+ All Categories
Home > Documents > Yi Lin - ACS Spring-R2...Synthesis of Metal Nanoparticle‐Decorated Carbon Nanotubes under Ambient...

Yi Lin - ACS Spring-R2...Synthesis of Metal Nanoparticle‐Decorated Carbon Nanotubes under Ambient...

Date post: 27-Apr-2020
Category:
Upload: others
View: 3 times
Download: 0 times
Share this document with a friend
15
Synthesis of Metal NanoparticleDecorated Carbon Nanotubes under Ambient Conditions Yi Lin , 1 Kent A. Watson, 2 Sayata Ghose, 2 Joseph G. Smith, Jr., 3 John W. Connell 3 1 NASA Postdoctoral Program Fellow, Oak Ridge Associated Universities 2 National Institute of Aerospace, Hampton, VA 23666 3 NASA Langley Research Center, Hampton, VA 23681 235 th ACS National Meeting & Exhibition April 7, 2008 New Orleans, LA [email protected]; [email protected] Preparation of Metal NanoparticleDecorated CNTs Metal nanoparticles + CNT Electrochemical methods Electroless methods Sputtering Activation bath Use of reducing agents Solidphase reduction H 2 Dispersion in solvents NaBH 4 Ethylene Glycol Pyrolysis from organometallic compounds Spontaneous reduction SubstrateEnhanced Electroless Deposition (SEED) Choi, et al., J. Am. Chem. Soc. 2002, 124, 9058. Qu, L.; Dai, L. J. Am. Chem. Soc. 2005, 127, 10806. https://ntrs.nasa.gov/search.jsp?R=20080015985 2020-04-29T20:01:57+00:00Z
Transcript

Synthesis of Metal Nanoparticle‐Decorated Carbon Nanotubes

under Ambient Conditions

Yi Lin,1 Kent A. Watson,2 Sayata Ghose,2

Joseph G. Smith, Jr.,3 John W. Connell3

1NASA Postdoctoral Program Fellow, Oak Ridge Associated Universities2National Institute of Aerospace, Hampton, VA 236663NASA Langley Research Center, Hampton, VA 23681

235th ACS National Meeting & ExhibitionApril 7, 2008

New Orleans, LA

[email protected]; [email protected]

Preparation of Metal Nanoparticle‐Decorated CNTs

• Metal nanoparticles + CNT• Electrochemical methods• Electroless methods

– Sputtering – Activation bath– Use of reducing agents

• Solid‐phase reduction– H2

• Dispersion in solvents– NaBH4– Ethylene Glycol

– Pyrolysis from organometallic compounds – Spontaneous reduction – Substrate‐Enhanced Electroless Deposition (SEED)

Choi, et al., J. Am. Chem. Soc. 2002, 124, 9058.

Qu, L.; Dai, L. J. Am. Chem. Soc. 2005, 127, 10806.

https://ntrs.nasa.gov/search.jsp?R=20080015985 2020-04-29T20:01:57+00:00Z

•Electroless

•No added reducing agent•Readily scaled‐up

•Solventless

Patent Pending

Thermal Decomposition of Metal Acetates in the Presence of CNTs

CH3COOAg → Ag + CH3COOH + C + CO2

CNT

To Improve from Mortar/Pestle Mixing

• SPEX CertiPrep 8000D High‐Energy Shaker Mill– ~1000 cycles/min

– 2.25” back and forth and 1” side‐to‐side movements

– Zirconia vial: ~20 mL mixing load– Two zirconia balls: d ~ 0.5”

CH3COOAg → Ag + CH3COOH + C + CO2

CNT

•1 mol% AgOAc (to C)

•2‐min Milling

•350 oC N2 3h 

Thermal Decomposition of Metal Acetates in the Presence of CNTs

2‐min Milling without Thermal Treatment

Sintering or Intermediate?

0.23 nm

0.23 nm

0.20 nm

0.30 nmAgOAc

Ag

0.23 nm

•150 oC N2

Sintering or Intermediate?

“Waterpool” Route

1.Formation of AgOAc nanoparticles2. Decomposition of AgOAc on C surface

AgOAc

Ag

Sintering or Intermediate?

2‐min Milling without Thermal Treatment

Diameter (nm)1 2 3 4 5

Cou

nts

0

10

20

30

40

10‐min Milling without Thermal Treatment

0.23 nm

Formation of Ag (0) Nanoparticles on MWNT Surface

20 30 40 50 60 70 80

Inte

nsity

MWNT

AgOAc

Ag

Estimated Yield of Conversion

25 30 35 40

Rel

ativ

e In

tens

ity

25 30 35 40

Rel

ativ

e In

tens

ity

1 mol% AgOAc Feed (10-min Milling): ~40-60%

Before

After

Estimation from Thermal Decomposition (350oC)

100% Conversion

Shorter Milling, Less Conversion

25 30 35 40

Rel

ativ

e In

tens

ity

Estimation from Thermal Decomposition

1 mol% AgOAc Feed (2-min Milling): ~10-20%

Before

After

Conversion vs. Milling Time

• 1% AgOAc Feed2θ

20 25 30 35 40

Inte

nsity

MWNT

AgOAc

Ag

2‐min

10‐min

120‐min

Ball‐Mill Time

10‐20%

40‐60%

>90%

Yield

Can’t Mill Too Long

120‐min

30‐min

60‐min

Dependence on CNT Diameter?

20 25 30 35 40

Inte

nsity

SWNT

10‐30 nm

60‐100 nm

CNT Diameter

40‐60 nm

3‐8 nm

Expanded Graphite

C (002)

AgOAc

Ag • 1% AgOAc Feed• ~10 min Milling

EG60‐100 nm

10‐30 nm3‐8 nm

• 10mol% AgOAc Feed• 10‐min Milling

Yield of Conversion

25 30 35 40

Rel

ativ

e In

tens

ity

25 30 35 40

Rel

ativ

e In

tens

ity Before

After

Estimation from Thermal Decomposition

1 mol% AgOAc Feed (10-min Milling): ~40-60%

More Ag Feed, Less Conversion

25 30 35 40

Rel

ativ

e In

tens

ity

Estimation from Thermal Decomposition

10 mol% AgOAc Feed (10-min Milling): ~5-10%

Before

After

More Ag, More Decoration

•10 mol% AgOAc feed; 10-min milling•Similar average size ~2.5 nm

5 nm

Other Metals?

H2Pt(OH)6 PtOAc

Fe(OAc)2 Cu(OAc)2

x x

x

•1 mol% feed•10-min milling

Pd(OAc)2Tdec ~ 205oC

Pd Nanoparticle‐Decorated MWNTs

•Homogeneous Decoration of sub-2nm Pd(0) nanoparticles•Exhibit excellent catalytic properties

Pd Nanoparticle‐Decorated MWNTs

Pd (111) 0.22 nm

Conclusions• Advantages

– Ambient conditions

– Electroless, solventless, no reducing agent

– Rapid, single‐step (< 30 min),  readily scaled up

– Narrow size distribution (sub‐5 nm)

– Widely applicable to various carbon substrates

– Applicable to various metals: Ag, Pd, Pt …

• Limitations– Conversion at the expense of nanotube structural integrity

– Not universal to all metal salts?

• Applications– Catalysis

– Sensors

– Electromagnetic devices

Acknowledgments• Financial Support: 

– NASA Postdoctoral Program managed by Oak Ridge Associated Universities (ORAU)

• Experiments & Discussions– David Hartman (XRD)

– Dr. Roy Crooks & Dr. Wei Cao (HR‐TEM)

– Dr. Peter Lillehei (SEM)– Dr. Donavon Delozier, Dr. Michael Fallbach

– Dr. Tony Belcher, Dr. Chris Wohl

• Collaborators– Western Kentucky University

• Dr. Wei‐Ping Pan, Dr. Yan Cao, Quentin Lineberry

– Clemson University• Dr. Ya‐Ping Sun


Recommended