z=(fc0k/c,critz)= 0.30 (EC5 Eq.6.22)

    28software by RUNET (c) RUNET Norway as

    12/09/2011 16:46:22C:\RUNETENG\WOOD\Examples\to net\WOODexpress Example01


Recommended