+ All Categories
Home > Documents > Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 8.1 EE4800 CMOS Digital IC Design & Analysis...

Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 8.1 EE4800 CMOS Digital IC Design & Analysis...

Date post: 20-Dec-2015
Category:
View: 233 times
Download: 1 times
Share this document with a friend
Popular Tags:
52
Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis Analysis 8. 8.1 EE4800 CMOS Digital IC Design & Analysis Lecture 8 Spice Simulation Zhuo Feng
Transcript
Page 1: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 8.1 EE4800 CMOS Digital IC Design & Analysis Lecture 8 Spice Simulation Zhuo Feng.

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

8.8.11

EE4800 CMOS Digital IC Design & Analysis 

Lecture 8 Spice SimulationZhuo Feng

Page 2: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 8.1 EE4800 CMOS Digital IC Design & Analysis Lecture 8 Spice Simulation Zhuo Feng.

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

8.8.22

Outline■Introduction to SPICE■DC Analysis■Transient Analysis■Subcircuits■Optimization■Power Measurement■Logical Effort Characterization

Page 3: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 8.1 EE4800 CMOS Digital IC Design & Analysis Lecture 8 Spice Simulation Zhuo Feng.

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

8.8.33

Introduction to SPICE■ Simulation Program with Integrated Circuit

Emphasis► Developed in 1970’s at Berkeley► Many commercial versions are available► HSPICE is a robust industry standard

▼ Has many enhancements that we will use

■ Written in FORTRAN for punch-card machines► Circuits elements are called cards► Complete description is called a SPICE deck

Page 4: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 8.1 EE4800 CMOS Digital IC Design & Analysis Lecture 8 Spice Simulation Zhuo Feng.

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

8.8.44

Writing Spice Decks■ Writing a SPICE deck is like writing a good

program► Plan: sketch schematic on paper or in editor

▼ Modify existing decks whenever possible

► Code: strive for clarity▼ Start with name, email, date, purpose▼ Generously comment

► Test:▼ Predict what results should be▼ Compare with actual▼ Garbage In, Garbage Out!

Page 5: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 8.1 EE4800 CMOS Digital IC Design & Analysis Lecture 8 Spice Simulation Zhuo Feng.

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

8.8.55

Example: RC Circuit* rc.sp* [email protected] 2/2/03* Find the response of RC circuit to rising input 

*------------------------------------------------* Parameters and models*------------------------------------------------.option post 

*------------------------------------------------* Simulation netlist*------------------------------------------------Vin in gnd pwl 0ps 0 100ps 0 150ps 1.8 800ps 1.8R1 in out 2kC1 out gnd 100f 

*------------------------------------------------* Stimulus*------------------------------------------------.tran 20ps 800ps.plot v(in) v(out).end

R1 = 2K

C1 =100fF

Vin

+Vout

-

Page 6: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 8.1 EE4800 CMOS Digital IC Design & Analysis Lecture 8 Spice Simulation Zhuo Feng.

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

8.8.66

Result (Textual)legend: a: v(in) b: v(out)  time v(in) (ab ) 0. 500.0000m 1.0000 1.5000 2.0000 + + + + + 0. 0. -2------+------+------+------+------+------+------+------+- 20.0000p 0. 2 + + + + + + + + 40.0000p 0. 2 + + + + + + + + 60.0000p 0. 2 + + + + + + + + 80.0000p 0. 2 + + + + + + + + 100.0000p 0. 2 + + + + + + + + 120.0000p 720.000m +b + + a+ + + + + + 140.0000p 1.440 + b + + + + + a + + + 160.0000p 1.800 + +b + + + + + +a + 180.0000p 1.800 + + b + + + + + +a + 200.0000p 1.800 -+------+------+b-----+------+------+------+------+a-----+- 220.0000p 1.800 + + + b + + + + +a + 240.0000p 1.800 + + + +b + + + +a + 260.0000p 1.800 + + + + b + + + +a + 280.0000p 1.800 + + + + b+ + + +a + 300.0000p 1.800 + + + + +b + + +a + 320.0000p 1.800 + + + + + b + + +a + 340.0000p 1.800 + + + + + b + + +a + 360.0000p 1.800 + + + + + b + +a + 380.0000p 1.800 + + + + + +b + +a + 400.0000p 1.800 -+------+------+------+------+------+--b---+------+a-----+- 420.0000p 1.800 + + + + + + b + +a + 440.0000p 1.800 + + + + + + b + +a + 460.0000p 1.800 + + + + + + b+ +a + 480.0000p 1.800 + + + + + + b +a + 500.0000p 1.800 + + + + + + +b +a + 520.0000p 1.800 + + + + + + +b +a + 540.0000p 1.800 + + + + + + + b +a + 560.0000p 1.800 + + + + + + + b +a + 580.0000p 1.800 + + + + + + + b +a + 600.0000p 1.800 -+------+------+------+------+------+------+---b--+a-----+- 620.0000p 1.800 + + + + + + + b +a + 640.0000p 1.800 + + + + + + + b +a + 660.0000p 1.800 + + + + + + + b +a + 680.0000p 1.800 + + + + + + + b +a + 700.0000p 1.800 + + + + + + + b+a + 720.0000p 1.800 + + + + + + + b+a + 740.0000p 1.800 + + + + + + + b+a + 760.0000p 1.800 + + + + + + + b+a + 780.0000p 1.800 + + + + + + + ba + 800.0000p 1.800 -+------+------+------+------+------+------+------ba-----+- + + + + +

Page 7: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 8.1 EE4800 CMOS Digital IC Design & Analysis Lecture 8 Spice Simulation Zhuo Feng.

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

8.8.77

Result (Graphical)

t(s)0.0 100p 200p 300p 400p 500p 600p 700p 800p 900p

0.0

0.5

1.0

1.5

2.0 v(in)

v(out)

Page 8: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 8.1 EE4800 CMOS Digital IC Design & Analysis Lecture 8 Spice Simulation Zhuo Feng.

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

8.8.88

Sources■DC Source

Vdd vdd gnd 2.5

■Piecewise Linear SourceVin in gnd pwl 0ps 0 100ps 0 150ps 1.8 800ps 1.8

■Pulsed SourceVck clk gnd PULSE 0 1.8 0ps 100ps 100ps 300ps 800ps

PULSE v1 v2 td tr tf pw per

v1

v2

td tr tfpw

per

Page 9: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 8.1 EE4800 CMOS Digital IC Design & Analysis Lecture 8 Spice Simulation Zhuo Feng.

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

8.8.99

SPICE Elements

Letter ElementR ResistorC CapacitorL InductorK Mutual InductorV Independent voltage sourceI Independent current sourceM MOSFETD DiodeQ Bipolar transistorW Lossy transmission lineX SubcircuitE Voltage-controlled voltage sourceG Voltage-controlled current sourceH Current-controlled voltage sourceF Current-controlled current source

Page 10: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 8.1 EE4800 CMOS Digital IC Design & Analysis Lecture 8 Spice Simulation Zhuo Feng.

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

8.8.1010

Units

Letter Unit Magnitude

a atto 10-18

f fempto 10-15

p pico 10-12

n nano 10-9

u micro 10-6

m mili 10-3

k kilo 103

x mega 106

g giga 109

Ex: 100 femptofarad capacitor = 100fF, 100f, 100e-15

Page 11: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 8.1 EE4800 CMOS Digital IC Design & Analysis Lecture 8 Spice Simulation Zhuo Feng.

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

8.8.1111

DC Analysis* mosiv.sp 

*------------------------------------------------* Parameters and models*------------------------------------------------.include '../models/tsmc180/models.sp'.temp 70.option post 

*------------------------------------------------ * Simulation netlist*------------------------------------------------*nmosVgs g gnd 0Vds d gnd 0M1 d g gnd gnd NMOS W=0.36u L=0.18u 

*------------------------------------------------* Stimulus*------------------------------------------------.dc Vds 0 1.8 0.05 SWEEP Vgs 0 1.8 0.3.end

Vgs Vds

Ids

4/2

Page 12: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 8.1 EE4800 CMOS Digital IC Design & Analysis Lecture 8 Spice Simulation Zhuo Feng.

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

8.8.1212

I-V Characteristics

Vds

0.0 0.3 0.6 0.9 1.2 1.5 1.8

Ids(A)

0

50

100

150

200

250

Vgs = 1.8

Vgs = 1.5

Vgs = 1.2

Vgs = 0.9

Vgs = 0.6

■NMOS I-V►Vgs dependence

►Saturation

Page 13: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 8.1 EE4800 CMOS Digital IC Design & Analysis Lecture 8 Spice Simulation Zhuo Feng.

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

8.8.1313

MOSFET ElementsM element for MOSFET

Mname drain gate source body type

+ W=<width> L=<length>

+ AS=<area source> AD = <area drain>

+ PS=<perimeter source> PD=<perimeter drain>

Page 14: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 8.1 EE4800 CMOS Digital IC Design & Analysis Lecture 8 Spice Simulation Zhuo Feng.

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

8.8.1414

Transient Analysis* inv.sp 

* Parameters and models*------------------------------------------------.param SUPPLY=1.8.option scale=90n.include '../models/tsmc180/models.sp'.temp 70.option post 

* Simulation netlist*------------------------------------------------Vdd vdd gnd 'SUPPLY'Vin a gnd PULSE 0 'SUPPLY' 50ps 0ps 0ps 100ps 200psM1 y a gnd gnd NMOS W=4 L=2 + AS=20 PS=18 AD=20 PD=18M2 y a vdd vdd PMOS W=8 L=2+ AS=40 PS=26 AD=40 PD=26 

* Stimulus*------------------------------------------------.tran 1ps 200ps.end

a y

4/2

8/2

Page 15: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 8.1 EE4800 CMOS Digital IC Design & Analysis Lecture 8 Spice Simulation Zhuo Feng.

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

8.8.1515

Transient Results

(V)

0.0

1.0

t(s)0.0 50p 100p 150p 200p

v(a)

v(y)

tpdr = 15pstpdf = 12ps

tf = 10ps

tr = 16ps

0.36

1.44

1.8

■ Unloaded inverter► Overshoot► Very fast edges

Page 16: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 8.1 EE4800 CMOS Digital IC Design & Analysis Lecture 8 Spice Simulation Zhuo Feng.

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

8.8.1616

Subcircuits■ Declare common elements as subcircuits

■ Ex: Fanout-of-4 Inverter Delay► Reuse inv► Shaping► Loading

.subckt inv a y N=4 P=8M1 y a gnd gnd NMOS W='N' L=2 + AS='N*5' PS='2*N+10' AD='N*5' PD='2*N+10'M2 y a vdd vdd PMOS W='P' L=2+ AS='P*5' PS='2*P+10' AD='P*5' PD='2*P+10'.ends

a b c d eX1 X2 X3 X4

1

2

4

8

16

32

64

128 fX5

256

512

Shape input

DeviceUnderTest Load

Load onLoad

Page 17: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 8.1 EE4800 CMOS Digital IC Design & Analysis Lecture 8 Spice Simulation Zhuo Feng.

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

8.8.1717

FO4 Inverter Delay* fo4.sp 

* Parameters and models*----------------------------------------------------------------------.param SUPPLY=1.8.param H=4.option scale=90n.include '../models/tsmc180/models.sp'.temp 70.option post 

* Subcircuits*----------------------------------------------------------------------.global vdd gnd.include '../lib/inv.sp' 

* Simulation netlist*----------------------------------------------------------------------Vdd vdd gnd 'SUPPLY'Vin a gnd PULSE 0 'SUPPLY' 0ps 100ps 100ps 500ps 1000psX1 a b inv * shape input waveformX2 b c inv M='H' * reshape input waveform

Page 18: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 8.1 EE4800 CMOS Digital IC Design & Analysis Lecture 8 Spice Simulation Zhuo Feng.

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

8.8.1818

FO4 Inverter Delay Cont.X3 c d inv M='H**2' * device under testX4 d e inv M='H**3' * loadx5 e f inv M='H**4' * load on load 

* Stimulus*----------------------------------------------------------------------.tran 1ps 1000ps.measure tpdr * rising prop delay+ TRIG v(c) VAL='SUPPLY/2' FALL=1 + TARG v(d) VAL='SUPPLY/2' RISE=1.measure tpdf * falling prop delay+ TRIG v(c) VAL='SUPPLY/2' RISE=1+ TARG v(d) VAL='SUPPLY/2' FALL=1 .measure tpd param='(tpdr+tpdf)/2' * average prop delay.measure trise * rise time+ TRIG v(d) VAL='0.2*SUPPLY' RISE=1+ TARG v(d) VAL='0.8*SUPPLY' RISE=1.measure tfall * fall time+ TRIG v(d) VAL='0.8*SUPPLY' FALL=1+ TARG v(d) VAL='0.2*SUPPLY' FALL=1.end

Page 19: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 8.1 EE4800 CMOS Digital IC Design & Analysis Lecture 8 Spice Simulation Zhuo Feng.

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

8.8.1919

FO4 Results

(V)

0.0

0.5

1.0

1.5

2.0

t(s)0.0 200p 400p 600p 800p 1n

a

b

c

d

e

ftpdf = 66ps tpdr = 83ps

Page 20: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 8.1 EE4800 CMOS Digital IC Design & Analysis Lecture 8 Spice Simulation Zhuo Feng.

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

8.8.2020

Optimization■ HSPICE can automatically adjust parameters

► Seek value that optimizes some measurement

■ Example: Best P/N ratio► We’ve assumed 2:1 gives equal rise/fall delays► But we see rise is actually slower than fall► What P/N ratio gives equal delays?

■ Strategies► (1) run a bunch of sims with different P size► (2) let HSPICE optimizer do it for us

Page 21: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 8.1 EE4800 CMOS Digital IC Design & Analysis Lecture 8 Spice Simulation Zhuo Feng.

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

8.8.2121

P/N Optimization* fo4opt.sp 

* Parameters and models*----------------------------------------------------------------------.param SUPPLY=1.8.option scale=90n.include '../models/tsmc180/models.sp'.temp 70.option post 

* Subcircuits*----------------------------------------------------------------------.global vdd gnd.include '../lib/inv.sp'

* Simulation netlist*----------------------------------------------------------------------Vdd vdd gnd 'SUPPLY'Vin a gnd PULSE 0 'SUPPLY' 0ps 100ps 100ps 500ps 1000psX1 a b inv P='P1' * shape input waveformX2 b c inv P='P1' M=4 * reshape inputX3 c d inv P='P1' M=16 * device under test

Page 22: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 8.1 EE4800 CMOS Digital IC Design & Analysis Lecture 8 Spice Simulation Zhuo Feng.

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

8.8.2222

P/N Optimization

X4 d e inv P='P1' M=64 * loadX5 e f inv P='P1' M=256 * load on load 

* Optimization setup*----------------------------------------------------------------------.param P1=optrange(8,4,16) * search from 4 to 16, guess 8.model optmod opt itropt=30 * maximum of 30 iterations.measure bestratio param='P1/4' * compute best P/N ratio 

* Stimulus*----------------------------------------------------------------------.tran 1ps 1000ps SWEEP OPTIMIZE=optrange RESULTS=diff MODEL=optmod.measure tpdr * rising propagation delay+ TRIG v(c)VAL='SUPPLY/2' FALL=1 + TARG v(d) VAL='SUPPLY/2' RISE=1.measure tpdf * falling propagation delay+ TRIG v(c) VAL='SUPPLY/2' RISE=1+ TARG v(d) VAL='SUPPLY/2' FALL=1 .measure tpd param='(tpdr+tpdf)/2' goal=0 * average prop delay.measure diff param='tpdr-tpdf' goal = 0 * diff between delays.end

Page 23: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 8.1 EE4800 CMOS Digital IC Design & Analysis Lecture 8 Spice Simulation Zhuo Feng.

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

8.8.2323

P/N Results■ P/N ratio for equal delay is 3.6:1

► tpd = tpdr = tpdf = 84 ps (slower than 2:1 ratio)

► Big pMOS transistors waste power too► Seldom design for exactly equal delays

■ What ratio gives lowest average delay?

.tran 1ps 1000ps SWEEP OPTIMIZE=optrange RESULTS=tpd MODEL=optmod

► P/N ratio of 1.4:1

► tpdr = 87 ps, tpdf = 59 ps, tpd = 73 ps

Page 24: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 8.1 EE4800 CMOS Digital IC Design & Analysis Lecture 8 Spice Simulation Zhuo Feng.

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

8.8.2424

Power Measurement■HSPICE can measure power

► Instantaneous P(t)►Or average P over some interval

.print P(vdd)

.measure pwr AVG P(vdd) FROM=0ns TO=10ns

■Power in single gate►Connect to separate VDD supply

►Be careful about input power

Page 25: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 8.1 EE4800 CMOS Digital IC Design & Analysis Lecture 8 Spice Simulation Zhuo Feng.

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

8.8.2525

Logical Effort■ Logical effort can be measured from

simulation► As with FO4 inverter, shape input, load output

X1 X2X3 X4

X5

a bc d

efM=1

M=h M=h2M=h3

M=h4

Shape input

DeviceUnderTest Load

Load onLoad

Page 26: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 8.1 EE4800 CMOS Digital IC Design & Analysis Lecture 8 Spice Simulation Zhuo Feng.

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

8.8.2626

Logical Effort Plots■ Plot tpd vs. h

► Normalize by ► y-intercept is parasitic delay► Slope is logical effort

■ Delay fits straight linevery well in any processas long as input slope isconsistent

0

20

40

60

80

100

120

140

160

180

0 2 4 6 8 10

h

dabs

= 15 ps

Page 27: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 8.1 EE4800 CMOS Digital IC Design & Analysis Lecture 8 Spice Simulation Zhuo Feng.

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

8.8.2727

Logical Effort Data■ For NAND gates in TSMC 180 nm process:

■ Notes:► Parasitic delay is greater for outer input► Average logical effort is better than estimated

Page 28: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 8.1 EE4800 CMOS Digital IC Design & Analysis Lecture 8 Spice Simulation Zhuo Feng.

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

8.8.2828

Comparison

Page 29: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 8.1 EE4800 CMOS Digital IC Design & Analysis Lecture 8 Spice Simulation Zhuo Feng.

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

8.8.2929

■SPICE overview►N equations in terms of N unknown Node voltages►More generally using modified nodal analysis

G(v)i 1v2v

3v

4v

C

R

v

Page 30: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 8.1 EE4800 CMOS Digital IC Design & Analysis Lecture 8 Spice Simulation Zhuo Feng.

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

8.8.3030

Time Domain Equations at node 1:

If we do this for all N nodes:

N dimensional vector of unknown node voltages

vector of independent sources

nonlinear operator

0)()()(

12

4131

vvGR

vv

dt

vvdC

0))(),(),(( tutxtxF

Xx )0(

)(tx

)(tu

F

Page 31: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 8.1 EE4800 CMOS Digital IC Design & Analysis Lecture 8 Spice Simulation Zhuo Feng.

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

8.8.3131

■ Closed form solution is not possible for arbitrary order of differential equations

■ We must approximate the solution of:

■ This is facilitated in SPICE via numerical solutions

0))(),(),(( tutxtxF

Xx )0(

Page 32: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 8.1 EE4800 CMOS Digital IC Design & Analysis Lecture 8 Spice Simulation Zhuo Feng.

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

8.8.3232

■Basic circuit analyses►(Nonlinear) DC analysis

▼Finds the DC operating point of the circuit▼Solves a set of nonlinear algebraic eqns

►AC analysis▼Performs frequency-domain small-signal analysis▼Require a preceding DC analysis▼Solves a set of complex linear eqns

►(Nonlinear) transient analysis▼Computes the time-domain circuit transient response▼Solves a set of nonlinear different eqns▼Converts to a set nonlinear algebraic of eqns using

numerical integration

Page 33: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 8.1 EE4800 CMOS Digital IC Design & Analysis Lecture 8 Spice Simulation Zhuo Feng.

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

8.8.3333

■ SPICE offers practical techniques to solve circuit problems in time & freq. domains

► Interface to device models▼ Transistors, diodes, nonlinear caps etc

► Sparse linear solver

► Nonlinear solver – Newton-Raphson method

► Numerical integration

► Convergence & time-step control

Page 34: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 8.1 EE4800 CMOS Digital IC Design & Analysis Lecture 8 Spice Simulation Zhuo Feng.

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

8.8.3434

■Circuit equations are usually formulated using

►Nodal analysis ▼N equations in N nodal voltages

►Modified analysis▼Circuit unknowns are nodal voltages & some branch

currents▼Branch current variables are added to handle

– Voltages sources– Inductors– Current controlled voltage source etc

■Formulations can be done in both time and frequency

Page 35: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 8.1 EE4800 CMOS Digital IC Design & Analysis Lecture 8 Spice Simulation Zhuo Feng.

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

8.8.3535

How do we set up a matrix problem given a list oflinear(ized) circuit elements?

Similar to reading a netlist for a linear circuit:

*Element Name From

To Value

3

2

1

1

R

R

R

I

2

1

1

0

0

2

0

1

100

5

10

1mA

Page 36: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 8.1 EE4800 CMOS Digital IC Design & Analysis Lecture 8 Spice Simulation Zhuo Feng.

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

8.8.3636

The nodal analysis matrix equations are easily constructed via KCL at each node:

1I 1R

2R

3R

mA1

5

10010

1 2

0

JvY

Page 37: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 8.1 EE4800 CMOS Digital IC Design & Analysis Lecture 8 Spice Simulation Zhuo Feng.

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

8.8.3737

■ Naïve approach► a) Write down the KCL eqn for each node► b) Combine all of them to a get N eqns in N node voltages

■ Intuitive for hand analysis

■ Computer programs use a more convenient “element” centric approach

► Element stamps

Page 38: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 8.1 EE4800 CMOS Digital IC Design & Analysis Lecture 8 Spice Simulation Zhuo Feng.

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

8.8.3838

Instead of converting the netlist into a graph and writing KCL eqns, stamp in elements one at a time:

Stamps: add to existing matrix entries

RR

RR11

11 Fromrow

Torow

Fromcol.

Tocol.

j

i

i j

i

j

RY

Page 39: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 8.1 EE4800 CMOS Digital IC Design & Analysis Lecture 8 Spice Simulation Zhuo Feng.

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

8.8.3939

RHS of equations are stamped in a similar way:

I

Ii

jI

From row

Torow

i

j

J

Page 40: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 8.1 EE4800 CMOS Digital IC Design & Analysis Lecture 8 Spice Simulation Zhuo Feng.

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

8.8.4040

Stamping our simple example one element at a time:

10002

521

1001

110

3

2

1

1

R

R

R

mAI

01

2

1

322

221 I

V

V

GGG

GGG

Page 41: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 8.1 EE4800 CMOS Digital IC Design & Analysis Lecture 8 Spice Simulation Zhuo Feng.

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

8.8.4141

We know that nonlinear elements are first converted to linear components, then stamped

EQI EQG

Page 42: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 8.1 EE4800 CMOS Digital IC Design & Analysis Lecture 8 Spice Simulation Zhuo Feng.

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

8.8.4242

For 3 & 4 terminal elements we know that the linearized models have linear controlled sources

Gdsv

D DG

S S

gsv

gsmvg dsr

We can stamp in MOSFETs in terms of a complete stamp, or in terms of simpler element stamps

Page 43: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 8.1 EE4800 CMOS Digital IC Design & Analysis Lecture 8 Spice Simulation Zhuo Feng.

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

8.8.4343

Voltage controlled current source

kv 0I

k

kmvgi

p

q

Voltmeter

mm

mm

gg

gg

k

p

qrow

row

colcol

Large value that does not fall on diagonal of Y!

Page 44: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 8.1 EE4800 CMOS Digital IC Design & Analysis Lecture 8 Spice Simulation Zhuo Feng.

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

8.8.4444

All other types of controlled sources include voltage sources

Voltage sources are inherently incompatible with nodal analysis

Grounded voltages sources are easily accommodated

1

0

v2

21

2

1

v

v

Page 45: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 8.1 EE4800 CMOS Digital IC Design & Analysis Lecture 8 Spice Simulation Zhuo Feng.

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

8.8.4545

But a voltage source in between nodes is more difficult

Node voltages and

are not independentk

k

Page 46: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 8.1 EE4800 CMOS Digital IC Design & Analysis Lecture 8 Spice Simulation Zhuo Feng.

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

8.8.4646

We no longer have N independent node voltage variables

So we can potentially eliminate one equation and one variable (section 2.3 of reference [1])

But the more popular solution is modified nodal analysis (MNA)

i

Vk

Create one extra variable and one extra equation

Page 47: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 8.1 EE4800 CMOS Digital IC Design & Analysis Lecture 8 Spice Simulation Zhuo Feng.

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

8.8.4747

Extra variable: voltage source current

Allows us to write KCL at nodes

and

Extra equation

Advantage: now have an easy way of printing current results - - ammeter

Vvvk

k

Page 48: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 8.1 EE4800 CMOS Digital IC Design & Analysis Lecture 8 Spice Simulation Zhuo Feng.

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

8.8.4848

Voltage source stamp:

Vi011

1

1

row

row

row

col colcol

k

k

1N

1N

Page 49: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 8.1 EE4800 CMOS Digital IC Design & Analysis Lecture 8 Spice Simulation Zhuo Feng.

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

8.8.4949

Current-controlled current source (e.g. BJT) has to stamp in an ammeter and a controlled current source

12 ii 1i

Page 50: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 8.1 EE4800 CMOS Digital IC Design & Analysis Lecture 8 Spice Simulation Zhuo Feng.

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

8.8.5050

In general, we would not blindly build the matrix from an input netlist and then attempt to solve it

Various illegal ckts are possible:

Cutsets of current sources

Page 51: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 8.1 EE4800 CMOS Digital IC Design & Analysis Lecture 8 Spice Simulation Zhuo Feng.

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

8.8.5151

Loops of voltage sources

Dangling nodes

Page 52: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 8.1 EE4800 CMOS Digital IC Design & Analysis Lecture 8 Spice Simulation Zhuo Feng.

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

8.8.5252

■ Once we efficiently formulate MNA equations, an efficient solution to is even more important

■ For large ckts the matrix is really sparse► Number of entries in Y is a function of number of elements

connected to the corresponding node

■ Inverting a sparse matrix is never a good idea since the inverse is not sparse!

■ Instead direct solution methods employ Gaussian Elimination or LU factorization

JvY


Recommended